JP2006226668A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- JP2006226668A JP2006226668A JP2006009697A JP2006009697A JP2006226668A JP 2006226668 A JP2006226668 A JP 2006226668A JP 2006009697 A JP2006009697 A JP 2006009697A JP 2006009697 A JP2006009697 A JP 2006009697A JP 2006226668 A JP2006226668 A JP 2006226668A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchange
- header
- intermediate header
- header portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
この発明は熱交換器に関し、さらに詳しくは、たとえば自動車に搭載される冷凍サイクルであるカーエアコンのエバポレータとして好適に使用される熱交換器に関する。 The present invention relates to a heat exchanger, and more particularly to a heat exchanger suitably used as an evaporator of a car air conditioner that is a refrigeration cycle mounted on an automobile, for example.
この明細書および特許請求の範囲において、通風方向下流側(図1および図11に矢印Xで示す側、図3右側)を前、これと反対側を後というものとする。また、図2の上下を上下というものとする。 In this specification and claims, the downstream side in the ventilation direction (the side indicated by the arrow X in FIGS. 1 and 11 and the right side in FIG. 3) is the front, and the opposite side is the rear. In addition, the top and bottom in FIG.
従来、カーエアコン用エバポレータとして、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の偏平中空体が並列状に配置され、隣接する偏平中空体間にコルゲートフィンが配置されて偏平中空体にろう付された、所謂積層型エバポレータが広く使用されていた。 Conventionally, as an evaporator for a car air conditioner, a plurality of flat hollow bodies formed by brazing peripheral edges with a pair of plate-shaped plates facing each other are arranged in parallel, and corrugated fins are arranged between adjacent flat hollow bodies. So-called laminated evaporators brazed to a flat hollow body have been widely used.
ところで、近年、エバポレータのさらなる小型軽量化および高性能化が要求されるようになってきた。そして、このような要求を満たすエバポレータとして、間隔をおいて配置された複数の熱交換管からなる熱交換管群が前後方向に並んで2列配置されることにより構成された熱交換コア部と、熱交換管の上端側に配置され、かつ前側熱交換管群の左半部の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の上端側において冷媒入口ヘッダ部の後側に配置され、かつ後側熱交換管群の左半部の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の下端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管群の熱交換管が接続された第1中間ヘッダ部と、第1中間ヘッダ部の右側に配置され、かつ前側熱交換管群の残りの熱交換管が接続された第2中間ヘッダ部と、熱交換管の上端側において冷媒入口ヘッダ部の右側に配置され、かつ第2中間ヘッダ部に接続されている熱交換管が接続された第3中間ヘッダ部と、熱交換管の上端側において第3中間ヘッダ部の後側に配置され、かつ後側熱交換管群の残りの熱交換管が接続された第4中間ヘッダ部と、熱交換管の下端側において第2中間ヘッダ部の後側に配置され、かつ第4中間ヘッダ部に接続されている熱交換管が接続された第5中間ヘッダ部と、熱交換管の下端側において第5中間ヘッダ部の左側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管が接続された第6中間ヘッダ部とを備えており、冷媒入口ヘッダ部内に流入した冷媒が、熱交換管を通って第1〜第6中間ヘッダ部を経て冷媒出口ヘッダ部内に流入し、冷媒出口ヘッダ部から流出するようになされたものが知られている(特許文献1参照)。 Incidentally, in recent years, there has been a demand for further reduction in size and weight and higher performance of the evaporator. And as an evaporator satisfying such a requirement, a heat exchange core section constituted by arranging two rows of heat exchange pipes arranged in the front-rear direction, each of which is composed of a plurality of heat exchange pipes arranged at intervals, A refrigerant inlet header portion arranged on the upper end side of the heat exchange pipe and connected to the left half heat exchange pipe of the front heat exchange pipe group, and on the rear side of the refrigerant inlet header section on the upper end side of the heat exchange pipe A refrigerant outlet header portion arranged and connected to the heat exchange pipe in the left half of the rear heat exchange pipe group, and a heat exchange arranged on the lower end side of the heat exchange pipe and connected to the refrigerant inlet header portion A first intermediate header portion to which the heat exchange pipe of the tube group is connected, and a second intermediate header portion that is arranged on the right side of the first intermediate header portion and to which the remaining heat exchange tubes of the front heat exchange pipe group are connected. The upper end side of the heat exchange pipe is disposed on the right side of the refrigerant inlet header. And the 3rd middle header part to which the heat exchange pipe connected to the 2nd middle header part was connected, and the rear side heat exchange pipe arranged at the back of the 3rd middle header part in the upper end side of a heat exchange pipe A fourth intermediate header portion to which the remaining heat exchange pipes of the group are connected, and a heat exchange disposed on the rear side of the second intermediate header section on the lower end side of the heat exchange pipe and connected to the fourth intermediate header section A fifth intermediate header portion to which the pipe is connected, and a sixth intermediate portion to which the heat exchange pipe connected to the refrigerant outlet header portion is disposed on the left side of the fifth intermediate header portion on the lower end side of the heat exchange pipe A header portion, and the refrigerant flowing into the refrigerant inlet header portion flows into the refrigerant outlet header portion through the first to sixth intermediate header portions through the heat exchange pipe, and flows out from the refrigerant outlet header portion. (See Patent Document 1) .
特許文献1記載のエバポレータにおいては、第1中間ヘッダ部と第2中間ヘッダ部、および第5中間ヘッダ部と第6中間ヘッダ部とがそれぞれ1つのヘッダに一体に設けられており、第2中間ヘッダ部内および第6中間ヘッダ部内にその長さ方向の一端部から冷媒が流入するようになされている。
In the evaporator described in
しかしながら、特許文献1記載のエバポレータにおいては、第2中間ヘッダ部内および第6中間ヘッダ部内に流入した冷媒は、両中間ヘッダ部内を奥の方に流れやすくなるので、両中間ヘッダ部の冷媒流入側の熱交換管には流入しにくくなり、その結果両中間ヘッダ部に接続されているすべての熱交換管に均一に分流しにくくなる。したがって、熱交換コア部に冷媒の分布の偏りが生じ、熱交換コア部を通過してきた空気の温度も場所により不均一になって、熱交換性能が十分に向上しないという問題がある。
この発明の目的は、上記問題を解決し、熱交換性能の優れた熱交換器を提供することにある。 An object of the present invention is to solve the above problems and provide a heat exchanger having excellent heat exchange performance.
本発明は、上記課題を解決するために以下の態様からなる。 In order to solve the above-mentioned problems, the present invention comprises the following aspects.
1)前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを備えており、冷媒循環経路が、複数の中間ヘッダ部と複数の熱交換管とにより構成され、冷媒入口ヘッダ部と1つの中間ヘッダ部とが対向させられるとともに、冷媒出口ヘッダ部と他の1つの中間ヘッダ部とが対向させられ、冷媒入口ヘッダ部と中間ヘッダ部との間、および冷媒出口ヘッダ部と中間ヘッダ部との間に、それぞれ間隔をおいて配置された複数の熱交換管からなる熱交換管群が少なくとも1列配置され、これらの熱交換管群を構成する熱交換管の両端部が互いに対向するヘッダ部に接続されており、冷媒入口ヘッダ部内に流入した冷媒が、冷媒循環経路を通って冷媒出口ヘッダ部に戻り、冷媒出口ヘッダ部から送り出されるようになっているとともに、少なくともいずれか1つの中間ヘッダ部内に、その長さ方向の一端部から冷媒が流入するようになされている熱交換器であって、
長さ方向の一端部から冷媒が流入する中間ヘッダ部における冷媒流入側端部に、当該中間ヘッダ部内に流入する冷媒を上側に案内するガイド部が設けられている熱交換器。
1) It has a refrigerant inlet header section and a refrigerant outlet header section arranged side by side in the front-rear direction, and a refrigerant circulation path that passes through both header sections, and the refrigerant circulation path has a plurality of intermediate header sections and a plurality of heat exchanges. A refrigerant inlet header portion and one intermediate header portion are opposed to each other, and the refrigerant outlet header portion and the other intermediate header portion are opposed to each other. And between the refrigerant outlet header part and the intermediate header part, at least one row of heat exchange pipe groups composed of a plurality of heat exchange pipes arranged at intervals is arranged. Both ends of the heat exchange pipe to be configured are connected to header sections facing each other, and the refrigerant that has flowed into the refrigerant inlet header section returns to the refrigerant outlet header section through the refrigerant circulation path, and the refrigerant outlet header section Together they are adapted to be fed, in at least one of the intermediate header section, a heat exchanger refrigerant is adapted to flow from one end of its length,
A heat exchanger in which a guide portion that guides the refrigerant flowing into the intermediate header portion upward is provided at an end portion of the refrigerant inflow side in the intermediate header portion into which the refrigerant flows from one end portion in the lengthwise direction.
2)間隔をおいて配置された複数の熱交換管からなる熱交換管群が前後方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部の後側に配置され、かつ残りの熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された第1中間ヘッダ部と、熱交換管の他端側において第1中間ヘッダ部の後側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管が接続された第2中間ヘッダ部とを備えており、第1中間ヘッダ部と第2中間ヘッダ部とが一端において連通させられ、第2中間ヘッダ部内に、第1中間ヘッダ部との連通側端部から冷媒が流入するようになされ、第2中間ヘッダ部における冷媒流入側端部に、第2中間ヘッダ部内に流入する冷媒を上側に案内するガイド部が設けられている上記1)記載の熱交換器。 2) A heat exchange core group configured by arranging a plurality of heat exchange tube groups, each of which is composed of a plurality of heat exchange tubes arranged at intervals, arranged in the front-rear direction, and disposed on one end side of the heat exchange tube And a refrigerant inlet header portion to which heat exchange pipes of at least one row of heat exchange pipe groups are connected, and one end side of the heat exchange pipes arranged behind the refrigerant inlet header section, and the remaining heat exchange pipe groups A refrigerant outlet header part to which the heat exchange pipe is connected, a first intermediate header part arranged on the other end side of the heat exchange pipe and connected to the refrigerant inlet header part, and a heat A second intermediate header portion disposed on the rear side of the first intermediate header portion on the other end side of the exchange pipe and connected to a heat exchange pipe connected to the refrigerant outlet header portion. The header portion and the second intermediate header portion are communicated at one end, and the second middle The refrigerant flows into the header portion from the end portion on the communication side with the first intermediate header portion, and the refrigerant flowing into the second intermediate header portion is guided upward to the refrigerant inflow side end portion of the second intermediate header portion. The heat exchanger according to 1) above, wherein a guide portion is provided.
3)第2中間ヘッダ部内に、冷媒通過穴を有しかつ第2中間ヘッダ部内を高さ方向に2つの空間に区画する分流制御手段が設けられており、第2中間ヘッダ部に接続された熱交換管が第1の空間に臨むとともに、第1中間ヘッダ部と第2中間ヘッダ部の第2の空間とが一端部において連通させられ、第2中間ヘッダ部における冷媒流入側端部に設けられたガイド部が、第2中間ヘッダ部の第2の空間内に流入する冷媒を上側に案内するようになされている上記2)記載の熱交換器。 3) In the second intermediate header portion, there is provided a flow dividing control means that has a refrigerant passage hole and divides the inside of the second intermediate header portion into two spaces in the height direction, and is connected to the second intermediate header portion. The heat exchange pipe faces the first space, and the first intermediate header portion and the second space of the second intermediate header portion are communicated at one end portion, and are provided at the refrigerant inflow side end portion in the second intermediate header portion. The heat exchanger according to 2) above, wherein the guide portion guided guides the refrigerant flowing into the second space of the second intermediate header portion upward.
4)分流制御手段に、複数の冷媒通過穴が第2中間ヘッダ部の長さ方向に間隔をおいて形成されている上記3)記載の熱交換器。 4) The heat exchanger according to 3) above, wherein a plurality of refrigerant passage holes are formed in the diversion control means at intervals in the length direction of the second intermediate header portion.
5)冷媒通過穴が、分流制御手段の前後方向の中心部よりも後側に形成されている上記3)または4)記載の熱交換器。 5) The heat exchanger according to 3) or 4), wherein the refrigerant passage hole is formed on the rear side of the center part in the front-rear direction of the flow dividing control means.
6)冷媒入口ヘッダ部および冷媒出口ヘッダ部が熱交換管の上端側に配置され、第1および第2中間ヘッダ部が熱交換管の下端側に配置されている上記2)〜5)のうちのいずれかに記載の熱交換器。 6) Among the above 2) to 5), the refrigerant inlet header part and the refrigerant outlet header part are arranged on the upper end side of the heat exchange pipe, and the first and second intermediate header parts are arranged on the lower end side of the heat exchange pipe The heat exchanger in any one of.
7)第1および第2中間ヘッダ部が、それぞれ両端開口を閉鎖するキャップを有しており、第1中間ヘッダ部の一端部のキャップに冷媒流出口が形成されるとともに、第2中間ヘッダ部の一端部のキャップに冷媒流入口が形成され、冷媒流出口と冷媒流入口とが連通部材を介して通じさせられることにより、両中間ヘッダ部が一端において連通させられている上記2)〜6)のうちのいずれかに記載の熱交換器。 7) Each of the first and second intermediate header portions has a cap that closes both end openings, and a refrigerant outlet is formed in the cap at one end portion of the first intermediate header portion, and the second intermediate header portion The refrigerant inlet is formed in the cap at one end of the two, and the refrigerant outlet and the refrigerant inlet are communicated with each other through the communication member, whereby the intermediate header portions are communicated at one end. ).
8)第2中間ヘッダ部の一端部のキャップにおける冷媒流入口の周縁部の一部分に、第2中間ヘッダ部内方に向かって上側に傾斜または湾曲したガイド部が設けられている上記7)記載の熱交換器。 8) The above described 7), wherein a guide portion that is inclined or curved upward toward the inside of the second intermediate header portion is provided in a part of the peripheral edge portion of the refrigerant inlet in the cap at one end portion of the second intermediate header portion. Heat exchanger.
9)ガイド部が、第2中間ヘッダ部内方に向かって上側に湾曲しており、第2中間ヘッダ部の長さ方向に伸びる垂直面で切断した断面において、ガイド部が、第2中間ヘッダ部内方に向かって上側に湾曲した円弧状部を有している上記8)記載の熱交換器。 9) The guide portion is curved upward toward the inside of the second intermediate header portion, and the guide portion is located in the second intermediate header portion in a cross section cut by a vertical plane extending in the length direction of the second intermediate header portion. The heat exchanger as described in 8) above, wherein the heat exchanger has an arcuate portion curved upward toward the direction.
10)第1中間ヘッダ部における冷媒流入口が形成されたキャップと、第2中間ヘッダ部における冷媒流出口が形成されたキャップとが一体化されており、両キャップに跨るように連通部材が固定されている上記7)〜9)のうちのいずれかに記載の熱交換器。 10) The cap formed with the refrigerant inlet in the first intermediate header and the cap formed with the refrigerant outlet in the second intermediate header are integrated, and the communication member is fixed so as to straddle both caps. The heat exchanger according to any one of 7) to 9) above.
11)第1中間ヘッダ部と第2中間ヘッダ部とが一体化されている上記2)〜10)のうちのいずれかに記載の熱交換器。 11) The heat exchanger according to any one of 2) to 10) above, wherein the first intermediate header portion and the second intermediate header portion are integrated.
12)第1および第2中間ヘッダ部が、両中間ヘッダ部の熱交換管側の部分を形成しかつ熱交換管が接続された第1部材と、両中間ヘッダ部の熱交換管とは反対側部分を形成しかつ第1部材に接合された第2部材とを備えており、これにより両中間ヘッダ部が一体化されている上記11)記載の熱交換器。 12) The first and second intermediate header portions form the heat exchange tube side portion of both intermediate header portions, and the first member to which the heat exchange tubes are connected, and the heat exchange tubes of both intermediate header portions are opposite The heat exchanger according to 11), further comprising a second member that forms a side portion and is joined to the first member, whereby both intermediate header portions are integrated.
13)冷媒入口ヘッダ部と冷媒出口ヘッダ部とが一体化されている上記2)〜12)のうちのいずれかに記載の熱交換器。 13) The heat exchanger according to any one of 2) to 12) above, wherein the refrigerant inlet header and the refrigerant outlet header are integrated.
14)冷媒入口ヘッダ部および冷媒出口ヘッダ部が、両ヘッダ部の熱交換管側の部分を形成しかつ熱交換管が接続された第1部材と、両ヘッダ部の熱交換管とは反対側部分を形成しかつ第1部材に接合された第2部材とを備えており、これにより両ヘッダ部が一体化されている上記13)記載の熱交換器。 14) The refrigerant inlet header part and the refrigerant outlet header part form a part on the heat exchange pipe side of both header parts and the heat exchange pipe is connected to the first member and the opposite side of the heat exchange pipes of both header parts The heat exchanger according to 13), further comprising a second member that forms a portion and is joined to the first member, whereby both header portions are integrated.
15)冷媒入口ヘッダ部の一端部に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端部に冷媒出口が形成されている上記2)〜14)のうちのいずれかに記載の熱交換器。 15) The refrigerant inlet is formed at one end of the refrigerant inlet header, and the refrigerant outlet is formed at the same end as the refrigerant inlet in the refrigerant outlet header. Heat exchanger.
16)冷媒出口ヘッダ部内が区画手段により高さ方向に2つの空間に区画されるとともに、第1の空間に臨むように熱交換管が接続され、区画手段に冷媒通過穴が形成され、冷媒出口ヘッダ部の第2の空間が冷媒出口に通じている上記15)記載の熱交換器。 16) The refrigerant outlet header is partitioned into two spaces in the height direction by the dividing means, and a heat exchange pipe is connected so as to face the first space, and a refrigerant passage hole is formed in the dividing means. The heat exchanger according to 15) above, wherein the second space of the header portion leads to the refrigerant outlet.
17)熱交換管が偏平状であって、その幅方向を前後方向に向けて配置されており、熱交換管の厚みである管高さが0.75〜1.5mmである上記1)〜16)のうちのいずれかに記載の熱交換器。 17) The above-mentioned 1) to 1), wherein the heat exchange tube is flat and is arranged with its width direction facing the front-rear direction, and the tube height, which is the thickness of the heat exchange tube, is 0.75 to 1.5 mm. The heat exchanger according to any one of 16).
18)隣り合う熱交換管間にフィンが配置されており、フィンが、波頂部、波底部および波頂部と波底部とを連結する平坦な連結部とよりなるコルゲート状であり、フィン高さが7.0mm〜10.0mm、フィンピッチが1.3〜1.7mmである上記1)〜17)のうちのいずれかに記載の熱交換器。 18) Fins are arranged between adjacent heat exchange tubes, and the fins have a corrugated shape including a wave crest part, a wave bottom part, and a flat connection part that connects the wave crest part and the wave bottom part, and the fin height is The heat exchanger according to any one of 1) to 17) above, which has 7.0 mm to 10.0 mm and a fin pitch of 1.3 to 1.7 mm.
19)コルゲートフィンの波頂部および波底部が、平坦部分と、平坦部分の両側に設けられかつ連結部に連なったアール状部分とよりなり、アール状部分の曲率半径が0.7mm以下である上記18)記載の熱交換器。 19) The corrugated fin has a wave crest and a wave bottom formed of a flat portion and a rounded portion provided on both sides of the flat portion and connected to the connecting portion, and the curvature radius of the rounded portion is 0.7 mm or less. 18) The heat exchanger described.
20)圧縮機、冷媒冷却器およびエバポレータを備えており、エバポレータが、上記1)〜19)のうちのいずれかに記載の熱交換器からなる冷凍サイクル。 20) A refrigeration cycle comprising a compressor, a refrigerant cooler, and an evaporator, wherein the evaporator comprises the heat exchanger according to any one of 1) to 19) above.
21)上記20)記載の冷凍サイクルが、エアコンとして搭載されている車両。 21) A vehicle on which the refrigeration cycle described in 20) above is mounted as an air conditioner.
上記1)の熱交換器によれば、長さ方向の一端部から冷媒が流入する中間ヘッダ部における冷媒流入側端部に、当該中間ヘッダ部内に流入する冷媒を上側に案内するガイド部が設けられているので、次のような効果を奏する。すなわち、当該中間ヘッダ部が下側に配置されている場合には、当該中間ヘッダ部内に流入した冷媒は、ガイド部により熱交換管側に案内されることになり、当該中間ヘッダ部の冷媒流入側の部分に接続されている熱交換管内にも流入しやすくなって、当該中間ヘッダ部に接続されている熱交換管に均一に分流しやすくなる。また、当該中間ヘッダ部が上側に配置されている場合には、当該中間ヘッダ部内に流入した冷媒は、ガイド部により上側に案内されることになり、当該中間ヘッダ部の冷媒流入側端部から遠い位置にある熱交換管内にも流入しやすくなって、当該中間ヘッダ部に接続されている熱交換管に均一に分流しやすくなる。したがって、いずれの場合にも、熱交換コア部における冷媒の分布の偏りが生じにくくなり、熱交換コア部を通過してきた空気の温度も均一化されて、熱交換性能が向上する。 According to the heat exchanger of 1), a guide portion for guiding the refrigerant flowing into the intermediate header portion to the upper side is provided at the refrigerant inflow side end portion of the intermediate header portion into which the refrigerant flows from one end portion in the length direction. The following effects are achieved. That is, when the intermediate header portion is arranged on the lower side, the refrigerant flowing into the intermediate header portion is guided to the heat exchange pipe side by the guide portion, and the refrigerant flows into the intermediate header portion. It is easy to flow into the heat exchange pipe connected to the portion on the side, and it is easy to evenly flow into the heat exchange pipe connected to the intermediate header portion. Further, when the intermediate header portion is arranged on the upper side, the refrigerant flowing into the intermediate header portion is guided upward by the guide portion, and from the refrigerant inflow side end portion of the intermediate header portion. It becomes easy to flow into the heat exchange pipe at a distant position, and it becomes easy to evenly divide into the heat exchange pipe connected to the intermediate header portion. Therefore, in any case, the distribution of the refrigerant in the heat exchange core part is less likely to be biased, the temperature of the air that has passed through the heat exchange core part is also uniformed, and the heat exchange performance is improved.
上記2)の熱交換器によれば、第2中間ヘッダ部における冷媒流入側端部に、第2中間ヘッダ部内に流入する冷媒を上側に案内するガイド部が設けられているので、次のような効果を奏する。すなわち、第2中間ヘッダ部が下側に配置されている場合には、第2中間ヘッダ部内に流入した冷媒は、ガイド部により熱交換管側に案内されることになり、第2中間ヘッダ部の冷媒流入側の部分に接続されている熱交換管内にも流入しやすくなって、第2中間ヘッダ部に接続されている熱交換管に均一に分流しやすくなる。また、第2中間ヘッダ部が上側に配置されている場合には、第2中間ヘッダ部内に流入した冷媒は、ガイド部により上側に案内されることになり、第2中間ヘッダ部の冷媒流入側端部から遠い位置にある熱交換管内にも流入しやすくなって、第2中間ヘッダ部に接続されている熱交換管に均一に分流しやすくなる。したがって、いずれの場合にも、熱交換コア部における冷媒の分布の偏りが生じにくくなり、熱交換コア部を通過してきた空気の温度も均一化されて、熱交換性能が向上する。 According to the heat exchanger of 2), the guide portion that guides the refrigerant flowing into the second intermediate header portion upward is provided at the refrigerant inflow side end portion of the second intermediate header portion. Has an effect. That is, when the second intermediate header portion is arranged on the lower side, the refrigerant flowing into the second intermediate header portion is guided to the heat exchange pipe side by the guide portion, and the second intermediate header portion It becomes easy to flow also into the heat exchange pipe connected to the refrigerant inflow side portion, and it becomes easy to evenly divert to the heat exchange pipe connected to the second intermediate header portion. Further, when the second intermediate header portion is arranged on the upper side, the refrigerant flowing into the second intermediate header portion is guided upward by the guide portion, and the refrigerant inflow side of the second intermediate header portion It becomes easy to flow into the heat exchange pipe at a position far from the end portion, and it becomes easy to evenly divert to the heat exchange pipe connected to the second intermediate header portion. Therefore, in any case, the distribution of the refrigerant in the heat exchange core part is less likely to be biased, the temperature of the air that has passed through the heat exchange core part is also uniformed, and the heat exchange performance is improved.
上記3)〜5)の熱交換器によれば、第2中間ヘッダ部が下側に配置されている場合には、第2中間ヘッダ部の第2の空間内に流入した冷媒は、ガイド部により分流制御手段側に案内され、冷媒通過穴を通って第1の空間内に流れた後熱交換管内に流入する。また、第2中間ヘッダ部が上側に配置されている場合には、第2中間ヘッダ部の第2の空間内に流入した冷媒は、ガイド部により上側に案内され、分流制御手段の冷媒通過穴を通って第1の空間内に流れた後熱交換管内に流入する。したがって、いずれの場合にも、分流制御手段の冷媒通過穴を、第2中間ヘッダ部に接続された熱交換管への分流の均一化を図る上で好適な位置に形成しておけば、冷媒は第2中間ヘッダ部に接続されている熱交換管に均一に分流しやすくなる。その結果、熱交換コア部における冷媒の分布の偏りが生じにくくなり、熱交換コア部を通過してきた空気の温度も均一化されて、熱交換性能が向上する。 According to the heat exchangers of 3) to 5) above, when the second intermediate header portion is disposed on the lower side, the refrigerant flowing into the second space of the second intermediate header portion is guided by the guide portion. Is guided to the flow dividing control means side, flows through the refrigerant passage hole into the first space, and then flows into the heat exchange pipe. Further, when the second intermediate header portion is arranged on the upper side, the refrigerant that has flowed into the second space of the second intermediate header portion is guided upward by the guide portion, and the refrigerant passage hole of the diversion control means And then flows into the first space and then flows into the heat exchange pipe. Therefore, in any case, if the refrigerant passage hole of the flow dividing control means is formed at a suitable position for achieving uniform flow distribution to the heat exchange pipe connected to the second intermediate header portion, the refrigerant Can easily be diverted uniformly to the heat exchange pipe connected to the second intermediate header. As a result, the distribution of the refrigerant in the heat exchange core part is less likely to be biased, the temperature of the air that has passed through the heat exchange core part is made uniform, and the heat exchange performance is improved.
上記6)の熱交換器によれば、第2中間ヘッダ部の第2の空間内に流入した冷媒は、ガイド部により分流制御手段側に案内され、冷媒通過穴を通って第1の空間内に流れた後熱交換管内に流入する。したがって、分流制御手段の冷媒通過穴を、第2中間ヘッダ部に接続された熱交換管への分流の均一化を図る上で好適な位置に形成しておけば、冷媒は第2中間ヘッダ部に接続されている熱交換管に均一に分流しやすくなる。その結果、熱交換コア部における冷媒の分布の偏りが生じにくくなり、熱交換コア部を通過してきた空気の温度も均一化されて、熱交換性能が向上する。 According to the heat exchanger of 6), the refrigerant that has flowed into the second space of the second intermediate header portion is guided to the diversion control means side by the guide portion, passes through the refrigerant passage hole, and enters the first space. After flowing into the heat exchange pipe. Therefore, if the refrigerant passage hole of the flow dividing control means is formed at a suitable position for achieving a uniform flow distribution to the heat exchange pipe connected to the second intermediate header portion, the refrigerant will be in the second intermediate header portion. It becomes easy to evenly divert to the heat exchange pipe connected to the. As a result, the distribution of the refrigerant in the heat exchange core part is less likely to be biased, the temperature of the air that has passed through the heat exchange core part is made uniform, and the heat exchange performance is improved.
上記7)の熱交換器によれば、比較的簡単な構成で、第1中間ヘッダ部内と第2中間ヘッダ内とを通じさせることができる。 According to the heat exchanger of the above 7), it can be passed through the first intermediate header part and the second intermediate header with a relatively simple configuration.
上記8)および9)の熱交換器によれば、ガイド部を比較的簡単に形成することができる。 According to the heat exchangers of 8) and 9) above, the guide portion can be formed relatively easily.
上記10)の熱交換器によれば、両中間ヘッダ部のキャップが一体化されているので、部品点数が少なくなり、しかも比較的簡単な構成で第1中間ヘッダ部内と第2中間ヘッダ内とを通じさせることができる。 According to the heat exchanger of the above 10), since the caps of both the intermediate header portions are integrated, the number of parts is reduced, and the inside of the first intermediate header portion and the second intermediate header are relatively simple. Can be made through.
上記11)および12)の熱交換器によれば、全体の部品点数が少なくなる。 According to the heat exchangers of the above 11) and 12), the total number of parts is reduced.
上記13)および14)の熱交換器によれば、全体の部品点数が少なくなる。 According to the heat exchangers of the above 13) and 14), the total number of parts is reduced.
上記17)および18)の熱交換器によれば、通気抵抗の増加を抑制しつつ熱交換性能を向上させ、両者のバランスを良好にすることができる。 According to the heat exchangers of the above 17) and 18), it is possible to improve the heat exchange performance while suppressing an increase in ventilation resistance and to improve the balance between the two.
以下、この発明の実施形態を、図面を参照して説明する。以下に述べる実施形態は、この発明による熱交換器を、フロン系冷媒を使用するカーエアコンのエバポレータに適用したものである。 Embodiments of the present invention will be described below with reference to the drawings. In the embodiment described below, the heat exchanger according to the present invention is applied to an evaporator of a car air conditioner using a chlorofluorocarbon refrigerant.
なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、以下の説明において、図2の左右を左右というものとする。 In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum. In the following description, the left and right in FIG.
図1〜図3はエバポレータの全体構成を示し、図4〜図10は要部の構成を示す。また、図11はエバポレータにおける冷媒の流れ方を示す。 1 to 3 show the overall configuration of the evaporator, and FIGS. 4 to 10 show the configuration of the main part. FIG. 11 shows how the refrigerant flows in the evaporator.
図1〜図3において、フロン系冷媒を使用するカーエアコンに用いられるエバポレータ(1)は、上下方向に間隔をおいて配置されたアルミニウム製冷媒入出用タンク(2)およびアルミニウム製冷媒ターン用タンク(3)と、両タンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。 1 to 3, an evaporator (1) used in a car air conditioner using a chlorofluorocarbon refrigerant includes an aluminum refrigerant inlet / outlet tank (2) and an aluminum refrigerant turn tank that are spaced apart in the vertical direction. (3) and a heat exchange core section (4) provided between both tanks (2) and (3).
冷媒入出用タンク(2)は、前側(通風方向下流側)に位置する冷媒入口ヘッダ部(5)と、後側(通風方向上流側)に位置する冷媒出口ヘッダ部(6)とを備えており、後述する連結手段により相互に連結一体化されている。冷媒入出用タンク(2)の冷媒入口ヘッダ部(5)にアルミニウム製冷媒入口管(7)が接続され、同じく冷媒出口ヘッダ部(6)にアルミニウム製冷媒出口管(8)が接続されている。 The refrigerant inlet / outlet tank (2) includes a refrigerant inlet header portion (5) located on the front side (downstream side in the ventilation direction) and a refrigerant outlet header portion (6) located on the rear side (upstream side in the ventilation direction). They are connected and integrated with each other by connecting means to be described later. An aluminum refrigerant inlet pipe (7) is connected to the refrigerant inlet header (5) of the refrigerant inlet / outlet tank (2), and an aluminum refrigerant outlet pipe (8) is also connected to the refrigerant outlet header (6). .
冷媒ターン用タンク(3)は、前側に位置する冷媒流入側中間ヘッダ部(9)(第1中間ヘッダ部)と、後側に位置する冷媒流出側中間ヘッダ部(11)(第2中間ヘッダ部)とを備えており、両ヘッダ部(9)(11)が連結部(10)により相互に連結一体化され、両ヘッダ部(9)(11)と連結部(10)とにより排水樋(20)が形成されている(図3参照)。 The refrigerant turn tank (3) includes a refrigerant inflow side intermediate header (9) (first intermediate header) located on the front side and a refrigerant outflow side intermediate header (11) (second intermediate header) located on the rear side. The headers (9), (11) are connected and integrated with each other by the connecting part (10), and the headers (9), (11) and the connecting part (10) (20) is formed (see FIG. 3).
熱交換コア部(4)は、左右方向に間隔をおいて並列状に配置された複数の熱交換管(12)からなる熱交換管群(13)が、前後方向に並んで複数列、ここでは2列配置され、各熱交換管群(13)の隣接する熱交換管(12)どうしの間の通風間隙、および各熱交換管群(13)の左右両端の熱交換管(12)の外側にそれぞれコルゲートフィン(14)が配置されて熱交換管(12)にろう付されることにより構成されている。左右両端のコルゲートフィン(14)の外側にはそれぞれアルミニウム製サイドプレート(15)が配置されてコルゲートフィン(14)にろう付されている。そして、前側熱交換管群(13)の熱交換管(12)の上下両端は冷媒入口ヘッダ部(5)および冷媒流入側中間ヘッダ部(9)に接続され、往き側冷媒流通部となっている。後側熱交換管群(13)の熱交換管(12)の上下両端部は冷媒出口ヘッダ部(6)および冷媒流出側中間ヘッダ部(11)に接続され、戻り側冷媒流通部となっている。 The heat exchange core section (4) is composed of a plurality of heat exchange pipe groups (13) each including a plurality of heat exchange pipes (12) arranged in parallel at intervals in the left-right direction. Are arranged in two rows, the ventilation gap between adjacent heat exchange tubes (12) of each heat exchange tube group (13), and the heat exchange tubes (12) at the left and right ends of each heat exchange tube group (13). Corrugated fins (14) are respectively arranged on the outer sides and brazed to the heat exchange pipe (12). Aluminum side plates (15) are respectively arranged outside the corrugated fins (14) at the left and right ends and brazed to the corrugated fins (14). And the upper and lower ends of the heat exchange pipe (12) of the front heat exchange pipe group (13) are connected to the refrigerant inlet header part (5) and the refrigerant inflow side intermediate header part (9) to become the forward refrigerant circulation part. Yes. The upper and lower ends of the heat exchange pipe (12) of the rear heat exchange pipe group (13) are connected to the refrigerant outlet header part (6) and the refrigerant outflow side intermediate header part (11) to form a return side refrigerant circulation part. Yes.
図3および図4に示すように、冷媒入出用タンク(2)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつすべての熱交換管(12)が接続されたプレート状の第1部材(16)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(16)の上側を覆う第2部材(17)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ両部材(16)(17)の両端に接合されて両部材(16)(17)により形成される中空体の両端開口を閉鎖するアルミニウム製閉鎖部材(18)(19)とよりなり、右側閉鎖部材(19)の外面に、冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)に跨るように、前後方向に長いアルミニウム製のジョイントプレート(21)がろう付されている。ジョイントプレート(21)に、冷媒入口管(7)および冷媒出口管(8)が接続されている。 As shown in FIGS. 3 and 4, the refrigerant inlet / outlet tank (2) is formed of a plate-shaped first tank formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and connected to all the heat exchange tubes (12). It is formed of a member (16), a second member (17) made of a bare material formed from an extruded aluminum material and covering the upper side of the first member (16), and an aluminum brazing sheet having a brazing material layer on both sides. And the aluminum closure members (18) and (19) which are joined to both ends of the both members (16) and (17) and close both end openings of the hollow body formed by the both members (16) and (17), A long aluminum joint plate (21) is brazed to the outer surface of the closing member (19) so as to straddle the refrigerant inlet header (5) and the refrigerant outlet header (6). A refrigerant inlet pipe (7) and a refrigerant outlet pipe (8) are connected to the joint plate (21).
第1部材(16)は、その前後両側部分に、それぞれ中央部が下方に突出した曲率の小さい横断面円弧状の湾曲部(22)を有している。各湾曲部(22)に、前後方向に長い複数の管挿通穴(23)が、左右方向に間隔をおいて形成されている。前後両湾曲部(22)の管挿通穴(23)は、それぞれ左右方向に関して同一位置にある。前側湾曲部(22)の前縁および後側湾曲部(22)の後縁に、それぞれ立ち上がり壁(22a)が全長にわたって一体に形成されている。また、第1部材(16)の両湾曲部(22)間に、冷媒入口ヘッダ部(5)と冷媒出口ヘッダ部(6)とを連結する手段を構成する平坦部(24)が形成され、平坦部(24)に、複数の貫通穴(25)が左右方向に間隔をおいて形成されている。 The first member (16) has curved portions (22) having a small cross-sectional arc shape with a central portion projecting downward at both front and rear side portions thereof. A plurality of tube insertion holes (23) that are long in the front-rear direction are formed in each bending portion (22) at intervals in the left-right direction. The tube insertion holes (23) of the front and rear curved portions (22) are at the same position in the left-right direction. Standing walls (22a) are integrally formed over the entire length at the front edge of the front curved portion (22) and the rear edge of the rear curved portion (22), respectively. Further, a flat portion (24) constituting a means for connecting the refrigerant inlet header portion (5) and the refrigerant outlet header portion (6) is formed between both curved portions (22) of the first member (16), A plurality of through holes (25) are formed in the flat portion (24) at intervals in the left-right direction.
第2部材(17)は下方に開口した横断面略m字状であり、左右方向に伸びる前後両壁(26)と、前後両壁(26)間の中央部に設けられかつ左右方向に伸びるとともに、冷媒入出用タンク(2)内を前後2つの空間に仕切る仕切手段としての仕切壁(27)と、前後両壁(26)および仕切壁(27)の上端どうしをそれぞれ一体に連結する上方に突出した2つの略円弧状連結壁(28)とを備えている。なお、仕切壁(27)は、冷媒入口ヘッダ部(5)と冷媒出口ヘッダ部(6)とを連結する手段を構成している。第2部材(17)の後壁(26)の下端部と仕切壁(27)の下端部とは、冷媒出口ヘッダ部(6)内を上下に区画する区画手段としての分流用抵抗板(29)により全長にわたって一体に連結されている。分流用抵抗板(29)の後側部分における左右両端部を除いた部分には、左右方向に長い複数の冷媒通過穴(31A)(31B)が左右方向に間隔をおいて貫通状に形成されている。仕切壁(27)の下端は前後両壁(26)の下端よりも下方に突出しており、その下縁に、下方に突出しかつ第1部材(16)の貫通穴(25)に嵌め入れられる複数の突起(27a)が左右方向に間隔をおいて一体に形成されている。突起(27a)は、仕切壁(27)の所定部分を切除することにより形成されている。 The second member (17) has a substantially m-shaped cross section that opens downward, and is provided in the center between the front and rear walls (26) extending in the left-right direction and the front and rear walls (26) and extends in the left-right direction. In addition, a partition wall (27) as a partition means for partitioning the refrigerant inlet / outlet tank (2) into two front and rear spaces, and an upper portion connecting the front and rear walls (26) and the upper ends of the partition wall (27) together. And two substantially arc-shaped connecting walls (28) projecting from each other. The partition wall (27) constitutes means for connecting the refrigerant inlet header part (5) and the refrigerant outlet header part (6). The lower end portion of the rear wall (26) of the second member (17) and the lower end portion of the partition wall (27) are divided resistance plates (29 for dividing the refrigerant outlet header portion (6) vertically) ) Are integrally connected over the entire length. A plurality of refrigerant passage holes (31A) (31B) that are long in the left-right direction are formed in a penetrating manner at intervals in the left-right direction in the portion excluding the left and right end portions in the rear portion of the shunt resistor plate (29). ing. The lower end of the partition wall (27) protrudes downward from the lower ends of the front and rear walls (26), and a plurality of lower walls protrude downward and are fitted into the through holes (25) of the first member (16). The protrusions (27a) are integrally formed with an interval in the left-right direction. The protrusion (27a) is formed by cutting a predetermined portion of the partition wall (27).
左側閉鎖部材(18)は、冷媒入口ヘッダ(5)の左端開口を閉鎖する前キャップ(18a)と、冷媒出口ヘッダ(6)の左端開口を閉鎖する後キャップ(18b)とが一体化されたものであり、前キャップ(18a)には、冷媒入口ヘッダ部(5)内に嵌め入れられる右方突出部(39)が一体に形成され、同じく後キャップ(18b)には、冷媒出口ヘッダ部(6)の分流用抵抗板(29)よりも上側の空間(6a)内に嵌め入れられる上側右方突出部(41)と、分流用抵抗板(29)よりも下側の空間(6b)内に嵌め入れられる下側右方突出部(42)とが上下に間隔をおいて一体に形成されている。また、左側閉鎖部材(18)の前後両側縁と上縁との間の円弧状部に、それぞれ右方に突出した係合爪(43)が一体に形成され、同じく下縁の前側部分および後側部分に、それぞれ右方に突出した係合爪(44)が一体に形成されている。 The left closing member (18) is an integrated cap (18a) for closing the left end opening of the refrigerant inlet header (5) and a rear cap (18b) for closing the left end opening of the refrigerant outlet header (6). The front cap (18a) is integrally formed with a right protruding portion (39) fitted into the refrigerant inlet header portion (5), and the rear cap (18b) is integrally formed with the refrigerant outlet header portion. The upper right protrusion (41) fitted into the space (6a) above the shunt resistor plate (29) of (6), and the space (6b) below the shunt resistor plate (29) A lower right projecting portion (42) fitted into the inner portion is integrally formed with a space in the vertical direction. In addition, an engaging claw (43) protruding rightward is integrally formed on the arc-shaped portion between the front and rear side edges and the upper edge of the left closing member (18), and the front part and the rear part of the lower edge are also formed integrally. Engaging claws (44) projecting to the right are integrally formed on the side portions.
右側閉鎖部材(19)は、冷媒入口ヘッダ(5)の右端開口を閉鎖する前キャップ(19a)と、冷媒出口ヘッダ(6)の右端開口を閉鎖する後キャップ(19b)とが一体化されたものであり、前キャップ(19a)には、冷媒入口ヘッダ部(5)内に嵌め入れられる左方突出部(32)が一体に形成され、同じく後キャップ(19b)には、冷媒出口ヘッダ部(6)の分流用抵抗板(29)よりも上側の空間(6a)内に嵌め入れられる上側左方突出部(33)と、分流用抵抗板(29)よりも下側の空間(6b)内に嵌め入れられる下側左方突出部(34)とが上下に間隔をおいて一体に形成されている。また、右側閉鎖部材(19)の前後両側縁と上縁との間の円弧状部に、それぞれ左方に突出した係合爪(35)が一体に形成され、同じく下縁の前側部分および後側部分に、それぞれ左方に突出した係合爪(36)が一体に形成されている。右側閉鎖部材(19)の前キャップ(19a)の左方突出部(32)の底壁に冷媒入口(37)が形成され、同じく後キャップ(19b)の上側左方突出部(33)の底壁に冷媒出口(38)が形成されている。 In the right closing member (19), a front cap (19a) for closing the right end opening of the refrigerant inlet header (5) and a rear cap (19b) for closing the right end opening of the refrigerant outlet header (6) are integrated. The front cap (19a) is integrally formed with a left protruding portion (32) that is fitted into the refrigerant inlet header portion (5), and the rear cap (19b) is integrally formed with the refrigerant outlet header portion. The upper left protrusion (33) fitted in the space (6a) above the shunt resistor plate (29) of (6), and the space (6b) below the shunt resistor plate (29) A lower left projecting portion (34) to be fitted therein is integrally formed with an interval in the vertical direction. In addition, an engaging claw (35) projecting leftward is formed integrally with the arc-shaped portion between the front and rear side edges and the upper edge of the right closing member (19), and the front part and the rear part of the lower edge are also formed. Engaging claws (36) protruding leftward are integrally formed on the side portions. A refrigerant inlet (37) is formed in the bottom wall of the left protrusion (32) of the front cap (19a) of the right closing member (19), and the bottom of the upper left protrusion (33) of the rear cap (19b) is also formed. A refrigerant outlet (38) is formed on the wall.
両閉鎖部材(18)(19)はプレート状であり、両閉鎖部材(18)(19)の上縁は、それぞれ冷媒入出用タンク(2)の第2部材(17)上面の両端と合致するように、2つの略円弧状部が前後方向の中央部において一体に連なったような形状となっている。また、両閉鎖部材(18)(19)の下縁の前後方向の中央部には、第1部材(16)の平坦部(24)と合致するように平坦部が形成されている。
Both closing members (18) and (19) are plate-shaped, and the upper edges of both closing members (18) and (19) respectively coincide with both ends of the upper surface of the second member (17) of the refrigerant inlet / outlet tank (2). As described above, the shape is such that two substantially arc-shaped portions are integrally connected in the central portion in the front-rear direction. In addition, a flat portion is formed at the center portion in the front-rear direction of the lower edge of the closing
そして、第1部材(16)の前側湾曲部(22)および平坦部(24)と、第2部材(17)の前壁(26)、仕切壁(27)および前側連結壁(28)と、左右の閉鎖部材(18)(19)の前キャップ(18a)(19a)とにより冷媒入口ヘッダ部(5)が形成され、第1部材(16)の後側湾曲部(22)および平坦部(24)と、第2部材(17)の後壁(26)、仕切壁(27)および後側連結壁(28)と、左右の閉鎖部材(18)(19)の後キャップ(18b)(19b)とにより冷媒出口ヘッダ部(6)が形成されている。冷媒入口ヘッダ部(5)と冷媒出口ヘッダ部(6)とは、平坦部(24)、仕切壁(27)および両閉鎖部材(18)(19)の前後方向の中間部により連結一体化されている。 And the front curved part (22) and flat part (24) of the first member (16), the front wall (26), the partition wall (27) and the front connection wall (28) of the second member (17), A refrigerant inlet header portion (5) is formed by the front caps (18a) and (19a) of the left and right closing members (18) and (19), and the rear curved portion (22) and the flat portion ( 24), the rear wall (26) of the second member (17), the partition wall (27) and the rear connecting wall (28), and the rear caps (18b) (19b) of the left and right closing members (18) (19) ) Forms a refrigerant outlet header portion (6). The refrigerant inlet header part (5) and the refrigerant outlet header part (6) are connected and integrated by a flat part (24), a partition wall (27), and intermediate parts in the front-rear direction of both closing members (18) and (19). ing.
ジョイントプレート(21)は、右側閉鎖部材(19)の冷媒入口(37)に通じる短円筒状冷媒流入口(45)と、同じく冷媒出口(38)に通じる短円筒状冷媒流出口(46)とを備えている。ジョイントプレート(21)の上下両縁部における冷媒流入口(45)と冷媒流出口(46)との間の部分には、それぞれ左方に突出した屈曲部(47)が形成されている。上側の屈曲部(47)は、右側閉鎖部材(19)の上縁における2つの略円弧状部の間、および第2部材(17)の2つの連結壁(28)間に係合している。下側の屈曲部(47)は、右側閉鎖部材(19)の下縁における前後方向中央部の平坦部、および第1部材(16)の平坦部(24)に係合している。さらに、ジョイントプレート(21)の下縁の前後両端部には、それぞれ左方に突出した係合爪(48)が一体に形成されている。係合爪(48)は、右側閉鎖部材(19)の下縁に係合している。ジョイントプレート(21)の冷媒流入口(45)に、冷媒入口管(7)の一端部に形成された縮径部が差し込まれてろう付され、同じく冷媒流出口(46)に、冷媒出口管(8)の一端部に形成された縮径部が差し込まれてろう付されている。図示は省略したが、冷媒入口管(7)および冷媒出口管(8)の他端部には、両管(7)(8)に跨るように膨張弁取付部材が接合されている。 The joint plate (21) includes a short cylindrical refrigerant inlet (45) leading to the refrigerant inlet (37) of the right closing member (19) and a short cylindrical refrigerant outlet (46) also leading to the refrigerant outlet (38). It has. Bent portions (47) protruding leftward are formed at portions between the refrigerant inlet (45) and the refrigerant outlet (46) at both upper and lower edges of the joint plate (21). The upper bent portion (47) is engaged between the two substantially arc-shaped portions at the upper edge of the right closing member (19) and between the two connecting walls (28) of the second member (17). . The lower bent portion (47) is engaged with the flat portion at the center in the front-rear direction at the lower edge of the right closing member (19) and the flat portion (24) of the first member (16). Furthermore, engaging claws (48) protruding leftward are integrally formed at both front and rear end portions of the lower edge of the joint plate (21). The engaging claw (48) is engaged with the lower edge of the right closing member (19). A reduced diameter portion formed at one end of the refrigerant inlet pipe (7) is inserted into the refrigerant inlet (45) of the joint plate (21) and brazed, and similarly to the refrigerant outlet (46), the refrigerant outlet pipe A reduced diameter portion formed at one end of (8) is inserted and brazed. Although not shown, an expansion valve mounting member is joined to the other ends of the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8) so as to straddle both pipes (7) and (8).
冷媒入出用タンク(2)の第1および第2部材(16)(17)と、両閉鎖部材(18)(19)と、ジョイントプレート(21)とは次のようにしてろう付されている。すなわち、第1および第2部材(16)(17)は、第2部材(17)の突起(27a)が第1部材(16)の貫通穴(25)に挿通されてかしめられることにより、第1部材(16)の前後の立ち上がり壁(22a)の上端部が第2部材(17)の前後両壁(26)の下端部に係合させられた状態で、第1部材(16)のろう材層を利用して相互にろう付されている。両閉鎖部材(18)(19)は、前側の突出部(39)(32)が両部材(16)(17)における仕切壁(27)よりも前側の空間内に、後側の上突出部(41)(33)が両部材(16)(17)における仕切壁(27)よりも後側でかつ分流用抵抗板(29)よりも上側の空間内に、および後側の下突出部(42)(34)が仕切壁(27)よりも後側でかつ分流用抵抗板(29)よりも下側の空間内にそれぞれ嵌め入れられ、上側の係合爪(43)(35)が第2部材(17)の連結壁(28)に係合させられ、下側の係合爪(44)(36)が第1部材(16)の湾曲部(22)に係合させられた状態で、両閉鎖部材(18)(19)のろう材層を利用して第1および第2部材(16)(17)にろう付されている。ジョイントプレート(21)は、屈曲部(47)が右側閉鎖部材(19)および第2部材(17)に係合させられ、係合爪(48)が右側閉鎖部材(19)に係合させられた状態で、右側閉鎖部材(19)のろう材層を利用して右側閉鎖部材(19)にろう付されている。 The first and second members (16), (17), the closing members (18), (19), and the joint plate (21) of the refrigerant inlet / outlet tank (2) are brazed as follows. . That is, the first and second members (16), (17) are inserted into the through holes (25) of the first member (16) by the protrusions (27a) of the second member (17) and caulked. The brazing of the first member (16) with the upper ends of the front and rear rising walls (22a) of the one member (16) engaged with the lower ends of the front and rear walls (26) of the second member (17) They are brazed together using a layer of material. Both the closing members (18), (19) are arranged so that the front protrusions (39), (32) are located in the front space of the partition walls (27) in both members (16), (17), and the rear upper protrusions. (41) (33) in the space behind the partition wall (27) in both members (16) (17) and above the shunting resistance plate (29), and the rear lower protrusion ( 42) and (34) are respectively fitted in the spaces behind the partition wall (27) and below the shunt resistor plate (29), and the upper engaging claws (43) and (35) In a state in which the lower engaging claws (44) and (36) are engaged with the curved portion (22) of the first member (16) while being engaged with the connecting wall (28) of the two members (17). The first and second members (16) and (17) are brazed using the brazing material layer of both the closing members (18) and (19). The joint plate (21) has a bent portion (47) engaged with the right closing member (19) and the second member (17), and an engaging claw (48) engaged with the right closing member (19). In this state, the right closing member (19) is brazed using the brazing material layer of the right closing member (19).
こうして、冷媒入出用タンク(2)が形成されており、冷媒出口ヘッダ部(6)は分流用抵抗板(29)により上下両空間(6a)(6b)に区画され、これらの空間(6a)(6b)は冷媒通過穴(31A)(31B)により連通させられている。右側閉鎖部材(19)の冷媒出口(38)は冷媒出口ヘッダ部(6)の上部空間(6a)内に通じている。 Thus, the refrigerant inlet / outlet tank (2) is formed, and the refrigerant outlet header (6) is partitioned into upper and lower spaces (6a) (6b) by the shunt resistor plate (29), and these spaces (6a) (6b) communicates with the refrigerant passage holes (31A) and (31B). The refrigerant outlet (38) of the right closing member (19) communicates with the upper space (6a) of the refrigerant outlet header (6).
図3および図5〜図9に示すように、冷媒ターン用タンク(3)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつすべての熱交換管(12)が接続されたプレート状の第1部材(50)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(50)の下側を覆う第2部材(51)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ両部材(50)(51)からなる中空体の両端開口を閉鎖するアルミニウム製閉鎖部材(52)(53)と、連結部(10)に接合された左右方向に長いアルミニウムベア材製排水補助プレート(54)と、右側閉鎖部材(52)の外面に、冷媒流入側中間ヘッダ部(9)および冷媒流出側中間ヘッダ部(11)に跨るようにろう付された前後方向に長いアルミニウムベア材製の連通部材(55)とよりなり、連通部材(55)を介して冷媒流入側中間ヘッダ部(9)と冷媒流出側中間ヘッダ部(11)とが右端部で連通させられている。 As shown in FIG. 3 and FIGS. 5 to 9, the refrigerant turn tank (3) is formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and is connected to all heat exchange tubes (12). First member (50), a second member (51) made of a bare material formed from an extruded aluminum material and covering the lower side of the first member (50), and an aluminum brazing having a brazing material layer on both sides An aluminum closing member (52) (53) that is formed of a sheet and closes both ends of a hollow body made of both members (50) (51), and an aluminum bear that is long in the left-right direction and joined to the connecting portion (10) The material drainage auxiliary plate (54) and the outer surface of the right closing member (52) are brazed to the refrigerant inflow side intermediate header (9) and the refrigerant outflow side intermediate header (11) in the front-rear direction. It is composed of a long aluminum bare material communicating member (55) and a communicating member (55 The refrigerant inflow side intermediate header (9) and the refrigerant outflow side intermediate header (11) are communicated with each other at the right end.
冷媒流入側中間ヘッダ部(9)および冷媒流出側中間ヘッダ部(11)はそれぞれ頂面、前後両側面および底面を有している。両ヘッダ部(9)(11)の頂面は前後方向内側部分および外側部分を除いて水平な平坦面(9a)(11a)となっており、頂面の前後方向内側部分には前後方向内側に向かって下方に直線状に傾斜した傾斜面からなる第1の低位部(9b)(11b)が形成されている。そして、第1の低位部(9b)(11b)が排水樋(20)の前後両側面となっており、排水樋(20)の前後両側面が上方に向かって前後方向外側に広がっている。第1の低位部(9b)(11b)の水平面に対する下向き傾斜角度は45度以上であることが好ましい。なお、排水樋(20)の前後両側面、すなわち両ヘッダ部(9)(11)の第1の低位部(9b)(11b)は、上方に向かって前後方向外側に広がっておれば、直線状に傾斜したものに限らず、湾曲していてもよい。また、両ヘッダ部(9)(11)の頂面の前後方向外側部分には、水平面に対し、前後方向外側に向かって下方に直線状に傾斜した傾斜面からなる第2の低位部(9c)(11c)が形成されている。第2の低位部(9c)(11c)の水平面に対する下向き傾斜角度は45度以上であることが好ましい。両ヘッダ部(9)(11)の前後方向外側面は頂面の第2の低位部(9c)(11c)に連なっている。 The refrigerant inflow side intermediate header portion (9) and the refrigerant outflow side intermediate header portion (11) each have a top surface, front and rear side surfaces, and a bottom surface. The top surfaces of both header sections (9) and (11) are horizontal flat surfaces (9a) and (11a) except for the inner and outer portions in the front-rear direction. A first low-order part (9b) (11b) is formed of an inclined surface linearly inclined downward. And the 1st low-order part (9b) (11b) is the front-and-rear both sides | surfaces of a drainage basin (20), and the front-and-rear both sides | surfaces of a drainage basin (20) are spread outward in the front-back direction. It is preferable that the downward inclination angle with respect to the horizontal plane of the first low-order parts (9b) and (11b) is 45 degrees or more. If the front and rear side surfaces of the drainage basin (20), that is, the first low-order portions (9b) and (11b) of both header portions (9) and (11) are spread upward and outward in the front-rear direction, a straight line It is not limited to the one inclined in a shape, and may be curved. Further, in the front-rear direction outer portions of the top surfaces of the header portions (9), (11), a second low-order portion (9c) comprising an inclined surface linearly inclined downward toward the outer side in the front-rear direction with respect to the horizontal plane. ) (11c). It is preferable that the downward inclination angle with respect to the horizontal plane of the second low-order parts (9c) and (11c) is 45 degrees or more. The front and rear direction outer side surfaces of both header portions (9) and (11) are connected to the second lower level portions (9c) and (11c) of the top surface.
第1部材(50)は、冷媒流入側中間ヘッダ部(9)の上部を形成する第1ヘッダ形成部(56)と、冷媒流出側中間ヘッダ部(11)の上部を形成する第2ヘッダ形成部(57)と、両ヘッダ形成部(56)(57)を連結しかつ連結部(10)を形成する連結壁(58)とよりなる。第1ヘッダ形成部(56)は、水平平坦状頂壁(56a)と、頂壁(56a)の後縁に全長にわたって一体に形成されかつ後方に向かって下方に傾斜した第1の傾斜壁(56b)と、頂壁(56a)の前縁に全長にわたって一体に形成されかつ前方に向かって下方に傾斜した第2の傾斜壁(56c)と、第2の傾斜壁(56c)の前縁に全長にわたって一体に形成された垂下壁(56d)とよりなる。第2ヘッダ形成部(57)は、水平平坦状頂壁(57a)と、頂壁(57a)の前縁に全長にわたって一体に形成されかつ前方に向かって下方に傾斜した第1の傾斜壁(57b)と、頂壁(57a)の後縁に全長にわたって一体に形成されかつ後方に向かって下方に傾斜した第2の傾斜壁(57c)と、第2の傾斜壁(57c)の後縁に全長にわたって一体に形成された垂下壁(57d)とよりなる。第1ヘッダ形成部(56)の第1の傾斜壁(56b)の下縁と第2ヘッダ形成部(57)の第1の傾斜壁(57b)の下縁とが連結壁(58)により一体に連結されている。両ヘッダ形成部(56)(57)の垂下壁(56d)(57d)の下端面は前後方向内方に向かって下方に傾斜しており、この下端面の外側部分により後述する段差部(69)が形成されるようになっている。そして、第1ヘッダ形成部(56)の頂壁(56a)上面が冷媒流入側中間ヘッダ部(9)の頂面の水平平坦面(9a)を形成し、両傾斜壁(56b)(56c)外面が両低位部(9b)(9c)を形成し、垂下壁(56c)外面が前側面の上側部分を形成している。また、第2ヘッダ形成部(57)の頂壁(57a)上面が冷媒流出側中間ヘッダ部(11)の頂面の水平平坦面(11a)を形成し、両傾斜壁(57b)(57c)外面が両低位部(11b)(11c)を形成し、垂下壁(57d)外面が後側面の上側部分を形成している。 The first member (50) has a first header forming part (56) that forms the upper part of the refrigerant inflow side intermediate header part (9) and a second header that forms the upper part of the refrigerant outflow side intermediate header part (11). And a connecting wall (58) that connects the header forming portions (56) and (57) and forms the connecting portion (10). The first header forming portion (56) is formed of a horizontal flat top wall (56a) and a first inclined wall integrally formed over the entire length of the rear edge of the top wall (56a) and inclined downward toward the rear. 56b), a second inclined wall (56c) formed integrally with the front edge of the top wall (56a) over the entire length and inclined downward toward the front, and a front edge of the second inclined wall (56c) It consists of a hanging wall (56d) integrally formed over the entire length. The second header forming portion (57) includes a horizontal flat top wall (57a) and a first inclined wall (integrally formed over the entire length of the front edge of the top wall (57a) and inclined downward toward the front ( 57b), a second inclined wall (57c) formed integrally with the rear edge of the top wall (57a) and inclined downward toward the rear, and a rear edge of the second inclined wall (57c) A hanging wall (57d) integrally formed over the entire length. The lower edge of the first inclined wall (56b) of the first header forming portion (56) and the lower edge of the first inclined wall (57b) of the second header forming portion (57) are integrated by the connecting wall (58). It is connected to. The lower end surfaces of the hanging walls (56d) and (57d) of the header forming portions (56) and (57) are inclined downward inward in the front-rear direction, and a step portion (69 described later) is formed by an outer portion of the lower end surfaces. ) Is formed. The upper surface of the top wall (56a) of the first header forming portion (56) forms a horizontal flat surface (9a) of the top surface of the refrigerant inflow side intermediate header portion (9), and both inclined walls (56b) (56c) The outer surface forms both lower portions (9b) and (9c), and the outer surface of the hanging wall (56c) forms the upper portion of the front side surface. The top surface of the top wall (57a) of the second header forming portion (57) forms the horizontal flat surface (11a) of the top surface of the refrigerant outflow side intermediate header portion (11), and both inclined walls (57b) (57c) The outer surface forms both lower portions (11b) and (11c), and the outer surface of the hanging wall (57d) forms the upper portion of the rear side surface.
第1部材(50)の両ヘッダ形成部(56)(57)に、それぞれ前後方向に長い複数の管挿通穴(59)が左右方向に間隔をおいて形成されている。両ヘッダ形成部(56)(57)の管挿通穴(59)は左右方向に関して同一位置にある。管挿通穴(59)の連結部(10)側端部、すなわち第1ヘッダ形成部(56)の管挿通穴(59)の後端部および第2ヘッダ形成部(57)の管挿通穴(59)の前端部はそれぞれ第1の傾斜壁(56b)(57b)に位置しており、これにより管挿通穴(59)の連結部(10)側端部が排水樋(20)の側面に位置している。また、管挿通穴(59)の前後方向外端部、すなわち第1ヘッダ形成部(56)の管挿通穴(59)の前端部および第2ヘッダ形成部(57)の管挿通穴(59)の後端部はそれぞれ第2の傾斜壁(56c)(57c)に位置しており、これにより管挿通穴(59)の前後方向外端部は両ヘッダ部(9)(11)の頂面の第2の低位部(9c)(11c)に位置している。 A plurality of tube insertion holes (59) that are long in the front-rear direction are formed in both header forming portions (56), (57) of the first member (50) at intervals in the left-right direction. The pipe insertion holes (59) of both header forming portions (56) (57) are at the same position in the left-right direction. The connecting portion (10) side end portion of the tube insertion hole (59), that is, the rear end portion of the tube insertion hole (59) of the first header forming portion (56) and the tube insertion hole of the second header forming portion (57) ( 59) are located on the first inclined walls (56b) and (57b), respectively, so that the end of the pipe insertion hole (59) on the connecting part (10) side is located on the side surface of the drainage basin (20). positioned. In addition, the outer end in the front-rear direction of the pipe insertion hole (59), that is, the front end of the pipe insertion hole (59) of the first header forming part (56) and the pipe insertion hole (59) of the second header forming part (57) The rear end portions are located on the second inclined walls (56c) and (57c), respectively, so that the outer end portions in the front-rear direction of the pipe insertion holes (59) are the top surfaces of both header portions (9) and (11). Are located in the second low-order part (9c) (11c).
第1部材(50)の両ヘッダ形成部(56)(57)の頂壁(56a)(57a)および両傾斜壁(56b)(56c)(57b)(57c)における管挿通穴(59)の左右両側部分は、管挿通穴(59)に向かって下方に傾斜した傾斜部(61)となっており、各管挿通穴(59)の左右両側の傾斜部(61)により凹所(62)が形成されている(図10参照)。第1部材(50)の両ヘッダ形成部(56)(57)の第2の傾斜壁(56c)(57c)および垂下壁(56d)(57d)の外面に、凝縮水を冷媒ターン用タンク(3)下方に排水する排水溝(63)が、管挿通穴(59)の前後方向外端部に連なって形成されている。排水溝(63)の溝底は、管挿通穴(59)から遠ざかるにつれて徐々に下方に向かっている。排水溝(63)における第2の傾斜壁(56c)(57c)、すなわち第2の低位部(9c)(11c)に存在する部分の溝底は、水平面に対し、前後方向外側に向かって下方に直線状に傾斜している。排水溝(63)における第2の低位部(9c)(11c)に存在する部分の溝底の水平面に対する下向き傾斜角度は45度以上であることが好ましい。排水溝(63)における垂下壁(56d)(57d)に存在する部分の下端は、垂下壁(56d)(57d)の下端面に開口している。 The pipe insertion holes (59) of the top walls (56a) (57a) and the inclined walls (56b) (56c) (57b) (57c) of both header forming portions (56) (57) of the first member (50) The left and right side portions are inclined portions (61) inclined downward toward the tube insertion holes (59), and the recesses (62) are formed by the inclined portions (61) on the left and right sides of each tube insertion hole (59). Is formed (see FIG. 10). On the outer surfaces of the second inclined walls (56c) (57c) and the hanging walls (56d) (57d) of both header forming portions (56) (57) of the first member (50), condensed water is supplied to the refrigerant turn tank ( 3) A drainage groove (63) for draining downward is formed continuously to the outer end in the front-rear direction of the pipe insertion hole (59). The bottom of the drainage groove (63) gradually goes downward as it goes away from the pipe insertion hole (59). The second inclined wall (56c) (57c) in the drainage groove (63), that is, the groove bottom of the portion existing in the second low-order part (9c) (11c), is downward toward the outside in the front-rear direction with respect to the horizontal plane. It is inclined linearly. It is preferable that the downward inclination angle with respect to the horizontal surface of the groove bottom of the portion of the drainage groove (63) existing in the second low-order part (9c) (11c) is 45 degrees or more. The lower ends of the portions of the drainage grooves (63) existing on the hanging walls (56d) and (57d) are opened at the lower end surfaces of the hanging walls (56d) and (57d).
第1部材(50)の連結壁(58)に、左右方向に長い複数の排水用貫通穴(64)が左右方向に間隔をおいて形成されている。また、第1部材(50)の連結壁(58)に、複数の固定用貫通穴(65)が、排水用貫通穴(64)からずれた位置に来るように左右方向に間隔をおいて形成されている。 In the connecting wall (58) of the first member (50), a plurality of drainage through holes (64) elongated in the left-right direction are formed at intervals in the left-right direction. In addition, a plurality of fixing through holes (65) are formed in the connecting wall (58) of the first member (50) at intervals in the left-right direction so as to be shifted from the drain through holes (64). Has been.
第2部材(51)は、冷媒流入側中間ヘッダ部(9)の下部を形成する第1ヘッダ形成部(66)と、冷媒流出側中間ヘッダ部(11)の下部を形成する第2ヘッダ形成部(67)と、両ヘッダ形成部(66)(67)を連結しかつ第1部材(50)の連結壁(58)にろう付されて連結部(10)を形成する連結壁(68)とよりなる。第1ヘッダ形成部(66)は、垂直状の前後両壁(66a)と、前後両壁(66a)の下端どうしを一体に連結する下方に突出した横断面略円弧状底壁(66b)とよりなる。第2ヘッダ形成部(67)は、垂直状の前後両壁(67a)と、前後両壁(67a)の下端どうしを一体に連結する下方に突出した横断面略円弧状底壁(67b)と、前後両壁(67a)の上端部どうしを一体に連結する水平な分流制御壁(67c)(分流制御手段)とよりなる。第1ヘッダ形成部(66)の後壁(66a)の上端部と第2ヘッダ形成部(67)の前壁(67a)の上端部とが連結壁(68)により一体に連結されている。第1ヘッダ形成部(66)の前壁(66a)外面および第2ヘッダ形成部(67)の後壁(67a)外面は、それぞれ第1部材(50)の第1ヘッダ形成部(56)の垂下壁(56d)外面および第2ヘッダ形成部(57)の垂下壁(57d)外面よりも前後方向内側に位置しており、これにより第1部材(50)の垂下壁(56d)(57d)と第2部材(51)の前後壁(66a)(67a)との接合部に段差部(69)が設けられるとともに、垂下壁(56d)(57d)外面が段差部(69)を介して前壁(66a)および後壁(67a)の外面に対して前後方向外側に位置し、排水溝(63)の下端全体が段差部(69)に開口している(図3参照)。また、第1ヘッダ形成部(66)の前壁(66a)の上縁部外面および第2ヘッダ形成部(67)の後壁(67a)の上縁部外面は、排水溝(63)における垂下壁(56d)(57d)に存在する部分の底面と面一となっている。そして、第1ヘッダ形成部(66)の前壁(66a)外面が冷媒流入側中間ヘッダ部(9)の前側面の下側部分を形成し、第2ヘッダ形成部(67)の後壁(67a)外面が冷媒流出側中間ヘッダ部(11)の後側面の下側部分を形成している。 The second member (51) has a first header forming part (66) that forms the lower part of the refrigerant inflow side intermediate header part (9) and a second header formation that forms the lower part of the refrigerant outflow side intermediate header part (11). The connecting wall (68) which connects the portion (67) and the header forming portions (66) (67) and is brazed to the connecting wall (58) of the first member (50) to form the connecting portion (10). And more. The first header forming portion (66) includes a vertical front and rear walls (66a), a bottom wall (66b) having a substantially arcuate cross section projecting downward and integrally connecting lower ends of the front and rear walls (66a). It becomes more. The second header forming portion (67) includes a vertical front and rear walls (67a) and a bottom wall (67b) having a substantially arcuate cross section projecting downward to integrally connect lower ends of the front and rear walls (67a). And a horizontal diversion control wall (67c) (diversion control means) for integrally connecting the upper ends of the front and rear walls (67a). The upper end portion of the rear wall (66a) of the first header forming portion (66) and the upper end portion of the front wall (67a) of the second header forming portion (67) are integrally connected by a connecting wall (68). The outer surface of the front wall (66a) of the first header forming part (66) and the outer surface of the rear wall (67a) of the second header forming part (67) are respectively formed on the first header forming part (56) of the first member (50). The outer surface of the hanging wall (56d) and the hanging wall (57d) outer surface of the second header forming portion (57) are located on the inner side in the front-rear direction, whereby the hanging wall (56d) (57d) of the first member (50) And the front and rear walls (66a) and (67a) of the second member (51) are provided with a stepped portion (69), and the outer surfaces of the hanging walls (56d) and (57d) through the stepped portion (69) The entire bottom end of the drainage groove (63) is open to the stepped portion (69) with respect to the outer surfaces of the wall (66a) and the rear wall (67a) in the front-rear direction (see FIG. 3). The outer surface of the upper edge of the front wall (66a) of the first header forming portion (66) and the outer surface of the upper edge of the rear wall (67a) of the second header forming portion (67) are suspended in the drainage groove (63). It is flush with the bottom surface of the portion existing on the walls (56d) and (57d). And the outer surface of the front wall (66a) of the first header forming part (66) forms the lower part of the front side surface of the refrigerant inflow side intermediate header part (9), and the rear wall of the second header forming part (67) ( 67a) The outer surface forms the lower part of the rear side surface of the refrigerant outflow side intermediate header portion (11).
第2部材(51)の第2ヘッダ形成部(67)の分流制御壁(67c)における前後方向の中心部よりも後側の部分には、複数の円形冷媒通過穴(71)が左右方向に間隔をおいて貫通状に形成されている。隣り合う円形冷媒通過穴(71)間の間隔は、右端部、すなわち冷媒流入側中間ヘッダ部(9)と冷媒流出側中間ヘッダ部(11)との連通部から遠ざかるにつれて徐々に大きくなっている。なお、隣り合う円形冷媒通過穴(71)間の間隔は、すべて等しくなっていてもよい。第2部材(51)の連結壁(68)における第1部材(50)の排水用貫通穴(64)と合致した位置にそれぞれ左右方向に長い排水用貫通穴(72)が形成され、同じく第1部材(50)の固定用貫通穴(65)と合致した位置にそれぞれ固定用貫通穴(73)が形成されている。 A plurality of circular coolant passage holes (71) are formed in the left-right direction at the rear side of the center part in the front-rear direction of the flow dividing control wall (67c) of the second header forming portion (67) of the second member (51). It is formed in a penetrating manner with an interval. The spacing between adjacent circular refrigerant passage holes (71) gradually increases as the distance from the right end, that is, the communication portion between the refrigerant inflow side intermediate header portion (9) and the refrigerant outflow side intermediate header portion (11) increases. . The intervals between adjacent circular coolant passage holes (71) may all be equal. In the connecting wall (68) of the second member (51), drainage through holes (72) that are long in the left-right direction are formed at positions corresponding to the drainage through holes (64) of the first member (50). A fixing through hole (73) is formed at a position corresponding to the fixing through hole (65) of one member (50).
排水補助プレート(54)における第1および第2部材(50)(51)の排水用貫通穴(64)(72)と対応する部分に、その上縁から切り欠き(74)が形成されている。切り欠き(74)の開放部の左右方向の幅は排水用貫通穴(64)(72)の左右方向の長さと等しくなっている。排水補助プレート(54)の前後両面に、それぞれ切り欠き(74)の下端部に連なるように上下方向に伸びかつ下端部が排水補助プレート(54)の下端面に開口した排水補助溝(75)が形成されている。また、排水補助プレート(54)の上縁における第1および第2部材(50)(51)の固定用貫通穴(65)(73)と合致した位置に、上方に突出しかつ両固定用貫通穴(65)(73)に挿通される突起(76)が形成されている。 A notch (74) is formed from the upper edge of the drainage auxiliary plate (54) at the portion corresponding to the drainage through holes (64) and (72) of the first and second members (50) and (51). . The width in the left-right direction of the opening of the notch (74) is equal to the length in the left-right direction of the drainage through holes (64) (72). A drainage auxiliary groove (75) extending in the vertical direction on both front and rear surfaces of the drainage auxiliary plate (54) so as to be connected to the lower end of the notch (74) and having a lower end opened to the lower end surface of the drainage auxiliary plate (54) Is formed. Further, at the upper edge of the drainage auxiliary plate (54), the first and second members (50), (51) are protruded upward at positions matching the fixing through holes (65), (73), and both fixing through holes are provided. (65) A projection (76) is formed which is inserted through (73).
右側閉鎖部材(52)は、冷媒流入側中間ヘッダ部(9)の右端開口を閉鎖する前キャップ(52a)と、冷媒流出側中間ヘッダ部(11)の右端開口を閉鎖する後キャップ(52b)とが一体化されたものであり、前キャップ(52a)には、冷媒流入側中間ヘッダ部(9)内に嵌め入れられる左方突出部(77)が一体に形成され、同じく後キャップ(52b)には、冷媒流出側中間ヘッダ部(11)の分流制御壁(67c)よりも上側の空間(11A)内に嵌め入れられる上側左方突出部(78)と、分流制御壁(67c)よりも下側の空間(11B)内に嵌め入れられる下側左方突出部(79)とが上下に間隔をおいて一体に形成されている。また、右側閉鎖部材(52)の前後両側縁と下縁との間の円弧状部および上縁の前後両端寄りの部分に、それぞれ左方に突出した係合爪(81)が形成され、さらに上下両縁の前後方向中央部に、それぞれ右方に突出した係合爪(82)が形成されている。右側閉鎖部材(52)の前キャップ(52a)の左方突出部(77)の底壁に、冷媒流入側中間ヘッダ部(9)から冷媒を流出させる冷媒流出口(83)が形成され、同じく後キャップ(52b)の下側左方突出部(79)の底壁に、冷媒流出側中間ヘッダ部(11)の分流制御壁(67c)よりも下側の部分内に冷媒を流入させる冷媒流入口(84)が形成されている。 The right closing member (52) includes a front cap (52a) for closing the right end opening of the refrigerant inflow side intermediate header (9) and a rear cap (52b) for closing the right end opening of the refrigerant outflow side intermediate header (11). The front cap (52a) is integrally formed with a left protruding portion (77) that is fitted into the refrigerant inflow side intermediate header (9), and the rear cap (52b ) Includes an upper left protrusion (78) fitted in the space (11A) above the flow dividing control wall (67c) of the refrigerant outflow side intermediate header (11) and the flow dividing control wall (67c). Also, a lower left protrusion (79) that is fitted into the lower space (11B) is integrally formed with a space in the vertical direction. In addition, an engagement claw (81) protruding leftward is formed on each of the arc-shaped portion between the front and rear side edges and the lower edge of the right closing member (52) and the portion of the upper edge near the front and rear ends. Engaging claws (82) projecting to the right are formed at the center in the front-rear direction of both upper and lower edges. On the bottom wall of the left protrusion (77) of the front cap (52a) of the right closing member (52) is formed a refrigerant outlet (83) for allowing the refrigerant to flow out from the refrigerant inflow side intermediate header (9). Refrigerant flow that causes the refrigerant to flow into the bottom wall of the lower left protrusion (79) of the rear cap (52b) into the portion below the flow dividing control wall (67c) of the refrigerant outflow side intermediate header (11). An inlet (84) is formed.
右側閉鎖部材(52)の後キャップ(52b)の下側左方突出部(79)における冷媒流入口(84)の周縁部の下側部分に、冷媒流出側中間ヘッダ部(11)内方(左方)に向かって上方に傾斜または湾曲、ここでは湾曲したガイド部(80)が一体に形成されている。ガイド部(80)は、冷媒流出側中間ヘッダ部(11)の分流制御壁(67c)よりも下側の部分内に流入する冷媒を、上側(分流制御壁(67c)側)に案内する。 In the lower part of the peripheral edge of the refrigerant inlet (84) in the lower left protrusion (79) of the rear cap (52b) of the right closing member (52), the inner side of the refrigerant outlet side intermediate header (11) ( A guide portion (80) which is inclined or curved upward (to the left) and is curved here is integrally formed. The guide part (80) guides the refrigerant flowing into the part below the flow dividing control wall (67c) of the refrigerant outflow side intermediate header part (11) to the upper side (the flow dividing control wall (67c) side).
左側閉鎖部材(53)は、冷媒流入側中間ヘッダ部(9)の左端開口を閉鎖する前キャップ(53a)と、冷媒流出側中間ヘッダ部(11)の左端開口を閉鎖する後キャップ(53b)とが一体化されたものであり、前キャップ(53a)には、冷媒流入側中間ヘッダ部(9)内に嵌め入れられる右方突出部(85)が一体に形成され、同じく後キャップ(53b)には、冷媒流出側中間ヘッダ部(11)の分流制御壁(67c)よりも上側の空間(11A)内に嵌め入れられる上側右方突出部(86)と、分流制御壁(67c)よりも下側の空間(11B)内に嵌め入れられる下側右方突出部(87)とが上下に間隔をおいて一体に形成されている。また、左側閉鎖部材(53)の前後両側縁と下縁との間の円弧状部および上縁の前後両端寄りの部分に、それぞれ右方に突出した係合爪(88)が一体に形成されている。 The left closing member (53) includes a front cap (53a) that closes the left end opening of the refrigerant inflow side intermediate header (9), and a rear cap (53b) that closes the left end opening of the refrigerant outflow side intermediate header (11). The front cap (53a) is integrally formed with a right protrusion (85) that is fitted into the refrigerant inflow side intermediate header (9), and the rear cap (53b) ) Includes an upper right protrusion (86) fitted into the space (11A) above the flow dividing control wall (67c) of the refrigerant outflow side intermediate header (11), and a flow dividing control wall (67c). Also, a lower right protrusion (87) fitted into the lower space (11B) is integrally formed with a space in the vertical direction. In addition, an engaging claw (88) protruding rightward is formed integrally with the arc-shaped portion between the front and rear side edges and the lower edge of the left closing member (53) and the portion of the upper edge near the front and rear ends. ing.
連通部材(55)はアルミニウムベア材にプレス加工を施すことにより形成されたものであり、右方から見て右側閉鎖部材(52)と同形同大のプレート状であって、その周縁部が右側閉鎖部材(52)の外面にろう付されている。連通部材(55)には、右側閉鎖部材(52)の冷媒流出口(83)と冷媒流入口(84)とを通じさせるように外方膨出部(89)が形成されている。外方膨出部(89)の内部が、右側閉鎖部材(52)の両貫通穴(83)(84)を通じさせる連通路(91)となっている。また、連通部材(55)の上下両縁における前後方向の中央部には、右側閉鎖部材(52)の係合爪(82)が嵌る切り欠き(92)が形成されている。 The communication member (55) is formed by pressing an aluminum bear material, and is a plate having the same shape and size as the right closing member (52) when viewed from the right, and its peripheral portion is It is brazed to the outer surface of the right closing member (52). The communication member (55) is formed with an outward bulging portion (89) so as to pass through the refrigerant outlet (83) and the refrigerant inlet (84) of the right closing member (52). The inside of the outward bulging portion (89) serves as a communication path (91) that allows the through holes (83) and (84) of the right closing member (52) to pass through. In addition, a notch (92) into which the engaging claw (82) of the right closing member (52) is fitted is formed at the center in the front-rear direction on both upper and lower edges of the communication member (55).
冷媒ターン用タンク(3)の第1および第2部材(50)(51)と、排水補助プレート(54)と、両閉鎖部材(52)(53)と、連通部材(55)とは次のようにしてろう付されている。すなわち、第1部材(50)と第2部材(51)とは、連結壁(58)(68)どうしが排水用貫通穴(64)(72)および固定用貫通穴(65)(73)が合致するように合わせられるとともに、両ヘッダ形成部(56)(57)の垂下壁(56d)(57d)下端と第1ヘッダ形成部(66)の前壁(66a)および第2ヘッダ形成部(67)の後壁(67a)上端とが係合させられ、排水補助プレート(54)の突起(76)が両部材(50)(51)の固定用貫通穴(65)(73)に挿通させられてかしめられることにより両部材(50)(51)が仮止めされた状態で、第1部材(50)のろう材層を利用して相互にろう付されている。排水補助プレート(54)は、第1部材(50)のろう材層を利用して両部材(50)(51)の連結壁(58)(68)にろう付されている。両閉鎖部材(52)(53)は、前キャップ(52a)(53a)の突出部(77)(85)が両部材(50)(51)の第1ヘッダ形成部(56)(66)により形成される空間内に、後キャップ(52b)(53b)の上突出部(78)(86)が両部材(50)(51)の第2ヘッダ形成部(57)(67)により形成される空間における分流制御壁(67c)よりも上側の部分内に、後キャップ(52b)(53b)の下突出部(79)(87)が両部材(50)(51)の第2ヘッダ形成部(57)(67)により形成される空間における分流制御壁(67c)よりも下側の部分内にそれぞれ嵌め入れられ、上側の係合爪(81)(88)が第1部材(50)に係合させられ、下側の係合爪(81)(88)が第2部材(51)に係合させられた状態で、各閉鎖部材(52)(53)のろう材層を利用して第1および第2部材(50)(51)にろう付されている。連通部材(55)は、右側閉鎖部材(52)の係合爪(82)が切り欠き(92)内に嵌るように連通部材(55)に係合させられた状態で、右側閉鎖部材(52)のろう材層を利用して右側閉鎖部材(52)にろう付されている。
The first and second members (50) and (51) of the refrigerant turn tank (3), the drainage auxiliary plate (54), the closing members (52) and (53), and the communication member (55) are It is brazed like this. That is, the first member (50) and the second member (51) have a connecting through hole (64) (72) between the connecting walls (58) and (68) and a fixing through hole (65) (73). The two header forming portions (56) and (57) have a suspended wall (56d) (57d) lower end, the front wall (66a) of the first header forming portion (66) and the second header forming portion ( 67) The upper end of the rear wall (67a) is engaged, and the protrusion (76) of the drainage auxiliary plate (54) is inserted into the fixing through holes (65) (73) of both members (50) (51). The two members (50) and (51) are temporarily fastened by being caulked, and are brazed to each other using the brazing material layer of the first member (50). The drainage auxiliary plate (54) is brazed to the connecting walls (58) and (68) of both members (50) and (51) using the brazing material layer of the first member (50). Both the closing members (52) and (53) have the protruding portions (77) and (85) of the front caps (52a) and (53a) by the first header forming portions (56) and (66) of both members (50) and (51) In the space to be formed, the upper projecting portions (78) and (86) of the rear caps (52b) and (53b) are formed by the second header forming portions (57) and (67) of both members (50) and (51). The lower protrusions (79) and (87) of the rear caps (52b) and (53b) are provided in the second header forming portions (50) and (51) of the two members (50) and (51) in the portion above the flow dividing control wall (67c). 57) and (67) are respectively fitted into portions below the flow dividing control wall (67c) in the space formed by the space, and the upper engaging claws (81) and (88) are engaged with the first member (50). With the lower engaging claws (81) and (88) engaged with the second member (51), the brazing material layer of each closing member (52) and (53) is used to The first and
こうして、冷媒ターン用タンク(3)が形成されており、両部材(50)(51)の第1ヘッダ形成部(56)(66)により冷媒流入側中間ヘッダ部(9)が形成され、同じく第2ヘッダ形成部(57)(67)により冷媒流出側中間ヘッダ部(11)が形成されている。冷媒流出側中間ヘッダ部(11)は分流制御壁(67c)により上下2つの空間(11A)(11B)に区画されており、これらの空間(11A)(11B)は円形冷媒通過穴(71)により連通させられている。上部空間(11A)が熱交換管(12)が臨む第1の空間であり、下部空間(11B)が冷媒流入側中間ヘッダ部(9)と連通する第2の空間である。そして、冷媒流入側中間ヘッダ部(9)内と冷媒流出側中間ヘッダ部(11)の下部空間(11B)内とが、右側閉鎖部材(52)の前キャップ(52a)の冷媒流出口(83)、連通部材(55)の外方膨出部(89)内の連通路(91)、および右側閉鎖部材(52)の後キャップ(52b)の冷媒流入口(84)を介して連通させられている。また、両部材(50)(51)の連結壁(58)(68)により連結部(10)が形成され、冷媒流入側中間ヘッダ部(9)の第1の低位部(9b)と冷媒流出側中間ヘッダ部(11)の第1の低位部(11b)と連結部(10)とにより排水樋(20)が形成されている。 Thus, the refrigerant turn tank (3) is formed, and the refrigerant inlet side intermediate header portion (9) is formed by the first header forming portions (56) and (66) of both members (50) and (51). The second header forming portion (57) (67) forms the refrigerant outflow side intermediate header portion (11). The refrigerant outlet side intermediate header (11) is divided into two upper and lower spaces (11A) and (11B) by a flow dividing control wall (67c), and these spaces (11A) and (11B) are circular refrigerant passage holes (71). It is made to communicate by. The upper space (11A) is a first space where the heat exchange pipe (12) faces, and the lower space (11B) is a second space communicating with the refrigerant inflow side intermediate header portion (9). The refrigerant inflow side intermediate header portion (9) and the lower space (11B) of the refrigerant outflow side intermediate header portion (11) are connected to the refrigerant outlet (83) of the front cap (52a) of the right closing member (52). ), The communication path (91) in the outward bulging portion (89) of the communication member (55), and the refrigerant inlet (84) of the rear cap (52b) of the right closing member (52). ing. Further, the connecting portion (10) is formed by the connecting walls (58) and (68) of the members (50) and (51), and the first low-order portion (9b) of the refrigerant inflow side intermediate header portion (9) and the refrigerant outflow. A drainage basin (20) is formed by the first low-order part (11b) and the connecting part (10) of the side intermediate header part (11).
熱交換管(12)はアルミニウム押出形材で形成されたベア材からなり、前後方向に幅広の偏平状で、その内部に長さ方向に伸びる複数の冷媒通路(12a)が並列状に形成されている。熱交換管(12)の前後両端壁の外面の水平断面形状は、中央部が外方に突出した円弧状となっている(図6参照)。前側の熱交換管(12)と後側の熱交換管(12)とは、左右方向の同一位置に来るように配置されており、熱交換管(12)の上端部は冷媒入出用タンク(2)の第1部材(16)の管挿通穴(23)に挿通されて第1部材(16)のろう材層を利用して第1部材(16)にろう付され、同じく下端部は冷媒ターン用タンク(3)の第1部材(50)の管挿通穴(59)に挿通されて第1部材(50)のろう材層を利用して第1部材(50)にろう付されている。そして、前側の熱交換管(12)が冷媒入口ヘッダ部(5)および冷媒流入側中間ヘッダ部(9)に連通し、後側の熱交換管(12)が冷媒出口ヘッダ部(6)および冷媒流出側中間ヘッダ部(11)に連通している。 The heat exchange pipe (12) is made of a bare material formed of an aluminum extruded profile, and has a wide and flat shape in the front-rear direction, and a plurality of refrigerant passages (12a) extending in the length direction are formed in parallel inside the heat exchange pipe (12). ing. The horizontal cross-sectional shape of the outer surface of the front and rear end walls of the heat exchange pipe (12) is an arc shape with the center portion protruding outward (see FIG. 6). The front heat exchange pipe (12) and the rear heat exchange pipe (12) are arranged at the same position in the left-right direction, and the upper end portion of the heat exchange pipe (12) is a refrigerant inlet / outlet tank ( 2) The first member (16) is inserted into the tube insertion hole (23) and brazed to the first member (16) using the brazing material layer of the first member (16). The turn tank (3) is inserted into the tube insertion hole (59) of the first member (50) and brazed to the first member (50) using the brazing material layer of the first member (50). . The front heat exchange pipe (12) communicates with the refrigerant inlet header section (5) and the refrigerant inflow side intermediate header section (9), and the rear heat exchange pipe (12) communicates with the refrigerant outlet header section (6) and It communicates with the refrigerant outflow side intermediate header (11).
ここで、熱交換管(12)の左右方向の厚みである管高さ(h)は0.75〜1.5mm(図10参照)、前後方向の幅である管幅は12〜18mm、周壁の肉厚は0.175〜0.275mm、冷媒通路(12a)どうしを仕切る仕切壁の厚さは0.175〜0.275mm、仕切壁のピッチは0.5〜3.0mm、前後両端壁の外面の曲率半径は0.35〜0.75mmであることが好ましい。 Here, the tube height (h) which is the thickness in the left-right direction of the heat exchange tube (12) is 0.75 to 1.5 mm (see FIG. 10), the tube width which is the width in the front-rear direction is 12 to 18 mm, and the peripheral wall The wall thickness of the partition wall is 0.175 to 0.275 mm, the thickness of the partition wall partitioning the refrigerant passages (12a) is 0.175 to 0.275 mm, the pitch of the partition wall is 0.5 to 3.0 mm, both front and rear walls The curvature radius of the outer surface is preferably 0.35 to 0.75 mm.
なお、熱交換管(12)としては、アルミニウム押出形材製のものに代えて、アルミニウム製電縫管の内部にインナーフィンを挿入することにより複数の冷媒通路を形成したものを用いてもよい。また、両面にろう材層を有するアルミニウムブレージングシートに圧延加工を施すことにより形成され、かつ連結部を介して連なった2つの平坦壁形成部と、各平坦壁形成部における連結部とは反対側の側縁より隆起状に一体成形された側壁形成部と、平坦壁形成部の幅方向に所定間隔をおいて両平坦壁形成部よりそれぞれ隆起状に一体成形された複数の仕切壁形成部とを備えた板を、連結部においてヘアピン状に曲げて側壁形成部どうしを突き合わせて相互にろう付し、仕切壁形成部により仕切壁を形成したものを用いてもよい。 As the heat exchange pipe (12), instead of one made of an aluminum extruded shape, a pipe in which a plurality of refrigerant passages are formed by inserting inner fins into an aluminum electric sewing pipe may be used. . Also, two flat wall forming parts formed by rolling an aluminum brazing sheet having a brazing filler metal layer on both sides and connected via connecting parts, and the opposite side of the connecting part in each flat wall forming part A side wall forming portion integrally formed in a protruding shape from the side edges of the flat wall forming portion, and a plurality of partition wall forming portions integrally formed in a protruding shape from the two flat wall forming portions at a predetermined interval in the width direction of the flat wall forming portion. It is also possible to use a plate having a partition wall formed by bending a plate with a hairpin shape at the connecting portion, butting the side wall forming portions with each other and brazing each other.
コルゲートフィン(14)は両面にろう材層を有するアルミニウムブレージングシートを用いて波状に形成されたものであり、波頂部(14a)、波底部(14b)および波頂部(14a)と波底部(14b)とを連結する平坦な水平状連結部(14c)よりなり(図10参照)、連結部(14c)に複数のルーバが前後方向に並んで形成されている。コルゲートフィン(14)は、前後の熱交換管群(13)を構成する前後両熱交換管(12)に共有されており、その前後方向の幅は前側熱交換管(12)の前側縁と後側熱交換管(12)の後側縁との間隔をほぼ等しくなっている。そして、コルゲートフィン(14)の波頂部(14a)および波底部(14b)は、前後の熱交換管(12)にろう付されている。 The corrugated fin (14) is formed in a corrugated shape using an aluminum brazing sheet having a brazing filler metal layer on both sides, the wave crest (14a), the wave bottom (14b) and the wave crest (14a) and the wave bottom (14b). ) Are connected to each other (see FIG. 10), and a plurality of louvers are formed in the connecting portion (14c) side by side in the front-rear direction. The corrugated fin (14) is shared by the front and rear heat exchange pipes (12) constituting the front and rear heat exchange pipe groups (13), and the width in the front-rear direction is equal to the front edge of the front heat exchange pipe (12). The distance from the rear edge of the rear heat exchange pipe (12) is substantially equal. The wave crest (14a) and the wave bottom (14b) of the corrugated fin (14) are brazed to the front and rear heat exchange tubes (12).
ここで、、コルゲートフィン(14)のフィン高さ(H)は波頂部(14a)と波底部(14b)との直線距離であり、フィン高さ(H)=7.0mm〜10.0mmであることが好ましい。また、コルゲートフィン(14)のフィンピッチ(Pf)は隣り合う波頂部(14a)または波底部(14b)の上下方向の中央部間の間隔(P)の1/2、すなわちPf=P/2であり、フィンピッチ(Pf)=1.3〜1.7mmであることが好ましい。また、コルゲートフィン(14)の波頂部(14a)および波底部(14b)は、熱交換管(12)に面接触状にろう付された平坦部分と、平坦部分の両側に設けられかつ連結部(14c)に連なったアール状部分とよりなるが、アール状部分の曲率半径(R)は0.7mm以下であることが好ましい(図10参照)。 Here, the fin height (H) of the corrugated fin (14) is a linear distance between the wave crest (14a) and the wave bottom (14b), and the fin height (H) is 7.0 mm to 10.0 mm. Preferably there is. Further, the fin pitch (Pf) of the corrugated fin (14) is 1/2 of the interval (P) between the central portions in the vertical direction of the adjacent wave crest (14a) or wave bottom (14b), that is, Pf = P / 2. It is preferable that the fin pitch (Pf) is 1.3 to 1.7 mm. The corrugated fin (14) has a wave crest (14a) and a wave bottom (14b) that are flatly brazed to the heat exchange pipe (12) in a surface contact manner, and provided on both sides of the flat part and connected to each other. The radius of curvature (R) of the rounded portion is preferably 0.7 mm or less (see FIG. 10).
エバポレータ(1)は、冷媒入口管(7)および冷媒出口管(8)を除く各構成部材を組み合わせて仮止めし、すべての構成部材を一括してろう付することにより製造される。 The evaporator (1) is manufactured by temporarily fixing a combination of the constituent members excluding the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8), and brazing all the constituent members together.
エバポレータ(1)は、圧縮機および冷媒冷却器としてのコンデンサとともに冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。 The evaporator (1) constitutes a refrigeration cycle together with a compressor and a condenser as a refrigerant cooler, and is mounted on a vehicle, for example, an automobile, as a car air conditioner.
上述したエバポレータ(1)において、図11に示すように、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口管(7)からジョイントプレート(21)の冷媒流入口(45)および右側閉鎖部材(19)の前キャップ(19a)の冷媒入口(37)を通って冷媒入出用タンク(2)の冷媒入口ヘッダ部(5)内に入り、分流して前側熱交換管群(13)の熱交換管(12)の冷媒通路(12a)内に流入する。 In the evaporator (1) described above, as shown in FIG. 11, the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve flows from the refrigerant inlet pipe (7) to the refrigerant inlet of the joint plate (21). (45) and through the refrigerant inlet (37) of the front cap (19a) of the right closing member (19) into the refrigerant inlet header part (5) of the refrigerant inlet / outlet tank (2) and divert to the front heat exchange. It flows into the refrigerant passage (12a) of the heat exchange pipe (12) of the pipe group (13).
熱交換管(12)の冷媒通路(12a)内に流入した冷媒は、冷媒通路(12a)内を下方に流れて冷媒ターン用タンク(3)の冷媒流入側中間ヘッダ部(9)内に入る。冷媒流入側中間ヘッダ部(9)内に入った冷媒は右方に流れ、右側閉鎖部材(52)の前キャップ(52a)の冷媒流出口(83)、連通部材(55)の外方膨出部(89)内の連通路(91)および後キャップ(52b)の冷媒流入口(84)を通ることにより、流れ方向を変えるようにターンして冷媒流出側中間ヘッダ部(11)の下部空間(11B)内に入る。ここで、冷媒入口ヘッダ部(5)から前側の熱交換管(12)への冷媒の分流が充分に均一化されていないことに起因して、前側の熱交換管(12)を流れる冷媒の温度(冷媒乾き度)の分布に偏りが生じていたとしても、冷媒流入側中間ヘッダ部(9)から冷媒流出側中間ヘッダ部(11)の下部空間(11B)内にターンして流入する際に冷媒が混合されることになり、その温度は全体に均一になる。 The refrigerant flowing into the refrigerant passage (12a) of the heat exchange pipe (12) flows downward in the refrigerant passage (12a) and enters the refrigerant inflow-side intermediate header (9) of the refrigerant turn tank (3). . The refrigerant that has entered the refrigerant inflow side intermediate header (9) flows to the right, the refrigerant outlet (83) of the front cap (52a) of the right closing member (52), and the outward expansion of the communication member (55). The lower space of the refrigerant outflow side intermediate header section (11) is turned to change the flow direction by passing through the communication path (91) in the section (89) and the refrigerant inlet (84) of the rear cap (52b). Enter (11B). Here, due to the fact that the refrigerant flow from the refrigerant inlet header (5) to the front heat exchange pipe (12) is not sufficiently uniform, the refrigerant flowing through the front heat exchange pipe (12) Even if the temperature (refrigerant dryness) distribution is uneven, when turning into the lower space (11B) of the refrigerant inflow side intermediate header part (11) from the refrigerant inflow side intermediate header part (9) As a result, the temperature of the refrigerant becomes uniform.
冷媒流出側中間ヘッダ部(11)の下部空間(11B)内に入った冷媒は左方に流れ、分流制御壁(67c)の円形冷媒通過穴(71)を通って上部空間(11A)内に入り、分流して後側のすべての熱交換管(12)の冷媒通路(12a)内に流入する。このとき、冷媒は、ガイド部(80)に案内されて左斜め上方、すなわち下部空間(11B)内方に向かって分流制御壁(67c)側に流れることになり(図2および図8矢印Y参照)、その結果分流制御壁(67c)に形成された隣り合う円形冷媒通過穴(71)間の間隔が、右端部から遠ざかるにつれて徐々に大きくなっていることと相俟って、冷媒通過穴(71)を通って上部空間(11A)内に流入する冷媒の左右方向の分布が、ガイド部(80)がない場合に比較して均一化される。したがって、冷媒は冷媒流出側中間ヘッダ部(11)に接続されている熱交換管(12)に均一に分流しやすくなり、熱交換コア部(4)における冷媒の分布の偏りが生じにくくなり、熱交換コア部(4)を通過してきた空気の温度も均一化されて熱交換性能が向上する。 The refrigerant that has entered the lower space (11B) of the refrigerant outflow side intermediate header (11) flows to the left, passes through the circular refrigerant passage hole (71) of the flow dividing control wall (67c), and enters the upper space (11A). It enters, divides, and flows into the refrigerant passages (12a) of all the rear heat exchange tubes (12). At this time, the refrigerant is guided by the guide portion (80) and flows to the left side of the diversion control wall (67c) obliquely upward left, that is, inward of the lower space (11B) (see arrows Y in FIGS. 2 and 8). As a result, the interval between the adjacent circular refrigerant passage holes (71) formed in the flow dividing control wall (67c) gradually increases as the distance from the right end portion increases. The distribution in the left-right direction of the refrigerant flowing into the upper space (11A) through (71) is made uniform as compared with the case where there is no guide part (80). Therefore, the refrigerant is likely to be evenly divided into the heat exchange pipe (12) connected to the refrigerant outflow side intermediate header (11), and the distribution of the refrigerant in the heat exchange core (4) is less likely to occur. The temperature of the air passing through the heat exchange core part (4) is also made uniform, and the heat exchange performance is improved.
熱交換管(12)の冷媒通路(12a)内に流入した冷媒は、流れ方向を変えて冷媒通路(12a)内を上方に流れて冷媒出口ヘッダ部(6)の下部空間(6b)内に入り、分流用抵抗板(29)の長円形冷媒通過穴(31A)(31B)を通って上部空間(6a)内に入る。ここで、分流用抵抗板(29)によって冷媒の流れに抵抗が付与されるので、冷媒流出側中間ヘッダ部(11)の上部空間(11A)から後側の熱交換管(12)への分流が均一化されるとともに、冷媒入口ヘッダ部(5)から前側の熱交換管(12)への分流も一層均一化される。その結果、すべての熱交換管(12)の冷媒流通量が均一化され、熱交換コア部(4)全体の温度分布も均一化される。 The refrigerant flowing into the refrigerant passage (12a) of the heat exchange pipe (12) changes the flow direction and flows upward in the refrigerant passage (12a) to enter the lower space (6b) of the refrigerant outlet header (6). And enters the upper space (6a) through the oblong refrigerant passage holes (31A) and (31B) of the shunt resistor plate (29). Here, since resistance is given to the flow of the refrigerant by the shunt resistor plate (29), the shunt flows from the upper space (11A) of the refrigerant outflow side intermediate header (11) to the rear heat exchange pipe (12). Are made uniform, and the flow from the refrigerant inlet header (5) to the front heat exchange pipe (12) is made more uniform. As a result, the refrigerant circulation amount of all the heat exchange tubes (12) is made uniform, and the temperature distribution of the entire heat exchange core part (4) is made uniform.
ついで、冷媒出口ヘッダ部(6)の上部空間(6a)内に入った冷媒は、右側閉鎖部材(19)の後キャップ(19b)の冷媒出口(38)およびジョイントプレート(21)の冷媒流出口(46)を通り、冷媒出口管(8)に流出する。そして、冷媒が前側の熱交換管(12)の冷媒通路(12a)、および後側の熱交換管(12)の冷媒通路(12a)を流れる間に、通風間隙を図1および図11に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。 Next, the refrigerant that has entered the upper space (6a) of the refrigerant outlet header (6) flows into the refrigerant outlet (38) of the rear cap (19b) of the right closing member (19) and the refrigerant outlet of the joint plate (21). It passes through (46) and flows out to the refrigerant outlet pipe (8). While the refrigerant flows through the refrigerant passage (12a) of the front heat exchange pipe (12) and the refrigerant passage (12a) of the rear heat exchange pipe (12), the ventilation gap is indicated by an arrow in FIGS. It exchanges heat with the air flowing in the direction indicated by X and flows out as a gas phase.
このとき、熱交換管(12)およびコルゲートフィン(14)の表面、特にコルゲートフィン(14)の表面に多くの凝縮水が発生する。発生した凝縮水の大部分は、キャピラリ効果により熱交換管(12)とコルゲートフィン(14)の波頂部(14a)および波底部(14b)との接合部側に流れる。後側の熱交換管(12)とコルゲートフィン(14)との接合部に引き寄せられた凝縮水は、左右方向に隣り合う熱交換管(12)どうしの間の通風間隙を流れる風により前側に流れ、後側熱交換管(12)の前端面に沿って下方に排水される。また、前側の熱交換管(12)とコルゲートフィン(14)との接合部に引き寄せられた凝縮水は、左右方向に隣り合う熱交換管(12)どうしの間の通風間隙を流れる風により前側に流れ、前側熱交換管(12)の前端面に沿って下方に排水される。 At this time, a large amount of condensed water is generated on the surfaces of the heat exchange pipe (12) and the corrugated fin (14), particularly on the surface of the corrugated fin (14). Most of the generated condensed water flows to the junction side between the wave exchange part (14a) and the wave bottom part (14b) of the heat exchange pipe (12) and the corrugated fin (14) by the capillary effect. The condensed water drawn to the joint between the rear heat exchange pipe (12) and the corrugated fin (14) is moved forward by the wind flowing through the ventilation gap between the heat exchange pipes (12) adjacent in the left-right direction. It flows and drains downward along the front end face of the rear heat exchange pipe (12). In addition, the condensed water drawn to the junction between the front heat exchange pipe (12) and the corrugated fin (14) is caused by the wind flowing through the ventilation gap between the heat exchange pipes (12) adjacent in the left-right direction. And is drained downward along the front end face of the front heat exchange pipe (12).
後側熱交換管(12)の前端面に沿って下方に排水された凝縮水は、冷媒ターン用タンク(3)の排水樋(20)内に入り、排水樋(20)内にある程度凝縮水が溜まると、排水用貫通穴(64)(72)を通って連結部(10)の下方に流出し、排水補助プレート(54)の切り欠き(74)の周縁部に沿って流れて排水補助溝(75)内に入り、排水補助溝(75)内を下方に流れてその下端開口から冷媒ターン用タンク(3)の下方へ落下する。前側熱交換管(12)の前端面に沿って下方に排水された凝縮水は、排水溝(63)内に入り、排水溝(63)内を流れてその下端開口、すなわち段差部(69)への開口から冷媒ターン用タンク(3)の下方へ落下する。こうして、発生した凝縮水が排水される。 Condensed water drained downward along the front end face of the rear heat exchange pipe (12) enters the drainage basin (20) of the refrigerant turn tank (3) and condensates to some extent in the drainage basin (20). When it accumulates, it flows out through the drainage through holes (64) and (72) to the lower part of the connecting part (10) and flows along the peripheral edge of the notch (74) of the drainage auxiliary plate (54) to assist drainage. It enters into the groove (75), flows downward in the drainage auxiliary groove (75), and falls from the lower end opening to the lower side of the refrigerant turn tank (3). Condensed water drained downward along the front end face of the front heat exchange pipe (12) enters the drainage groove (63) and flows through the drainage groove (63), that is, its lower end opening, that is, the step part (69). Falls from the opening to the bottom of the refrigerant turn tank (3). Thus, the generated condensed water is drained.
上記実施形態においては、この発明によるエバポレータが、フロン系冷媒を使用するカーエアコンのエバポレータに適用されているが、これに限定されるものではなく、圧縮機、冷媒冷却器としてのガスクーラ、中間熱交換器、膨張弁およびエバポレータを有しかつCO2冷媒のような超臨界冷媒を使用するカーエアコンを備えた車両、たとえば自動車において、カーエアコンのエバポレータに適用されることがある。 In the above embodiment, the evaporator according to the present invention is applied to an evaporator of a car air conditioner using a chlorofluorocarbon refrigerant. However, the invention is not limited to this. In a vehicle having a car air conditioner having a exchanger, an expansion valve and an evaporator and using a supercritical refrigerant such as a CO 2 refrigerant, for example, an automobile, it may be applied to an evaporator of a car air conditioner.
また、上記実施形態においては、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入側中間ヘッダ部(9)との間、および冷媒出口ヘッダ部(6)と冷媒流出側中間ヘッダ部(11)との間にそれぞれ1つの熱交換管群(13)が設けられているが、これに限るものではなく、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入側中間ヘッダ部(9)との間、および冷媒出口ヘッダ部(6)と冷媒流出側中間ヘッダ部(11)との間にそれぞれ1または2以上の熱交換管群(13)が設けられていてもよい。さらに、上記実施形態においては、冷媒入出用タンク(2)が上、冷媒ターン用タンク(3)が下となっているが、これとは逆に、冷媒入出用タンク(2)が下、冷媒ターン用タンク(3)が上にくるように用いられる場合がある。 Further, in the above embodiment, between the refrigerant inlet header portion (5) and the refrigerant inflow side intermediate header portion (9) of both tanks (2) and (3), and between the refrigerant outlet header portion (6) and the refrigerant outflow side. One heat exchange tube group (13) is provided between each of the intermediate header portions (11). However, the present invention is not limited to this, and the refrigerant inlet header portions (5) of both tanks (2) (3) are provided. There are one or more heat exchange pipe groups (13) between the refrigerant inlet side intermediate header (9) and between the refrigerant outlet header (6) and the refrigerant outlet intermediate header (11). It may be provided. Furthermore, in the above embodiment, the refrigerant inlet / outlet tank (2) is on the upper side and the refrigerant turn tank (3) is on the lower side. It may be used with the turn tank (3) on top.
また、上記実施形態においては、エバポレータ(1)が、冷媒入口ヘッダ部(5)、冷媒出口ヘッダ部(6)、冷媒流入側中間ヘッダ部(9)および冷媒流出側中間ヘッダ部(11)を備えているが、これに代えて、特許文献1記載のエバポレータのように、熱交換管の上端側に配置され、かつ前側熱交換管群の左半部の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の上端側において冷媒入口ヘッダ部の後側に配置され、かつ後側熱交換管群の左半部の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の下端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管群の熱交換管が接続された第1中間ヘッダ部と、第1中間ヘッダ部の右側に配置され、かつ前側熱交換管群の残りの熱交換管が接続された第2中間ヘッダ部と、熱交換管の上端側において冷媒入口ヘッダ部の右側に配置され、かつ第2中間ヘッダ部に接続されている熱交換管が接続された第3中間ヘッダ部と、熱交換管の上端側において第3中間ヘッダ部の後側に配置され、かつ後側熱交換管群の残りの熱交換管が接続された第4中間ヘッダ部と、熱交換管の下端側において第2中間ヘッダ部の後側に配置され、かつ第4中間ヘッダ部に接続されている熱交換管が接続された第5中間ヘッダ部と、熱交換管の下端側において第5中間ヘッダ部の左側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管が接続された第6中間ヘッダ部とを備えており、冷媒入口ヘッダ部内に流入した冷媒が、熱交換管を通って第1〜第6中間ヘッダ部を経て冷媒出口ヘッダ部内に流入し、冷媒出口ヘッダ部から流出するようになされていてもよい。このようなエバポレータにおいては、第2および第6中間ヘッダ部内に流入する冷媒を上側に案内するガイド部は、第2および第6中間ヘッダ部の冷媒流入側端部に設けられる。また、上記エバポレータにおいて、第3中間ヘッダ部と第4中間ヘッダ部とが冷媒入口ヘッダ部および冷媒出口ヘッダ部とは反対側の端部において連通させられることがある。この場合、第4中間ヘッダ部の一端部から冷媒が流入することになるので、第4中間ヘッダ部の冷媒流入側端部に、流入する冷媒を上側に案内するガイド部が設けられる。
In the above embodiment, the evaporator (1) includes the refrigerant inlet header (5), the refrigerant outlet header (6), the refrigerant inflow intermediate header (9), and the refrigerant outflow intermediate header (11). However, instead of this, a refrigerant inlet that is arranged on the upper end side of the heat exchange pipe and to which the heat exchange pipe in the left half of the front heat exchange pipe group is connected, like the evaporator described in
さらに、上記実施形態においては、この発明による熱交換器がエバポレータに適用されているが、これに限定されるものではない。 Furthermore, in the said embodiment, although the heat exchanger by this invention is applied to the evaporator, it is not limited to this.
(1):エバポレータ(熱交換器)
(4):熱交換コア部
(5):冷媒入口ヘッダ部
(6):冷媒出口ヘッダ部
(9):冷媒流入側中間ヘッダ部(第1中間ヘッダ部)
(11):冷媒流出側中間ヘッダ部(第2中間ヘッダ部)
(11A):上部空間(第1の空間)
(11B):下部空間(第2の空間)
(12):熱交換管
(13):熱交換管群
(14):コルゲートフィン
(14a):波頂部
(14b):波底部
(14c):連結部
(29):分流用抵抗板(区画手段)
(37):冷媒入口
(38):冷媒出口
(50):第1部材
(51):第2部材
(52)(53):閉鎖部材
(52a)(53a):前キャップ
(52b)(53b):後キャップ
(55):連通部材
(67c):分流制御壁(分流制御手段)
(71):冷媒通過穴
(80):ガイド部
(83):冷媒流出口
(84):冷媒流入口
(1): Evaporator (heat exchanger)
(4): Heat exchange core
(5): Refrigerant inlet header
(6): Refrigerant outlet header
(9): Refrigerant inflow side intermediate header (first intermediate header)
(11): Refrigerant outflow side intermediate header (second intermediate header)
(11A): Upper space (first space)
(11B): Lower space (second space)
(12): Heat exchange pipe
(13): Heat exchange tube group
(14): Corrugated fin
(14a): Wave peak
(14b): Wave bottom
(14c): Connection part
(29): Resistive plate for shunting (compartment means)
(37): Refrigerant inlet
(38): Refrigerant outlet
(50): First member
(51): Second member
(52) (53): Closing member
(52a) (53a): Front cap
(52b) (53b): Rear cap
(55): Communication member
(67c) : Diversion control wall (diversion control means)
(71): Refrigerant passage hole
(80): Guide section
(83): Refrigerant outlet
(84): Refrigerant inlet
Claims (21)
長さ方向の一端部から冷媒が流入する中間ヘッダ部における冷媒流入側端部に、当該中間ヘッダ部内に流入する冷媒を上側に案内するガイド部が設けられている熱交換器。 A refrigerant inlet header section and a refrigerant outlet header section arranged side by side in the front-rear direction, and a refrigerant circulation path through which both header sections pass, the refrigerant circulation path comprising a plurality of intermediate header sections and a plurality of heat exchange tubes The refrigerant inlet header portion and one intermediate header portion are opposed to each other, and the refrigerant outlet header portion and the other intermediate header portion are opposed to each other between the refrigerant inlet header portion and the intermediate header portion. In addition, at least one row of heat exchange pipe groups including a plurality of heat exchange pipes arranged at intervals is provided between the refrigerant outlet header part and the intermediate header part to constitute these heat exchange pipe groups. Both end portions of the heat exchange pipe are connected to the header portions facing each other, and the refrigerant flowing into the refrigerant inlet header portion returns to the refrigerant outlet header portion through the refrigerant circulation path, from the refrigerant outlet header portion. Ri and together are adapted to be served, at least one of the intermediate header section, a heat exchanger refrigerant from one end of the length direction is adapted to flow,
A heat exchanger in which a guide portion that guides the refrigerant flowing into the intermediate header portion upward is provided at an end portion of the refrigerant inflow side in the intermediate header portion into which the refrigerant flows from one end portion in the lengthwise direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006009697A JP4866615B2 (en) | 2005-01-18 | 2006-01-18 | Heat exchanger |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005010213 | 2005-01-18 | ||
JP2005010213 | 2005-01-18 | ||
JP2006009697A JP4866615B2 (en) | 2005-01-18 | 2006-01-18 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006226668A true JP2006226668A (en) | 2006-08-31 |
JP4866615B2 JP4866615B2 (en) | 2012-02-01 |
Family
ID=36988189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006009697A Expired - Fee Related JP4866615B2 (en) | 2005-01-18 | 2006-01-18 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4866615B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224105A (en) * | 2007-03-12 | 2008-09-25 | Showa Denko Kk | Heat exchanger and its manufacturing method |
JP2008267610A (en) * | 2007-04-16 | 2008-11-06 | Showa Denko Kk | Heat exchanger and its manufacturing method |
US8434324B2 (en) | 2010-04-05 | 2013-05-07 | Denso Corporation | Evaporator unit |
JP2017032244A (en) * | 2015-08-05 | 2017-02-09 | 東芝キヤリア株式会社 | Refrigeration cycle device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05346297A (en) * | 1992-06-15 | 1993-12-27 | Nippon Light Metal Co Ltd | Heat exchanger |
JPH09287887A (en) * | 1996-04-19 | 1997-11-04 | Denso Corp | Combined heat-exchanger |
JP2002147990A (en) * | 2000-11-09 | 2002-05-22 | Zexel Valeo Climate Control Corp | Heat exchanger |
JP2003014392A (en) * | 2001-06-27 | 2003-01-15 | Showa Denko Kk | Laminated heat exchanger |
WO2005003670A1 (en) * | 2003-07-08 | 2005-01-13 | Showa Denko K.K. | Heat exchanger |
-
2006
- 2006-01-18 JP JP2006009697A patent/JP4866615B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05346297A (en) * | 1992-06-15 | 1993-12-27 | Nippon Light Metal Co Ltd | Heat exchanger |
JPH09287887A (en) * | 1996-04-19 | 1997-11-04 | Denso Corp | Combined heat-exchanger |
JP2002147990A (en) * | 2000-11-09 | 2002-05-22 | Zexel Valeo Climate Control Corp | Heat exchanger |
JP2003014392A (en) * | 2001-06-27 | 2003-01-15 | Showa Denko Kk | Laminated heat exchanger |
WO2005003670A1 (en) * | 2003-07-08 | 2005-01-13 | Showa Denko K.K. | Heat exchanger |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224105A (en) * | 2007-03-12 | 2008-09-25 | Showa Denko Kk | Heat exchanger and its manufacturing method |
JP2008267610A (en) * | 2007-04-16 | 2008-11-06 | Showa Denko Kk | Heat exchanger and its manufacturing method |
US8434324B2 (en) | 2010-04-05 | 2013-05-07 | Denso Corporation | Evaporator unit |
JP2017032244A (en) * | 2015-08-05 | 2017-02-09 | 東芝キヤリア株式会社 | Refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JP4866615B2 (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4810203B2 (en) | Heat exchanger | |
JP4599245B2 (en) | Heat exchanger | |
JP5002797B2 (en) | Heat exchanger | |
JP5142109B2 (en) | Evaporator | |
US7896066B2 (en) | Heat exchanger | |
JP2010112695A (en) | Evaporator | |
JP4734021B2 (en) | Heat exchanger | |
JP2006132920A (en) | Heat exchanger | |
JP2008020098A (en) | Heat exchanger | |
JP4625687B2 (en) | Heat exchanger | |
JP4533726B2 (en) | Evaporator and manufacturing method thereof | |
JP2010197019A (en) | Evaporator | |
JP4866615B2 (en) | Heat exchanger | |
JP4786234B2 (en) | Heat exchanger | |
JP5002796B2 (en) | Heat exchanger | |
JP4774295B2 (en) | Evaporator | |
JP2005195318A (en) | Evaporator | |
JP4686220B2 (en) | Heat exchanger | |
JP2006194576A (en) | Evaporator | |
JP4617148B2 (en) | Heat exchanger | |
JP2006170601A (en) | Evaporator | |
JP5574737B2 (en) | Heat exchanger | |
JP5508818B2 (en) | Evaporator | |
JP2009113625A (en) | Evaporator | |
JP5396255B2 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081007 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4866615 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |