[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006222742A - Transmitting method and transmitter for spatial multiplex transmission - Google Patents

Transmitting method and transmitter for spatial multiplex transmission Download PDF

Info

Publication number
JP2006222742A
JP2006222742A JP2005034385A JP2005034385A JP2006222742A JP 2006222742 A JP2006222742 A JP 2006222742A JP 2005034385 A JP2005034385 A JP 2005034385A JP 2005034385 A JP2005034385 A JP 2005034385A JP 2006222742 A JP2006222742 A JP 2006222742A
Authority
JP
Japan
Prior art keywords
matrix
transmission
transfer coefficient
unit
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005034385A
Other languages
Japanese (ja)
Other versions
JP4376805B2 (en
JP2006222742A5 (en
Inventor
Riichi Kudo
理一 工藤
Taiji Takatori
泰司 鷹取
Kentaro Nishimori
健太郎 西森
Koichi Tsunekawa
光一 常川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005034385A priority Critical patent/JP4376805B2/en
Publication of JP2006222742A publication Critical patent/JP2006222742A/en
Publication of JP2006222742A5 publication Critical patent/JP2006222742A5/ja
Application granted granted Critical
Publication of JP4376805B2 publication Critical patent/JP4376805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmitter for spatial multiplex transmission which can determine transmission weight by less operation quantity. <P>SOLUTION: In the spatial multiplex transmission transmitter for performing L pieces of spatial multiplex transmission by using N antennas, a transmission coefficient matrix estimation part 170 estimates a transmission coefficient matrix from receiving signals. A transmission weight determination part 180 multiplies a correlation matrix of the transmission coefficient matrix by an estimated transmission weight matrix relative to a propagation environment, finds out an orthogonal vector from a column vector of the obtained matrix and outputs the orthogonal vector to multibeam formation parts 131-13L as transmission weight. A serial-parallel conversion part 110 applies serial-parallel conversion to a transmitting signal and outputs the serial-parallel converted signal to transmission parts 121-12L. The multibeam formation parts 131-13L divide input signals from the transmission parts 121-12L into N signals, apply the weight determined by the transmission weight determination part 180 to the divided signals and then output the weighted signals to corresponding ports of signal composition parts 141-14N. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は複数のアンテナ素子を用い、空間多重による送信を行う空間多重伝送用送信方法および送信装置に関する。   The present invention relates to a transmission method and a transmission apparatus for spatial multiplexing transmission that perform transmission by spatial multiplexing using a plurality of antenna elements.

空間多重伝送用送信装置は、複数のアンテナ素子から複数の信号を送信することで、周波数帯域を増大することなしに高速伝送を実現する送信装置である。   The spatial multiplexing transmission apparatus is a transmission apparatus that realizes high-speed transmission without increasing the frequency band by transmitting a plurality of signals from a plurality of antenna elements.

図7に伝搬環境に最適となるように送信指向性を制御し、空間多重を行い、伝送速度を向上させる理想的な空間多重伝送用送信装置を示す。   FIG. 7 shows an ideal spatial multiplexing transmission apparatus that controls transmission directivity so as to be optimal for the propagation environment, performs spatial multiplexing, and improves the transmission rate.

符号910はシリアル−パラレル変換部、921〜92Lは送信部、931〜93Lはマルチビーム形成部、941〜94Nは信号合成部、951〜95Nは信号切り替え部、961〜96Nはアンテナ素子、970は伝達係数行列推定部、980は特異値分解演算部である。   Reference numeral 910 is a serial-parallel conversion unit, 921 to 92L are transmission units, 931 to 93L are multi-beam forming units, 941 to 94N are signal synthesis units, 951 to 95N are signal switching units, 961 to 96N are antenna elements, and 970 is A transfer coefficient matrix estimation unit 980 is a singular value decomposition calculation unit.

アンテナ素子961〜96Nで受信された信号は信号切り替え部951〜95Nにより切り替えられ、伝達係数行列推定部970に出力される。伝達係数行列推定部970は受信したプリアンブル信号から伝達係数行列を算出し、特異値分解演算部980に出力する。特異値分解演算部980は伝達係数行列に特異値分解を行い、マルチビーム形成部931〜93Lに送信重みを出力する。   Signals received by antenna elements 961 to 96N are switched by signal switching units 951 to 95N and output to transmission coefficient matrix estimation unit 970. The transfer coefficient matrix estimation unit 970 calculates a transfer coefficient matrix from the received preamble signal and outputs it to the singular value decomposition calculation unit 980. The singular value decomposition calculation unit 980 performs singular value decomposition on the transfer coefficient matrix and outputs transmission weights to the multi-beam forming units 931 to 93L.

送信信号系列は、シリアル−パラレル変換部910により、空間分割多重数Lに振り分けられ、それぞれ送信部921〜92Lにより変調され、マルチビーム形成部931〜93Lに出力される。マルチビーム形成部931〜93Lに入力された各信号系列は、伝達係数行列推定部970および特異値分解演算部980で決定された送信重みをかけられた後、信号合成部941〜94Nの対応するポートに出力される。信号合成部941〜94Nは入力された信号を合成し、その出力信号は、前記信号切り替え部951〜95Nを介し、アンテナ素子961〜96Nから送信される。   The transmission signal sequence is distributed to the spatial division multiplexing number L by the serial-parallel conversion unit 910, modulated by the transmission units 921 to 92L, and output to the multi-beam forming units 931 to 93L. Each signal sequence input to the multi-beam forming units 931 to 93L is subjected to transmission weights determined by the transfer coefficient matrix estimation unit 970 and the singular value decomposition calculation unit 980, and then corresponds to the signal synthesis units 941 to 94N. Output to the port. The signal synthesis units 941 to 94N synthesize the input signals, and the output signals are transmitted from the antenna elements 961 to 96N via the signal switching units 951 to 95N.

ここで特異値分解演算部980ではマルチビーム形成部931〜93Lで送信信号にかける送信重みを以下のようにして決定する。   Here, the singular value decomposition calculation unit 980 determines the transmission weight applied to the transmission signal by the multi-beam forming units 931 to 93L as follows.

空間多重伝送用送信装置のアンテナ素子数をM、通信相手である受信装置のアンテナ素子数をM、MをMとMのうち小さい方の数字とする。送信装置では、送信を行う伝搬環境の伝達係数行列Hの推定を行う。伝達係数行列Hは以下の(1)式で表すことができる。 Number of antenna elements of M T in the spatial multiplexing transmission for transmission apparatus, the number of antenna elements M R of a communication partner receiving apparatus, the M X a number of smaller one of M R and M T. In the transmission apparatus, the transfer coefficient matrix H of the propagation environment in which transmission is performed is estimated. The transfer coefficient matrix H can be expressed by the following equation (1).

Figure 2006222742
Figure 2006222742

(1)式において、伝達係数行列Hの成分Hijはj番目の送信アンテナからi番目の受信アンテナの間の伝達係数を表す。伝達係数行列Hは、例えば以下のように推定される。受信装置から送信装置に、送信装置と受信装置で共に既知であるプリアンブル信号S(M×M行列)の送信を行い、送信装置における受信信号X(M×M)にプリアンブル信号の逆行列S −1(M×M行列)を乗算することで得られる行列の転置行列として得ることができる。 In the equation (1), a component H ij of the transfer coefficient matrix H represents a transfer coefficient between the j-th transmitting antenna and the i-th receiving antenna. The transfer coefficient matrix H is estimated as follows, for example. A preamble signal S 0 (M R × M R matrix), which is known by both the transmission device and the reception device, is transmitted from the reception device to the transmission device, and the preamble is transmitted to the reception signal X 0 (M A × M B ) in the transmission device. can be obtained as the transpose matrix of the inverse matrix S 0 -1 (M B × M B matrix) matrix obtained by multiplying the signal.

伝達係数行列Hは、以下の(2)式に示す特異値分解により、ユニタリ行列V(M×M行列)、U(M×M行列)及び固有値√λを対角要素とする対角行列D(M×M対角行列)に分けることができる。 The transfer coefficient matrix H has a unitary matrix V (M T × M X matrix), U U (M R × M X matrix) and an eigenvalue √λ as diagonal elements by singular value decomposition shown in the following equation (2). Can be divided into a diagonal matrix D (M X × M X diagonal matrix).

Figure 2006222742
Figure 2006222742

(2)式において、Vijは送信装置においてj番目の送信ビームに対するi番目のアンテナ素子に適用する送信重みであり、Uijは受信装置のj番目の送信ビームに対するi番目のアンテナの受信信号に適用する受信重みの複素共役となっている。ここで、固有値λは各パスの伝送容量の大きさを表す。上付きの添え字Hは複素共役転置行列を表す。 In Expression (2), V ij is a transmission weight applied to the i-th antenna element for the j-th transmission beam in the transmission apparatus, and U ij is a reception signal of the i-th antenna for the j-th transmission beam of the reception apparatus. It is a complex conjugate of the receiving weight applied to. Here, the eigenvalue λ represents the transmission capacity of each path. The superscript H represents a complex conjugate transpose matrix.

このようにして得られたVから、対応する固有値の大きいものから通信に用いる空間多重数Lだけ列ベクトルを選択し得られる上り送信ウェイトWを送信装置の送信重みとし、Uから通信に使用するL個の行ベクトルを選択し得られる上り受信ウェイトW′を受信装置の受信重みとすることで、各信号で特異値λに対応する最大の伝送容量を実現することができる。送信ウェイトWを以下の(3)式に示し、受信ウェイトW′を(4)式に示す。 From V obtained in this way, an uplink transmission weight W obtained by selecting a column vector by the spatial multiplexing number L used for communication from a corresponding large eigenvalue is used as a transmission weight of the transmission device, and used from U H for communication. The maximum transmission capacity corresponding to the singular value λ can be realized in each signal by using the uplink reception weight W ′ obtained by selecting L row vectors to be used as the reception weight of the reception apparatus. The transmission weight W is shown in the following formula (3), and the reception weight W ′ is shown in the formula (4).

Figure 2006222742
Figure 2006222742

Figure 2006222742
Figure 2006222742

L=Mとした場合では、送信装置で送信信号S(M×1ベクトル)に送信重みVを用いて送信することで、受信信号X(M×1ベクトル)は以下の(5)式のように表せる。 In the case of L = M X , the transmission apparatus transmits the transmission signal S (M X × 1 vector) using the transmission weight V, so that the reception signal X (M R × 1 vector) is expressed by the following (5). It can be expressed as an expression.

Figure 2006222742
Figure 2006222742

よって送信信号Sは受信信号Xに例えばUの複素共役転置行列を乗算することで、それぞれ対応する固有値の平方根を乗算された送信信号Sを得ることができ、各信号は固有値λだけ熱雑音Nに対する比(SN比)が高くなり、伝送容量が最大となる通信を実現できる。
(Miyashita,K.;Nishimura,T.;Ohgane,T.;Ogawa,Y.;Takatori,Y.;KeizoCho;”High data-rate transmission with eigenbeam-space division multiplexing(E-SDM)in a MIMO channel,‘’Vehicular Technology Conference,2002.Proceedings.VTC 2002-Fall.2002 IEEE 56th,Volume:3,24-28 Sept.2002 Pages:1302_1306 vol.3).
Therefore, the transmission signal S can be obtained by multiplying the reception signal X by a complex conjugate transpose matrix of U, for example, to obtain the transmission signal S multiplied by the square root of the corresponding eigenvalue, and each signal has thermal noise N by the eigenvalue λ. The ratio (SN ratio) with respect to the signal becomes high, and communication with the maximum transmission capacity can be realized.
(Miyashita, K .; Nishimura, T .; Ohgane, T .; Ogawa, Y .; Takatori, Y .; KeizoCho; “High data-rate transmission with eigenbeam-space division multiplexing (E-SDM) in a MIMO channel, '' Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th, Volume: 3,24-28 Sept. 2002 Pages: 1302_1306 vol.3).

上記の手段は最大の伝送容量を得ることを可能とするが、特異値分解の演算量が大きいことが問題となる。本発明は、このような事情に鑑みてなされたもので、少ない演算量で高い伝送速度を持つ通信を実現できる、空間多重伝送用送信方法および空間多重伝送用送信装置を提供することを目的とする。   Although the above means makes it possible to obtain the maximum transmission capacity, there is a problem that the calculation amount of singular value decomposition is large. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a spatial multiplexing transmission method and a spatial multiplexing transmission device capable of realizing communication with a small calculation amount and a high transmission rate. To do.

上述した問題を解決するために、本発明の空間多重伝送用送信方法は、複数のアンテナ素子を備え、伝搬環境情報を用いて送信重みを決定し、送信信号に送信重み付けを行ったうえで同一時間、同一周波数で複数の信号系列を送信する方法であって、送信局または受信局において、受信信号から伝達係数行列を推定し、それぞれ伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、前記相関行列にある演算が施された行列を乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを演算し、前記演算された直交ベクトルを送信局における送信重みとすることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
In order to solve the above-described problems, the transmission method for spatial multiplexing transmission according to the present invention includes a plurality of antenna elements, determines transmission weights using propagation environment information, performs transmission weights on transmission signals, and is the same. A method of transmitting a plurality of signal sequences at the same frequency in time, in which a transmission coefficient matrix is estimated from a received signal at a transmitting station or a receiving station, and each is a product of a complex conjugate transpose matrix and a transmission coefficient matrix of the transmission coefficient matrix. A certain correlation matrix is calculated, the matrix subjected to the calculation in the correlation matrix is multiplied, an orthogonal vector obtained by using an orthogonalization method is calculated for the column vector component of the obtained matrix, and the calculated An orthogonal vector is used as a transmission weight in the transmission station.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、前記相関行列にある演算が施された行列を乗算した際に得られる行列の列ベクトルのノルムの値から、各ストリームの伝送品質を推定し、変調方式および電力配分を決定することを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
In addition, the spatial multiplexing transmission method of the present invention estimates the transmission quality of each stream from the norm value of the column vector of the matrix obtained when multiplying the matrix on which the operation in the correlation matrix is performed, It is characterized by determining a modulation scheme and power distribution.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、前記ある演算が施された行列は、伝搬環境に理論的に最適な送信重みと相関がある推定送信重み行列であることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
Also, the spatial multiplexing transmission method of the present invention is characterized in that the matrix subjected to the certain operation is an estimated transmission weight matrix having a correlation with a theoretically optimal transmission weight in the propagation environment.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、前記ある演算が施された行列は、過去の送信時に用いた送信重み行列であることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
The spatial multiplexing transmission method of the present invention is characterized in that the matrix subjected to the certain calculation is a transmission weight matrix used at the time of past transmission.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、直交波周波数分割多重を用い、複数の周波数帯でそれぞれ異なる信号系列を送信する場合に、受信信号から、それぞれの周波数帯で伝達係数行列を推定し、それぞれ伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、任意の周波数帯で相関行列の固有ベクトルを演算し、得られた送信重み行列を推定送信重み行列として近隣の周波数帯の相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルをその周波数帯の送信重みとすることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
In addition, the transmission method for spatial multiplexing transmission of the present invention uses orthogonal wave frequency division multiplexing to estimate a transfer coefficient matrix in each frequency band from a received signal when transmitting different signal sequences in a plurality of frequency bands. Calculating the correlation matrix, which is the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix, calculating the eigenvector of the correlation matrix in an arbitrary frequency band, and using the obtained transmission weight matrix as the estimated transmission weight matrix. An orthogonal vector obtained by multiplying a correlation matrix of a neighboring frequency band and using an orthogonalization method for a column vector component of the obtained matrix is used as a transmission weight of the frequency band.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、受信信号から伝達係数行列を推定し、伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、伝達係数行列の複素共役転置行列、もしくは逆行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを送信重みとすることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
Also, the spatial multiplexing transmission method of the present invention estimates a transfer coefficient matrix from a received signal, calculates a correlation matrix that is the product of a complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix, and generates a complex of the transfer coefficient matrix. A correlation transpose matrix or an inverse matrix is multiplied by a conjugate transpose matrix, and an orthogonal vector obtained by using an orthogonalization method for a column vector component of the obtained matrix is used as a transmission weight.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、受信信号から伝達係数行列を推定し、伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、伝達係数行列の複素共役転置行列、または逆行列の列ベクトルに直交化法を用いることで得られる行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを送信重みとすることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
Also, the spatial multiplexing transmission method of the present invention estimates a transfer coefficient matrix from a received signal, calculates a correlation matrix that is the product of a complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix, and generates a complex of the transfer coefficient matrix. Multiply the correlation matrix by the matrix obtained by using the orthogonalization method for the column vector of the conjugate transpose matrix or the inverse matrix, and transmit the orthogonal vector obtained by using the orthogonalization method for the column vector component of the obtained matrix It is characterized by a weight.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、受信信号から伝達係数行列を推定し、伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、相関行列または、その逆行列の列ベクトルに直交化法を用いることで得られる行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを送信重みとすることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
Also, the spatial multiplexing transmission method of the present invention estimates a transfer coefficient matrix from a received signal, calculates a correlation matrix that is the product of a complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix, The matrix obtained by using the orthogonalization method for the column vector of the inverse matrix is multiplied by the correlation matrix, and the orthogonal vector obtained by using the orthogonalization method for the column vector component of the obtained matrix is used as the transmission weight. Features.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、相関行列に乗算する、伝達係数行列の複素共役転置行列、逆行列、相関行列、相関行列の逆行列のいずれかの行列の列ベクトルに直交化法を用いる際に、列ベクトルのノルムの大きいものから順に直交化することを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
Also, the spatial multiplexing transmission method of the present invention multiplies the correlation matrix by orthogonalizing it to any one of the complex conjugate transpose matrix, inverse matrix, correlation matrix, or inverse matrix of the transfer coefficient matrix. When the method is used, orthogonalization is performed in descending order of the norm of the column vector.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法は、得られた送信重みからなる送信重み行列を再び相関行列に乗算し、得られた行列の列ベクトルに対し直交化法を用いることを任意の回数行い、得られた直交ベクトルを送信重みとすることを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
In addition, the spatial multiplexing transmission method of the present invention can multiply the correlation matrix again by the transmission weight matrix composed of the obtained transmission weights, and use the orthogonalization method for the column vector of the obtained matrix any number of times. And the obtained orthogonal vector is used as a transmission weight.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信装置は、N個のアンテナ素子を用い、L個の空間多重による送信を行う空間多重伝送用送信装置において、前記各アンテナ素子に接続され、受信信号と送信信号を切り替える信号切り替え部と、前記信号切り替え部に接続され、受信時に信号切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、前記伝達係数行列推定部において推定された伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、行列乗算演算部に出力する相関行列演算部と、相関行列の固有ベクトル行列と相関がある行列を記憶し、行列乗算演算部に出力する推定送信重み行列記憶部と、相関行列演算部から入力される相関行列と推定送信重み行列記憶部から入力される推定重み行列を乗算する行列乗算演算部と、前記行列乗算演算部において演算された行列の各列ベクトルに対し、直交化演算を行い、得られた直交ベクトルを送信重みとしてマルチビーム形成部に出力する直交化演算部と、前記相関行列演算部、推定送信重み行列記憶部、行列乗算演算部、直交化演算部からなる送信重み決定部と、送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系列をマルチビーム形成部に出力する送信部と、前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記信号切り替え部の他方のポートに出力を行う信号合成部と、を備えたことを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
In addition, the spatial multiplexing transmission apparatus of the present invention is a spatial multiplexing transmission apparatus that uses N antenna elements and performs transmission by L spatial multiplexing, and is connected to each antenna element to transmit a received signal and a transmission A signal switching unit that switches signals, a transmission coefficient matrix estimation unit that estimates a transfer coefficient matrix using a signal output from the signal switching unit during reception as an input signal, and the transfer coefficient matrix estimation A correlation matrix that is a product of the complex conjugate transposed matrix of the transfer coefficient matrix estimated by the block and the transfer coefficient matrix, and outputs the correlation matrix to the matrix multiplication calculation section, and a matrix that is correlated with the eigenvector matrix of the correlation matrix And the estimated transmission weight matrix storage unit for output to the matrix multiplication operation unit, the correlation matrix input from the correlation matrix calculation unit, and the input from the estimated transmission weight matrix storage unit A matrix multiplication operation unit that multiplies the estimated weight matrix and an orthogonalization operation on each column vector of the matrix calculated in the matrix multiplication operation unit, and outputs the obtained orthogonal vector to the multi-beam forming unit as a transmission weight An orthogonalization calculation unit, a correlation matrix calculation unit, an estimated transmission weight matrix storage unit, a matrix multiplication calculation unit, a transmission weight determination unit consisting of an orthogonalization calculation unit, serial-parallel conversion on the input signal to be transmitted, and a space A serial-parallel conversion unit that distributes the signals to a multiplexing number L, a transmission unit that outputs an output signal of the serial-parallel conversion unit as an input signal and outputs a transmission signal sequence to a multi-beam forming unit, and a signal input from the transmission unit The input signal is divided into N signals, weighted as determined by the transmission weight determining unit, and then output to the corresponding ports of the N signal combining units. A signal for superimposing signals output to L ports from the corresponding L multi-beam forming units among the multi-beam forming unit and the multi-beam forming unit, and outputting the signal to the other port of the signal switching unit And a combining unit.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信装置は、前記送信重み決定部において、推定送信重み行列記憶部は、過去に用いた送信重み行列または直交波周波数分割多重における近隣の周波数帯での送信重み行列を記憶することを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
Further, in the spatial multiplexing transmission apparatus of the present invention, in the transmission weight determining unit, the estimated transmission weight matrix storage unit is a transmission weight matrix used in the past or a transmission weight in a neighboring frequency band in orthogonal frequency division multiplexing. It is characterized by memorizing a matrix.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信装置は、前記送信重み決定部は、前記伝達係数行列推定部において推定された伝達係数行列を入力信号とし、複素共役転置行列、逆行列、相関行列、相関行列の逆行列のうちいずれかを求める演算を行い、第1の直交化演算部に出力する行列演算部と、前記行列演算部から入力される行列に直交化演算を行い、行列乗算演算部に出力する第1の直交化演算部と、前記伝達係数行列推定部において推定された伝達係数行列を入力信号とし、相関行列を演算する相関行列演算部と、相関行列演算部から入力される相関行列と、第1の直交化演算部から入力される行列を乗算し、第2の直交化演算部に出力を行う行列乗算演算部と、前記行列乗算演算部から入力される行列を入力信号とし、行列の列ベクトルに対し直交化法を用いて直交ベクルを演算し、得られた直交ベクトルを送信重みとしてマルチビーム形成部に出力する第2の直交化演算部と、を備えたことを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
In the spatial multiplexing transmission apparatus of the present invention, the transmission weight determination unit uses the transfer coefficient matrix estimated by the transfer coefficient matrix estimation unit as an input signal, and includes a complex conjugate transpose matrix, an inverse matrix, a correlation matrix, and a correlation An operation for obtaining one of the inverse matrixes is performed, a matrix operation unit that outputs to the first orthogonal operation unit, an orthogonal operation is performed on the matrix input from the matrix operation unit, and the matrix multiplication operation unit A first orthogonalization calculation unit that outputs, a correlation matrix calculation unit that calculates a correlation matrix using the transfer coefficient matrix estimated in the transfer coefficient matrix estimation unit as an input signal, and a correlation matrix input from the correlation matrix calculation unit And a matrix multiplication operation unit that multiplies the matrix input from the first orthogonalization operation unit and outputs to the second orthogonalization operation unit, and a matrix input from the matrix multiplication operation unit as an input signal, Pair to matrix column vector Calculating an orthogonal Bekuru using orthogonalization method, a second orthogonalization arithmetic unit for outputting the multi-beam forming unit obtained orthogonal vectors as transmission weights, comprising the to.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信装置は、前記送信重み決定部は、演算された送信重み行列を、さらに相関行列と乗算し、得られる行列に直交化演算を行う動作を任意の回数繰り返す手段を有し、得られた直交ベクトルを送信重みとしてマルチビーム形成部に出力することを特徴とする。
これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。
In the spatial multiplexing transmission apparatus according to the present invention, the transmission weight determination unit further repeats an operation of multiplying the calculated transmission weight matrix by a correlation matrix and performing an orthogonalization operation on the obtained matrix any number of times. Means for outputting the obtained orthogonal vector as a transmission weight to the multi-beam forming unit.
As a result, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

本発明の空間多重伝送用送信方法においては、受信信号から伝達係数行列を推定し、伝達係数行列から相関行列を演算し、この相関行列にある演算が施された行列を乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを送信局における送信重みとするようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission method of the present invention, a transfer coefficient matrix is estimated from a received signal, a correlation matrix is calculated from the transfer coefficient matrix, and a matrix obtained by performing an operation on the correlation matrix is multiplied. Since the orthogonal vector obtained by using the orthogonalization method for the column vector component is used as the transmission weight at the transmitting station, this reduces the amount of computation required to determine the transmission weight and increases the transmission. Communication with speed can be realized.

また、本発明の空間多重伝送用送信方法においては、相関行列にある演算が施された行列を乗算した際に得られる行列の列ベクトルのノルムの値から、各ストリームの伝送品質を推定し、変調方式および電力配分を決定するようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   Further, in the spatial multiplexing transmission method of the present invention, the transmission quality of each stream is estimated from the value of the norm of the column vector of the matrix obtained when multiplying the matrix subjected to the operation in the correlation matrix, Since the modulation scheme and the power distribution are determined, this reduces the amount of calculation required to determine the transmission weight and can realize communication with a high transmission rate.

また、本発明の空間多重伝送用送信方法においては、ある演算が施された行列は、伝搬環境に理論的に最適な送信重みと相関がある推定送信重み行列であるようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   Further, in the spatial multiplexing transmission method of the present invention, the matrix subjected to a certain calculation is an estimated transmission weight matrix that correlates with a theoretically optimal transmission weight in the propagation environment. The amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法においては、ある演算が施された行列は、過去の送信時に用いた送信重み行列であるようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In addition, in the spatial multiplexing transmission method of the present invention, the matrix on which a certain operation has been performed is the transmission weight matrix used at the time of past transmission, so that it is necessary to determine the transmission weight. The amount of computation can be reduced and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法においては、直交波周波数分割多重を用い、複数の周波数帯でそれぞれ異なる信号系列を送信する場合に、それぞれの周波数の伝達係数行列の相関行列を演算し、また、任意の周波数帯で相関行列の固有ベクトルを演算し、得られた送信重み行列を推定送信重み行列として近隣の周波数帯の相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いて得られる直交ベクトルをその周波数帯の送信重みとするようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In addition, in the transmission method for spatial multiplexing transmission according to the present invention, when orthogonal signal frequency division multiplexing is used and different signal sequences are transmitted in a plurality of frequency bands, the correlation matrix of the transfer coefficient matrix of each frequency is calculated. In addition, the eigenvector of the correlation matrix is calculated in an arbitrary frequency band, the obtained transmission weight matrix is multiplied by the correlation matrix of the neighboring frequency band as the estimated transmission weight matrix, and orthogonalized to the column vector component of the obtained matrix Since the orthogonal vector obtained by using the method is used as the transmission weight of the frequency band, it is possible to reduce the amount of calculation necessary for determining the transmission weight and realize communication with a high transmission rate.

また、本発明の空間多重伝送用送信方法においては、伝達係数行列の相関行列を演算し、伝達係数行列の複素共役転置行列または逆行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いて得られる直交ベクトルを送信重みとするようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission method of the present invention, the correlation matrix of the transfer coefficient matrix is calculated, the complex conjugate transpose matrix or inverse matrix of the transfer coefficient matrix is multiplied by the correlation matrix, and the obtained column vector component is obtained. On the other hand, since the orthogonal vector obtained by using the orthogonalization method is used as the transmission weight, the amount of calculation required for determining the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法においては、伝達係数行列の相関行列を演算し、伝達係数行列の複素共役転置行列または逆行列の列ベクトルに直交化法を用いて得られる行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いて得られる直交ベクトルを送信重みとするようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission method of the present invention, the correlation matrix of the transfer coefficient matrix is calculated, and the matrix obtained by using the orthogonalization method is correlated with the complex conjugate transpose matrix or the inverse matrix of the transfer coefficient matrix. Since the matrix is multiplied and the orthogonal vector obtained by using the orthogonalization method is used as the transmission weight for the column vector component of the obtained matrix, this reduces the amount of computation required to determine the transmission weight In addition, communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信方法においては、伝達係数行列の相関行列を演算し、相関行列または相関行列の逆行列の列ベクトルに直交化法を用いて得られる行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いて得られる直交ベクトルを送信重みとするようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission method of the present invention, the correlation matrix of the transfer coefficient matrix is calculated, and the correlation matrix or the matrix obtained by using the orthogonalization method is multiplied to the correlation matrix or the inverse matrix of the correlation matrix by the correlation matrix. Since the orthogonal vector obtained by using the orthogonalization method is used as the transmission weight for the column vector component of the obtained matrix, this reduces the amount of calculation required to determine the transmission weight, and the high Communication with transmission speed can be realized.

また、本発明の空間多重伝送用送信方法においては、相関行列に乗算する、伝達係数行列の複素共役転置行列、逆行列、相関行列、相関行列の逆行列のいずれかの行列の列ベクトルに直交化法を用いる際に、列ベクトルのノルムの大きいものから順に直交化するようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   Also, in the spatial multiplexing transmission method of the present invention, the correlation matrix is multiplied by a complex conjugate transpose matrix of the transfer coefficient matrix, an inverse matrix, a correlation matrix, or a matrix vector orthogonal to the correlation matrix. When using the conversion method, orthogonalization is performed in descending order of the norm of the column vector, thereby reducing the amount of computation required to determine the transmission weight and realizing communication with a high transmission rate. it can.

また、本発明の空間多重伝送用送信方法においては、演算で得られた送信重みからなる送信重み行列に再び相関行列を乗算し、得られた行列の列ベクトルに対し直交化法を用いて直交ベクトルを得る動作を任意の回数繰り返し、得られた直交ベクトルを送信重みとするようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission method according to the present invention, the transmission weight matrix composed of the transmission weights obtained by the operation is multiplied again by the correlation matrix, and the column vector of the obtained matrix is orthogonalized using the orthogonalization method. Since the vector acquisition operation is repeated any number of times and the obtained orthogonal vector is used as the transmission weight, this reduces the amount of computation required to determine the transmission weight and allows communication with a high transmission rate. realizable.

また、本発明の空間多重伝送用送信装置においては、送信重み決定部は、伝達係数行列の相関行列を演算し、この相関行列と推定重み行列を乗算し、得られた行列の各列ベクトルに対し直交化演算を行い、得られた直交ベクトルを送信重みとしてマルチビーム形成部に出力するようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   Further, in the spatial multiplexing transmission apparatus of the present invention, the transmission weight determination unit calculates a correlation matrix of the transfer coefficient matrix, multiplies the correlation matrix by the estimated weight matrix, and applies each column vector of the obtained matrix to Since the orthogonalization operation is performed and the obtained orthogonal vector is output as a transmission weight to the multi-beam forming unit, this reduces the amount of calculation necessary to determine the transmission weight and increases the transmission rate. Communication can be realized.

また、本発明の空間多重伝送用送信装置においては、推定送信重み行列記憶部は、推定重み行列として、過去に用いた送信重み行列または直交波周波数分割多重における近隣の周波数帯での送信重み行列を記憶するようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission apparatus according to the present invention, the estimated transmission weight matrix storage unit may use a transmission weight matrix used in the past or a transmission weight matrix in a neighboring frequency band in orthogonal frequency division multiplexing as an estimated weight matrix. Thus, the amount of calculation required to determine the transmission weight can be reduced, and communication with a high transmission rate can be realized.

また、本発明の空間多重伝送用送信装置においては、送信重み決定部は、伝達係数行列の複素共役転置行列、逆行列、相関行列、相関行列の逆行列のうちいずれかを求めて直交化演算を行い、この直交化演算により得られる行列に相関行列を乗算し、この乗算結果の行列の列ベクトルに対して直交化を行ない送信重みを決定するようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission apparatus of the present invention, the transmission weight determination unit obtains one of a complex conjugate transpose matrix, an inverse matrix, a correlation matrix, and an inverse matrix of the correlation matrix of the transfer coefficient matrix to perform an orthogonalization operation. The matrix obtained by this orthogonalization operation is multiplied by the correlation matrix, and the orthogonalization is performed on the column vector of the matrix of the multiplication result to determine the transmission weight. It is possible to reduce the amount of calculation required to achieve communication with high transmission speed.

また、本発明の空間多重伝送用送信装置においては、送信重み決定部は、演算された送信重み行列をさらに相関行列と乗算し、得られた行列に直交化演算を行う動作を任意の回数繰り返すようにしたので、これにより、送信重みを決定するために必要な演算量を削減し、高い伝送速度を持つ通信を実現できる。   In the spatial multiplexing transmission apparatus of the present invention, the transmission weight determination unit further repeats the operation of multiplying the calculated transmission weight matrix by the correlation matrix and performing the orthogonalization operation on the obtained matrix any number of times. Since it did in this way, the amount of calculations required in order to determine a transmission weight can be reduced by this, and communication with a high transmission rate is realizable.

以下、図1を参照しながら本発明の実施形態について詳細に説明する。
図1は、本発明の空間多重伝送用送信装置の構成例を示すブロック図であり、伝搬環境に最適となる送信指向性制御により高い伝送品質を得る通信を行う場合に、送信重みをより簡易に決定することを可能とする構成を示している。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.
FIG. 1 is a block diagram showing a configuration example of a spatial multiplexing transmission apparatus according to the present invention. In the case of performing communication for obtaining high transmission quality by transmission directivity control that is optimal for a propagation environment, transmission weights are simplified. The structure which enables it to be determined is shown.

図1において、符号110はシリアル−パラレル変換部、121〜121は送信部、131〜13Lはマルチビーム形成部、141〜14Nは信号合成部、151〜15Nは信号切り替え部、161〜16Nはアンテナ素子、170は伝達係数行列推定部、180は送信重み決定部、181は相関行列演算部、182は行列乗算演算部、183は直交化演算部、184は推定送信重み行列記憶部である。   In FIG. 1, reference numeral 110 is a serial-parallel converter, 121 to 121 are transmitters, 131 to 13L are multi-beam forming units, 141 to 14N are signal synthesizers, 151 to 15N are signal switching units, and 161 to 16N are antennas. An element, 170 is a transfer coefficient matrix estimation unit, 180 is a transmission weight determination unit, 181 is a correlation matrix calculation unit, 182 is a matrix multiplication calculation unit, 183 is an orthogonalization calculation unit, and 184 is an estimated transmission weight matrix storage unit.

アンテナ素子161〜16Nで受信された信号は信号切り替え部151〜15Nにより切り替えられ、伝達係数行列推定部170に出力される。伝達係数行列推定部170は受信したプリアンブル信号から伝達係数行列を算出し、送信重み決定部180の相関行列演算部181に出力する。相関行列演算部181は伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を求める。推定送信重み行列記憶部184には、送信重みと相関のある推定送信重み行列を記憶しておき、行列乗算演算部182では、相関行列演算部181から入力される相関行列と、推定送信重み行列記憶部184から入力される推定送信重み行列とを乗算し、得られる行列を直交化演算部183に出力する。直交化演算部183は送信重みを決定し、マルチビーム形成部131〜13Lに送信重みを出力する。   Signals received by the antenna elements 161 to 16N are switched by the signal switching units 151 to 15N and output to the transfer coefficient matrix estimation unit 170. The transmission coefficient matrix estimation unit 170 calculates a transmission coefficient matrix from the received preamble signal and outputs it to the correlation matrix calculation unit 181 of the transmission weight determination unit 180. The correlation matrix calculation unit 181 obtains a correlation matrix that is the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix. The estimated transmission weight matrix storage unit 184 stores an estimated transmission weight matrix correlated with the transmission weight, and the matrix multiplication operation unit 182 stores the correlation matrix input from the correlation matrix operation unit 181 and the estimated transmission weight matrix. The estimated transmission weight matrix input from the storage unit 184 is multiplied, and the obtained matrix is output to the orthogonalization calculation unit 183. The orthogonalization calculation unit 183 determines the transmission weight and outputs the transmission weight to the multi-beam forming units 131 to 13L.

送信信号系列は、シリアル−パラレル変換部110により、空間分割多重数Lに振り分けられ、それぞれ送信部121〜12Lにより変調され、マルチビーム形成部131〜13Lに出力される。マルチビーム形成部131〜13Lに入力された各信号系列は、送信重み決定部180で決定された送信重みをアナログ、もしくはデジタル量で乗算された後、信号合成部141〜14Nの対応するポートに出力される。信号合成部141〜14Nは入力された信号を合成し、その出力信号は、信号切り替え部151〜15Nを介し、アンテナ素子161〜16Nから送信される。   The transmission signal sequence is distributed to the spatial division multiplexing number L by the serial-parallel conversion unit 110, modulated by the transmission units 121 to 12L, and output to the multi-beam forming units 131 to 13L. Each signal sequence input to the multi-beam forming units 131 to 13L is multiplied by the transmission weight determined by the transmission weight determination unit 180 by an analog or digital quantity, and then is sent to the corresponding port of the signal synthesis units 141 to 14N. Is output. The signal synthesis units 141 to 14N synthesize the input signals, and the output signals are transmitted from the antenna elements 161 to 16N via the signal switching units 151 to 15N.

簡単のため受信装置のアンテナ素子数をM、空間多重伝送用送信装置のアンテナ素子数をN(N≧M)、とした場合の通信を考える。   For simplicity, let us consider communication when the number of antenna elements of the receiving apparatus is M and the number of antenna elements of the spatial multiplexing transmission apparatus is N (N ≧ M).

空間多重伝送用送信装置は、伝達係数行列Hを既知信号の受信や、フィードバック情報の活用等により推定を行う。相関行列演算部181では、伝達係数行列の複素共役転置行列Hと伝達係数行列Hを乗算し、相関行列Rを算出する。この相関行列Rは以下の(6)式で表される。 The spatial multiplexing transmission apparatus estimates the transfer coefficient matrix H by receiving a known signal, utilizing feedback information, or the like. The correlation matrix calculation unit 181 multiplies the complex conjugate transpose matrix H H of the transfer coefficient matrix and the transfer coefficient matrix H to calculate the correlation matrix R. This correlation matrix R is expressed by the following equation (6).

Figure 2006222742
Figure 2006222742

行列乗算演算部182では、この相関行列Rと、推定送信重み行列記憶部184から出力される理論的に最適な送信重み行列Vと相関を持つ推定重み行列V′を乗算する。その結果得られる行列R′は、以下の(7)式で表される。   The matrix multiplication operation unit 182 multiplies the correlation matrix R and the estimated weight matrix V ′ correlated with the theoretically optimal transmission weight matrix V output from the estimated transmission weight matrix storage unit 184. The resulting matrix R ′ is expressed by the following equation (7).

Figure 2006222742
Figure 2006222742

(7)式に示す行列R′においては、VとV′が相関を持つために、α>βとなっている。よってここで得られる行列R′はVと高い相関を持つ。   In the matrix R ′ shown in the equation (7), α> β is satisfied because V and V ′ have a correlation. Therefore, the matrix R ′ obtained here has a high correlation with V.

直交化演算部183では、このR′の各列ベクトルr′〜r′に対し、直交化法を用いることでより理想的な送信重みに近づける。ここで選択した列ベクトルをr′、r′、・・・、r′とおき、ベクトルaとbの内積を(a、b)と表すものとする。w=r′として、(8)式に示すグラムシュミットの直交化法を行うと、直交ベクトルw、w、・・・、wを求めることができる。 In the orthogonalization calculation unit 183, the R ′ column vectors r 1 ′ to r M ′ are made closer to ideal transmission weights by using the orthogonalization method. The column vectors selected here are denoted by r 1 ′, r 2 ′,..., R M ′, and the inner product of the vectors a and b is represented by (a, b). When w 1 = r ′ 1 and the Gram Schmitt orthogonalization method shown in the equation (8) is performed, orthogonal vectors w 1 , w 2 ,..., w M can be obtained.

Figure 2006222742
Figure 2006222742

これらの直交ベクトルw、w、・・・、wは、(3)式で与えられる理想的な送信重みと相関が高い。よって、これらのベクトルを送信重みとしてマルチビーム形成部131〜13Lに出力することで、特異値分解のような演算付加の大きい処理を行うことなく、高い伝送容量を実現することができる。 These orthogonal vectors w 1 , w 2 ,..., W M have a high correlation with the ideal transmission weight given by equation (3). Therefore, by outputting these vectors as transmission weights to the multi-beam forming units 131 to 13L, a high transmission capacity can be realized without performing a process with a large calculation such as singular value decomposition.

最適な送信重み行列Vと相関を持つ推定重み行列V′としては、過去に用いた送信重みや、伝達係数行列の複素共役転置行列や、伝達係数行列の逆行列や、直交波周波数分割多重を用いる場合には、近隣の周波数帯で求めた送信重み等を用いることができる。   The estimated weight matrix V ′ correlated with the optimal transmission weight matrix V includes transmission weights used in the past, complex conjugate transpose matrix of transfer coefficient matrix, inverse matrix of transfer coefficient matrix, and orthogonal wave frequency division multiplexing. When used, the transmission weight obtained in the neighboring frequency band can be used.

次に、送信重み決定部180の他の構成例について説明する。図2は本発明の空間多重伝送用送信装置の送信重み決定部の他の構成例を示すブロック図である。図2において、符号281は相関行列演算部、符号282は行列乗算演算部、符号283は直交化演算部(第2の直交化演算部)、符号284は行列演算部、符号285は直交化演算部(第1の直交化演算部)である。   Next, another configuration example of the transmission weight determination unit 180 will be described. FIG. 2 is a block diagram showing another configuration example of the transmission weight determination unit of the spatial multiplexing transmission apparatus of the present invention. In FIG. 2, reference numeral 281 denotes a correlation matrix calculation unit, reference numeral 282 denotes a matrix multiplication calculation unit, reference numeral 283 denotes an orthogonalization calculation unit (second orthogonalization calculation unit), reference numeral 284 denotes a matrix calculation unit, and reference numeral 285 denotes an orthogonalization calculation. Part (first orthogonalization operation part).

伝達係数行列推定部170によって推定された伝達係数行列を入力信号とし、相関行列演算部281と行列演算部284とはそれぞれ伝達係数行列の相関行列、伝達係数行列の複素共役転置行列を演算する。直交化演算部285は、行列演算部284から出力された行列の各列ベクトルに対し、直交化法を用いた行列を行列乗算演算部282に出力し、行列乗算演算部282では、相関行列演算部281により演算された相関行列と、直交化演算部285により入力された行列を乗算し、得られた行列を直交化演算部283に出力し、直交化演算部283においては入力された行列の各列ベクトルに対し直交化を行い、マルチビーム形成部に送信重みとして出力する。   Using the transfer coefficient matrix estimated by the transfer coefficient matrix estimation unit 170 as an input signal, the correlation matrix calculation unit 281 and the matrix calculation unit 284 respectively calculate the correlation matrix of the transfer coefficient matrix and the complex conjugate transpose matrix of the transfer coefficient matrix. The orthogonalization calculation unit 285 outputs a matrix using an orthogonalization method to the matrix multiplication calculation unit 282 for each column vector of the matrix output from the matrix calculation unit 284, and the matrix multiplication calculation unit 282 outputs a correlation matrix calculation. The correlation matrix calculated by the unit 281 is multiplied by the matrix input by the orthogonalization calculation unit 285, and the obtained matrix is output to the orthogonalization calculation unit 283. In the orthogonalization calculation unit 283, the matrix of the input matrix is output. Each column vector is orthogonalized and output as a transmission weight to the multi-beam forming unit.

行列演算部284において得られる伝達係数行列Hの複素共役転置行列Hは、以下の(9)式のように表すことができる。 The complex conjugate transpose matrix H H of the transfer coefficient matrix H obtained in the matrix calculation unit 284 can be expressed as the following equation (9).

Figure 2006222742
Figure 2006222742

(9)式に示す複素共役転置行列Hの固有値√λには、√λ>√λ>‥・>√λの関係が成り立っており、複素共役転置行列Hの列ベクトルは理想的な送信重み行列Vの最大固有値に対応する第一固有ベクトルと相関を持つことが期待できる。よってこの行列の各列ベクトルに直交化法を行うことで、理想的な送信重み行列Vと相関の高い行列を得ることができる。このような行列を行列乗算演算部282において相関行列と乗算することで、(7)式と同様の効果を期待できる。よって特異値分解を行うことなく、高い伝送容量を達成する送信重みによる通信を実現できる。 The relation √λ 1 > √λ 2 >...> √λ M holds for the eigenvalue √λ of the complex conjugate transpose matrix H H shown in equation (9), and the column vector of the complex conjugate transpose matrix H H is It can be expected to have a correlation with the first eigenvector corresponding to the maximum eigenvalue of the ideal transmission weight matrix V. Therefore, a matrix having a high correlation with the ideal transmission weight matrix V can be obtained by performing orthogonalization on each column vector of this matrix. By multiplying such a matrix by the correlation matrix in the matrix multiplication operation unit 282, the same effect as the expression (7) can be expected. Therefore, it is possible to realize communication with transmission weights that achieve a high transmission capacity without performing singular value decomposition.

また、行列演算部284においては、演算する行列として伝達係数行列の逆行列、相関行列、相関行列の逆行列のいずれの行列を用いてもその効果が期待できる。伝達係数行列の逆行列H−1を以下の(10)式に示し、相相関行列HHを(11)式に示し、相関行列の逆行列(HH)−1を(12)式に示す。 In addition, in the matrix calculation unit 284, the effect can be expected even if any of the inverse matrix of the transfer coefficient matrix, the correlation matrix, and the inverse matrix of the correlation matrix is used as the matrix to be calculated. The inverse matrix H −1 of the transfer coefficient matrix is shown in the following expression (10), the phase correlation matrix H H H is shown in the expression (11), and the inverse matrix (H H H) −1 of the correlation matrix is expressed in the expression (12). Shown in

Figure 2006222742
Figure 2006222742

Figure 2006222742
Figure 2006222742

Figure 2006222742
Figure 2006222742

(10)式、(11)式、(12)式において、固有値√λには、√λ>√λ>‥・>√λ関係が成り立っており、伝達係数行列の逆行列、および相関行列の逆行列に関しては、列ベクトルが理想的な送信重み行列Vの最も小さい固有値に対応する固有ベクトルと相関が高くなり、相関行列の列ベクトルは理想的な送信重み行列Vの第一固有ベクトルと相関が高くなることが期待できる。よってこれらのうちいずれかの行列の各列ベクトルに直交化法を行うことで、理想的な送信重み行列Vと相関の高い行列を得ることができる。このような行列を行列乗算演算部282において相関行列と乗算することで、(7)式と同様の効果を期待できる。よって特異値分解を行うことなく、高い伝送容量を達成する送信重みによる通信を実現できる。 In the equations (10), (11), and (12), the eigenvalue √λ has a √λ 1 > √λ 2 >...> √λ M relationship, and the inverse matrix of the transfer coefficient matrix, and Regarding the inverse matrix of the correlation matrix, the column vector is highly correlated with the eigenvector corresponding to the smallest eigenvalue of the ideal transmission weight matrix V, and the column vector of the correlation matrix is the first eigenvector of the ideal transmission weight matrix V. It can be expected that the correlation will be high. Therefore, a matrix highly correlated with the ideal transmission weight matrix V can be obtained by performing orthogonalization on each column vector of any of these matrices. By multiplying such a matrix by the correlation matrix in the matrix multiplication operation unit 282, the same effect as the expression (7) can be expected. Therefore, it is possible to realize communication with transmission weights that achieve a high transmission capacity without performing singular value decomposition.

また、伝達係数行列の複素共役転置行列、逆行列、相関行列、相関行列の逆行列、および相関行列に対し理想的な送信重み行列と相関が高いと思われる行列を乗算した行列のいずれかに、直交化法を用いる際に、列ベクトルのノルムの大きいものから適用することで、より得られる結果を理想的な送信重み行列に近づけることができる。   Also, the complex conjugate transpose matrix of the transfer coefficient matrix, the inverse matrix, the correlation matrix, the inverse matrix of the correlation matrix, and the matrix multiplied by an ideal transmission weight matrix and a matrix that seems to be highly correlated When the orthogonalization method is used, by applying the column vector having the largest norm, a more obtained result can be approximated to an ideal transmission weight matrix.

なお、図2の直交化演算部285と直交化演算部283は共通のものを用いることも可能であり、行列演算部284は、相関行列の演算を行う場合には、相関行列演算部281で共通してこの機能を担うことができる。   Note that the orthogonalization calculation unit 285 and the orthogonalization calculation unit 283 in FIG. 2 can be the same, and the matrix calculation unit 284 is a correlation matrix calculation unit 281 in the case of calculating a correlation matrix. This function can be shared in common.

図1の直交化演算部183は、その出力結果を行列乗算演算部182に出力することができる。また、図2の直交化演算部283は、その出力結果を行列乗算演算部282に出力することができる。行列乗算演算部182もしくは282において再び相関行列と乗算することで、さらに理想的な送信重みに近い行列が直交化演算部183もしくは283に出力され、直交化されることにより、さらに高い伝送容量を実現する送信重み行列をマルチビーム形成部に出力することができる。また、さらにここで得られた行列を再び行列乗算演算部182もしくは282に出力し、同様の処理を複数回繰り返すことでより伝送容量を高めることができる。   The orthogonalization operation unit 183 in FIG. 1 can output the output result to the matrix multiplication operation unit 182. Further, the orthogonalization calculation unit 283 in FIG. 2 can output the output result to the matrix multiplication calculation unit 282. By multiplying the correlation matrix again in the matrix multiplication operation unit 182 or 282, a matrix closer to the ideal transmission weight is output to the orthogonalization operation unit 183 or 283, and further orthogonalized, thereby further increasing the transmission capacity. The realized transmission weight matrix can be output to the multi-beam forming unit. Further, the transmission capacity can be further increased by outputting the obtained matrix again to the matrix multiplication operation unit 182 or 282 and repeating the same processing a plurality of times.

行列乗算演算部182もしくは282において、相関行列に理想的な送信重み行列と相関を持つ行列を乗算した際に得られる行列R′は(7)式のようになるが、この列ベクトルのノルムは、固有値の2乗であるλ〜λと近い値をとる。送信重み行列Vによる通信は先に述ベたように固有値に対応する信号対雑音比を得ることができる。よってある送信ウェイトを用いる通信で適用する変調方式や電力配分の値について、この行列Rの列ベクトルのノルムの値を用いることができ、例えば、256QAM、64QAM、16QAM、QPSK、BPSKなどの変調方式から適切な変調方式を選択することができる。 In the matrix multiplication operation unit 182 or 282, a matrix R ′ obtained when the correlation matrix is multiplied by an ideal transmission weight matrix and a matrix having a correlation is as shown in Equation (7). The norm of this column vector is It takes a value close to λ 1 to λ M which is the square of the eigenvalue. Communication using the transmission weight matrix V can obtain a signal-to-noise ratio corresponding to the eigenvalue as described above. Therefore, the value of the norm of the column vector of this matrix R can be used for the modulation scheme applied in communication using a certain transmission weight and the value of power distribution. For example, modulation schemes such as 256QAM, 64QAM, 16QAM, QPSK, BPSK, etc. An appropriate modulation method can be selected from the above.

また、特異値分解において、ベき乗法やQR法のような繰りかえし演算により固有ベクトルを求める場合に、相関行列に乗算する予め求める推定送信重み行列を、初期値として用い、収束までの繰り返し回数を早めることで、演算量を削減することもできる。   In the singular value decomposition, when an eigenvector is obtained by an iterative operation such as the power method or the QR method, an estimated transmission weight matrix obtained in advance by which the correlation matrix is multiplied is used as an initial value, and the number of iterations until convergence is accelerated. Thus, the amount of calculation can be reduced.

次に、本発明の空間多重伝送用送信装置による効果を具体的な例により説明する。空間多重伝送用送信装置において送信素子数を4、受信素子数を4とした場合に、伝達係数行列の逆行列の列ベクトルに、ノルムの大きいものから直交化演算を行ったものを、相関行列に乗算し、得られる行列の列ベクトルに再び直交化演算を行ったものを送信重みとした場合の伝送容量を、送信重みを適用しないで無指向性での送信を行った従来方法と、(3)式で与えられる理想的な送信重みを適用した理想値と、それぞれ比較を行う。   Next, the effect of the spatial multiplexing transmission apparatus according to the present invention will be described with a specific example. When the number of transmitting elements is 4 and the number of receiving elements is 4 in the spatial multiplexing transmission apparatus, a correlation matrix obtained by performing orthogonalization operation on the column vector of the inverse matrix of the transfer coefficient matrix from the one having a large norm The transmission capacity when the transmission weight is obtained by multiplying the obtained matrix column vector and performing orthogonalization again on the column vector of the obtained matrix, and the non-directional transmission without applying the transmission weight, and ( Comparison is made with the ideal value to which the ideal transmission weight given by equation (3) is applied.

本発明による指向性制御法の効果を検証するために用いる伝搬環境を示す。図3に示すように送信局と受信局それぞれの周囲にラプラシアン分布で角度拡がり25°のクラスタをNo.1からNo.6(#1〜#6)まで6つずつ設置した。到来波は90波とし、15波ずつNo.1からNo.6までのグループに分けた。   The propagation environment used in order to verify the effect of the directivity control method by this invention is shown. As shown in FIG. 3, six clusters from No. 1 to No. 6 (# 1 to # 6) were installed around the transmitting station and the receiving station, respectively, with a Laplacian distribution and an angle spread of 25 °. The incoming waves were 90 waves, and 15 waves were divided into groups from No. 1 to No. 6.

到来波の素波電力と到来時間を表すグラフを図4に示す。それぞれのグループの到来波は、基地局および端末局の周りに設置した同番号のクラスタを通過する確率を50%とし、そのほかの番号のクラスタを通過する確率をそれぞれ10%ずつとなっている。   FIG. 4 shows a graph representing the incoming wave power and arrival time. Each group of incoming waves has a 50% probability of passing through the same number of clusters installed around the base station and the terminal station, and a 10% probability of passing through the other numbered clusters.

各到来波グループに適用した伝搬パラメータを図6に示す。到来波全体での遅延スプレッドは61nsecとなる。搬送波周波数を5.2GHz、各サブキャリアの周波数帯域を0.31MHz、サブキャリア数を50とした。それぞれのビームに等電力を割り当てるものとし、復号にはMMSEアルゴリズムを用いた。   The propagation parameters applied to each incoming wave group are shown in FIG. The delay spread for the entire incoming wave is 61 nsec. The carrier frequency was 5.2 GHz, the frequency band of each subcarrier was 0.31 MHz, and the number of subcarriers was 50. It is assumed that equal power is allocated to each beam, and the MMSE algorithm is used for decoding.

上記のような伝搬環境モデルを用い、クラスタおよびそれを構成する散乱体、それぞれの到来波の位相をランダムに与え、100回試行し、全サブキャリア数(50)×試行回数(100)のデータを用い、その伝送容量の累積確率を計算した。その結果を図5に示す。図5によれば、累積確率の50%値において、理想値からの劣化量は0.4%低い値程度であることが示された。   Using the propagation environment model as described above, the cluster, the scatterers constituting it, and the phase of each incoming wave are randomly assigned, and trials are performed 100 times. The total number of subcarriers (50) × number of trials (100) Was used to calculate the cumulative probability of the transmission capacity. The result is shown in FIG. According to FIG. 5, it was shown that the deterioration amount from the ideal value is about 0.4% lower than the 50% value of the cumulative probability.

以上説明したように、本発明の空間多重伝送用送信装置においては、演算負荷の大きい特異値分解の演算を行わずに送信重みを決定することを可能にすることで、演算量を削減し、且つ高い伝送品質を得ることができる。   As described above, in the transmitter for spatial multiplexing transmission of the present invention, it is possible to determine the transmission weight without performing calculation of singular value decomposition with a large calculation load, thereby reducing the amount of calculation, In addition, high transmission quality can be obtained.

以上、本発明の実施の形態について説明したが、本発明の空間多重伝送用送信装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。     Although the embodiments of the present invention have been described above, the spatial multiplexing transmission apparatus of the present invention is not limited to the above-described illustrated examples, and various modifications can be made without departing from the scope of the present invention. Of course, it can be added.

本発明によれば、特異値分解による空間分割多重を用いた通信において、簡易な演算で送信重みを決定することを可能とし、高い伝送速度をもつ通信を実現できるので、本発明は空間多重伝送用送信方法および空間多重伝送用送信装置等に有用である。   According to the present invention, in communication using space division multiplexing by singular value decomposition, it is possible to determine the transmission weight by a simple calculation and realize communication with a high transmission rate. This is useful for a transmission method for transmission and a transmission apparatus for spatial multiplexing transmission.

本発明の空間多重伝送用送信装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the transmitter for spatial multiplexing transmission of this invention. 空間多重伝送用送信装置の送信重み決定部の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the transmission weight determination part of the transmitter for spatial multiplexing transmission. 計算機シミュレーションに用いた伝搬環境を示す図である。It is a figure which shows the propagation environment used for computer simulation. 計算機シミュレーションに用いた到来素波の電力分布を示す図である。It is a figure which shows the electric power distribution of the incoming elementary wave used for computer simulation. 本発明の効果を示す伝送容量の累積確率を示す図である。It is a figure which shows the cumulative probability of the transmission capacity which shows the effect of this invention. 到来波グループの伝搬パラメータを示す図である。It is a figure which shows the propagation parameter of an incoming wave group. 理想的な空間多重伝送用送信装置を示すブロック図である。1 is a block diagram showing an ideal spatial multiplexing transmission apparatus. FIG.

符号の説明Explanation of symbols

110、910 シリアル−パラレル変換部
121〜12L、921〜92L 送信部
131〜13L、931〜93L マルチビーム形成部
141〜14N、941〜94N 信号合成部
151〜15N、951〜95N 信号切り替え部
161〜16N、961〜96N アンテナ素子
170、970 伝達係数行列推定部
181、281 相関行列演算部
182、282 行列乗算演算部
183、283、285 直交化演算部
184 推定送信重み行列記憶部
284 行列演算部
980 特異値分解演算部
110, 910 Serial-parallel converters 121-12L, 921-92L Transmitters 131-13L, 931-93L Multi-beam forming units 141-14N, 941-94N Signal combiners 151-15N, 951-95N Signal switching unit 161 16N, 961-96N Antenna elements 170, 970 Transfer coefficient matrix estimation unit 181, 281 Correlation matrix calculation unit 182, 282 Matrix multiplication calculation unit 183, 283, 285 Orthogonalization calculation unit 184 Estimated transmission weight matrix storage unit 284 Matrix calculation unit 980 Singular value decomposition calculation unit

Claims (14)

複数のアンテナ素子を備え、伝搬環境情報を用いて送信重みを決定し、送信信号に送信重み付けを行ったうえで同一時間、同一周波数で複数の信号系列を送信する方法であって、
送信局または受信局において、
受信信号から伝達係数行列を推定し、それぞれ伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、
前記相関行列にある演算が施された行列を乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを演算し、
前記演算された直交ベクトルを送信局における送信重みとすること
を特徴とする空間多重伝送用送信方法。
A method comprising a plurality of antenna elements, determining a transmission weight using propagation environment information, performing transmission weighting on a transmission signal, and transmitting a plurality of signal sequences at the same time and at the same frequency,
At the transmitting or receiving station,
Estimate the transfer coefficient matrix from the received signal, calculate the correlation matrix that is the product of the complex conjugate transpose matrix and the transfer coefficient matrix of each transfer coefficient matrix,
Multiplying the matrix subjected to the operation in the correlation matrix, calculating an orthogonal vector obtained by using an orthogonalization method for the column vector component of the obtained matrix,
A transmission method for spatial multiplexing transmission, wherein the calculated orthogonal vector is used as a transmission weight in a transmission station.
前記相関行列にある演算が施された行列を乗算した際に得られる行列の列ベクトルのノルムの値から、各ストリームの伝送品質を推定し、変調方式および電力配分を決定すること
を特徴とする請求項1に記載の空間多重伝送用送信方法。
The transmission quality of each stream is estimated from the norm value of the column vector of the matrix obtained by multiplying the matrix subjected to the operation in the correlation matrix, and the modulation scheme and power distribution are determined. The transmission method for spatial multiplexing transmission according to claim 1.
前記ある演算が施された行列は、伝搬環境に理論的に最適な送信重みと相関がある推定送信重み行列であること
を特徴とする請求項1または2記載の空間多重伝送用送信方法。
3. The spatial multiplexing transmission method according to claim 1, wherein the matrix subjected to the certain calculation is an estimated transmission weight matrix having a correlation with a transmission weight that is theoretically optimal in a propagation environment.
前記ある演算が施された行列は、過去の送信時に用いた送信重み行列であること
を特徴とする請求項1または2記載の空間多重伝送用送信方法。
The transmission method for spatial multiplexing transmission according to claim 1 or 2, wherein the matrix subjected to the certain calculation is a transmission weight matrix used at the time of past transmission.
直交波周波数分割多重を用い、複数の周波数帯でそれぞれ異なる信号系列を送信する場合に、
受信信号から、それぞれの周波数帯で伝達係数行列を推定し、それぞれ伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、
任意の周波数帯で相関行列の固有ベクトルを演算し、得られた送信重み行列を推定送信重み行列として近隣の周波数帯の相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルをその周波数帯の送信重みとすること
を特徴とする請求項1または請求項2に記載の空間多重伝送用送信方法。
When using orthogonal frequency division multiplexing and transmitting different signal sequences in multiple frequency bands,
From the received signal, estimate the transfer coefficient matrix in each frequency band, calculate the correlation matrix that is the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix,
Calculate the eigenvector of the correlation matrix in an arbitrary frequency band, multiply the obtained transmission weight matrix as the estimated transmission weight matrix by the correlation matrix of the neighboring frequency band, and use the orthogonalization method for the column vector components of the obtained matrix The transmission method for spatial multiplexing transmission according to claim 1 or 2, wherein the orthogonal vector obtained by this is used as a transmission weight of the frequency band.
受信信号から伝達係数行列を推定し、伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、
伝達係数行列の複素共役転置行列、もしくは逆行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを送信重みとすること
を特徴とする請求項1または請求項2に記載の空間多重伝送用送信方法。
Estimate the transfer coefficient matrix from the received signal, calculate the correlation matrix that is the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix,
The transmission weight is an orthogonal vector obtained by multiplying a correlation matrix by a complex conjugate transpose matrix or an inverse matrix of a transfer coefficient matrix, and using an orthogonalization method on a column vector component of the obtained matrix. The transmission method for spatial multiplexing transmission according to claim 1 or 2.
受信信号から伝達係数行列を推定し、伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、
伝達係数行列の複素共役転置行列、または逆行列の列ベクトルに直交化法を用いることで得られる行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを送信重みとすること
を特徴とする請求項1または請求項2に記載の空間多重伝送用送信方法。
Estimate the transfer coefficient matrix from the received signal, calculate the correlation matrix that is the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix,
Obtained by multiplying the correlation matrix by the matrix obtained by using the orthogonal conjugate method for the complex conjugate transpose matrix of the transfer coefficient matrix or the column vector of the inverse matrix, and using the orthogonalization method for the column vector components of the resulting matrix The transmission method for spatial multiplexing transmission according to claim 1 or 2, wherein an orthogonal vector to be transmitted is used as a transmission weight.
受信信号から伝達係数行列を推定し、伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、
相関行列または、その逆行列の列ベクトルに直交化法を用いることで得られる行列を相関行列に乗算し、得られる行列の列ベクトル成分に対し直交化法を用いることで得られる直交ベクトルを送信重みとすること
を特徴とする請求項1または請求項2に記載の空間多重伝送用送信方法。
Estimate the transfer coefficient matrix from the received signal, calculate the correlation matrix that is the product of the complex conjugate transpose matrix of the transfer coefficient matrix and the transfer coefficient matrix,
Multiply the correlation matrix by the matrix obtained by using the orthogonalization method on the correlation matrix or its inverse matrix column vector, and transmit the orthogonal vector obtained by using the orthogonalization method for the column vector component of the obtained matrix The transmission method for spatial multiplexing transmission according to claim 1 or 2, wherein a weight is used.
相関行列に乗算する、伝達係数行列の複素共役転置行列、逆行列、相関行列、相関行列の逆行列のいずれかの行列の列ベクトルに直交化法を用いる際に、列ベクトルのノルムの大きいものから順に直交化すること
を特徴とする請求項7または請求項8に記載の空間多重伝送用送信方法。
When the orthogonalization method is used for the column vector of one of the complex conjugate transpose matrix, inverse matrix, correlation matrix, or inverse matrix of the transfer coefficient matrix that multiplies the correlation matrix, the column vector with a large norm The transmission method for spatial multiplexing transmission according to claim 7 or 8, wherein the orthogonalization is performed in order.
得られた送信重みからなる送信重み行列を再び相関行列に乗算し、
得られた行列の列ベクトルに対し直交化法を用いることを任意の回数行い、得られた直交ベクトルを送信重みとすること
を特徴とする請求項1に記載の空間多重伝送用送信方法。
Multiply the correlation matrix again by the transmission weight matrix consisting of the transmission weights obtained,
The transmission method for spatial multiplexing transmission according to claim 1, wherein the orthogonalization method is used an arbitrary number of times for the column vector of the obtained matrix, and the obtained orthogonal vector is used as a transmission weight.
N個のアンテナ素子を用い、L個の空間多重による送信を行う空間多重伝送用送信装置において、
前記各アンテナ素子に接続され、受信信号と送信信号を切り替える信号切り替え部と、
前記信号切り替え部に接続され、受信時に信号切り替え部から出力される信号を入力信号とし、伝達係数行列の推定を行う伝達係数行列推定部と、
前記伝達係数行列推定部において推定された伝達係数行列の複素共役転置行列と伝達係数行列の積である相関行列を演算し、行列乗算演算部に出力する相関行列演算部と、
相関行列の固有ベクトル行列と相関がある行列を記憶し、行列乗算演算部に出力する推定送信重み行列記憶部と、
相関行列演算部から入力される相関行列と推定送信重み行列記憶部から入力される推定重み行列を乗算する行列乗算演算部と、
前記行列乗算演算部において演算された行列の各列ベクトルに対し、直交化演算を行い、得られた直交ベクトルを送信重みとしてマルチビーム形成部に出力する直交化演算部と、
前記相関行列演算部、推定送信重み行列記憶部、行列乗算演算部、直交化演算部からなる送信重み決定部と、
送信する入力信号にシリアル−パラレル変換を行い、空間多重数Lに振り分けるシリアル−パラレル変換部と、
前記シリアル−パラレル変換部の出力信号を入力信号とし、送信信号系列をマルチビーム形成部に出力する送信部と、
前記送信部から入力された信号を入力信号とし、N個の信号に分割し、前記送信重み決定部により決定された重み付けを行った後、N個の信号合成部の対応するポートに出力を行うマルチビーム形成部と、
前記マルチビーム形成部のうち、対応するL個のマルチビーム形成部からL個のポートに出力された信号を重ね合わせ、前記信号切り替え部の他方のポートに出力を行う信号合成部と、
を備えたことを特徴とする空間多重伝送用送信装置。
In a spatial multiplexing transmission apparatus that performs transmission by L spatial multiplexing using N antenna elements,
A signal switching unit that is connected to each antenna element and switches between a reception signal and a transmission signal;
A transfer coefficient matrix estimation unit that is connected to the signal switching unit and receives a signal output from the signal switching unit at the time of reception as an input signal, and estimates a transfer coefficient matrix;
A correlation matrix calculation unit that calculates a correlation matrix that is a product of a complex conjugate transpose matrix and a transfer coefficient matrix of the transfer coefficient matrix estimated in the transfer coefficient matrix estimation unit, and outputs the correlation matrix to the matrix multiplication calculation unit;
An estimated transmission weight matrix storage unit that stores a matrix correlated with the eigenvector matrix of the correlation matrix and outputs the matrix to the matrix multiplication operation unit;
A matrix multiplication operation unit that multiplies the correlation matrix input from the correlation matrix operation unit by the estimated weight matrix input from the estimated transmission weight matrix storage unit;
An orthogonalization operation unit that performs orthogonalization operation on each column vector of the matrix calculated in the matrix multiplication operation unit, and outputs the obtained orthogonal vector as a transmission weight to the multi-beam forming unit;
A transmission weight determination unit comprising the correlation matrix calculation unit, an estimated transmission weight matrix storage unit, a matrix multiplication calculation unit, and an orthogonalization calculation unit;
A serial-parallel converter that performs serial-parallel conversion on an input signal to be transmitted and distributes the input signal to a spatial multiplexing number L;
An output signal of the serial-parallel conversion unit as an input signal, and a transmission unit that outputs a transmission signal sequence to a multi-beam forming unit;
The signal input from the transmission unit is used as an input signal, divided into N signals, weighted by the transmission weight determination unit, and then output to the corresponding ports of the N signal synthesis units A multi-beam forming unit;
Among the multi-beam forming units, a signal combining unit that superimposes the signals output from the corresponding L multi-beam forming units to L ports and outputs the signals to the other port of the signal switching unit;
A spatial multiplexing transmission apparatus characterized by comprising:
前記送信重み決定部において、
推定送信重み行列記憶部は、過去に用いた送信重み行列または直交波周波数分割多重における近隣の周波数帯での送信重み行列を記憶すること
を特徴とする請求項11に記載の空間多重伝送用送信装置。
In the transmission weight determination unit,
12. The transmission for spatial multiplexing transmission according to claim 11, wherein the estimated transmission weight matrix storage unit stores a transmission weight matrix used in the past or a transmission weight matrix in a neighboring frequency band in orthogonal frequency division multiplexing. apparatus.
前記送信重み決定部は、
前記伝達係数行列推定部において推定された伝達係数行列を入力信号とし、複素共役転置行列、逆行列、相関行列、相関行列の逆行列のうちいずれかを求める演算を行い、第1の直交化演算部に出力する行列演算部と、
前記行列演算部から入力される行列に直交化演算を行い、行列乗算演算部に出力する第1の直交化演算部と、
前記伝達係数行列推定部において推定された伝達係数行列を入力信号とし、相関行列を演算する相関行列演算部と、
相関行列演算部から入力される相関行列と、第1の直交化演算部から入力される行列を乗算し、第2の直交化演算部に出力を行う行列乗算演算部と、
前記行列乗算演算部から入力される行列を入力信号とし、行列の列ベクトルに対し直交化法を用いて直交ベクルを演算し、得られた直交ベクトルを送信重みとしてマルチビーム形成部に出力する第2の直交化演算部と、
を備えたことを特徴とする請求項11に記載の空間多重伝送用送信装置。
The transmission weight determination unit
Using the transfer coefficient matrix estimated by the transfer coefficient matrix estimation unit as an input signal, an operation for obtaining any one of a complex conjugate transpose matrix, an inverse matrix, a correlation matrix, and an inverse matrix of a correlation matrix is performed, and a first orthogonalization operation is performed. A matrix calculation unit to output to the unit,
A first orthogonalization operation unit that performs an orthogonalization operation on the matrix input from the matrix operation unit and outputs the matrix to the matrix multiplication operation unit;
A correlation matrix calculation unit for calculating a correlation matrix using the transfer coefficient matrix estimated in the transfer coefficient matrix estimation unit as an input signal;
A matrix multiplication operation unit that multiplies the correlation matrix input from the correlation matrix operation unit by the matrix input from the first orthogonalization operation unit, and outputs the result to the second orthogonalization operation unit;
A matrix input from the matrix multiplication operation unit is used as an input signal, an orthogonal vector is calculated by using an orthogonalization method for the column vector of the matrix, and the obtained orthogonal vector is output to the multi-beam forming unit as a transmission weight. Two orthogonalization calculators;
The transmitter for spatial multiplexing transmission according to claim 11, comprising:
前記送信重み決定部は、
演算された送信重み行列を、さらに相関行列と乗算し、得られる行列に直交化演算を行う動作を任意の回数繰り返す手段を有し、得られた直交ベクトルを送信重みとしてマルチビーム形成部に出力すること
を特徴とする請求項11に記載の空間多重伝送用送信装置。

The transmission weight determination unit
The calculated transmission weight matrix is further multiplied by the correlation matrix, and the means for repeating the operation of orthogonalizing the obtained matrix is repeated any number of times, and the obtained orthogonal vector is output to the multi-beam forming unit as the transmission weight. The transmitter for spatial multiplexing transmission according to claim 11.

JP2005034385A 2005-02-10 2005-02-10 Spatial multiplexing transmission method and transmitter Expired - Fee Related JP4376805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034385A JP4376805B2 (en) 2005-02-10 2005-02-10 Spatial multiplexing transmission method and transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034385A JP4376805B2 (en) 2005-02-10 2005-02-10 Spatial multiplexing transmission method and transmitter

Publications (3)

Publication Number Publication Date
JP2006222742A true JP2006222742A (en) 2006-08-24
JP2006222742A5 JP2006222742A5 (en) 2007-03-08
JP4376805B2 JP4376805B2 (en) 2009-12-02

Family

ID=36984755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034385A Expired - Fee Related JP4376805B2 (en) 2005-02-10 2005-02-10 Spatial multiplexing transmission method and transmitter

Country Status (1)

Country Link
JP (1) JP4376805B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278474A (en) * 2007-03-20 2008-11-13 Toshiba Corp Wireless communications apparatus
JP2010503311A (en) * 2006-09-19 2010-01-28 エルジー エレクトロニクス インコーポレイティド Method of transmitting data using phase shift based precoding in wireless communication system and apparatus for implementing the same
WO2010146774A1 (en) * 2009-06-16 2010-12-23 シャープ株式会社 Wireless communication apparatus, wireless communication system and communication method
JP2011019101A (en) * 2009-07-09 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Transmission directivity control apparatus, and method of controlling transmission directivity
US8019031B2 (en) 2007-07-02 2011-09-13 Nec Corporation User selection method and user selection device for multiuser MIMO communication
US8284849B2 (en) 2006-05-26 2012-10-09 Lg Electronics Inc. Phase shift based precoding method and transceiver for supporting the same
US8284865B2 (en) 2007-02-14 2012-10-09 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
WO2013039248A1 (en) * 2011-09-16 2013-03-21 日本電信電話株式会社 Wireless communication method and base-station device
JP2014505386A (en) * 2011-02-28 2014-02-27 エヌイーシー(チャイナ)カンパニー, リミテッド Channel quality index correction method and apparatus
US8670500B2 (en) 2007-09-19 2014-03-11 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
WO2017126541A1 (en) * 2016-01-20 2017-07-27 日本電気株式会社 Calculation method, wireless station, and storage medium

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284849B2 (en) 2006-05-26 2012-10-09 Lg Electronics Inc. Phase shift based precoding method and transceiver for supporting the same
US8331464B2 (en) 2006-05-26 2012-12-11 Lg Electronics Inc. Phase shift based precoding method and transceiver for supporting the same
JP2010503311A (en) * 2006-09-19 2010-01-28 エルジー エレクトロニクス インコーポレイティド Method of transmitting data using phase shift based precoding in wireless communication system and apparatus for implementing the same
US8284865B2 (en) 2007-02-14 2012-10-09 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
JP2008278474A (en) * 2007-03-20 2008-11-13 Toshiba Corp Wireless communications apparatus
US8019031B2 (en) 2007-07-02 2011-09-13 Nec Corporation User selection method and user selection device for multiuser MIMO communication
US8670500B2 (en) 2007-09-19 2014-03-11 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
WO2010146774A1 (en) * 2009-06-16 2010-12-23 シャープ株式会社 Wireless communication apparatus, wireless communication system and communication method
JP2011003960A (en) * 2009-06-16 2011-01-06 Sharp Corp Radio communication apparatus, radio communication system, and communication method
US8995920B2 (en) 2009-06-16 2015-03-31 Sharp Kabushiki Kaisha Wireless communication apparatus, wireless communication system, and communication method
JP2011019101A (en) * 2009-07-09 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Transmission directivity control apparatus, and method of controlling transmission directivity
JP2014505386A (en) * 2011-02-28 2014-02-27 エヌイーシー(チャイナ)カンパニー, リミテッド Channel quality index correction method and apparatus
JP5616530B2 (en) * 2011-09-16 2014-10-29 日本電信電話株式会社 Wireless communication method and base station apparatus
WO2013039248A1 (en) * 2011-09-16 2013-03-21 日本電信電話株式会社 Wireless communication method and base-station device
US9184809B2 (en) 2011-09-16 2015-11-10 Nippon Telegraph And Telephone Corporation Wireless communication method and access point apparatus
WO2017126541A1 (en) * 2016-01-20 2017-07-27 日本電気株式会社 Calculation method, wireless station, and storage medium

Also Published As

Publication number Publication date
JP4376805B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US9825680B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
CN106031068B (en) A kind of communication means and device based on beam forming
EP1189364B1 (en) Radio device
US7411547B2 (en) Antenna array including virtual antenna elements
US11290169B2 (en) Methods, systems and units of a distributed base station system for handling of downlink communication
Rihan et al. Taxonomy and performance evaluation of hybrid beamforming for 5G and beyond systems
EP1471663A2 (en) Transmit diversity system, method and computer program product
CN102571177A (en) Wireless base station device, terminal, and wireless communication method
CN109302856B (en) Transmission device, communication system, and precoding calculation method
CN112805934A (en) MIMO system
Xia et al. A practical SDMA protocol for 60 GHz millimeter wave communications
JP5333526B2 (en) Radio base station apparatus, terminal apparatus, and radio communication method
KR100963333B1 (en) BeanForming Method using Multiple Antenna
JP4376805B2 (en) Spatial multiplexing transmission method and transmitter
KR20160116956A (en) Method and apparatus for estimating channels and selecting rf beam in system using multi-antenna
JP2009153139A (en) Pre-coding processing method and apparatus for mimo downlink, and base station
JPWO2007058264A1 (en) Transmitting apparatus, MIMO communication system, and transmission diversity method
JP4494190B2 (en) Spatial multiplexing transmission method and spatial multiplexing transmission apparatus
JP4402098B2 (en) Transmission apparatus and transmission directivity control method
CN1964217B (en) A multicarrier MIMO system and its communication method
JP4698346B2 (en) Wireless transmission system, base station, and wireless transmission method
KR20190090209A (en) Method and apparatus for providing hybrid beamforming in large-scale antenna system
JP4001880B2 (en) Spatial multiplex transmission equipment
JP4040588B2 (en) Transmitter for spatial multiplexing transmission
JP4260653B2 (en) Transmitter for spatial multiplexing transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R151 Written notification of patent or utility model registration

Ref document number: 4376805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees