JP2006231095A - Carbonized film and its manufacturing method - Google Patents
Carbonized film and its manufacturing method Download PDFInfo
- Publication number
- JP2006231095A JP2006231095A JP2005044852A JP2005044852A JP2006231095A JP 2006231095 A JP2006231095 A JP 2006231095A JP 2005044852 A JP2005044852 A JP 2005044852A JP 2005044852 A JP2005044852 A JP 2005044852A JP 2006231095 A JP2006231095 A JP 2006231095A
- Authority
- JP
- Japan
- Prior art keywords
- group
- membrane
- carbonized
- gas separation
- polyphenylene oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、ポリフェニレンオキシドからなることを特徴とする気体分離用炭化膜、その前駆体および気体分離用炭化膜の製造法に関する。とくに、気体透過性および気体分離性に優れたポリフェニレンオキシドからなることを特徴とする気体分離用炭化膜、その前駆体および気体分離用炭化膜の製造法に関する。 The present invention relates to a gas separation carbonized film comprising polyphenylene oxide, a precursor thereof, and a method for producing the gas separation carbonized film. In particular, the present invention relates to a carbon membrane for gas separation, a precursor thereof, and a method for producing the carbon membrane for gas separation, characterized by comprising polyphenylene oxide excellent in gas permeability and gas separation property.
所望の気体を選択的に分離、回収して有効に利用する方法として、膜を利用する方法が知られている。この方法は他の気体を分離、回収する方法と比較して省エネルギー的であるという特徴を有するので、気体混合物から特定の気体を効率よく分離、精製する技術開発が積極的に検討されている。
気体分離用の膜を構成する材料の検討としては、耐薬品性および耐熱性を有する膜素材としてセラミックスや特殊ガラスなどを用いた分離用の膜が報告されている。これら分離膜は気体分離性については一定の性能を有するものの、分離膜形状に成形加工することなどが難しく、気体分離機能を使用目的に合わせて制御し、製作することは困難であり、実用化しにくいという問題点があった。
その点を改める技術として、炭素材料が注目されてきており、たとえば、フェノール樹脂のような液状熱硬化樹脂をセラミック多孔質体表面に塗布した後、非酸化雰囲気下で炭化して得られる炭化膜(特許文献1を参照)が報告され、また、芳香族ポリイミドからなる非対称性中空糸膜を炭化して得られる炭化膜(特許文献2を参照)および芳香族ポリイミドを多孔質基材の表面に塗布し、加熱、乾燥して形成された前駆体を酸素不活性雰囲気下で熱分解することにより得られる炭素膜(特許文献3を参照)が報告されている。
しかし、前者は高価なセラミック多孔質体を必要とし、塗布操作を何度も繰り返すという煩雑な工程を経る必要があり、後者は、価格の点で満足できるとはいえず、しかも炭素材料の調製法が複雑であるなどの問題がある。
A method using a membrane is known as a method of selectively separating and recovering a desired gas and using it effectively. Since this method has a feature that it is energy saving as compared with other gas separation and recovery methods, development of technology for efficiently separating and purifying a specific gas from a gas mixture has been actively studied.
As a study of materials constituting a gas separation membrane, a separation membrane using ceramics, special glass, or the like as a membrane material having chemical resistance and heat resistance has been reported. Although these separation membranes have a certain performance in terms of gas separation properties, it is difficult to form into a separation membrane shape, etc., and it is difficult to control and manufacture the gas separation function according to the purpose of use. There was a problem that it was difficult.
Carbon technology has attracted attention as a technique for revising this point. For example, a carbonized film obtained by applying a liquid thermosetting resin such as a phenol resin to the surface of a ceramic porous body and then carbonizing it in a non-oxidizing atmosphere. (See Patent Document 1), and a carbonized film (see Patent Document 2) obtained by carbonizing an asymmetric hollow fiber membrane made of aromatic polyimide and aromatic polyimide on the surface of the porous substrate. There has been reported a carbon film obtained by thermally decomposing a precursor formed by coating, heating and drying in an oxygen inert atmosphere (see Patent Document 3).
However, the former requires an expensive ceramic porous body, and it is necessary to go through a complicated process of repeating the coating operation many times. The latter is not satisfactory in terms of price, and the preparation of the carbon material There are problems such as complicated law.
そこで、安価な材料および簡便な工程で、成形性に優れ、なおかつ気体分離性だけでなく気体透過性も優れた気体分離用炭化膜の出現が望まれている。 Therefore, the appearance of a carbonized film for gas separation that is excellent in moldability and excellent in gas permeability as well as gas permeability with an inexpensive material and a simple process is desired.
従って、本発明の課題は、安価な材料および簡便な工程で、成形性に優れ、なおかつ気体分離性だけでなく気体透過性も優れた気体分離用炭化膜を提供することにある。また、その気体分離用炭化膜の前駆体、および気体分離用炭化膜の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a carbonized membrane for gas separation that is excellent in moldability and has excellent gas permeability as well as inexpensive materials and simple steps. Another object of the present invention is to provide a precursor for the gas separation carbonized film and a method for producing the gas separation carbonized film.
本発明者らは、上記課題を解決するべく鋭意研究する最中、ポリ(2,6-ジメチル-1,4-フェニレンオキシド)に着目して、このポリマーから炭化膜を製造してみると、驚くべきことには、ポリイミド炭化膜とほぼ同様の優れた気体透過選択性をもち、しかもポリイミド炭化膜よりも速い気体透過性を有することを見出した。また、本発明者は、このポリフェニレンオキシドに一段階の簡易な反応によって官能基を付与したポリフェニレンオキシド誘導体を調製し、これを炭化して得られた炭化膜も、目的に応じた成形が可能で、かつ高い気体分離性能を有していることを見出した。本発明者はこれらの知見に基づいてさらに研究を重ね、ついに本発明に到達した。 In the course of diligent research to solve the above problems, the inventors focused on poly (2,6-dimethyl-1,4-phenylene oxide) and produced a carbonized film from this polymer. Surprisingly, it has been found that it has excellent gas permeation selectivity similar to that of a polyimide carbide membrane, and has a faster gas permeability than a polyimide carbide membrane. In addition, the present inventor prepared a polyphenylene oxide derivative having a functional group added to this polyphenylene oxide by a simple one-step reaction, and a carbonized film obtained by carbonizing the polyphenylene oxide derivative can be molded according to the purpose. And it discovered that it had high gas separation performance. The present inventor has further studied based on these findings and finally reached the present invention.
すなわち、請求項1の発明は、実質的に下記繰り返し単位(1)を有するポリフェニレンオキシドポリマーの炭化物からなることを特徴とする気体分離用炭化膜である。ここでいう炭化物は、そのポリマーを公知の方法で炭化した物をいう。上記ポリフェニレンオキシドポリマーの分子量は気体分離用炭化膜を作製できる大きさであれば制限されないが、その下限は通常重量平均分子量として5,000程度である。その上限も炭化膜、とくに気体分離用炭化膜を作製できる大きさであれば制限されないが、重量平均分子量として1,000,000程度である。
請求項2の発明は、実質的に下記繰り返し単位を有し、その繰り返し単位の和(b+c+d)とその繰り返し単位の和(a+b+c+d)に対する割合が0〜100%であるポリフェニレンオキシドポリマーからなることを特徴とする気体分離用炭化膜である。
(式中、R11〜R12、R21〜R22、R31〜R34は各々独立して、水素原子、ハロゲン原子、置換基を有してもよい低級アルキル基、置換基を有してもよいトリ低級アルキルシリル基、スルホン基、カルボキシル基、置換基を有してもよいジアリールホスフィノ基を示すが、R11〜R12が共に水素原子ではなく、R21〜R22R11〜R12が共に水素原子ではなく、R31〜R34全てが水素原子ではない。)
The invention of claim 2 comprises a polyphenylene oxide polymer having substantially the following repeating units and a ratio of 0 to 100% of the sum of the repeating units (b + c + d) and the sum of the repeating units (a + b + c + d). It is the carbonized film for gas separation characterized.
(In the formula, R 11 to R 12 , R 21 to R 22 and R 31 to R 34 each independently have a hydrogen atom, a halogen atom, a lower alkyl group which may have a substituent, or a substituent. good tri-lower alkylsilyl group, a sulfone group, a carboxyl group, exhibit an optionally substituted diaryl phosphino group, rather than the R 11 to R 12 are both hydrogen atoms, R 21 ~R 22 R 11 rather than to R 12 are both hydrogen atoms, R 31 to R 34 all are not a hydrogen atom.)
請求項3記載の発明は、請求項1記載のポリフェニレンオキシドポリマーが、R1、R2、R3、およびR4から選ばれた少なくとも一つは置換基を有してもよいトリ低級アルキルシリル基である繰り返し単位(1)を有することを特徴とし、請求項4記載の発明は、さらに、R1、R2、R3、およびR4から選ばれた少なくとも一つは置換基を有してもよいカルボキシル基である繰り返し単位(1)を有することを特徴とする。
請求項5記載の発明は、請求項2記載のポリフェニレンオキシドポリマーが、R11〜R12、R21〜R22、R31〜R34から選ばれた少なくとも一つは置換基を有してもよいトリ低級アルキルシリル基である繰り返し単位(b)、(c)、および(d)を有することを特徴とし、請求項6記載の発明は、さらに、R11〜R12、R21〜R22、R31〜R34から選ばれた少なくとも一つはカルボキシル基である繰り返し単位(b)、(c)、および(d)を有することを特徴とする。
According to a third aspect of the present invention, in the polyphenylene oxide polymer according to the first aspect , at least one selected from R 1 , R 2 , R 3 and R 4 may have a substituent. The repeating unit (1) is a group, and the invention according to claim 4 further has at least one selected from R 1 , R 2 , R 3 , and R 4 having a substituent. It has the repeating unit (1) which is a carboxyl group which may be.
Invention of claim 5, wherein the polyphenylene oxide polymer of claim 2 wherein the at least one selected from R 11 ~R 12, R 21 ~R 22, R 31 ~R 34 is may have a substituent It has repeating units (b), (c) and (d) which are good tri-lower alkylsilyl groups, and the invention according to claim 6 further comprises R 11 to R 12 , R 21 to R 22. At least one selected from R 31 to R 34 has a repeating unit (b), (c), or (d) that is a carboxyl group.
請求項7記載の発明は、請求項3〜6から選ばれた一つの請求項記載のポリフェニレンオキシドポリマーの炭化物からなる気体分離用炭化膜であって、しかも、そのポリフェニレンオキシドを炭化処理した後に非対称型の構造を有することを特徴とする気体分離用炭化膜である。
請求項8記載の発明は、請求項1〜6から選ばれた一つの請求項記載のポリフェニレンオキシドポリマーからなることを特徴とする気体分離用炭化膜前駆体である。
請求項9記載の発明は、請求項1〜6から選ばれた一つの請求項記載のポリフェニレンオキシドポリマーを所定の分離膜形状に成形して炭化膜前駆体を形成させ、この炭化膜前駆体を嫌気雰囲気下で加熱し炭化させて得たことを特徴とする気体分離用炭化膜である。
り、請求項10記載の発明は、請求項1〜6から選ばれた一つの請求項記載のポリフェニレンオキシドポリマーを所定の分離膜形状に成形して炭化膜前駆体を形成させ、この炭化膜前駆体を嫌気雰囲気下で加熱し炭化することを特徴とする炭化膜、その中でも気体分離用炭化膜の製造方法である。
なお、本発明は、請求項1〜6から選ばれた一つの請求項記載のポリフェニレンオキシドポリマーの炭化物からなる炭化膜でもある。
A seventh aspect of the present invention is a gas separation carbonized film comprising a carbide of a polyphenylene oxide polymer according to one of the claims selected from the third to sixth aspects, and is asymmetric after carbonizing the polyphenylene oxide. A gas separation carbonized film characterized by having a mold structure.
The invention according to claim 8 is a carbon separation membrane precursor for gas separation, comprising the polyphenylene oxide polymer according to claim 1 selected from claims 1-6.
According to a ninth aspect of the invention, a polyphenylene oxide polymer according to one of the claims selected from the first to sixth aspects is formed into a predetermined separation membrane shape to form a carbonized film precursor, and the carbonized film precursor is formed. A gas separation carbonized film obtained by heating and carbonizing in an anaerobic atmosphere.
Accordingly, the invention according to claim 10 forms the carbonized film precursor by forming the polyphenylene oxide polymer according to one of the claims selected from claims 1 to 6 into a predetermined separation membrane shape, and forms the carbonized film precursor. It is a method for producing a carbonized film, in particular, a carbonized film for gas separation, characterized by heating and carbonizing a body in an anaerobic atmosphere.
In addition, this invention is also the carbonized film which consists of a carbide | carbonized_material of the polyphenylene oxide polymer of one Claim selected from Claims 1-6.
以下、本発明を詳細に説明する。
本発明の一つの大きな特徴が気体分離用炭化膜を構成する成分であり、その成分が、実質的に上記繰り返し単位(1)からなるポリフェニレンオキシドポリマーの炭化物である。
上記繰り返し単位(1)における式中のR1〜R4は各々独立して、水素原子、ハロゲン原子、置換基を有してもよい低級アルキル基、置換基を有してもよいトリ低級アルキルシリル基、スルホン基、カルボキシル基、置換基を有してもよいジアリールホスフィノ基、−CH2R9を示し、R9はハロゲン原子、置換基を有してもよいトリ低級アルキルシリル基、スルホン基、カルボキシル基、置換基を有してもよいジアリールホスフィノ基を示す。
ここで、ハロゲン原子としては塩素原子、臭素原子又はフッ素原子がある。
低級アルキル基としては、炭素数が1〜5のアルキル基を例示でき、具体的には、メチル基、エチル基、n−又はiso−プロピル基、n−、sec−又はtert− ブチル基、n−アミル基などがある。このアルキル基はハロゲン原子、シアノ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリール基などで置換されていてもよい。
トリ低級アルキルシリル基の低級アルキル基は、上記で例示されたものと同じであり、また、上記で例示されたもので置換されていてもよい。
ジアリールホスフィノ基のアリール基としては、フェニル基が好ましく、このアリール基はハロゲン原子、シアノ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基などで置換されていてもよい。
−CH2R9におけるR9それぞれの基は上記説明のとおりである。
Hereinafter, the present invention will be described in detail.
One major feature of the present invention is a component constituting a carbon membrane for gas separation, and the component is a carbide of a polyphenylene oxide polymer substantially consisting of the repeating unit (1).
R 1 to R 4 in the formula in the repeating unit (1) are each independently a hydrogen atom, a halogen atom, a lower alkyl group that may have a substituent, or a tri-lower alkyl that may have a substituent. A silyl group, a sulfone group, a carboxyl group, an optionally substituted diarylphosphino group, —CH 2 R 9 , wherein R 9 is a halogen atom, an optionally substituted tri-lower alkylsilyl group, A diarylphosphino group which may have a sulfone group, a carboxyl group or a substituent is shown.
Here, the halogen atom includes a chlorine atom, a bromine atom or a fluorine atom.
Examples of the lower alkyl group include alkyl groups having 1 to 5 carbon atoms, specifically, methyl group, ethyl group, n- or iso-propyl group, n-, sec- or tert-butyl group, n -There are amyl groups and the like. This alkyl group may be substituted with a halogen atom, cyano group, hydroxy group, alkoxy group, alkoxycarbonyl group, aryl group or the like.
The lower alkyl group of the tri-lower alkylsilyl group is the same as that exemplified above, and may be substituted with those exemplified above.
The aryl group of the diarylphosphino group is preferably a phenyl group, and this aryl group may be substituted with a halogen atom, a cyano group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, or the like.
Each group R 9 in the -CH 2 R 9 are as described above.
本発明のポリフェニレンオキシドポリマーの分子量の測定は、公知の方法を用いる。たとえば、ポリフェニレンオキシドを溶媒に溶解した後、ゲルパーミェーションクロマトグラム(GPC)法によって測定する。 A known method is used to measure the molecular weight of the polyphenylene oxide polymer of the present invention. For example, polyphenylene oxide is dissolved in a solvent and then measured by a gel permeation chromatogram (GPC) method.
本発明では、上記ポリフェニレンオキシドの中から、とくに上記繰り返し単位(a)、(b)、(c)、および(d)からなるポリフェニレンオキシドを選択し、そのポリフェニレンオキシドを気体分離用炭化膜とすることが有利である。
ポリフェニレンオキシドポリマー内での上記繰り返し単位(a)、(b)、(c)、および(d)の存在割合はとくに制限されない。ここで、それぞれの繰り返し単位における、R11〜R12、R21〜R22、R31〜R34は上記と同じである。
In the present invention, the polyphenylene oxide composed of the repeating units (a), (b), (c), and (d) is selected from the polyphenylene oxide, and the polyphenylene oxide is used as a carbon membrane for gas separation. It is advantageous.
The abundance ratio of the repeating units (a), (b), (c), and (d) in the polyphenylene oxide polymer is not particularly limited. Here, R < 11 > -R < 12 >, R < 21 > -R < 22 >, R < 31 > -R < 34 > in each repeating unit is the same as the above.
上記ポリフェニレンオキシドポリマーの中ではとくに、置換基を有してもよいトリ低級アルキルシリル基を有するポリフェニレンオキシドポリマーを用いると、優れた性能を有する気体分離膜を製造することができ、さらに、置換基を有してもよいトリ低級アルキルシリル基を有すると共にカルボキシル基を有するポリフェニレンオキシドポリマーを用いると、より優れた性能を有する気体分離膜を製造することができる。 Among the above polyphenylene oxide polymers, when a polyphenylene oxide polymer having a tri-lower alkylsilyl group which may have a substituent is used, a gas separation membrane having excellent performance can be produced. When a polyphenylene oxide polymer having a tri-lower alkylsilyl group which may have a carboxyl group and a carboxyl group is used, a gas separation membrane having better performance can be produced.
本発明が規定するポリフェニレンオキシドポリマーを調製する好ましい方法は、出発原料であるポリフェニレンオキシドポリマー、とくにポリ(2,6-ジメチル-1,4-フェニレンオキシド)(以下、PPOということがある)に特許請求の範囲で規定する官能基を導入する方法が挙げられるが、その方法に何等限定されない。その他の方法としては、たとえば、特許請求の範囲で規定するポリフェニレンオキシドを調製できる適切なモノマー、具体的には官能基を有してもよいフェノール化合物を選び、酸化カップリング触媒などの適切な触媒の存在下で、酸素ガス又は酸素含有混合ガスを用いて該モノマーを酸化する方法、さらに得られたポリマーを修飾することにより上記ポリフェニレンオキシドポリマーを調製する方法などを挙げることができる。 A preferred method for preparing the polyphenylene oxide polymer defined in the present invention is patented to the starting polyphenylene oxide polymer, particularly poly (2,6-dimethyl-1,4-phenylene oxide) (hereinafter sometimes referred to as PPO). Although the method of introduce | transducing the functional group prescribed | regulated by a claim is mentioned, It is not limited to the method at all. Other methods include, for example, selecting an appropriate monomer capable of preparing the polyphenylene oxide specified in the claims, specifically a phenol compound that may have a functional group, and an appropriate catalyst such as an oxidative coupling catalyst. In the presence of the above, a method of oxidizing the monomer using oxygen gas or an oxygen-containing mixed gas, a method of preparing the polyphenylene oxide polymer by modifying the obtained polymer, and the like can be mentioned.
上記ポリ(2,6-ジメチル-1,4-フェニレンオキシド)は、上記ポリフェニレンオキシドポリマーを製造することができるポリマーであればどのような分子量を有するものでも使用可能であるが、好ましい重量平均分子量として5,000〜1,000,000程度である。そのPPOは市販品を購入して容易に入手できるが、公知の方法により調製してもよい。 As the poly (2,6-dimethyl-1,4-phenylene oxide), any polymer having any molecular weight that can produce the polyphenylene oxide polymer can be used. About 5,000 to 1,000,000. The PPO can be easily obtained by purchasing a commercial product, but may be prepared by a known method.
たとえば、そのPPOと、導入される官能基を供給する化合物とを反応系内にて反応させ、上記ポリフェニレンオキシドポリマーを調製することができる。導入される官能基を供給する化合物としては、ClSO3H、Br2、Cl2、Me3SiCl、Ph2PCl(Meはメチル基を示し、Phはフェニル基を示す)、CO2、などを例示できるがこれらに限定されない。
この反応に際して、官能基がポリマーに導入されやすいように、たとえばn−R8Li(R8は低級アルキルを示す)などの化合物を共存させることが好ましい。
この反応温度は、ドライアイス浴により到達される温度から60℃程度とし、反応時間は数分〜数十時間とすることが好ましい。より好ましくは0〜30℃の反応温度で、10分〜24時間の反応時間である。
For example, the polyphenylene oxide polymer can be prepared by reacting the PPO with a compound supplying a functional group to be introduced in a reaction system. Examples of the compound that supplies a functional group to be introduced include ClSO 3 H, Br 2 , Cl 2 , Me 3 SiCl, Ph 2 PCl (Me represents a methyl group, Ph represents a phenyl group), CO 2 , and the like. Although it can illustrate, it is not limited to these.
In this reaction, it is preferable that a compound such as n-R 8 Li (R 8 represents lower alkyl) is allowed to coexist so that the functional group is easily introduced into the polymer.
The reaction temperature is preferably about 60 ° C. from the temperature reached by the dry ice bath, and the reaction time is preferably several minutes to several tens of hours. More preferably, the reaction time is 10 minutes to 24 hours at a reaction temperature of 0 to 30 ° C.
かくして調製されたポリフェニレンオキシドポリマーを原料として気体分離用炭化膜を製造する。本発明では気体分離用炭化膜の形状はとくに限定されないのであり、たとえば中空糸膜状・平膜状・キャピラリー膜状などをとることができる。また、セラミックス多孔質体のような支持体表面に密着した構造もとることができる。これらの成形物のうち、コスト、耐圧性等の実用面を考慮した場合、中空糸膜状に成形されるのが最も好ましい。 A carbonized membrane for gas separation is produced using the polyphenylene oxide polymer thus prepared as a raw material. In the present invention, the shape of the carbon separation membrane for gas separation is not particularly limited, and for example, a hollow fiber membrane shape, a flat membrane shape, or a capillary membrane shape can be taken. Moreover, it can take the structure closely_contact | adhered to the support body surface like a ceramic porous body. Of these molded products, when practical aspects such as cost and pressure resistance are taken into consideration, it is most preferable that the molded product is formed into a hollow fiber membrane shape.
その炭化膜の製造方法もとくに限定されないのであり、すでに知られている方法を採用すればよい。まず、上記の方法で調製されたポリフェニレンオキシドポリマーを任意の溶媒に溶かし、製膜原液を調製する。この際、溶液の安定性を保持させる物質などを、初期の目的の配位内の量だけ添加しておいてもよい。ここで使用される溶媒としては、メタノール、クロロホルム、テトラヒドロフラン、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドンなどがある。
本発明では、上記製膜原液を成形して得られる高分子膜を炭化膜、あるいは気体分離用炭化膜の前駆体と呼び、例えば、中空糸膜状の炭化膜前駆体は以下のようにして成形する。
上記製膜原液を二重管構造の中空糸紡糸ノズルの周縁部環状口から凝固液中に押し出し、紡糸ノズルの中央部円状口からは、製膜原液の溶媒と混合するがポリフェニレンオキシドポリマーに対しては非溶解性の溶媒を凝固液中に加えて、中空糸状物を成形する。
ここで、凝固液としては、エタノール、水、飽和食塩水があり、製膜原液の溶媒と混合するがポリフェニレンオキシドポリマーに対しては非溶解性の溶媒としては、エタノール、水、飽和食塩水がある。
凝固液の温度は、−20℃〜60℃であり、好ましくは0℃〜30℃である。
The method for producing the carbonized film is not particularly limited, and a known method may be employed. First, the polyphenylene oxide polymer prepared by the above method is dissolved in an arbitrary solvent to prepare a film forming stock solution. At this time, a substance that maintains the stability of the solution may be added in an amount within the initial target coordination. Examples of the solvent used here include methanol, chloroform, tetrahydrofuran, N, N-dimethylformamide, N-methyl-2-pyrrolidone and the like.
In the present invention, the polymer membrane obtained by molding the membrane-forming stock solution is called a carbonized membrane or a precursor of a carbon membrane for gas separation. For example, a hollow fiber membrane-like carbonized membrane precursor is as follows. Mold.
The membrane-forming stock solution is extruded into the coagulation liquid from the peripheral annular port of the double-pipe hollow fiber spinning nozzle, and mixed with the solvent of the membrane-forming stock solution from the circular nozzle at the center of the spinning nozzle. On the other hand, a non-soluble solvent is added to the coagulating liquid to form a hollow fiber-like product.
Here, as the coagulation liquid, there are ethanol, water, and saturated saline, which are mixed with the solvent of the film forming stock solution, but for the polyphenylene oxide polymer, ethanol, water, and saturated saline are used as the insoluble solvent. is there.
The temperature of the coagulation liquid is −20 ° C. to 60 ° C., preferably 0 ° C. to 30 ° C.
平膜状の炭化膜前駆体あるいは気体分離用炭化膜前駆体は、上記製膜原液を平滑なガラス板上に流延あるいは塗布し、必要に応じて加熱処理して溶媒を蒸発させた後、上記製膜原液の溶媒と混合するがポリフェニレンオキシドポリマーに対しては貧溶媒あるいは非溶解性の溶媒に浸漬し、脱溶媒させてもよい。 A flat film-like carbon film precursor or a gas separation carbon film precursor is cast or coated on a smooth glass plate with the above film-forming stock solution, and after heat treatment as necessary, the solvent is evaporated. Although it mixes with the solvent of the said film forming undiluted | stock solution, with respect to a polyphenylene oxide polymer, you may immerse in a poor solvent or a non-soluble solvent, and you may make it desolvate.
キャピラリー膜状の炭化膜前駆体あるいは気体分離用炭化膜前駆体は、上記製膜原液をキャピラリー膜製膜装置に注入し、必要に応じて加熱処理して溶媒を蒸発させて得られる。あるいは、中空糸膜製造法と同様に上記製膜原液を凝固液中に押し出すことにより、キャピラリー膜を作製させても良い。凝固液の温度は、−20℃〜60℃であり、好ましくは0℃〜30℃である。
これらの製造法において、溶媒と凝固液の組み合わせによっては、非対称構造を有する分離膜前駆体を製造することが可能である。例えば、N,N−ジメチルホルムアミドを溶媒とする上記製膜原液を、冷水の凝固液に浸漬させて脱溶媒させると、非対称構造を有する分離膜前駆体が得られる。とくに、カルボキシル基を有するポリフェニレンオキシドポリマーを用いたときには、非対称構造を有する分離膜前駆体が得られやすく、有利である。
この中空糸状物を乾燥して、各種形状を有する炭化膜前駆体あるいは気体分離用炭化膜前駆体を得ることができる。この炭化膜前駆体あるいは気体分離用炭化膜前駆体をそのまま炭化させてもよいが、たとえば150〜300℃程度と、炭化する温度よりも低い温度で加熱処理を施して、炭化膜前駆体あるいは気体分離用炭化膜前駆体を不融化処理することが有利である。この不融化処理を施すことにより、炭化膜あるいは気体分離用炭化膜としての性能がとくに改善される。
A capillary membrane-shaped carbonized film precursor or a gas separation carbonized film precursor is obtained by injecting the film-forming stock solution into a capillary film-forming apparatus and heat-treating the solvent as necessary to evaporate the solvent. Alternatively, the capillary membrane may be produced by extruding the membrane-forming stock solution into a coagulation solution as in the hollow fiber membrane production method. The temperature of the coagulation liquid is −20 ° C. to 60 ° C., preferably 0 ° C. to 30 ° C.
In these production methods, depending on the combination of the solvent and the coagulation liquid, it is possible to produce a separation membrane precursor having an asymmetric structure. For example, when the membrane-forming stock solution using N, N-dimethylformamide as a solvent is immersed in a coagulating solution of cold water to remove the solvent, a separation membrane precursor having an asymmetric structure is obtained. In particular, when a polyphenylene oxide polymer having a carboxyl group is used, a separation membrane precursor having an asymmetric structure is easily obtained, which is advantageous.
This hollow fiber-like material can be dried to obtain carbonized film precursors having various shapes or carbonized film precursors for gas separation. The carbonized film precursor or the carbonized film precursor for gas separation may be carbonized as it is. For example, the carbonized film precursor or the gas is obtained by performing heat treatment at a temperature lower than the carbonizing temperature, for example, about 150 to 300 ° C It is advantageous to infusibilize the separation carbonized film precursor. By performing this infusibilization treatment, the performance as a carbonized membrane or a carbonized membrane for gas separation is particularly improved.
かくして得られた炭化膜前駆体あるいは気体分離用炭化膜前駆体を公知の方法で炭化処理し、炭化膜あるいは気体分離用炭化膜を製造することができる。たとえば、該前駆体を容器内に収容し、1torr未満、好ましくは0.1torr未満に減圧処理し、加熱処理する。加熱条件は前駆体を構成する材料の種類、その量などにより変動するのであり、一概に規定することができないが、通常300〜1000℃で、24時間以下とする場合が多い。好ましくは、550〜850℃で30分から4時間である。
また、アルゴンガス、窒素ガスなどで置換した嫌気性雰囲気下、減圧処理することなく過熱処理し、気体分離膜を製造することも可能である。
The carbonized film precursor or the gas separating carbonized film precursor thus obtained can be carbonized by a known method to produce a carbonized film or a gas separating carbonized film. For example, the precursor is accommodated in a container, subjected to reduced pressure treatment of less than 1 torr, preferably less than 0.1 torr, and heat treatment. The heating conditions vary depending on the type and amount of the material constituting the precursor, and cannot be generally defined, but are usually 300 to 1000 ° C. and 24 hours or less in many cases. Preferably, it is 30 minutes to 4 hours at 550 to 850 ° C.
In addition, it is possible to produce a gas separation membrane by performing an overheat treatment in an anaerobic atmosphere substituted with an argon gas, a nitrogen gas, or the like without performing a decompression treatment.
本発明の方法により、耐熱性・耐寒性・機械的強度・耐熱水性に優れ、エンジニアプラスチックとして用いられているポリフェニレンオキシドポリマーで所定の形状の炭化膜前駆体あるいは気体分離用炭化膜前駆体を得、この前駆体を好ましくは不融化処理後炭化させて炭化膜あるいは気体分離用炭化膜とするので、炭化の際に比較的高温に加熱しても炭化膜前駆体あるいは気体分離用炭化膜前駆体の形状が維持され、構造欠陥の少ない、細孔径の揃った炭化膜あるいは気体分離用炭化膜が得られる。また、ポリフェニレンオキシドポリマーは溶剤溶解性に優れているので、湿式法による中空糸化や製膜が可能であり、種々の形状の炭化膜前駆体あるいは気体分離用炭化膜前駆体を成形して炭化することができ、種々の形状の炭化膜を容易に製造できる。さらに、成形加工性にも優れているので、炭化膜を容器内にコンパクトに充填することができるので、小型でしかも効率よい気体分離装置を製造することが可能となる。 By the method of the present invention, it is excellent in heat resistance, cold resistance, mechanical strength, and hot water resistance, and a carbon film precursor for gas separation or a carbon separation film precursor for gas separation is obtained with a polyphenylene oxide polymer used as an engineer plastic. The precursor is preferably carbonized after infusibilization to obtain a carbonized film or a gas separating carbonized film, so that the carbonized film precursor or the gas separating carbonized film precursor is heated even when heated to a relatively high temperature during carbonization. Thus, a carbonized film having a uniform pore diameter or a carbonized film for gas separation with few structural defects can be obtained. In addition, polyphenylene oxide polymer has excellent solvent solubility, so it can be made into a hollow fiber and formed into a film by a wet process. Carbonized carbon film precursors for various shapes or carbonized film precursors for gas separation can be molded and carbonized. Therefore, various shapes of carbonized films can be easily manufactured. Furthermore, since it is excellent in moldability, the carbonized film can be filled in the container in a compact manner, so that it is possible to manufacture a small and efficient gas separation device.
本発明では、上記とくに、置換基を有してもよいトリ低級アルキルシリル基を有するポリフェニレンオキシドポリマーを用いると、優れた性能を有する気体分離膜を製造することができ、さらに、置換基を有してもよいトリ低級アルキルシリル基を有すると共にカルボキシル基を有するポリフェニレンオキシドポリマーを用いると、非対称型の構造をとる気体分離膜を製造することができる。この非対称型の構造をとる気体分離膜はとくに優れた気体分離能を有するという特徴を持ち、有利である。 In the present invention, in particular, when a polyphenylene oxide polymer having a tri-lower alkylsilyl group which may have a substituent is used, a gas separation membrane having excellent performance can be produced. If a polyphenylene oxide polymer having a tri-lower alkylsilyl group and a carboxyl group may be used, a gas separation membrane having an asymmetric structure can be produced. This gas separation membrane having an asymmetric structure is advantageous in that it has a particularly excellent gas separation ability.
本発明の炭化膜の使用法は、公知の炭化膜と同じ方法を挙げることができるが、とくに気体分離用炭化膜として有用である。水素製造、二酸化炭素分離回収、排気ガス分離回収、天然ガス分離、ガスの除湿、空気からの酸素の製造等の分野において特に有用である。 The method of using the carbonized film of the present invention can be the same as a known carbonized film, but is particularly useful as a carbonized film for gas separation. It is particularly useful in fields such as hydrogen production, carbon dioxide separation and recovery, exhaust gas separation and recovery, natural gas separation, gas dehumidification, and production of oxygen from air.
本発明により、安価な材料および簡便な工程で炭化膜および気体分離用炭化膜を作成することができる。本発明により得られた気体分離膜は、気体透過性および気体分離性に優れている。また、成形性も優れている。本発明により得られた気体分離膜は、多種類の気体の分離を可能とするが、とくに水素、ヘリウムガス、二酸化炭素、酸素の分離に有効である。また、水素や酸素の製造にも有効である。 According to the present invention, a carbonized membrane and a carbonized membrane for gas separation can be produced with an inexpensive material and a simple process. The gas separation membrane obtained by the present invention is excellent in gas permeability and gas separation properties. Moreover, the moldability is also excellent. The gas separation membrane obtained by the present invention enables separation of many kinds of gases, but is particularly effective for separation of hydrogen, helium gas, carbon dioxide, and oxygen. It is also effective for the production of hydrogen and oxygen.
以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
PPO炭化膜の作製
(炭化膜製造用原液の調製)
PPO(アルドリッチ社No.181781) 5.0 gをクロロホルム23.6 gに溶解させて、PPO 17.5重量%の製膜原液を作成した。
(炭化膜前駆体の作成)
得られた製膜原液を二重管構造の中空糸紡糸ノズルの環状口から製膜原液を、円状口からエタノールを、それぞれ同時にエタノール凝固槽中に押し出し、これを室温で風乾して中空糸膜(炭化膜前駆体)を得た。
試験ガス(He, H2, CO2, O2, N2)を用いて、炭化膜前駆体の気体分離性能を調べた。
結果を表1に示す。
(炭化膜中間体の製造)
次に、得られた中空糸膜をマッフル炉内にて、空気雰囲気中、8℃/分の速度で280℃まで昇温させ、この温度で45分加熱した後放冷し、炭化膜前駆体の不融化処理を行った。
(炭化膜の製造)
続いて、真空電気炉を用い、上で得られた炭化膜中間体の炭化を行った。この際の操作は、まず真空電気炉内を10-5 torr以下に減圧し、10℃/分の速度で650℃まで昇温させ、この温度で2時間加熱した後放冷し、炭化膜を得た。この膜は対称膜であった。
上記と同様の試験ガスを用いて得られた炭化膜の気体分離性能を調べた。
その方法は次のとおりである。
中空糸用気体透過率測定装置に装着した中空糸モジュールの内面に一定圧力で試験ガスを供給し、透過してくる気体流量を流量計で測定した。この際に、下記式で求められる気体透過係数P及び気体透過速度Qから、それぞれ、中空糸状炭化膜の気体分離性能を求めた。また、P又はQの比からガスの分離係数αを求めた。
P={ガス透過流量(cm3 ・STP)×膜厚(cm)}÷{膜面積(cm2 )×時間(秒)×圧力差(cmHg)}
Q={ガス透過流量(cm3 ・STP)}÷{膜面積(cm2 )×時間(秒)×圧力差(cmHg)}
結果を表2に示す。
Production of PPO carbonized film (preparation of stock solution for carbonized film production)
5.0 g of PPO (Aldrich No. 181781) was dissolved in 23.6 g of chloroform to prepare a film-forming stock solution of 17.5% by weight of PPO.
(Creation of carbonized film precursor)
The obtained membrane-forming stock solution was extruded into the ethanol coagulation tank at the same time through the membrane-forming stock solution from the annular port of the hollow tube spinning nozzle having a double-pipe structure, and ethanol from the circular port. A film (carbonized film precursor) was obtained.
Using a test gas (He, H 2 , CO 2 , O 2 , N 2 ), the gas separation performance of the carbide film precursor was examined.
The results are shown in Table 1.
(Manufacture of carbonized film intermediate)
Next, the obtained hollow fiber membrane was heated to 280 ° C. at a rate of 8 ° C./min in an air atmosphere in a muffle furnace, heated at this temperature for 45 minutes, and then allowed to cool, and a carbonized film precursor Infusibilization treatment was performed.
(Manufacture of carbonized film)
Subsequently, the carbonized film intermediate obtained above was carbonized using a vacuum electric furnace. In this operation, the vacuum electric furnace was first depressurized to 10 −5 torr or less, heated to 650 ° C. at a rate of 10 ° C./min, heated at this temperature for 2 hours, allowed to cool, Obtained. This membrane was a symmetrical membrane.
The gas separation performance of the carbonized membrane obtained using the same test gas as described above was examined.
The method is as follows.
A test gas was supplied to the inner surface of the hollow fiber module attached to the hollow fiber gas permeability measuring device at a constant pressure, and the permeated gas flow rate was measured with a flow meter. At this time, the gas separation performance of the hollow fiber carbonized membrane was determined from the gas permeation coefficient P and the gas permeation rate Q obtained by the following equations. Further, the gas separation coefficient α was determined from the ratio of P or Q.
P = {gas permeation flow rate (cm 3 · STP) × film thickness (cm)} ÷ {membrane area (cm 2 ) × time (seconds) × pressure difference (cmHg)}
Q = {gas permeation flow rate (cm 3 · STP)} ÷ {membrane area (cm 2 ) × time (seconds) × pressure difference (cmHg)}
The results are shown in Table 2.
ブロモ化PPO炭化膜の作製 ( (a) : (b)+(d) = 2 : 98)
(炭化膜製造用原液の調製)
PPO (実施例1と同じ:以下同様)4.8 gをクロロホルム480 mlに溶解させ、これに臭素6.4 gのクロロホルム20 ml溶液を滴下し、一晩室温で反応させて、ブロモ化PPO を得た。反応式を下に示す。このブロモ化PPO 2.3 gをクロロホルム7.6 gに溶解させて、ブロモ化PPO23重量%の製膜原液を作成した。
この炭化膜製造用原液を用いて実施例1と同様な操作を行い、炭化膜を得た。この膜は対称膜であった。上記と同様の試験ガスを用いて得られた炭化膜前駆体と炭化膜の気体分離性能を調べた。
結果を表1および表2に示す。
Preparation of brominated PPO carbonized film ((a): (b) + (d) = 2: 98)
(Preparation of stock solution for carbonized film production)
4.8 g of PPO (same as in Example 1: the same applies hereinafter) was dissolved in 480 ml of chloroform, and a solution of 6.4 g of bromine in 20 ml of chloroform was added dropwise thereto and reacted overnight at room temperature to obtain brominated PPO. The reaction formula is shown below. This brominated PPO (2.3 g) was dissolved in chloroform (7.6 g) to prepare a membrane-forming stock solution of brominated PPO (23 wt%).
Using this stock solution for carbonized film production, the same operation as in Example 1 was performed to obtain a carbonized film. This membrane was a symmetrical membrane. The gas separation performance of the carbonized film precursor and the carbonized film obtained using the same test gas as described above was examined.
The results are shown in Tables 1 and 2.
スルホン化PPO炭化膜の作製 (導入される官能基 = SO3H, (a):(b)+(d) = 56 : 44)
(炭化膜製造用原液の調製)
PPO 15.0 gをクロロホルム300 mlに溶解させ、これにクロロ硫酸17.6 gのクロロホルム25 ml溶液を滴下し、30分室温で反応させて、スルホン化PPOを得た。反応式を下に示す。このスルホン化PPO3.0 gをメタノール9.0 gに溶解させて、スルホン化PPO 25重量%の製膜原液を作成した。
(炭化膜前駆体の調製)
得られた製膜原液を二重管構造の中空糸紡糸ノズルの環状口から製膜原液を、円状口から飽和食塩(NaCl)水をそれぞれ同時に飽和食塩水凝固槽中に押し出し、これを1M HCl溶液中に浸漬した後に室温で風乾して炭化膜前駆体を得た。
上記と同様の試験ガスを用いて中空糸膜の気体分離性能を調べた。
結果を表1に示す。
この炭化膜製造用原液を用いて実施例1と同様な操作を行い、炭化膜を得た。この膜は対称膜であった。上記と同様の試験ガスを用いて得られた炭化膜の気体分離性能を調べた。結果を表2に示す。
Preparation of sulfonated PPO carbonized membrane (functional group introduced = SO 3 H, (a): (b) + (d) = 56:44)
(Preparation of stock solution for carbonized film production)
15.0 g of PPO was dissolved in 300 ml of chloroform, and a solution of 17.6 g of chlorosulfuric acid in 25 ml of chloroform was added dropwise thereto and reacted at room temperature for 30 minutes to obtain a sulfonated PPO. The reaction formula is shown below. 3.0 g of this sulfonated PPO was dissolved in 9.0 g of methanol to prepare a membrane forming stock solution of 25% by weight of sulfonated PPO.
(Preparation of carbonized film precursor)
The obtained membrane-forming stock solution was extruded from the annular port of the double-pipe hollow fiber spinning nozzle, and the saturated salt (NaCl) water was simultaneously extruded from the circular port into the saturated saline coagulation tank. After being immersed in HCl solution, it was air-dried at room temperature to obtain a carbonized film precursor.
The gas separation performance of the hollow fiber membrane was examined using the same test gas as described above.
The results are shown in Table 1.
Using this stock solution for carbonized film production, the same operation as in Example 1 was performed to obtain a carbonized film. This membrane was a symmetrical membrane. The gas separation performance of the carbonized membrane obtained using the same test gas as described above was examined. The results are shown in Table 2.
トリメチルシリル化PPO分離膜の作製 (導入される官能基 = SiMe3,(a) : (b)+(c)+(d) = 1 : 99)
(炭化膜製造用原液の調整)
PPO 5.0 gをテトラヒドロフラン250 mlに溶解させ、これに1.6 mol/lのn−ブチルリチウムヘキサン溶液27.6 mlを加えて室温で1時間攪拌した後、クロロトリメチルシラン4.6 gを滴下し、10分室温で反応させて、トリメチルシリル化PPOを得た。反応式を下に示す。このトリメチルシリル化PPO3.0 gをクロロホルム12.0 gに溶解させて、ブロモ化PPO 20重量%の製膜原液を作成した。
この炭化膜製造用原液を用いて実施例1と同様な操作を行い、炭化膜を得た。この膜は対称膜であった。上記と同様の試験ガスを用いて得られた、炭化膜前駆体と炭化膜の気体分離性能を調べた。
結果を表1および表2に示す。
Preparation of trimethylsilylated PPO separation membrane (Introduced functional group = SiMe 3 , (a): (b) + (c) + (d) = 1: 99)
(Adjustment of stock solution for carbonized film production)
Dissolve 5.0 g of PPO in 250 ml of tetrahydrofuran, add 27.6 ml of 1.6 mol / l n-butyllithium hexane solution and stir at room temperature for 1 hour, then add 4.6 g of chlorotrimethylsilane dropwise and continue for 10 minutes at room temperature. Reaction was performed to obtain trimethylsilylated PPO. The reaction formula is shown below. 3.0 g of this trimethylsilylated PPO was dissolved in 12.0 g of chloroform to prepare a film-forming stock solution of 20% by weight of brominated PPO.
Using this stock solution for carbonized film production, the same operation as in Example 1 was performed to obtain a carbonized film. This membrane was a symmetrical membrane. The gas separation performance of the carbonized film precursor and the carbonized film obtained using the same test gas as described above was examined.
The results are shown in Tables 1 and 2.
ジフェニルホスフィノ化PPO分離膜の作製 (導入される官能基 = PPh2, (a) : (b)+(c)+(d) = 20 : 80)
(炭化膜製造用原液の調整)
PPO5.0 gをテトラヒドロフラン250 mlに溶解させ、これに1.6 mol/lのn−ブチルリチウムヘキサン溶液27.6 mlを加えて室温で1時間攪拌した後、クロロジフェニルホスフィン9.7 gを滴下し、30分室温で反応させて、ジフェニルホスフィノ化PPOを得た。反応式を下に示す。このジフェニルホスフィノ化PPO3.0 gをクロロホルム9.0 gに溶解させて、ジフェニルホスフィノ化PPO 25重量%の製膜原液を作成した。
(炭化膜前駆体の調整)
得られた製膜原液を用いて実施例1と同様な操作を行い、分離膜前駆体を得た。 上記と同様の試験ガスを用いて、炭化膜前駆体の気体分離性能を調べた。
結果を表1に示す。
(炭化膜中間体の製造)
次に、得られた中空糸膜をマッフル炉内にて、空気雰囲気中、8℃/分の速度で150℃まで昇温させ、この温度で2時間加熱した後放冷し、分離膜前駆体の不融化処理を行った。
(炭化膜の製造)
続いて、真空電気炉を用い、実施例1と実施例1と同様な操作を行い、炭化膜を得た。この膜は対称膜であった。上記と同様の試験ガスを用いて得られた炭化膜の気体分離性能を調べた。
結果を表2に示す。
Preparation of diphenylphosphinolated PPO separation membrane (functional group introduced = PPh 2 , (a): (b) + (c) + (d) = 20: 80)
(Adjustment of stock solution for carbonized film production)
Dissolve 5.0 g of PPO in 250 ml of tetrahydrofuran, add 27.6 ml of 1.6 mol / l n-butyllithium hexane solution and stir at room temperature for 1 hour, drop 9.7 g of chlorodiphenylphosphine, To give diphenylphosphinoylated PPO. The reaction formula is shown below. This diphenylphosphinolated PPO (3.0 g) was dissolved in chloroform (9.0 g) to prepare a membrane forming stock solution of diphenylphosphinoylated PPO (25% by weight).
(Adjustment of carbonized film precursor)
Using the obtained membrane-forming stock solution, the same operation as in Example 1 was performed to obtain a separation membrane precursor. Using the same test gas as described above, the gas separation performance of the carbonized film precursor was examined.
The results are shown in Table 1.
(Manufacture of carbonized film intermediate)
Next, the obtained hollow fiber membrane was heated to 150 ° C. at a rate of 8 ° C./min in an air atmosphere in a muffle furnace, heated at this temperature for 2 hours, and then allowed to cool, whereby a separation membrane precursor Infusibilization treatment was performed.
(Manufacture of carbonized film)
Then, the operation similar to Example 1 and Example 1 was performed using the vacuum electric furnace, and the carbonized film was obtained. This membrane was a symmetrical membrane. The gas separation performance of the carbonized membrane obtained using the same test gas as described above was examined.
The results are shown in Table 2.
表中、PHeはヘリウムガスの時の分離膜の気体透過係数を示す(以下、同様)。単位は10−10cm3(STP)cm・cm2・sec・cmHgである。測定温度は25℃であった(以下同様)。ガスの分離係数αHe/N2は測定値Pの比から求める。(以下同様)。
In the table, PHe indicates the gas permeability coefficient of the separation membrane when helium gas is used (hereinafter the same). The unit is 10 −10 cm 3 (STP) cm · cm 2 · sec · cmHg. The measurement temperature was 25 ° C. (the same applies hereinafter). The gas separation factor αHe / N 2 is determined from the ratio of the measured values P. (The same applies hereinafter).
カルボキシル化PPO分離膜の作製 (導入される官能基 = CO2H, (a) : (b)+(c)+(d) = 32 : 68)
(炭化膜製造用原液の調整)
PPO5.0 gをテトラヒドロフラン200 mlに溶解させ、これに1.6 mol/lのn−ブチルリチウムヘキサン溶液18.0 mlを加えて室温で1時間攪拌した後、過剰のドライアイスを加え、30分室温で反応させて、カルボキシル化PPOを得た。反応式を下に示す。このカルボキシル化PPO 3.0 gをジメチルアセトアミド12.0 gに溶解させてカルボキシル化PPO 20重量%の製膜原液を作成した。
(炭化膜前駆体の調整)
得られた製膜原液を二重管構造の中空糸紡糸ノズルの環状口から製膜原液を、円状口から水を、それぞれ同時に水凝固槽中に押し出し、これを室温で風乾して非対称型の炭化膜前駆体を得た。
上記と同様の試験ガスを用いて得られた炭化膜前駆体の気体分離性能を調べた。
結果を表3に示す。
この炭化膜前駆体を用いて実施例1と同様な操作を行い、炭化膜を得た。この膜は非対称膜であった。上記と同様の試験ガスを用いて得られた炭化膜の気体分離性能を調べた。
結果を表4に示す。
Preparation of carboxylated PPO separation membrane (functional group introduced = CO 2 H, (a): (b) + (c) + (d) = 32: 68)
(Adjustment of stock solution for carbonized film production)
Dissolve 5.0 g of PPO in 200 ml of tetrahydrofuran, add 18.0 ml of 1.6 mol / l n-butyllithium hexane solution and stir at room temperature for 1 hour, add excess dry ice, and react at room temperature for 30 minutes. To give carboxylated PPO. The reaction formula is shown below. This carboxylated PPO (3.0 g) was dissolved in dimethylacetamide (12.0 g) to prepare a film-forming stock solution of carboxylated PPO (20 wt%).
(Adjustment of carbonized film precursor)
The obtained membrane forming stock solution is extruded from the annular port of the hollow fiber spinning nozzle having a double-pipe structure, and water is extruded from the circular port into the water coagulation tank at the same time. A carbonized film precursor was obtained.
The gas separation performance of the carbonized film precursor obtained using the same test gas as described above was examined.
The results are shown in Table 3.
Using this carbonized film precursor, the same operation as in Example 1 was performed to obtain a carbonized film. This membrane was an asymmetric membrane. The gas separation performance of the carbonized membrane obtained using the same test gas as described above was examined.
The results are shown in Table 4.
カルボキシル-トリメチルシリル化PPO炭化膜の作製
(導入される官能基 = CO2H, 導入される官能基 = SiMe3, 前者と後者との比 = 30 : 70, (a) : (b)+(c)+(d) = 1 : 99)
(炭化膜製造用原液の調整)
PPO 5.0 gをテトラヒドロフラン200 mlに溶解させ、これに1.6 mol/lのn−ブチルリチウムヘキサン溶液18.0 mlを加えて室温で1時間攪拌した。n−ブチルリチウムに対し、0.7等量となるようにクロロトリメチルシラン4.6 gを加えて10分室温で反応させた後、過剰のドライアイスを加え、30分室温で反応させて、カルボキシル-トリメチルシリル化PPOを得た。このカルボキシル-トリメチルシリル化PPO 3.0 gをジメチルアセトアミド12.0 gに溶解させてカルボキシル-トリメチルシリル化PPO 20重量%の製膜原液を作成した。
(炭化膜前駆体の形成)
得られた製膜原液を用いて実施例6と同様な操作を行い、炭化膜前駆体を得た。
この炭化膜前駆体を用いて実施例1と同様な操作を行い、炭化膜を得た。この膜は非対称膜であった。上記と同様の試験ガスを用いて得られた炭化膜前駆体および炭化膜の気体分離性能を調べた。
結果を表3および表4に示す。
Preparation of carboxyl-trimethylsilylated PPO carbonized film (Introduced functional group = CO 2 H, Introduced functional group = SiMe 3 , ratio of former to latter = 30: 70, (a): (b) + (c ) + (d) = 1:99)
(Adjustment of stock solution for carbonized film production)
PPO (5.0 g) was dissolved in tetrahydrofuran (200 ml), 1.6 mol / l n-butyllithium hexane solution (18.0 ml) was added thereto, and the mixture was stirred at room temperature for 1 hour. After adding 4.6 g of chlorotrimethylsilane to n-butyllithium so as to be 0.7 equivalent and reacting at room temperature for 10 minutes, adding excess dry ice and reacting at room temperature for 30 minutes, carboxyl-trimethylsilylation Got PPO. This carboxyl-trimethylsilylated PPO (3.0 g) was dissolved in dimethylacetamide (12.0 g) to prepare a film-forming stock solution of carboxyl-trimethylsilylated PPO (20% by weight).
(Formation of carbonized film precursor)
The same operation as in Example 6 was performed using the obtained film forming stock solution to obtain a carbonized film precursor.
Using this carbonized film precursor, the same operation as in Example 1 was performed to obtain a carbonized film. This membrane was an asymmetric membrane. The gas separation performance of the carbonized film precursor and the carbonized film obtained using the same test gas as described above was examined.
The results are shown in Table 3 and Table 4.
表中、QHeはヘリウムガスの時の分離膜の気体透過係数を示す(以下、同様)。単位は10−6cm3(STP)/cm2・sec・cmHgである。測定温度は25℃であった。(以下同様)。ガスの分離係数αHe/N2は測定値Qの比から求める。(以下同様)。
In the table, QHe indicates the gas permeability coefficient of the separation membrane when helium gas is used (hereinafter the same). The unit is 10 −6 cm 3 (STP) / cm 2 · sec · cmHg. The measurement temperature was 25 ° C. (The same applies hereinafter). The gas separation factor αHe / N 2 is determined from the ratio of the measured values Q. (The same applies hereinafter).
Claims (10)
(式中、R11〜R12、R21〜R22、R31〜R34は各々独立して、水素原子、ハロゲン原子、置換基を有してもよい低級アルキル基、置換基を有してもよいトリ低級アルキルシリル基、スルホン基、カルボキシル基、置換基を有してもよいジアリールホスフィノ基を示す。ただし、R11〜R12が共に水素原子ではなく、R21〜R22が共に水素原子ではなく、R31〜R34全てが同時に水素原子ではない。) The carbon membrane for gas separation according to claim 1, wherein the polyphenylene oxide polymer is substantially composed of the following repeating units, and the ratio of the sum (b + c + d) of the repeating units to (a + b + c + d) is 0 to 100%.
(In the formula, R 11 to R 12 , R 21 to R 22 and R 31 to R 34 each independently have a hydrogen atom, a halogen atom, a lower alkyl group which may have a substituent, or a substituent. A tri-lower alkylsilyl group, a sulfone group, a carboxyl group, and a diarylphosphino group which may have a substituent, provided that R 11 to R 12 are not hydrogen atoms, and R 21 to R 22 are Both are not hydrogen atoms, and all of R 31 to R 34 are not hydrogen atoms at the same time.)
A polyphenylene oxide polymer according to one of claims 1 to 6 selected from claims 1 to 6 is formed into a predetermined separation membrane shape to form a carbonized film precursor, and the carbonized film precursor is heated and carbonized in an anaerobic atmosphere. A method for producing a carbonized film, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005044852A JP2006231095A (en) | 2005-02-21 | 2005-02-21 | Carbonized film and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005044852A JP2006231095A (en) | 2005-02-21 | 2005-02-21 | Carbonized film and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006231095A true JP2006231095A (en) | 2006-09-07 |
Family
ID=37039324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005044852A Pending JP2006231095A (en) | 2005-02-21 | 2005-02-21 | Carbonized film and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006231095A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009017185A1 (en) * | 2007-08-02 | 2009-02-05 | National Institute Of Advanced Industrial Science And Technology | Hollow fiber carbon membrane and method for production thereof |
JP2011527935A (en) * | 2008-04-21 | 2011-11-10 | メムフォアクト エイエス | Carbon membranes from cellulose esters |
JP2012081375A (en) * | 2010-10-07 | 2012-04-26 | Nok Corp | Method of manufacturing hollow fiber carbon membrane |
WO2012105335A1 (en) | 2011-02-02 | 2012-08-09 | Nok株式会社 | Membrane-forming dope for carbon membranes and process for producing carbon hollow fiber membrane using same |
JP2013000713A (en) * | 2011-06-21 | 2013-01-07 | Nok Corp | Method of producing hollow fiber carbon film |
JP2013063409A (en) * | 2011-09-20 | 2013-04-11 | Toyobo Co Ltd | Hollow fiber carbon membrane and method for producing the same |
JP2013063415A (en) * | 2011-09-20 | 2013-04-11 | Toyobo Co Ltd | Hollow fiber carbon membrane, separation membrane module, and method of manufacturing hollow fiber carbon membrane |
JP2013071073A (en) * | 2011-09-28 | 2013-04-22 | Toyobo Co Ltd | Hollow fiber carbon membrane, separation membrane module and method for producing hollow fiber carbon membrane |
JP2013094744A (en) * | 2011-11-02 | 2013-05-20 | Toyobo Co Ltd | Hollow fiber carbon membrane, separation membrane module, and method for producing the hollow fiber carbon membrane |
JP2013094741A (en) * | 2011-11-02 | 2013-05-20 | Toyobo Co Ltd | Hollow fiber carbon membrane, and method for manufacturing the same |
JP5516951B2 (en) * | 2007-10-12 | 2014-06-11 | 大陽日酸株式会社 | Gas purification method |
WO2014196601A1 (en) * | 2013-06-05 | 2014-12-11 | Jx日鉱日石エネルギー株式会社 | Carbon film and method for manufacturing carbon film |
KR20170036682A (en) | 2014-07-24 | 2017-04-03 | 도레이 카부시키가이샤 | Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation |
US10456751B2 (en) | 2015-03-27 | 2019-10-29 | National Institute Of Advanced Industrial Science And Technology | Method for producing hollow fiber carbon membrane and separation membrane module |
EP4015070A1 (en) * | 2020-12-21 | 2022-06-22 | SHPP Global Technologies B.V. | Selectively permeable membrane obtained by carbonization of sulfonated poly(phenylene ether) copolymer |
WO2022137137A1 (en) * | 2020-12-21 | 2022-06-30 | Shpp Global Technologies B.V. | Selectively permeable membrane obtained by carbonization of sulfonated poly(phenylene ether) copolymer |
-
2005
- 2005-02-21 JP JP2005044852A patent/JP2006231095A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009034614A (en) * | 2007-08-02 | 2009-02-19 | National Institute Of Advanced Industrial & Technology | Hollow fiber carbon membrane and method for producing the same |
US8303690B2 (en) | 2007-08-02 | 2012-11-06 | National Institute Of Advanced Industrial Science And Technology | Hollow fiber carbon membrane and method for production thereof |
CN101754796B (en) * | 2007-08-02 | 2012-11-28 | 独立行政法人产业技术总合研究所 | Hollow fiber carbon membrane and method for production thereof |
WO2009017185A1 (en) * | 2007-08-02 | 2009-02-05 | National Institute Of Advanced Industrial Science And Technology | Hollow fiber carbon membrane and method for production thereof |
JP5516951B2 (en) * | 2007-10-12 | 2014-06-11 | 大陽日酸株式会社 | Gas purification method |
JP2011527935A (en) * | 2008-04-21 | 2011-11-10 | メムフォアクト エイエス | Carbon membranes from cellulose esters |
JP2012081375A (en) * | 2010-10-07 | 2012-04-26 | Nok Corp | Method of manufacturing hollow fiber carbon membrane |
WO2012105335A1 (en) | 2011-02-02 | 2012-08-09 | Nok株式会社 | Membrane-forming dope for carbon membranes and process for producing carbon hollow fiber membrane using same |
JP2013000713A (en) * | 2011-06-21 | 2013-01-07 | Nok Corp | Method of producing hollow fiber carbon film |
JP2013063409A (en) * | 2011-09-20 | 2013-04-11 | Toyobo Co Ltd | Hollow fiber carbon membrane and method for producing the same |
JP2013063415A (en) * | 2011-09-20 | 2013-04-11 | Toyobo Co Ltd | Hollow fiber carbon membrane, separation membrane module, and method of manufacturing hollow fiber carbon membrane |
JP2013071073A (en) * | 2011-09-28 | 2013-04-22 | Toyobo Co Ltd | Hollow fiber carbon membrane, separation membrane module and method for producing hollow fiber carbon membrane |
JP2013094741A (en) * | 2011-11-02 | 2013-05-20 | Toyobo Co Ltd | Hollow fiber carbon membrane, and method for manufacturing the same |
JP2013094744A (en) * | 2011-11-02 | 2013-05-20 | Toyobo Co Ltd | Hollow fiber carbon membrane, separation membrane module, and method for producing the hollow fiber carbon membrane |
WO2014196601A1 (en) * | 2013-06-05 | 2014-12-11 | Jx日鉱日石エネルギー株式会社 | Carbon film and method for manufacturing carbon film |
JPWO2014196601A1 (en) * | 2013-06-05 | 2017-02-23 | Jxエネルギー株式会社 | Carbon film and carbon film manufacturing method |
KR20170036682A (en) | 2014-07-24 | 2017-04-03 | 도레이 카부시키가이샤 | Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation |
US10159943B2 (en) | 2014-07-24 | 2018-12-25 | Toray Industries, Inc. | Carbon membrane for fluid separation, fluid separation membrane module, and method for producing carbon membrane for fluid separation |
US10456751B2 (en) | 2015-03-27 | 2019-10-29 | National Institute Of Advanced Industrial Science And Technology | Method for producing hollow fiber carbon membrane and separation membrane module |
EP4015070A1 (en) * | 2020-12-21 | 2022-06-22 | SHPP Global Technologies B.V. | Selectively permeable membrane obtained by carbonization of sulfonated poly(phenylene ether) copolymer |
WO2022137137A1 (en) * | 2020-12-21 | 2022-06-30 | Shpp Global Technologies B.V. | Selectively permeable membrane obtained by carbonization of sulfonated poly(phenylene ether) copolymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006231095A (en) | Carbonized film and its manufacturing method | |
JP5339324B2 (en) | Hollow fiber carbon membrane and method for producing the same | |
JP5265763B2 (en) | Hollow fiber, dope solution composition for forming hollow fiber, and method for producing hollow fiber using the same | |
Fuertes et al. | Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation | |
KR101025304B1 (en) | Hollow fiber, dope composition for forming hollow fiber, and method of preparing hollow fiber using the same | |
JP6023329B2 (en) | Polymer, polymer film and production method thereof | |
WO2015041250A1 (en) | Gas separation membrane, gas separation module, gas separation device, and gas separation method | |
CN1320652A (en) | Salt of polyacylimino-amic acid and polyacylimine film formed therefrom | |
JPH08299769A (en) | Porous ceramic composite hollow fiber membrane and its production | |
JP2016503448A (en) | Blend polymer membrane for gas separation containing fluorinated ethylene-propylene polymer | |
JP2010269229A (en) | Hollow fiber carbon membrane incorporating metal ion, and dehydration method of alcoholic aqueous solution using the same | |
US10537859B2 (en) | Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound | |
WO2017145747A1 (en) | Gas separation membrane, gas separation module, gas separation device, and gas separation method | |
JPS5850521B2 (en) | Selective permeable membrane made of polyquinazolone polymer | |
WO1991000774A1 (en) | Separative membrane made of aromatic polyimide | |
WO2017145728A1 (en) | Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound | |
JP2018126729A (en) | Separation method of gas | |
JP2002322293A (en) | Filmy material and method for producing the same | |
JP2016137484A (en) | Gas separation membrane | |
JP2827212B2 (en) | Polyamideimide separation membrane | |
US20190176081A1 (en) | Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound | |
JPS6252613B2 (en) | ||
JPS62163712A (en) | Dope for producing separation membrane | |
JPH085961B2 (en) | Hydrogen separation method | |
WO2017145905A1 (en) | Polyimide compound, gas separation membrane, gas separation module, gas separation device, and gas separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081006 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090623 |