JP2006220629A - Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery - Google Patents
Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery Download PDFInfo
- Publication number
- JP2006220629A JP2006220629A JP2005036884A JP2005036884A JP2006220629A JP 2006220629 A JP2006220629 A JP 2006220629A JP 2005036884 A JP2005036884 A JP 2005036884A JP 2005036884 A JP2005036884 A JP 2005036884A JP 2006220629 A JP2006220629 A JP 2006220629A
- Authority
- JP
- Japan
- Prior art keywords
- storage battery
- internal impedance
- converter
- measuring
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
本発明は、蓄電池に接続機器等からノイズ電流が流れても、安定して蓄電池の内部インピーダンスが測定できる、蓄電池の内部インピーダンス測定装置および蓄電池の内部インピーダンス測定方法に関するものである。 The present invention relates to a storage battery internal impedance measurement device and a storage battery internal impedance measurement method capable of stably measuring the internal impedance of the storage battery even when a noise current flows from the connected device or the like to the storage battery.
多数の蓄電池が直列接続された蓄電池群の各蓄電池の内部インピーダンスを測定する方法として、いわゆる交流4端子法が知られている。 As a method for measuring the internal impedance of each storage battery of a storage battery group in which a large number of storage batteries are connected in series, a so-called AC four-terminal method is known.
交流4端子法とは、内部インピーダンス測定対象の蓄電池に交流電流Iを流し、その際に発生する起電力Vを交流電圧計で計測し、蓄電池の内部インピーダンスZを下記式1で求める。
Z=V/I・・・・・・(1)
In the alternating current four-terminal method, an alternating current I is passed through a storage battery whose internal impedance is to be measured, an electromotive force V generated at that time is measured with an alternating current voltmeter, and the internal impedance Z of the storage battery is obtained by the following equation (1).
Z = V / I (1)
交流4端子法による蓄電池の内部インピーダンス測定の原理図を図8に示す。図8において、11は蓄電池、2は計測電流印加手段、3は計測手段であり、複数の蓄電池11の各蓄電池11に計測電流印加手段2および計測手段3が接続されている。 FIG. 8 shows a principle diagram of the internal impedance measurement of the storage battery by the AC four-terminal method. In FIG. 8, 11 is a storage battery, 2 is a measurement current application unit, 3 is a measurement unit, and the measurement current application unit 2 and the measurement unit 3 are connected to each storage battery 11 of the plurality of storage batteries 11.
計測電流印加手段2は、蓄電池11の内部インピーダンスを測定するための交流電流(本明細書では計測電流と表記する)を発生させるものである。この計測電流印加手段2は、例えば交流定電流源として機能するものであって、原理的にインピーダンスは無限大である。 The measurement current application unit 2 generates an alternating current (indicated herein as a measurement current) for measuring the internal impedance of the storage battery 11. The measurement current applying means 2 functions as, for example, an AC constant current source, and has an infinite impedance in principle.
計測手段3は、計測電流印加手段2が発生した計測電流により蓄電池11に生じた起電力を計測するものである。この計測手段3は、例えば交流電圧計として機能するものであって、原理的にインピーダンスは無限大である。 The measuring means 3 measures the electromotive force generated in the storage battery 11 by the measurement current generated by the measurement current applying means 2. The measuring means 3 functions as an AC voltmeter, for example, and has an infinite impedance in principle.
ところで、蓄電池11には図8に示すように充電器5や負荷6等が接続され、それらにより交流電流成分(ノイズ電流)が蓄電池11に流れる。蓄電池11の内部インピーダンス計測を行うにはこのノイズ電流成分と計測電流成分とを分離する必要がある。
本出願人は特許文献1で、ノイズ電流成分と計測電流成分とを分離するため、計測手段に通常の計測電流のみを通過させるアナログフィルタあるいはデジタルフィルタからなる周波数フィルタを設け、ノイズ電流成分を除去して蓄電池の内部インピーダンスを測定する方法を提案した。
By the way, as shown in FIG. 8, a charger 5, a load 6, and the like are connected to the storage battery 11, and an alternating current component (noise current) flows through the storage battery 11. In order to measure the internal impedance of the storage battery 11, it is necessary to separate the noise current component and the measurement current component.
In this patent application, in order to separate the noise current component and the measurement current component, the applicant of the present application is provided with a frequency filter composed of an analog filter or a digital filter that allows only a normal measurement current to pass through the measurement means, and removes the noise current component Then, the method of measuring the internal impedance of the storage battery was proposed.
しかし、計測電流の周波数とノイズ電流の周波数とが近接している場合には前記ノイズ電流をノイズ電流除去用周波数フィルタでは除去できず、計測誤差を生ずる。
このため、ノイズ電流の影響を少なくして内部インピーダンスを測定する手段として、(1)ノイズ電流より大きい電流にて計測する、
(2)ノイズ周波数と異なる周波数で計測する、
等の方法を講じた。
しかし、(1)の方法では大きな電流を通電するための大掛かりな装置を必要とし、(2)の方法ではノイズ周波数を予め計測してから計測周波数を決定しなければならず、測定回路が複雑となる、等の欠点があった。
However, when the frequency of the measurement current is close to the frequency of the noise current, the noise current cannot be removed by the noise current removal frequency filter, resulting in a measurement error.
For this reason, as a means for measuring the internal impedance while reducing the influence of the noise current, (1) measuring at a current larger than the noise current,
(2) Measure at a frequency different from the noise frequency.
Etc. were taken.
However, the method (1) requires a large-scale device for energizing a large current, and the method (2) requires the measurement frequency to be determined after the noise frequency is measured in advance, resulting in a complicated measurement circuit. And so on.
本発明は、上記欠点を解消し、内部インピーダンス測定に大掛かりな装置を必要とせず、かつ、測定回路を複雑化することなく、蓄電池の内部インピーダンスを測定することができる蓄電池の内部インピーダンス測定装置並びにその測定方法を提供することを目的とする。 The present invention eliminates the above-mentioned drawbacks, does not require a large device for measuring internal impedance, and can measure the internal impedance of the storage battery without complicating the measurement circuit, and It aims at providing the measuring method.
本発明の蓄電池の内部インピーダンス測定装置は、被測定蓄電池に交流電流を印加して内部インピーダンスを計測する蓄電池の内部インピーダンス測定装置であって、該測定装置は蓄電池の内部インピーダンスを測定するためのデータを作成するマイクロプロセッサと、該マイクロプロセッサのプログラムによるデータを複数の周期の信号に変換するD/Aコンバータと、該D/Aコンバータで生成された信号を増幅して被測定蓄電池に印加する電流アンプとからなる計測電流印加手段と、該計測電流印加手により印加された電流により被測定蓄電池に発生する起電力のうち特定範囲の周波数成分の信号のみを通過させるバンドパスフィルタと、該バンドパスフィルタを通過した信号をデジタル化するA/Dコンバータと、該A/Dコンバータでデジタル化された特定範囲の周波数の成分の信号の相関から内部インピーダンスを求めるマイクロプロセッサとからなる計測手段と、を有する。 The internal impedance measuring device for a storage battery according to the present invention is an internal impedance measuring device for a storage battery that measures the internal impedance by applying an alternating current to the storage battery to be measured, and the measuring device is data for measuring the internal impedance of the storage battery. , A D / A converter that converts data from a program of the microprocessor into a signal having a plurality of cycles, and a current that is amplified by the D / A converter and applied to the storage battery to be measured A measuring current applying means comprising an amplifier, a bandpass filter for passing only a signal of a frequency component in a specific range among electromotive forces generated in the storage battery to be measured by the current applied by the measuring current applying hand, and the bandpass An A / D converter that digitizes the signal that has passed through the filter, and a digital signal by the A / D converter Having a measuring unit comprising a microprocessor to determine the internal impedance from the correlation of frequency components of the signal in a specific range.
本発明の蓄電池の内部インピーダンス測定方法は、被測定蓄電池に交流電流を印加して内部インピーダンスを計測する蓄電池の内部インピーダンス計測方法であって、該計測方法はマイクロプロセッサに収納の蓄電池の内部インピーダンス測定用プログラムからデータを呼び出し、該データをD/Aコンバータにより複数の周期と波形の信号に変換し、該D/Aコンバータで生変換された複数の信号を電流アンプで増幅し、該増幅した信号を被測定蓄電池に印加する計測電流印加工程と、前記電流アンプで増幅された電流の印加で被測定蓄電池に発生する起電力をバンドパスフィルタを通して特定範囲の周波数成分の信号のみを抽出し、該バンドパスフィルタを通過した抽出信号をA/Dコンバータでデジタル化し、該A/Dコンバータでデジタル化した特定周波数成分の信号の相関を計数して内部インピーダンスを求める計測手段とからなる。 The internal impedance measurement method for a storage battery according to the present invention is an internal impedance measurement method for a storage battery in which an alternating current is applied to the storage battery to be measured to measure the internal impedance, and the measurement method is an internal impedance measurement for a storage battery stored in a microprocessor. Data is called from the program for the program, the data is converted into a signal having a plurality of periods and waveforms by the D / A converter, the plurality of signals that are raw-converted by the D / A converter are amplified by the current amplifier, and the amplified signal A measurement current applying step for applying a voltage to a measured storage battery, and extracting only a signal of a frequency component in a specific range through a bandpass filter from an electromotive force generated in the measured storage battery by applying a current amplified by the current amplifier, The extracted signal that has passed through the bandpass filter is digitized by the A / D converter and digitized by the A / D converter. Comprising a measuring means for determining the internal impedance by counting the correlation signal of a specific frequency component.
本発明は、内部インピーダンス測定に大掛かりな装置を必要とせず、かつ、測定回路を複雑にすることなく、正確に蓄電池の内部インピーダンスを測定することができる蓄電池の内部インピーダンス測定装置並びにその測定方法を提供することができる。 The present invention provides an internal impedance measuring device for a storage battery and a measuring method thereof that can accurately measure the internal impedance of the storage battery without requiring a large device for measuring internal impedance and without complicating the measurement circuit. Can be provided.
本発明の実施の形態を、図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1は、本発明蓄電池の内部インピーダンス測定装置の計測手段3を説明するためのブロック図である。図1において、計測手段3は、アナログバンドパスフィルタ33、A/Dコンバータ32とマイクロプロセッサ31とからなるデジタルフィルタ34とからなり、該アナログバンドパスフィルタ33とデジタルフィルタ34は直列に接続されている。
アナログバンドパスフィルタ33は後述するように、計測周波数可変範囲のみを通過させる周波数特性を有している。
また、デジタルフィルタ34はアナログバンドパスフィルタ33からの出力をA/Dコンバータ32でデジタル値に変換し、その値をマイクロプロセッサ31でDFT(離散フーリエ変換)演算等を行い、特定範囲の周波数成分の大きさを求め、内部インピーダンスを計測する。
FIG. 1 is a block diagram for explaining a measuring means 3 of an internal impedance measuring device for a storage battery according to the present invention. In FIG. 1, the measuring means 3 comprises an analog bandpass filter 33, a digital filter 34 comprising an A / D converter 32 and a microprocessor 31, and the analog bandpass filter 33 and the digital filter 34 are connected in series. Yes.
As will be described later, the analog bandpass filter 33 has a frequency characteristic that allows only the measurement frequency variable range to pass.
Further, the digital filter 34 converts the output from the analog bandpass filter 33 into a digital value by the A / D converter 32, performs DFT (discrete Fourier transform) calculation etc. on the value by the microprocessor 31, and the frequency component in a specific range. Measure the internal impedance.
このように、アナログバンドパスフィルタ33とデジタルフィルタ34とを直列に接続することで、フィルタの周波数通過帯域以外の周波数を除去することができる。しかし、ノイズの周波数成分が計測周波数と近い場合にはノイズ成分をも通過させてしまうため、計測電流成分と干渉し、誤差が生じる。 Thus, by connecting the analog bandpass filter 33 and the digital filter 34 in series, frequencies other than the frequency passband of the filter can be removed. However, when the noise frequency component is close to the measurement frequency, the noise component is also allowed to pass therethrough, which interferes with the measurement current component and causes an error.
そのため、本発明においてはアナログバンドパスフィルタ33の周波数通過帯域の区間で計測周波数を種々に変化させて周波数成分を計測し、周波数を変化させて計測した値の相関を求め、内部インピーダンスを求める。特定の周波数帯域で測定周波数を変化させ、得られた計測値の相関を求めることで、ノイズを大幅に削除することができる。 Therefore, in the present invention, the frequency components are measured by changing the measurement frequency in the frequency passband section of the analog bandpass filter 33, the correlation between the values measured by changing the frequency is obtained, and the internal impedance is obtained. By changing the measurement frequency in a specific frequency band and obtaining the correlation of the obtained measurement values, noise can be largely eliminated.
即ち、図2に示すように、アナログバンドパスフィルタ33により該フィルタ33を通過する通過周波数は特定される。この通過周波数帯域区間で図3に示すように計測周波数を複数に変化させて内部インピーダンスを計測し、その測定データの相関を検出する。その結果の一例を図4に示す。図4から明らかなように、ノイズによる測定値は他の測定値と相関がなく、異常値であることが判明し、したがって相関のあるデータにより内部インピーダンスを正確に測定することができる。 That is, as shown in FIG. 2, the pass frequency that passes through the filter 33 is specified by the analog bandpass filter 33. In this pass frequency band section, as shown in FIG. 3, the measurement frequency is changed to plural, the internal impedance is measured, and the correlation of the measurement data is detected. An example of the result is shown in FIG. As apparent from FIG. 4, the measurement value due to noise has no correlation with other measurement values and is found to be an abnormal value, and thus the internal impedance can be accurately measured by the correlated data.
実施形態1
図5により本発明の、蓄電池の内部インピーダンス測定装置の一実施例を具体的に説明する。
図5は、蓄電池11に交流電流(計測電流)を流し、該計測電流により内部インピーダンスを計測する測定装置1で、該測定装置1は計測電流印加手段2と計測手段3とで構成される。計測電流印加手段2はマイクロプロセッサ21とD/Aコンバータ22と電流アンプ23とで構成され蓄電池11に周波数の異なる複数の電流を印加する。また、計測手段3は前記計測電流印加手段2で印加された電流により蓄電池11に発生する起電力のうち特定周波数帯域の周波数成分の信号のみを通過させるアナログバンドパスフィルタ33と、該バンドパスフィルタ33を通過した信号をデジタル化するA/Dコンバータ32と、該A/Dコンバータ32でデジタル化された特定周波数帯域の周波数成分の信号をDFT演算等して特定周波数のレベルを計算しその相関から内部インピーダンスを求めるマイクロプロセッサ31とで構成されている。
Embodiment 1
An embodiment of the internal impedance measuring apparatus for a storage battery according to the present invention will be specifically described with reference to FIG.
FIG. 5 shows a measuring device 1 that causes an alternating current (measurement current) to flow through the storage battery 11 and measures internal impedance using the measured current. The measuring device 1 includes a measurement current applying unit 2 and a measuring unit 3. The measurement current application unit 2 includes a microprocessor 21, a D / A converter 22, and a current amplifier 23, and applies a plurality of currents having different frequencies to the storage battery 11. The measuring means 3 includes an analog bandpass filter 33 that passes only a signal of a frequency component in a specific frequency band among electromotive forces generated in the storage battery 11 by the current applied by the measurement current applying means 2, and the bandpass filter. The A / D converter 32 that digitizes the signal that has passed through 33, and the frequency component signal digitized by the A / D converter 32 to calculate the level of the specific frequency by performing a DFT operation or the like. And a microprocessor 31 for obtaining an internal impedance from.
本発明の測定方法は前記測定装置1を実施する方法であり、図5に示すように、マイクロプロセッサ21は蓄電池の内部インピーダンスを測定するためのプログラム24を実行して、そのプログラムに基づく信号をD/Aコンバータ22に送る。D/Aコンバータ22はマイクロプロセッサ21から送られた信号を指定された周期、波形の異なる複数の信号に変換する。電流アンプ23は前記D/Aコンバータ22で変換された複数の信号を増幅して蓄電池11に複数の異なる周波数からなる計測電流として印加する。 The measurement method of the present invention is a method for implementing the measurement apparatus 1, and as shown in FIG. 5, the microprocessor 21 executes a program 24 for measuring the internal impedance of the storage battery, and outputs a signal based on the program. Send to D / A converter 22. The D / A converter 22 converts the signal sent from the microprocessor 21 into a plurality of signals having different designated cycles and waveforms. The current amplifier 23 amplifies the plurality of signals converted by the D / A converter 22 and applies them to the storage battery 11 as measurement currents having a plurality of different frequencies.
蓄電池11に前記計測電流が印加されると該電流により起電力が発生する。バンドパスフィルタ33はこの起電力の特定範囲帯域における周波数成分の信号のみを通過させる(例えば図3参照)。A/Dコンバータ32は前記バンドパスフィルタ33を通過した特定範囲帯域内の複数の周波数成分の信号をデジタル化してマイクロプロセッサ31にその信号を送る。マイクロプロセッサ31は前記A/Dコンバータ32でデジタル化された特定範囲内の複数の周波数成分につきDFT(フーリエ変換)演算を行い、特定範囲の周波数成分の大きさを求め、求めた値につき相関を求め(図4参照)、蓄電池11の内部インピーダンスを求める。 When the measurement current is applied to the storage battery 11, an electromotive force is generated by the current. The band pass filter 33 passes only the signal of the frequency component in the specific range band of the electromotive force (see, for example, FIG. 3). The A / D converter 32 digitizes signals of a plurality of frequency components within a specific range band that has passed through the band pass filter 33 and sends the signals to the microprocessor 31. The microprocessor 31 performs a DFT (Fourier transform) operation on a plurality of frequency components within a specific range digitized by the A / D converter 32, obtains the magnitude of the frequency component in the specific range, and correlates the obtained value with the correlation. Obtained (see FIG. 4), the internal impedance of the storage battery 11 is obtained.
図6は本実施形態で内部インピーダンスを計測する工程を示すフローチャートである。
ステップ(ST)1−1
マイクロプロセッサ21は計測周波数f1(例えば測定周波数帯域を15〜17Hzの範囲に設定した場合、例えば15.7Hz)を発生するようD/Aコンバータ22に指示し、D/Aコンバータ22は計測周波数f1の電流を電流アンプ23に送り、電流アンプ23はその電流を増幅して蓄電池11に印加する。なお、本実施形態では、蓄電池に印加する電流は周波数の分離が良い(高調波成分を含まない)正弦波を採用し、該正弦波の周波数帯域はバンドパスフィルタ33の通過周波数範囲内で選択することが好ましい。
正弦波の電流を印加された蓄電池11からは起電力が発生する。この起電力をバンドパスフィルタ33−A/Dコンバータ32−マイクロプロセッサ31に収納のプログラムで演算することで蓄電池11に印加した周波数f1の電流による起電力成分の内部インピーダンスを計測する。
FIG. 6 is a flowchart showing a process of measuring internal impedance in the present embodiment.
Step (ST) 1-1
The microprocessor 21 instructs the D / A converter 22 to generate the measurement frequency f1 (for example, 15.7 Hz when the measurement frequency band is set in the range of 15 to 17 Hz), and the D / A converter 22 measures the measurement frequency f1. The current amplifier 23 amplifies the current and applies it to the storage battery 11. In this embodiment, the current applied to the storage battery employs a sine wave with good frequency separation (not including harmonic components), and the frequency band of the sine wave is selected within the pass frequency range of the band-pass filter 33. It is preferable to do.
An electromotive force is generated from the storage battery 11 to which a sine wave current is applied. By calculating this electromotive force with a program stored in the bandpass filter 33 -A / D converter 32 -microprocessor 31, the internal impedance of the electromotive force component due to the current of the frequency f1 applied to the storage battery 11 is measured.
ステップ(ST)1−2
次にステップ1−1で蓄電池11に印加した計測周波数とは異なる周波数f2(例えば15.8Hz)の正弦波電流をステップ1−1と同様に蓄電池11に印加し、蓄電池に印加した周波数f2の電流による起電力成分の内部インピーダンスを計測する。
ステップ1−N
次にステップ1−2で蓄電池11に印加した計測周波数と異なる周波数f3.・・・・n(例えば15.9、16.0、16.1、16.2、16.3Hz)の各正弦波電流をステップ1−1と同様に蓄電池11に印加し、蓄電池に印加した周波数f3、・・・・・nの電流による各起電力成分の内部インピーダンスを計測する。
Step (ST) 1-2
Next, a sine wave current having a frequency f2 (for example, 15.8 Hz) different from the measurement frequency applied to the storage battery 11 in step 1-1 is applied to the storage battery 11 in the same manner as in step 1-1, and the frequency f2 applied to the storage battery is changed. Measure the internal impedance of the electromotive force component due to current.
Step 1-N
Next, a frequency f3. Different from the measurement frequency applied to the storage battery 11 in step 1-2. .... Each sine wave current of n (for example, 15.9, 16.0, 16.1, 16.2, 16.3 Hz) is applied to the storage battery 11 in the same manner as in step 1-1, and then applied to the storage battery. The internal impedance of each electromotive force component due to the current of frequency f3,... N is measured.
ステップ(ST)2
各周波数f1〜fnの電流で計測した数値の相関を求め、計測値が相関から逸脱したデータを削除する。
Step (ST) 2
The correlation of the numerical values measured with the currents of the respective frequencies f1 to fn is obtained, and the data whose measured values deviate from the correlation are deleted.
ステップ3
ステップ2で得られた測定値の平均値を算出し、その結果を測定内部インピーダンスとして表示する。
Step 3
The average value of the measured values obtained in step 2 is calculated, and the result is displayed as the measured internal impedance.
本発明はステップ1−1〜1−nで周波数の異なる複数の電流を畜電池11に印加し、その結果蓄電池11から生じる起電力に基づき内部インピーダンスを計測し、計測結果の相関を取って内部インピーダンスを求めている。したがって、蓄電池に印加される外来ノイズの周波数成分と計測周波数成分とが同じあるいは近似した周波数である場合には両者が干渉して誤差が生じるが、上述したように複数の異なる周波数で内部インピーダンスを計測し、その相関を求めているので、相関のないデータは計測メンバーから削除され、(測定結果からノイズ成分によるデータが削除され、)正確な内部インピーダンスを計測することができる。 In the present invention, a plurality of currents having different frequencies are applied to the battery 11 in steps 1-1 to 1-n, and as a result, internal impedance is measured based on the electromotive force generated from the storage battery 11, and the correlation between the measurement results is taken. Finding impedance. Therefore, when the frequency component of the external noise applied to the storage battery and the measured frequency component are the same or approximate frequencies, both cause interference and an error occurs. However, as described above, the internal impedance is set at a plurality of different frequencies. Since measurement is performed and the correlation is obtained, uncorrelated data is deleted from the measurement member, and accurate internal impedance can be measured (data by noise components is deleted from the measurement result).
なお、上記実施形態では計測電流印加手段2と計測手段3とで別々のマイクロプロセッサを使用したが、両プロセッサを1台として両機能を持たせるように構成することも可能であり、1台で構成すると、A/Dコンバータ、D/Aコンバータを同期して動作させることが可能となる. In the above embodiment, separate microprocessors are used for the measurement current applying means 2 and the measurement means 3, but it is also possible to configure both processors to have both functions, and with one unit. When configured, the A / D converter and the D / A converter can be operated synchronously.
また、蓄電池、特に鉛蓄電池には図7に示すようにその周波数特性に平坦な周波数帯域が存在する。したがって、この平坦な周波数特性を示す周波数帯で内部インピーダンスの計測を実施することにより、測定結果に直線的な相関が得られ、測定精度をより向上することができる。 Further, a storage battery, particularly a lead storage battery, has a flat frequency band in its frequency characteristics as shown in FIG. Therefore, by measuring the internal impedance in the frequency band showing the flat frequency characteristic, a linear correlation is obtained in the measurement result, and the measurement accuracy can be further improved.
以上詳細に説明したように、本発明によれば、内部インピーダンス計測時の外来ノイズの影響を除去でき、安定した正確な計測ができる内部インピーダンス測定装置並びに測定方法を提供することができる。
また、蓄電池に大きな電流を流す必要がなく、複雑な回路の付加も必要ないので、装置の小型化、取り扱いの簡素化を実現できる。
As described above in detail, according to the present invention, it is possible to provide an internal impedance measuring apparatus and a measuring method capable of removing the influence of external noise at the time of measuring internal impedance and performing stable and accurate measurement.
In addition, since it is not necessary to pass a large current through the storage battery and it is not necessary to add a complicated circuit, it is possible to reduce the size of the apparatus and simplify the handling.
1 内部インピーダンス測定装置
2 計測電流印加手段
3 計測手段
11 蓄電池
21 マイクロプロセッサ
22 D/Aコンバータ
23 電流アンプ
31 マイクロプロセッサ
32 A/Dコンバータ
33 バンドパスフィルタ
34 デジタルフィルタ
DESCRIPTION OF SYMBOLS 1 Internal impedance measuring apparatus 2 Measuring current application means 3 Measuring means 11 Storage battery
21 Microprocessor 22 D / A converter 23 Current amplifier 31 Microprocessor 32 A / D converter 33 Band pass filter 34 Digital filter
Claims (2)
A storage battery internal impedance measurement method for measuring internal impedance by applying an alternating current to a storage battery to be measured. The measurement method calls data from a program for measuring internal impedance of a storage battery stored in a microprocessor, and stores the data as D / A converter converts the signals into a plurality of cycles and waveforms, amplifies the plurality of signals that are raw-converted by the D / A converter with a current amplifier, and applies the amplified signals to the storage battery to be measured And extracting an electromotive force generated in the storage battery to be measured by application of the current amplified by the current amplifier through a bandpass filter, only a signal having a frequency component in a specific range, and extracting the extracted signal having passed through the bandpass filter as A / Digitize with D converter, count correlation of signal of specific frequency component digitized with A / D converter Internal impedance measuring method of a battery comprising a measuring means for determining the-impedance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005036884A JP2006220629A (en) | 2005-02-14 | 2005-02-14 | Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005036884A JP2006220629A (en) | 2005-02-14 | 2005-02-14 | Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006220629A true JP2006220629A (en) | 2006-08-24 |
Family
ID=36983044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005036884A Pending JP2006220629A (en) | 2005-02-14 | 2005-02-14 | Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006220629A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100823507B1 (en) | 2006-08-29 | 2008-04-21 | 삼성에스디아이 주식회사 | Battery manegement system and the operating method thereof |
JP2008135372A (en) * | 2006-09-29 | 2008-06-12 | Gm Global Technology Operations Inc | Method and device for measuring fuel cell high frequency resistance under existence of big undesired signal |
WO2009060728A1 (en) * | 2007-11-08 | 2009-05-14 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
WO2009078243A1 (en) * | 2007-12-14 | 2009-06-25 | Toyota Jidosha Kabushiki Kaisha | Battery learning system |
JP2010230659A (en) * | 2009-03-03 | 2010-10-14 | Furukawa Battery Co Ltd:The | Battery internal impedance measuring device |
CN112240988A (en) * | 2019-07-17 | 2021-01-19 | 株式会社电装 | Battery monitoring system and method and transportation system with same |
WO2022062599A1 (en) * | 2020-09-25 | 2022-03-31 | 大唐恩智浦半导体(徐州)有限公司 | Battery impedance measurement circuit |
US11604229B2 (en) | 2020-12-28 | 2023-03-14 | Analog Devices International Unlimited Company | Techniques for determining energy storage device state of health |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318700A (en) * | 1991-04-17 | 1992-11-10 | Fujitsu Ten Ltd | Intervihicle distance measuring instrument having threshold value determining means |
JP2003090869A (en) * | 2001-07-09 | 2003-03-28 | Yokogawa Electric Corp | Impedance measuring device |
JP2004132797A (en) * | 2002-10-10 | 2004-04-30 | Furukawa Battery Co Ltd:The | Method and apparatus for measuring internal impedance of storage battery |
-
2005
- 2005-02-14 JP JP2005036884A patent/JP2006220629A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318700A (en) * | 1991-04-17 | 1992-11-10 | Fujitsu Ten Ltd | Intervihicle distance measuring instrument having threshold value determining means |
JP2003090869A (en) * | 2001-07-09 | 2003-03-28 | Yokogawa Electric Corp | Impedance measuring device |
JP2004132797A (en) * | 2002-10-10 | 2004-04-30 | Furukawa Battery Co Ltd:The | Method and apparatus for measuring internal impedance of storage battery |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100823507B1 (en) | 2006-08-29 | 2008-04-21 | 삼성에스디아이 주식회사 | Battery manegement system and the operating method thereof |
US7847557B2 (en) | 2006-08-29 | 2010-12-07 | Samsung Sdi Co., Ltd. | Battery management system and method of driving the same |
JP2008135372A (en) * | 2006-09-29 | 2008-06-12 | Gm Global Technology Operations Inc | Method and device for measuring fuel cell high frequency resistance under existence of big undesired signal |
JP4595993B2 (en) * | 2007-11-08 | 2010-12-08 | トヨタ自動車株式会社 | Fuel cell system |
WO2009060728A1 (en) * | 2007-11-08 | 2009-05-14 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2009117229A (en) * | 2007-11-08 | 2009-05-28 | Toyota Motor Corp | Fuel cell system |
US8432168B2 (en) | 2007-11-08 | 2013-04-30 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
WO2009078243A1 (en) * | 2007-12-14 | 2009-06-25 | Toyota Jidosha Kabushiki Kaisha | Battery learning system |
US8538709B2 (en) | 2007-12-14 | 2013-09-17 | Toyota Jidosha Kabushiki Kaisha | Battery learning system |
JP2010230659A (en) * | 2009-03-03 | 2010-10-14 | Furukawa Battery Co Ltd:The | Battery internal impedance measuring device |
CN112240988A (en) * | 2019-07-17 | 2021-01-19 | 株式会社电装 | Battery monitoring system and method and transportation system with same |
JP2021018069A (en) * | 2019-07-17 | 2021-02-15 | 株式会社デンソー | Battery monitoring device |
US11835588B2 (en) | 2019-07-17 | 2023-12-05 | Denso Corporation | Battery monitoring system and method and transportation system with battery monitoring system |
JP7522542B2 (en) | 2019-07-17 | 2024-07-25 | 株式会社デンソー | Battery monitoring device |
JP7552776B2 (en) | 2019-07-17 | 2024-09-18 | 株式会社デンソー | Battery monitoring device |
WO2022062599A1 (en) * | 2020-09-25 | 2022-03-31 | 大唐恩智浦半导体(徐州)有限公司 | Battery impedance measurement circuit |
US11604229B2 (en) | 2020-12-28 | 2023-03-14 | Analog Devices International Unlimited Company | Techniques for determining energy storage device state of health |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4845441B2 (en) | Real-time power mask trigger generator | |
CN105612428B (en) | Measurement of partial discharge equipment, method for measurement of partial discharge and recording medium | |
JP2006220629A (en) | Internal impedance measuring device for storage battery, and internal impedance measuring method of the storage battery | |
JP2010266327A (en) | Facility diagnosis device and facility diagnosis method | |
JP5249499B2 (en) | Trigger generator and trigger generation method | |
JP2009541766A (en) | Method for instantaneous determination of signal distortion rate in AC distribution network and related apparatus | |
JP2007292700A (en) | Partial discharge position specifying method of stationary induction apparatus | |
KR101012097B1 (en) | Axial vibration measuring device of diesel engin crank shaft of ship using non-contact type sensor and measuring method of axial vibration using that | |
JP5035815B2 (en) | Frequency measuring device | |
JP4076797B2 (en) | Noise removal method and noise removal filter | |
JP2012177653A (en) | Acoustic diagnosis method, program, and device | |
KR101123880B1 (en) | A method and system for analyzing noise | |
JP2014098566A (en) | Vibration analyzer, vibration analysis method, and vibration analysis program | |
JP2005214932A5 (en) | ||
JP6152806B2 (en) | Biological information measurement method | |
CN101536551A (en) | Method of determining the harmonic and anharmonic portions of a response signal of a device | |
JP2012098146A (en) | Noise measuring device | |
KR101814793B1 (en) | Analogue-digital hybrid type apparatus for measuring vibration | |
JPH1010163A (en) | Effective voltage value measuring apparatus | |
JP4972359B2 (en) | Water leakage determination device, water leakage determination method | |
FI130776B1 (en) | Method and apparatus for fault detection | |
RU124411U1 (en) | DIGITAL RECORDERS PROCESSING AND ANALYSIS SYSTEM FOR MONITORING TRANSITION MODES IN POWER UNION | |
JP3554445B2 (en) | Abnormal noise judgment device | |
JP5530331B2 (en) | Electromagnetic flow meter | |
JP2007278977A (en) | Measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110111 |