[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006219808A - Papermaking carbon fiber - Google Patents

Papermaking carbon fiber Download PDF

Info

Publication number
JP2006219808A
JP2006219808A JP2005371655A JP2005371655A JP2006219808A JP 2006219808 A JP2006219808 A JP 2006219808A JP 2005371655 A JP2005371655 A JP 2005371655A JP 2005371655 A JP2005371655 A JP 2005371655A JP 2006219808 A JP2006219808 A JP 2006219808A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
carbon
water
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005371655A
Other languages
Japanese (ja)
Inventor
Sadao Hosohara
禎夫 細原
Takashi Kondo
孝志 近藤
Masayoshi Washiyama
正芳 鷲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005371655A priority Critical patent/JP2006219808A/en
Publication of JP2006219808A publication Critical patent/JP2006219808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a papermaking carbon fiber having excellent dispersibility in case of papermaking. <P>SOLUTION: In this papermaking carbon fiber, a water permeability of a fiber bundle composed of carbon fiber filaments is not less than 1 mg/g, before the bundle is washed by water, and not more than 0.5 mg/g, after washed by the water, and an especially specified coefficient of static friction between fibers of the fiber bundle is 0.01-0.3, after washed by the water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、抄紙の際に優れた分散性を有する炭素繊維に関する。すなわち、短時間で均一に分散させることが必要な抄紙用途に適した炭素繊維に関する。   The present invention relates to a carbon fiber having excellent dispersibility during papermaking. That is, it is related with the carbon fiber suitable for the papermaking use which needs to disperse | distribute uniformly in a short time.

炭素繊維は、高強度であり、耐熱性、耐食性に優れ、電気伝導性や電磁波遮蔽性があることから、航空機などに用いられる複合材料の強化材、二次電池の電極材、あるいは電子計算機筐体の電磁波遮蔽材として使用されている。   Carbon fiber has high strength, excellent heat resistance and corrosion resistance, and has electrical conductivity and electromagnetic wave shielding properties. Therefore, it is a composite material reinforcing material used in aircrafts, secondary battery electrode materials, or an electronic computer housing. Used as a body electromagnetic shielding material.

通常、プリプレグはストランドと呼ばれる連続繊維束を、一方向や複数方向に配置し、樹脂を含浸させたシート状の材料である。従来このプリプレグを積層し、成型、硬化させることにより複合材料を製造している。   Usually, a prepreg is a sheet-like material in which continuous fiber bundles called strands are arranged in one direction or a plurality of directions and impregnated with a resin. Conventionally, a composite material is manufactured by laminating, molding and curing the prepreg.

また、チョップドストランドと呼ばれる短繊維は射出成形などで用いられており、複雑な形の複合材料を比較的容易に得ることが可能である。   In addition, short fibers called chopped strands are used in injection molding and the like, and it is possible to obtain a complex composite material relatively easily.

このような炭素短繊維を用いた材料として炭素繊維紙がある。この炭素繊維紙は、電極材、面状発熱体、あるいは電磁波遮蔽材料として用いられており、一般には強度に対する要求は小さく、むしろ電流密度が均一に保たれ、局所電流が発生しないように炭素繊維の分散状態の均一性が求められる。   Carbon fiber paper is a material using such short carbon fibers. This carbon fiber paper is used as an electrode material, a sheet heating element, or an electromagnetic wave shielding material. Generally, the requirements for strength are small, rather the carbon fiber is kept so that the current density is kept uniform and no local current is generated. The uniformity of the dispersed state is required.

炭素繊維の分散状態の均一性が高い炭素繊維紙を得るには、開繊させた繊維等の原料炭素短繊維をスプレーして堆積させる方法や、湿式抄紙機を用いる方法が知られている。   In order to obtain carbon fiber paper with high uniformity of carbon fiber dispersion, there are known a method of spraying and depositing raw carbon short fibers such as opened fibers and a method of using a wet paper machine.

ところが、通常、原料炭素短繊維は集束剤を付与した連続繊維束を機械的に切断することにより製造されるため、開繊しにくい繊維の塊として供給されることが多く、乾式法では完全な開繊状態と均一な分散状態を得ることは難しい。また、湿式法においては、親水性のパルプ繊維等と比較して炭素繊維は疎水性が強いため、開繊状態が得られた場合でも均一な地合の炭素繊維紙を得ることが難しい。   However, since the raw carbon short fibers are usually produced by mechanically cutting a continuous fiber bundle to which a sizing agent has been added, they are often supplied as a lump of fibers that are difficult to open. It is difficult to obtain a spread state and a uniform dispersion state. Also, in the wet method, carbon fibers are more hydrophobic than hydrophilic pulp fibers and the like, and it is difficult to obtain a carbon fiber paper having a uniform texture even when the opened state is obtained.

抄紙用短繊維の分散性を向上させるために、炭素繊維の表面処理や集束剤付与を省略する方法(特許文献1参照)や、水溶性化合物を含む集束剤を付与する方法(特許文献2参照)などが従来から提案されている。しかしながら、いずれも炭素繊維表面の化学的特性を変更しただけであるため、抄紙工程における初期の分散性が十分でなかったり、抄紙工程の中〜後期では分散した繊維同士の絡みによる再凝集により分散性が悪くなってしまい均一な地合の炭素繊維紙が効率よく得ることができない。すなわち、前者の場合は親水性が悪いので繊維の水中への染み込みが悪く分散性が不十分であったり、後者の場合は繊維の水中への染み込みは良いものの繊維表面に固着・残存した水溶性化合物により機械的撹拌で一度分散した繊維が絡んで再凝集してしまうなどの問題があった。
特開平10−162838号公報 特開2003−293264号公報
In order to improve the dispersibility of the short fibers for papermaking, a method of omitting the surface treatment of carbon fibers and the application of a sizing agent (see Patent Document 1) or a method of applying a sizing agent containing a water-soluble compound (see Patent Document 2) ) Has been proposed. However, since only the chemical properties of the carbon fiber surface were changed in all cases, the initial dispersibility in the papermaking process was not sufficient, or it was dispersed by re-aggregation due to entanglement between dispersed fibers in the middle to late stage of the papermaking process. The carbon fiber paper with uniform texture cannot be obtained efficiently. That is, in the former case, since the hydrophilicity is poor, the fiber soaks into the water and dispersibility is insufficient, or in the latter case, the fiber soaks into the water, but the water-soluble matter that remains fixed and remains on the fiber surface. There was a problem that fibers once dispersed by mechanical stirring by the compound entangled and re-aggregated.
Japanese Patent Laid-Open No. 10-162838 JP 2003-293264 A

本発明は、かかる従来技術の背景に鑑み、抄紙の際に優れた分散性を有する炭素繊維を提供せんとするものである。   In view of the background of such prior art, the present invention provides a carbon fiber having excellent dispersibility during papermaking.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の抄紙用炭素繊維は、炭素繊維フィラメントからなる繊維束の水浸透度が、水洗濯前で1mg/g以上、水洗濯後で0.5mg/g以下であり、かつ、本文で規定する水洗濯後の繊維束の繊維−繊維間静摩擦係数が0.01〜0.3であることを特徴とするものである。 The present invention employs the following means in order to solve such problems. That is, the carbon fiber for papermaking of the present invention has a water permeability of a fiber bundle composed of carbon fiber filaments of 1 mg / g or more before water washing and 0.5 mg / g or less after water washing, and The fiber-fiber static friction coefficient of the fiber bundle after the water washing specified is 0.01 to 0.3.

本発明によれば、抄紙する際に短時間で均一に分散させることができる上に、平滑で強い抄紙が得られる炭素繊維を提供することができる。   According to the present invention, it is possible to provide a carbon fiber that can be uniformly dispersed in a short time during paper making, and that smooth and strong paper making can be obtained.

本発明は、前記課題、つまり抄紙の際に優れた分散性を有する炭素繊維について、鋭意検討し、特定なパラメータを満足する炭素繊維、すなわち、水浸透度が、水洗濯前では1mg/g以上であるか゛、水洗濯後では0.5mg/g以下であること、さらに水洗濯後の繊維束の繊維−繊維間静摩擦係数が0.01〜0.3であることの二つの要件を同時に満足させてみたところ、かかる課題を一挙に解決することを究明したものである。   The present invention has been intensively studied on the above-mentioned problem, that is, carbon fibers having excellent dispersibility during papermaking, and the carbon fibers satisfying specific parameters, that is, the water permeability is 1 mg / g or more before water washing. It satisfies the two requirements at the same time: 0.5 mg / g or less after water washing, and that the fiber-fiber static friction coefficient of the fiber bundle after water washing is 0.01 to 0.3. As a result, it was clarified that such problems can be solved at once.

すなわち、本発明の炭素繊維フィラメントからなる繊維束は、かかる繊維束中に水が染込んで繊維同士を化学的に分離するとともに機械的な応力により繊維同士を滑らして物理的に分離させるだけでなく、水中での繊維同士の絡みによる再凝集を抑えたりすることにより、抄紙する際の分散性を向上させることを特徴とする。   That is, the fiber bundle composed of the carbon fiber filament of the present invention can be obtained by simply separating the fibers physically by mechanically stressing the fibers while the fibers are soaked in water and chemically separating the fibers. In addition, the present invention is characterized in that the dispersibility during papermaking is improved by suppressing reaggregation due to entanglement of fibers in water.

本発明における水浸透度とは、以下に定義する通りである。   The water penetration degree in the present invention is as defined below.

すなわち、側地25cm×25cm(40番/40番:T120本/L120本(インチ))のダウンプルーフに炭素繊維束(3300〜26400dtex)25gを詰め込み、JIS−L1096−1999「一般織物試験方法」の8.23.1に記載されたA法(かくはん形洗濯機を用いる方法)に準じて1回水洗濯し、水洗濯後の炭素繊維束試料とする。また、水洗濯しないものを水洗濯前の炭素繊維束試料とする。
接触角計(好ましくはデータフィジック社製接触角計DCAT11)を用いて、25mmにカットした炭素繊維束試料(3300〜26400dtex)の0.1mmを水中に浸積して10分間放置し、10分間の浸漬により該試料が吸収した試料1g当たりの水分を水浸透度[mg/g]として求めたものである。
水浸透度 = ( W2 − W1 ) / ( W1 × 1000 )
W1 : 水中浸積前の試料重量[mg]
W2 : 10分間水中浸積後の試料重量[mg]
かくして得られる水浸透度が、水洗濯前で1mg/g以上、水洗濯後で0.5mg/g以下であることが重要であり、好ましくは水洗濯前で1.5mg/g以上、水洗濯後で0.3mg/g以下であり、特に好ましくは水洗濯前で2mg/g以上、水洗濯後で0.1mg/g以下であることがよい。すなわち、前記水浸透度が、水洗濯前で1mg/g未満であると繊維束中への水の染込みが悪くなり、抄紙の際における分散性が悪くなる。
That is, 25 g of carbon fiber bundles (3300 to 26400 dtex) are packed into a down proof of 25 cm × 25 cm (40/40: T120 / L120 (inch)), and JIS-L1096-1999 “General Textile Testing Method” In accordance with Method A (method using a stirrer-type washing machine) described in No. 8.23.1, a water-washed carbon fiber bundle sample is obtained. In addition, a sample not washed with water is used as a carbon fiber bundle sample before washing with water.
Using a contact angle meter (preferably a contact angle meter DCAT11 manufactured by Data Physics), 0.1 mm of a carbon fiber bundle sample (3300 to 26400 dtex) cut to 25 mm is immersed in water and left for 10 minutes, and left for 10 minutes. The water per 1 g of sample absorbed by the soaking was determined as water permeability [mg / g].
Water permeability = (W2-W1) / (W1 × 1000)
W1: Sample weight before immersion in water [mg]
W2: Sample weight after immersion in water for 10 minutes [mg]
It is important that the water permeability thus obtained is 1 mg / g or more before water washing and 0.5 mg / g or less after water washing, preferably 1.5 mg / g or more before water washing. It is 0.3 mg / g or less later, particularly preferably 2 mg / g or more before water washing and 0.1 mg / g or less after water washing. That is, if the water permeability is less than 1 mg / g before washing with water, the water penetration into the fiber bundle becomes poor, and the dispersibility during papermaking becomes poor.

本発明における繊維−繊維間静摩擦係数とは、以下に定義するとおりである。   The fiber-fiber static friction coefficient in the present invention is as defined below.

すなわち、側地25cm×25cm(40番/40番:T120本/L120本(インチ))のダウンプルーフに炭素繊維フィラメントからなる繊維束(3300〜26400dtex)25gを詰め込み、JIS−L1096−1999「一般織物試験方法」の8.23.1に記載されたA法(かくはん形洗濯機を用いる方法)に準じて1回水洗濯する。水洗濯後の該繊維束をJIS−L1015−1999「化学繊維ステープル試験方法」の8.13に記載された静摩擦係数測定方法に準じて測定した。その測定方法は次の通りである。水洗濯後の該繊維束25gのうち、20gを紙管に巻き付け、該紙管を水平にし、回転しないように固定する。残り5gを用いて次に示す手順を20回繰り返して繊維−繊維間静摩擦係数μを算出する。固定した該紙管に該繊維束同士が接触するように水洗濯後の該繊維束0.2gを1回転半(3πrad)巻き付け、該試料の一端に150gの荷重T2をつけ、他端に張力計をつける。張力計を下方に引っ張り、荷重が動き出した時の張力T1を計測し、次式より繊維−繊維間静摩擦係数μを算出する。試験回数は繊維束25gについて20回とし、その平均値で表したものである。   That is, 25 g of a fiber bundle (3300 to 26400 dtex) made of carbon fiber filaments is packed in a down proof of 25 cm × 25 cm (40/40: T120 / L120 (inch)), and JIS-L1096-1999 “General Wash with water once according to Method A (method using a stirring type washing machine) described in 8.23.1 of “Textile Testing Method”. The fiber bundle after water washing was measured according to the static friction coefficient measuring method described in 8.13 of JIS-L1015-1999 “Testing method for chemical fiber staples”. The measuring method is as follows. Of the fiber bundle 25g after water washing, 20g is wound around a paper tube, the paper tube is leveled and fixed so as not to rotate. Using the remaining 5 g, the following procedure is repeated 20 times to calculate the fiber-fiber static friction coefficient μ. The fiber bundle 0.2 g after water washing is wound around the fixed paper tube so that the fiber bundles are in contact with each other by a half turn (3π rad), a load T2 of 150 g is applied to one end of the sample, and a tension is applied to the other end. Measure. The tension meter is pulled downward, the tension T1 when the load starts to move is measured, and the fiber-fiber static friction coefficient μ is calculated from the following equation. The number of tests is 20 times for 25 g of fiber bundle, and is represented by the average value.

μ = Ln(T1/T2)/θ
μ : 繊維−繊維間静摩擦係数[−]
T1 : 出側張力 [g]
T2 : 入側張力(荷重) [g]
θ : 接触角 [rad]
かかる繊維−繊維間静摩擦係数μは、抄紙工程の中〜後期(集束剤が溶出して繊維表面からなくなった状態)における繊維同士の絡みの評価尺度となるものであり、0.01〜0.3であることが重要であり、好ましくは0.01〜0.2であることがよい。すなわち、かかる静摩擦係数μが、0.3を超えると抄紙する際に一時的に一旦分散しても繊維同士の引っ掛かりにより再凝集してしまうため分散性が悪くなる。逆に該静摩擦係数μが、0.01未満になると均一な抄紙が得られるものの、抄紙自体の強度が弱くなる。該静摩擦係数μを0.01〜0.3の範囲内とすることで、平滑で強い抄紙を提供することができるものである。
μ = Ln (T1 / T2) / θ
μ: Fiber-to-fiber static friction coefficient [-]
T1: Exit tension [g]
T2: Input side tension (load) [g]
θ: contact angle [rad]
The fiber-to-fiber static coefficient of friction μ is an evaluation scale for the entanglement between fibers in the middle to late stage of the paper making process (the state in which the bundling agent is eluted and disappears from the fiber surface). 3 is important, preferably 0.01 to 0.2. That is, when the static friction coefficient μ exceeds 0.3, even if temporarily dispersed during papermaking, re-aggregation occurs due to the catching of fibers, resulting in poor dispersibility. Conversely, when the static friction coefficient μ is less than 0.01, uniform papermaking can be obtained, but the strength of the papermaking itself is weakened. By making the static friction coefficient μ in the range of 0.01 to 0.3, smooth and strong papermaking can be provided.

また、抄紙工程での初期分散性を向上させるため、本発明においては炭素繊維フィラメントからなる繊維束の形態も特定なものであることが好ましく、該繊維束の扁平度と交絡度が特定されることがさらに好ましい。   Further, in order to improve the initial dispersibility in the paper making process, it is preferable that the form of the fiber bundle made of carbon fiber filaments is also specific in the present invention, and the flatness and the entanglement degree of the fiber bundle are specified. More preferably.

本発明における扁平度とは、以下に定義するものである。   The flatness in the present invention is defined as follows.

すなわち、炭素繊維フィラメントからなる繊維束(3300〜26400dtex)の厚みT[mm]と幅W[mm]をノギス等にて計測し、次式により求めたものである。ただし、計測箇所は長手方向に1mずつ間隔をあけた10箇所とし、各箇所の扁平度をそれぞれ算出し、その平均値で表す。   That is, a thickness T [mm] and a width W [mm] of a fiber bundle (3300 to 26400 dtex) made of carbon fiber filaments are measured with a caliper or the like, and obtained by the following formula. However, the measurement locations are 10 locations spaced by 1 m in the longitudinal direction, and the flatness of each location is calculated and expressed as an average value.

扁平度 = W / T
W : 該繊維束の幅 [mm]
T : 該繊維束の厚み[mm]
かかる扁平度としては、1〜50であるものが好ましく、1〜20がさらに好ましい。この扁平度が50を超えると、炭素繊維フィラメントからなる繊維束の集束性が悪くなり、該繊維束を巻き取ったボビンからの解舒性が悪くなる。
Flatness = W / T
W: width of the fiber bundle [mm]
T: thickness of the fiber bundle [mm]
Such flatness is preferably 1 to 50, and more preferably 1 to 20. When this flatness exceeds 50, the convergence property of the fiber bundle made of carbon fiber filaments is deteriorated, and the unwinding property from the bobbin around which the fiber bundle is wound is deteriorated.

本発明における交絡度とは、以下に定義されるものである。   The degree of entanglement in the present invention is defined as follows.

すなわち、JIS−L1013「化学繊維フィラメント糸試験方法」の交絡度測定方法に準じて測定したものである。その測定方法は次の通りである。炭素繊維フィラメントからなる繊維束試料(3300〜26400dtex)の一端を適当な性能を有する垂下装置の上部つかみ部に取り付け、つかみ部より1m下方の位置に荷重(100g)を吊り下げ、該試料を垂直に垂らす。該試料の上部つかみ部より1cm下部の点に該繊維束を2分割するようにフック(直径1mmの針金状)を挿入する。フックの他端には所定の荷重(10g)を取り付け、約2cm/秒の速度でフックを降下させる。フックが糸の絡みにより停止した点までのフックの降下距離L[mm]を求め、次式により求めたものである。上述の操作を50回(1回/m×50)繰り返し、その平均値で表す。   That is, it was measured according to the entanglement degree measuring method of JIS-L1013 “Testing method for chemical fiber filament yarn”. The measuring method is as follows. One end of a fiber bundle sample (3300 to 26400 dtex) made of carbon fiber filaments is attached to an upper grip part of a hanging device having an appropriate performance, and a load (100 g) is suspended at a position 1 m below the grip part, and the sample is vertically Hang on. A hook (wire shape with a diameter of 1 mm) is inserted so that the fiber bundle is divided into two at a point 1 cm below the upper grip portion of the sample. A predetermined load (10 g) is attached to the other end of the hook, and the hook is lowered at a speed of about 2 cm / second. The lowering distance L [mm] of the hook up to the point where the hook stopped due to the yarn entanglement was obtained, and it was obtained by the following equation. The above operation is repeated 50 times (1 time / m × 50), and the average value is expressed.

交絡度 = 1000 / L
L : フックの降下距離[mm]
かかる交絡度としては、1〜10の範囲内であるのが好ましく、1〜5の範囲内であるのがさらに好ましい。かかる交絡度が10を超えると、該繊維束の集束性が強くなりすぎてしまい、該繊維束中への水の染込みが悪くなるため抄紙の際における分散性が悪くなる。
Degree of confounding = 1000 / L
L: Descent distance of hook [mm]
The degree of entanglement is preferably in the range of 1 to 10, more preferably in the range of 1 to 5. If the degree of entanglement exceeds 10, the fiber bundle becomes too converging, and the water permeation into the fiber bundle becomes worse, so that the dispersibility during paper making becomes worse.

本発明の炭素繊維フィラメントからなる繊維束は、ポリアクリロニトリル(PAN)系、レーヨン系、ピッチ系などの公知の炭素繊維フィラメントが数百から数万本の束で構成されたもので、特に高強度の炭素繊維フィラメントからなる繊維束が得られやすいPAN系炭素繊維が補強効果を得る上で好ましい。また、後工程の抄紙製造工程での、解舒性、耐擦過性、分散性などの観点から、最終製品としては、かかる炭素繊維フィラメントの単糸繊度は0.1〜3.0dtexであるのが好ましく、総単糸数は100〜100000本が好ましく、1000〜24000本がより好ましく、1000〜9000本が特に好ましい。   The fiber bundle made of the carbon fiber filament of the present invention is made up of bundles of hundreds to tens of thousands of known carbon fiber filaments such as polyacrylonitrile (PAN), rayon, and pitch systems, and has particularly high strength. A PAN-based carbon fiber from which a fiber bundle made of carbon fiber filaments can be easily obtained is preferable for obtaining a reinforcing effect. Further, from the viewpoint of unwinding property, scratch resistance, dispersibility, etc. in the subsequent papermaking process, as a final product, the single yarn fineness of the carbon fiber filament is 0.1 to 3.0 dtex. The total number of single yarns is preferably 100 to 100,000, more preferably 1000 to 24,000, and particularly preferably 1,000 to 9000.

また、炭素繊維フィラメントの強度や弾性率としては特に限定されるものではないが、炭素繊維抄紙としての紙特性の観点から、該フィラメントの強度は100〜1000kgf/mmが好ましく、200〜700kgf/mmがさらに好ましい。また、該フィラメントの弾性率は10〜100t/mmが好ましく、15〜60t/mmがさらに好ましい。なお、炭素繊維フィラメントには、炭化繊維と黒鉛化繊維が含まれる。 Further, the strength and elastic modulus of the carbon fiber filament are not particularly limited, but from the viewpoint of the paper characteristics as the carbon fiber papermaking, the strength of the filament is preferably 100 to 1000 kgf / mm 2 , and 200 to 700 kgf / mm 2 is more preferred. Moreover, 10-100 t / mm < 2 > is preferable and the elastic modulus of this filament has more preferable 15-60 t / mm < 2 >. The carbon fiber filament includes carbonized fiber and graphitized fiber.

本発明の炭素繊維をカットして抄紙する場合、そのカット長は特に限定されるものではないが、本発明の効果、つまり、抄紙する際に短時間で均一に分散させることができる炭素繊維である上に、平滑で強い抄紙を得るという効果を十分に引き出すには、3〜30mmが好ましく、3〜12mmがより好ましく、3〜9mmが特に好ましい。   When paper is made by cutting the carbon fiber of the present invention, the cut length is not particularly limited, but the effect of the present invention, that is, carbon fiber that can be uniformly dispersed in a short time when paper is made. In addition, 3 to 30 mm is preferable, 3 to 12 mm is more preferable, and 3 to 9 mm is particularly preferable in order to sufficiently bring out the effect of obtaining smooth and strong papermaking.

以下に、PAN系炭素繊維の場合を例にして詳細を説明する。紡糸方法として、湿式、乾式、乾湿式などを採用できるが、適度な集束性のある繊維が得られ、かつ、前記本発明の効果が得られやすい湿式法が好ましく採用される。紡糸原液には、ポリアクリロニトリルのホモポリマあるいは共重合成分の溶液あるいは懸濁液などを用いることができる。該紡糸原液を凝固、水洗、延伸した後、油剤を付与して炭素繊維前駆体とする。該前駆体を耐炎化処理、炭化処理まで行って炭化繊維とするか、必要に応じてさらに黒鉛化処理をして黒鉛化繊維とする。得られた炭化繊維、黒鉛化繊維は抄紙工程通過性や抄紙品質安定性を向上させるために電解表面処理やサイジング剤付与がなされて、本発明の炭素繊維フィラメントとなる。   Details will be described below by taking the case of a PAN-based carbon fiber as an example. As the spinning method, a wet method, a dry method, a dry-wet method, and the like can be adopted. However, a wet method is preferably employed in which a fiber having an appropriate sizing property can be obtained and the effects of the present invention can be easily obtained. As the spinning dope, a polyacrylonitrile homopolymer or a solution or suspension of a copolymer component can be used. The spinning dope is solidified, washed with water, and stretched, and then an oil agent is applied to obtain a carbon fiber precursor. The precursor is subjected to flameproofing treatment and carbonization treatment to obtain carbonized fibers, or further graphitized as necessary to obtain graphitized fibers. The obtained carbonized fibers and graphitized fibers are subjected to electrolytic surface treatment and sizing agent addition in order to improve papermaking process passability and papermaking quality stability, and become the carbon fiber filament of the present invention.

本発明の炭素繊維を得るための具体的手段としては特に限定されるものではないが、
例えば以下のような手段がある。つまり、炭素繊維フィラメントの繊維表面の物理的または化学的な構造を変えることで、その繊維−繊維間静摩擦係数を0.01〜0.3の炭素繊維フィラメントとし、さらに水洗濯耐久性のない親水性サイジング剤を付与したり、炭素繊維フィラメントからなる繊維束としての毛細管現象を利用できるように束形態を特定することなどで水浸透度を水洗濯前で1mg/g以上、水洗濯後で0.5mg/g以下の炭素繊維フィラメントを得ることができる。
The specific means for obtaining the carbon fiber of the present invention is not particularly limited,
For example, there are the following means. That is, by changing the physical or chemical structure of the fiber surface of the carbon fiber filament, the fiber-to-fiber static friction coefficient is changed to 0.01 to 0.3 carbon fiber filament, and the water washing durability is not hydrophilic. Water penetrability is 1 mg / g or more before water washing and 0 after water washing by adding a natural sizing agent or specifying a bundle form so as to utilize a capillary phenomenon as a fiber bundle made of carbon fiber filaments. Carbon fiber filaments of 5 mg / g or less can be obtained.

かかる炭素繊維フィラメントの繊維−繊維間静摩擦係数を0.01〜0.3にするには、例えばX線光電子分光分析法による表面酸素の原子と炭素原子との原子数比(酸素原子数/炭素原子数)が、好ましくは0.35以下、より好ましくは0.20以下、特に好ましくは0.10以下となるように、電解液による陽極酸化を炭素繊維フィラメント表面に施したり、炭素繊維表面をシリコーンなどの平滑剤の強固な皮膜でコーティングしたりして、該炭素繊維フィラメント表面の化学的構造を変えることができる。また、かかる炭素繊維フィラメント表面をシリコーンなどの平滑剤の強固な皮膜でコーティングして、該炭素繊維フィラメント表面の物理的構造を変えることができる。   In order to set the fiber-fiber static friction coefficient of the carbon fiber filament to 0.01 to 0.3, for example, the atomic ratio of surface oxygen atoms to carbon atoms (number of oxygen atoms / carbon by X-ray photoelectron spectroscopy). The number of atoms) is preferably 0.35 or less, more preferably 0.20 or less, and particularly preferably 0.10 or less. The chemical structure of the carbon fiber filament surface can be changed by coating with a strong film of a smoothing agent such as silicone. Further, the physical structure of the carbon fiber filament surface can be changed by coating the surface of the carbon fiber filament with a strong film of a smoothing agent such as silicone.

かかる炭素繊維フィラメント表面上に強固な皮膜を形成させるシリコーンとしては、反応型の変性シリコーンが好ましく使用されるが、かかる変性シリコーンとしては、変性量が0.1〜10重量%であるアミノ変性シリコーン、変性量が0.1〜10重量%であるエポキシ変性シリコーンなどがより好ましく使用される。反応型の変性シリコーンはそれぞれを単独または混合して使用することができ、その付着量としては、炭素繊維フィラメントに対して好ましくは0.01〜5重量%であり、0.01〜3重量%がより好ましく、0.01〜0.1%がさらに好ましい。5重量%を越えると変性シリコーンを介在してフィラメント単糸間の疑似接着により抄紙時の分散性が低下する。逆に0.01%未満であるとシリコーンによる平滑効果が期待できなくなる。   As the silicone that forms a strong film on the surface of the carbon fiber filament, a reactive modified silicone is preferably used. As the modified silicone, an amino-modified silicone having a modified amount of 0.1 to 10% by weight is used. An epoxy-modified silicone having a modification amount of 0.1 to 10% by weight is more preferably used. Each of the reactive modified silicones can be used alone or in combination, and the amount of adhesion thereof is preferably 0.01 to 5% by weight and 0.01 to 3% by weight based on the carbon fiber filament. Is more preferable, and 0.01 to 0.1% is more preferable. When the content exceeds 5% by weight, the dispersibility during paper production is deteriorated due to pseudo-adhesion between filament single yarns via a modified silicone. Conversely, if it is less than 0.01%, the smoothing effect by silicone cannot be expected.

炭素繊維の水浸透度を1mg/g以上にするには、例えば、一般式(1)で示される水洗濯耐久性のない親水性化合物を含むサイジング剤にてサイズ処理したり、後述するように炭素繊維束としての毛細管現象を利用できるように束形態を特定したりすることができる。   In order to increase the water permeability of the carbon fiber to 1 mg / g or more, for example, the carbon fiber is sized with a sizing agent containing a hydrophilic compound having no water washing durability represented by the general formula (1), or as described later. The bundle form can be specified so that the capillary phenomenon as the carbon fiber bundle can be used.

R1O−POA−R2 ・・・・・・・・・・・・・・(1)
(ここで、POA:炭素数2〜4の少なくとも1種類以上のアルキレンオキサイドからなるポリオキシアルキレン、R1、R2:炭素数1〜50の脂肪族炭化水素基、炭素数1〜50の芳香族炭化水素基、炭素数1〜50の脂環族炭化水素基および水素から選ばれるいずれか、O:酸素。)
一般式(1)で示した化合物の基本構造はポリオキシアルキレン構造であり、炭素繊維の集束性、分散性を向上させる。一般式(1)においてPOAは、炭素数2〜4のアルキレンオキサイドが単独で繰り返してなるポリオキシアルキレンでも良く、炭素数2〜4のアルキレンオキサイドが少なくとも2種類以上共重合されてなるポリオキシアルキレンでも良い。集束性と親水性を考慮すると炭素数2のエチレンオキサイド単独で4〜100、好ましくは4〜50の範囲で繰り返してなるポリオキシエチレンが好ましい。一般式(1)においてR1およびR2は、炭素数1〜50の脂肪族炭化水素基、炭素数1〜50の芳香族炭化水素基、炭素数1〜50の脂環族炭化水素基、水素のいずれでもよい。平滑性と親水性を考慮すると炭素数としてはいずれも5〜30が好ましい。
R1O-POA-R2 (1)
(Here, POA: polyoxyalkylene composed of at least one alkylene oxide having 2 to 4 carbon atoms, R1, R2: aliphatic hydrocarbon group having 1 to 50 carbon atoms, aromatic carbonization having 1 to 50 carbon atoms) Any one selected from a hydrogen group, an alicyclic hydrocarbon group having 1 to 50 carbon atoms, and hydrogen, O: oxygen.)
The basic structure of the compound represented by the general formula (1) is a polyoxyalkylene structure, which improves the convergence and dispersibility of the carbon fiber. In the general formula (1), POA may be a polyoxyalkylene in which an alkylene oxide having 2 to 4 carbon atoms is repeated alone, or a polyoxyalkylene in which at least two kinds of alkylene oxides having 2 to 4 carbon atoms are copolymerized. But it ’s okay. In consideration of convergence and hydrophilicity, polyoxyethylene obtained by repeating ethylene oxide having 2 carbon atoms alone in the range of 4 to 100, preferably 4 to 50 is preferable. In the general formula (1), R1 and R2 are each an aliphatic hydrocarbon group having 1 to 50 carbon atoms, an aromatic hydrocarbon group having 1 to 50 carbon atoms, an alicyclic hydrocarbon group having 1 to 50 carbon atoms, Either is acceptable. In consideration of smoothness and hydrophilicity, the number of carbon atoms is preferably 5 to 30.

一般式(1)の化合物は単独でも良いが他の化合物を混合させても良い。親水性を考慮すると混合させる場合は一般式(1)の化合物が、好ましくは10〜100重量%、より好ましくは50〜100重量%の範囲がよい。 一般式(1)の化合物を含むサイジング剤の付着量としては、炭素繊維に対して好ましくは0.1〜5.0重量%であり、より好ましくは0.5〜3.0重量%であるのがよい。   Although the compound of General formula (1) may be individual, you may mix another compound. In the case of mixing in consideration of hydrophilicity, the compound of the general formula (1) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight. The adhesion amount of the sizing agent containing the compound of the general formula (1) is preferably 0.1 to 5.0% by weight, more preferably 0.5 to 3.0% by weight with respect to the carbon fiber. It is good.

また、炭素繊維束の毛細管現象等による効果を利用できるようにするために、湿式紡糸により表面フィブリルを大きくした炭素繊維前駆体にて焼成して炭素繊維の表面フィブリルを大きくしたり、炭素繊維束に好ましくは1〜100ターン/m、より好ましくは5〜30ターン/mの撚りを掛けて撚糸とする手段も有効である。
炭素繊維フィラメントについて表面フィブリルの大きさを表す尺度として、本発明では炭素繊維フィラメントの実表面積Srと投影面積Spとの比であるSr/Spを用いる。実表面積Srと投影面積Spとの比Sr/Spは、次のようにして測定することができる。すなわち、まず炭素繊維束を数mmの長さに切断し、単繊維を抜き出す。次に、銀ペーストを用いて単繊維をシリコンウエハ上に固定し、原子間力顕微鏡、たとえばDigital Instruments社製Nanoscope IIIa原子間力顕微鏡のDimension 3000ステージシステムを用い、3次元表面形状の像を得る。なお、走査モードはタッピングモードとし、探針には、たとえばオリンパス光学工業株式会社製Siカンチレバー一体型探針OMCL−AC120TSを用いる。また、走査速度は0.4Hz、ピクセル数は512×512、測定雰囲気は25±2℃の大気中とする。次に、得られた像について、上記原子間力顕微鏡に付属のソフトウエアNanoscope IIIバージョン4.22r2を用いてデータ処理し、1次フィルタ、Lowpassフィルタ、3次Plane Fitフィルタを用いてフィルタリングし、得られた像全体を対象にして実表面積Srと投影面積Spとを算出し、それらの比、すなわち、Sr/Spを求める。なお、投影面積は、単繊維が曲面を有していることを考慮し、曲面の曲率に近似した3次曲面への投影面積とする。そして、1個の単繊維について任意に選んだ5か所について上記測定を行い、最大値と最小値とを除いた3か所の相加平均値をもって比Sr/Spとする。Sr/Sp測定のn数は3とし、単純平均値として求める。
かかるSr/Spとして、炭素繊維束の毛細管現象等による効果を利用するには、1≦Sr/Sp<1.1の範囲内とすることが好ましく、1.03<Sr/Sp<1.07とすることがより好ましい。
また、例えば炭素繊維束を構成する総単糸数を好ましくは1000〜24000本、より好ましくは1000〜9000本として、炭素繊維束に好ましくは1〜100ターン/m、より好ましくは5〜30ターン/mの撚りを掛けて撚糸としたり、サイジング処理(サイジング剤の炭素繊維表面上でのキュアリング)時において炭素繊維束に好ましくは1〜10kg/束、よりこのましくは4〜8kg/束の圧接力を掛けたりすることにより、炭素繊維束の扁平度や交絡度を前記した範囲とすることができ、それにより炭素繊維束の毛細管現象等による効果をより利用することができるようになる。
In addition, in order to be able to use the effect of the capillary action of the carbon fiber bundle, the surface fibril of the carbon fiber is enlarged by firing with a carbon fiber precursor whose surface fibril is enlarged by wet spinning, or the carbon fiber bundle It is also effective to use a twisted yarn by twisting 1 to 100 turns / m, more preferably 5 to 30 turns / m.
In the present invention, Sr / Sp, which is the ratio of the actual surface area Sr of carbon fiber filaments to the projected area Sp, is used as a scale representing the size of the surface fibrils for the carbon fiber filaments. The ratio Sr / Sp between the actual surface area Sr and the projected area Sp can be measured as follows. That is, first, a carbon fiber bundle is cut into a length of several mm, and single fibers are extracted. Next, a single fiber is fixed on a silicon wafer using a silver paste, and an image of a three-dimensional surface shape is obtained using an atomic force microscope, for example, a Dimension 3000 stage system of a Digitalscopes Nanoscope IIIa atomic force microscope. . The scanning mode is a tapping mode, and for example, an Olympus Optical Co., Ltd. Si cantilever integrated probe OMCL-AC120TS is used. The scanning speed is 0.4 Hz, the number of pixels is 512 × 512, and the measurement atmosphere is 25 ± 2 ° C. air. Next, the obtained image is subjected to data processing using the software Nanoscope III version 4.22r2 attached to the atomic force microscope, filtered using a first order filter, a lowpass filter, and a third order plane fit filter. The actual surface area Sr and the projected area Sp are calculated for the entire obtained image, and the ratio thereof, that is, Sr / Sp is obtained. Note that the projected area is a projected area on a cubic curved surface that approximates the curvature of the curved surface, considering that the single fiber has a curved surface. And the said measurement is performed about five places arbitrarily selected about one single fiber, and let the ratio Sr / Sp be the arithmetic mean value of three places except the maximum value and the minimum value. The number of n in the Sr / Sp measurement is 3, and is determined as a simple average value.
As such Sr / Sp, in order to utilize the effect of the capillary phenomenon of the carbon fiber bundle, it is preferable to set the range of 1 ≦ Sr / Sp <1.1, and 1.03 <Sr / Sp <1.07. More preferably.
Further, for example, the total number of single yarns constituting the carbon fiber bundle is preferably 1000 to 24000, more preferably 1000 to 9000, and the carbon fiber bundle is preferably 1 to 100 turns / m, more preferably 5 to 30 turns / Preferably, the carbon fiber bundle is 1 to 10 kg / bundle, more preferably 4 to 8 kg / bundle at the time of sizing treatment (curing on the carbon fiber surface of the sizing agent). By applying a pressure contact force, the flatness and the entanglement degree of the carbon fiber bundle can be set to the above-described ranges, thereby making it possible to further utilize the effect of the carbon fiber bundle due to the capillary phenomenon or the like.

以下、実施例により本発明をさらに詳細に説明する。なお、本例中の扁平度、交絡度、
水浸透度および繊維−繊維間静摩擦係数はそれぞれ次の方法により求めた。
(1)水浸透度
側地25cm×25cm(40番/40番:T120本/L120本(インチ))のダウンプルーフに炭素繊維束(3300〜26400dtex)25gを詰め込み、JIS−L1096−1999「一般織物試験方法」の8.23.1に記載されたA法(かくはん形洗濯機を用いる方法)に準じて1回水洗濯し、水洗濯後の炭素繊維束試料とする。また、水洗濯しないものを水洗濯前の炭素繊維束試料とする。
データフィジック社製接触角計DCAT11を用いて、25mmにカットした炭素繊維束試料(3300〜26400dtex)の0.1mmを水中に浸積して10分間放置し、10分間の浸漬により該試料が吸収した試料1g当たりの水分を水浸透度[mg/g]として求める。
水浸透度 = ( W2 − W1 ) / ( W1 × 1000 )
W1 : 水中浸積前の試料重量[mg]
W2 : 10分間水中浸積後の試料重量[mg]
(2)繊維−繊維間静摩擦係数
側地25cm×25cm(40番/40番:T120本/L120本(インチ))のダウンプルーフに炭素繊維束(3300〜26400dtex)25gを詰め込み、JIS−L1096−1999「一般織物試験方法」の8.23.1に記載されたA法(かくはん形洗濯機を用いる方法)に準じて1回水洗濯する。水洗濯後の炭素繊維束をJIS−L1015−1999「化学繊維ステープル試験方法」の8.13に記載された静摩擦係数測定方法に準じて測定した。その測定方法は次の通りである。水洗濯後の炭素繊維束25gのうち、20gを紙管に巻き付け、該紙管を水平にし、回転しないように固定する。残り5gを用いて次に示す手順を20回繰り返して繊維−繊維間静摩擦係数μを算出する。固定した該紙管に繊維束同士が接触するように水洗濯後の炭素繊維束0.2gを1回転半(3πrad)巻き付け、該試料の一端に150gの荷重T2をつけ、他端に張力計をつける。張力計を下方に引っ張り、荷重が動き出した時の張力T1を計測し、次式より繊維−繊維間静摩擦係数μを算出する。試験回数は繊維束25gについて20回とし、その平均値で表す。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, flatness, entanglement degree in this example,
The water permeability and the fiber-fiber static friction coefficient were determined by the following methods, respectively.
(1) Water penetration degree 25 cm × 25 cm (No. 40 / No. 40: T120 / L120 (inch)) down proof is packed with 25 g of carbon fiber bundles (3300 to 26400 dtex), and JIS-L1096-1999 “General Wash with water once in accordance with Method A (method using a stirring type washing machine) described in 8.23.1 of “Textile Testing Method” to obtain a carbon fiber bundle sample after water washing. In addition, a sample not washed with water is used as a carbon fiber bundle sample before washing with water.
Using a contact angle meter DCAT11 manufactured by Data Physics, 0.1 mm of a carbon fiber bundle sample (3300 to 26400 dtex) cut to 25 mm is immersed in water and left for 10 minutes, and the sample is absorbed by immersion for 10 minutes. The water per 1 g of the obtained sample is determined as the water permeability [mg / g].
Water permeability = (W2-W1) / (W1 × 1000)
W1: Sample weight before immersion in water [mg]
W2: Sample weight after immersion in water for 10 minutes [mg]
(2) Coefficient of static friction between fiber and fiber Side fabric 25cm x 25cm (40/40: T120 / L120 (inch)) down proof, stuffed with carbon fiber bundle (3300-26400dtex) 25g, JIS-L1096- Wash with water once according to Method A (method using a stirring type washing machine) described in 8.23.1 of 1999 “General Textile Testing Method”. The carbon fiber bundle after water washing was measured according to the static friction coefficient measurement method described in 8.13 of JIS-L1015-1999 “Testing method for chemical fiber staples”. The measuring method is as follows. Of the 25 g carbon fiber bundle after water washing, 20 g is wound around a paper tube, the paper tube is leveled, and fixed so as not to rotate. Using the remaining 5 g, the following procedure is repeated 20 times to calculate the fiber-fiber static friction coefficient μ. Wrapped carbon fiber bundle 0.2g after water washing so that the fiber bundles are in contact with the fixed paper tube for one and a half turn (3π rad), 150 g of load T2 is applied to one end of the sample, and a tension meter is applied to the other end. Turn on. Pull the tension meter downward, measure the tension T1 when the load starts to move, and calculate the fiber-fiber static friction coefficient μ from the following equation. The number of tests is 20 times for 25 g of fiber bundle, and the average value is shown.

μ = Ln(T1/T2)/θ
μ : 繊維−繊維間静摩擦係数[−]
T1 : 出側張力 [g]
T2 : 入側張力(荷重) [g]
θ : 接触角 [rad]
(3)扁平度
炭素繊維束(3300〜26400dtex)の厚みT[mm]と幅W[mm]を校正されたノギスにて計測し、次式により求める。計測箇所は長手方向に1mの間隔をあけた10箇所とし、各箇所の扁平度をそれぞれ算出し、その平均値で表す。
μ = Ln (T1 / T2) / θ
μ: Fiber-to-fiber static friction coefficient [-]
T1: Exit tension [g]
T2: Input side tension (load) [g]
θ: contact angle [rad]
(3) Flatness The thickness T [mm] and the width W [mm] of the carbon fiber bundle (3300 to 26400 dtex) are measured with a calibrated caliper, and obtained by the following equation. The measurement locations are 10 locations with a 1 m interval in the longitudinal direction, and the flatness of each location is calculated and expressed as an average value.

扁平度 = W / T
W : 繊維束の幅 [mm]
T : 繊維束の厚み[mm]
(4)交絡度
JIS−L1013「化学繊維フィラメント糸試験方法」の交絡度測定方法に準じて測定した。その測定方法は次の通りである。炭素繊維束試料(3300〜26400dtex)の一端を適当な性能を有する垂下装置の上部つかみ部に取り付け、つかみ部より1m下方の位置に荷重(100g)を吊り下げ、該試料を垂直に垂らす。該試料の上部つかみ部より1cm下部の点に繊維束を2分割するようにフック(直径1mmの針金状)を挿入する。フックの他端には所定の荷重(10g)を取り付け、約2cm/秒の速度でフックを降下させる。フックが糸の絡みにより停止した点までのフックの降下距離L[mm]を求め、次式により求める。上述の操作を50回(1回/m×50)繰り返し、その平均値で表す。
Flatness = W / T
W: Width of fiber bundle [mm]
T: Fiber bundle thickness [mm]
(4) Entanglement degree It measured according to the entanglement degree measuring method of JIS-L1013 "Chemical fiber filament yarn test method". The measuring method is as follows. One end of a carbon fiber bundle sample (3300 to 26400 dtex) is attached to an upper grip portion of a drooping device having appropriate performance, a load (100 g) is suspended at a position 1 m below the grip portion, and the sample is suspended vertically. A hook (wire shape with a diameter of 1 mm) is inserted so as to divide the fiber bundle into two at a point 1 cm below the upper grip part of the sample. A predetermined load (10 g) is attached to the other end of the hook, and the hook is lowered at a speed of about 2 cm / second. The hook lowering distance L [mm] to the point where the hook stops due to the yarn entanglement is obtained, and the following equation is obtained. The above operation is repeated 50 times (1 time / m × 50), and the average value is expressed.

交絡度 = 1000 / L
L : フックの降下距離[mm]
(5)分散度
長さ6mmにカットした炭素繊維束試料(3300〜26400dtex)を500rpmの速度で撹拌している100mlの水中へ投入してから、繊維束の塊が分散して見えなくなるまでに要した時間[秒]を計測する。上述の操作を10回(10試料×1回)繰り返し、その平均値で表す。20秒以内であることが望ましい。
Degree of confounding = 1000 / L
L: Descent distance of hook [mm]
(5) Dispersion After throwing a carbon fiber bundle sample (3300 to 26400 dtex) cut to a length of 6 mm into 100 ml of water stirred at a speed of 500 rpm, the lump of the fiber bundle is dispersed and disappears. Measure the time [seconds] required. The above operation is repeated 10 times (10 samples × 1 time), and the average value is expressed. It is desirable to be within 20 seconds.

実施例1
アクリロニトリル99.9mol%、アリルスルホン酸ソーダ0.5mol%、2−ヒドロキシエチルアクリロニトリル0.5mol%をジメチルスルホキシドを溶媒とする溶液重合法により重合を行い、原液濃度22重量%の紡糸原液としたあと、ジメチルスルホキシド水溶液中に湿式紡糸法にて延伸倍率13.0で延伸・水洗して、単糸繊度1.1dtex、単糸本数3000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を15T/mの撚り数となるように撚りを掛けてから、250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し、繊維表面の酸素原子数/炭素原子数=0.10の炭化繊維を得た。この炭化繊維の電解表面処理をせずにポリオキシエチレンオレイルエーテルをディップ方式で付着量が1重量%となるように付着させ、次いで150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Example 1
After polymerizing 99.9 mol% of acrylonitrile, 0.5 mol% of allyl sulfonic acid soda and 0.5 mol% of 2-hydroxyethylacrylonitrile by a solution polymerization method using dimethyl sulfoxide as a solvent, Then, it was drawn into a dimethyl sulfoxide aqueous solution by a wet spinning method at a draw ratio of 13.0 and washed with water to obtain an acrylic yarn that becomes a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 3000. The raw yarn is twisted so as to have a twist number of 15 T / m and then heated in air at 250 ° C. to obtain an oxidized fiber having a moisture content of 4.0% by weight while being drawn at a draw ratio of 1.05. It was. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain carbonized fiber having the number of oxygen atoms / number of carbon atoms = 0.10 on the fiber surface. Without electrolytic surface treatment of this carbonized fiber, polyoxyethylene oleyl ether was attached by a dip method so that the amount of attachment was 1% by weight, and then dried by applying a pressure of 6 kg / bundle with hot air at 150 ° C. By performing (curing), carbon fibers with Sr / Sp = 1.05 shown in Table 1 were obtained.

実施例2
実施例1で得た炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.23とした。次にポリオキシエチレンオレイルエーテルをディップ方式で付着量が1重量%となるように付着させ、150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Example 2
The carbonized fiber obtained in Example 1 was anodized in an aqueous ammonium bicarbonate solution, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.23. Next, polyoxyethylene oleyl ether was attached by a dip method so that the attached amount was 1% by weight, and dried (curing) while applying a pressure of 6 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.05 shown in FIG.

実施例3
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に乾湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数24000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.25とした。次にアミノ等量が2000、粘度が2000センチポイズのアミノ変性シリコーンをノニオン界面活性剤で8:2(重量比)の割合にて乳化したものをディップ方式で付着量が1重量%となるように付着させ、150℃の熱風にて7kg/束の圧接力を掛けながら乾燥(キュアリング)させた。さらにポリオキシエチレンオレイルエーテルをディップ方式で付着量が1重量%となるように付着させ、150℃の熱風にて7kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.02の炭素繊維を得た。
Example 3
The spinning stock solution used in Example 1 was drawn in a dimethyl sulfoxide aqueous solution by a dry and wet spinning method at a draw ratio of 13.0, washed with water, and a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 24,000, Acrylic yarn was obtained. The raw yarn was heated in air at 250 ° C., and an oxidized fiber having a moisture content of 4.0% by weight was obtained while drawing at a draw ratio of 1.05. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.25. Next, an amino-modified silicone having an amino equivalent of 2000 and a viscosity of 2000 centipoise is emulsified with a nonionic surfactant at a ratio of 8: 2 (weight ratio) so that the adhesion amount becomes 1 wt% by the dip method. It was allowed to adhere and dried (curing) while applying a pressure of 7 kg / bundle with hot air at 150 ° C. Furthermore, polyoxyethylene oleyl ether was attached by a dip method so that the amount of attachment was 1% by weight, and dried (curing) while applying a pressure of 7 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.02 shown was obtained.

実施例4
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数3000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.15とした。次にアミノ等量が2000、粘度が2000センチポイズのアミノ変性シリコーンをノニオン界面活性剤で8:2(重量比)の割合にて乳化したものをディップ方式で付着量が0.05重量%となるように付着させ、150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させた。さらにポリオキシエチレンオレイルエーテルをディップ方式で付着量が1重量%となるように付着させ、150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Example 4
The spinning dope used in Example 1 was drawn in a dimethyl sulfoxide aqueous solution by a wet spinning method at a draw ratio of 13.0 and washed with water to obtain a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 3000. Acrylic raw yarn was obtained. The raw yarn was heated in air at 250 ° C., and an oxidized fiber having a moisture content of 4.0% by weight was obtained while drawing at a draw ratio of 1.05. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.15. Next, an amino-modified silicone having an amino equivalent of 2000 and a viscosity of 2000 centipoise is emulsified with a nonionic surfactant at a ratio of 8: 2 (weight ratio), and the adhesion amount is 0.05% by dip method. And dried (curing) while applying a pressure of 6 kg / bundle with hot air at 150 ° C. Furthermore, polyoxyethylene oleyl ether was attached by a dip method so that the amount of attachment was 1% by weight, and dried (curing) while applying a pressure of 6 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.05 shown was obtained.

実施例5
実施例1で得た炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.25とした。次にポリオキシエチレンオレイルエーテルをディップ方式で付着量が5重量%となるように付着させ、150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Example 5
The carbonized fiber obtained in Example 1 was anodized in an aqueous ammonium bicarbonate solution, and the number of oxygen atoms / the number of carbon atoms on the fiber surface was set to 0.25. Next, polyoxyethylene oleyl ether was attached by a dip method so that the attached amount was 5% by weight, and dried (curing) while applying a pressure of 6 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.05 shown in FIG.

実施例6
実施例1で得た炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.23とした。次にポリオキシエチレンオレイルエーテルをディップ方式で付着量が0.1重量%となるように付着させ、150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Example 6
The carbonized fiber obtained in Example 1 was anodized in an aqueous ammonium bicarbonate solution, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.23. Next, polyoxyethylene oleyl ether is attached by a dip method so that the attached amount is 0.1% by weight, and dried (curing) while applying a pressure of 6 kg / bundle with hot air at 150 ° C. Carbon fibers with Sr / Sp = 1.05 shown in Table 1 were obtained.

実施例7
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数6000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を100T/mの撚り数となるように撚りを掛けてから、250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.30とした。次にポリオキシエチレンオクチルエーテルをディップ方式で付着量が3重量%となるように付着させ、150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Example 7
The spinning dope used in Example 1 was drawn into a dimethyl sulfoxide aqueous solution by a wet spinning method at a draw ratio of 13.0 and washed with water to obtain a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 6000. Acrylic raw yarn was obtained. The raw yarn is twisted to a twist number of 100 T / m and then heated in air at 250 ° C. to obtain an oxidized fiber having a moisture content of 4.0% by weight while being drawn at a draw ratio of 1.05. It was. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.30. Next, polyoxyethylene octyl ether was attached by a dip method so that the amount of attachment was 3% by weight, and dried (curing) while applying a pressure of 6 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.05 shown in FIG.

実施例8
実施例7で得たアクリル原糸を3T/mの撚り数となるように撚りを掛けてから、250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.35とした。次にポリオキシエチレンオクチルエーテルをディップ方式で付着量が3重量%となるように付着させ、150℃の熱風にて6kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Example 8
The acrylic raw yarn obtained in Example 7 was twisted so as to have a twist number of 3 T / m, heated in air at 250 ° C., and stretched at a draw ratio of 1.05, and a moisture content of 4.0 weight. % Oxidized fiber was obtained. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate to make the number of oxygen atoms / number of carbon atoms = 0.35 on the fiber surface. Next, polyoxyethylene octyl ether was attached by a dip method so that the amount of attachment was 3% by weight, and dried (curing) while applying a pressure of 6 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.05 shown in FIG.

実施例9
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に乾湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数48000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.40とした。次にアミノ等量が2000、粘度が2000センチポイズのアミノ変性シリコーンをノニオン界面活性剤で8:2(重量比)の割合にて乳化したものをディップ方式で付着量が4重量%となるように付着させ、150℃の熱風にて11kg/束の圧接力を掛けながら乾燥(キュアリング)させた。さらにポリオキシエチレンラウリルエーテルをディップ方式で付着量が0.5重量%となるように付着させ、150℃の熱風にて11kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.02の炭素繊維を得た。
Example 9
The spinning dope used in Example 1 was drawn in a dimethyl sulfoxide aqueous solution by a dry and wet spinning method at a draw ratio of 13.0 and washed with water to obtain a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 48,000. Acrylic yarn was obtained. The raw yarn was heated in air at 250 ° C., and an oxidized fiber having a moisture content of 4.0% by weight was obtained while drawing at a draw ratio of 1.05. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.40. Next, an amino-modified silicone having an amino equivalent of 2000 and a viscosity of 2000 centipoise is emulsified with a nonionic surfactant at a ratio of 8: 2 (weight ratio) so that the adhesion amount becomes 4 wt% by the dip method. It was attached and dried (curing) while applying a pressure of 11 kg / bundle with hot air at 150 ° C. Further, polyoxyethylene lauryl ether was attached by a dip method so that the amount of attachment was 0.5% by weight, and dried (curing) while applying a pressure contact force of 11 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.02 shown in 1 was obtained.

実施例10
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に乾湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数12000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を200T/mの撚り数となるように撚りを掛けてから、250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.18とした。次にポリオキシエチレンラウリルエーテルをディップ方式で付着量が0.5重量%となるように付着させ、150℃の熱風にて11kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.02の炭素繊維を得た。
Example 10
The spinning dope used in Example 1 was drawn in a dimethyl sulfoxide aqueous solution by a dry and wet spinning method at a draw ratio of 13.0, washed with water, and a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 12000, Acrylic yarn was obtained. The raw yarn is twisted so as to have a twist number of 200 T / m, and then heated in air at 250 ° C. to obtain an oxidized fiber having a moisture content of 4.0% by weight while drawing at a draw ratio of 1.05. It was. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. The carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.18. Next, polyoxyethylene lauryl ether was attached by a dip method so that the amount of attachment was 0.5% by weight, and dried (curing) while applying a pressure contact force of 11 kg / bundle with hot air at 150 ° C. Carbon fibers with Sr / Sp = 1.02 shown in Table 1 were obtained.

実施例11
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に乾湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数12000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.25とした。次にポリオキシエチレンラウリルエーテルをディップ方式で付着量が0.5重量%となるように付着させ、150℃の熱風にて0.5kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.02の炭素繊維を得た。
Example 11
The spinning dope used in Example 1 was drawn in a dimethyl sulfoxide aqueous solution by a dry and wet spinning method at a draw ratio of 13.0, washed with water, and a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 12000, Acrylic yarn was obtained. The raw yarn was heated in air at 250 ° C., and an oxidized fiber having a moisture content of 4.0% by weight was obtained while drawing at a draw ratio of 1.05. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.25. Next, polyoxyethylene lauryl ether is attached by dip method so that the amount of attachment is 0.5% by weight, and dried (curing) while applying a pressure of 0.5 kg / bundle with hot air at 150 ° C. Thus, carbon fibers with Sr / Sp = 1.02 shown in Table 1 were obtained.

比較例1
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に乾湿式紡糸法にて水洗し延伸倍率13.0で延伸し、単糸繊度1.1dtex、単糸本数24000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.18とした。次に、グリセリンをディップ方式で付着量が1重量%となるように付着させ、次いで150℃の熱風にて7kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.02の炭素繊維を得た。
Comparative Example 1
The spinning dope used in Example 1 was washed with water in a dimethyl sulfoxide aqueous solution by a dry and wet spinning method and drawn at a draw ratio of 13.0 to obtain a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 24,000. Acrylic raw yarn was obtained. The raw yarn was heated in air at 250 ° C. to obtain an oxidized fiber having a moisture content of 4.0% while drawing at a draw ratio of 1.05. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. The carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.18. Next, glycerin is attached by a dip method so that the amount of attachment is 1% by weight, and then dried (curing) while applying a pressure of 7 kg / bundle with hot air at 150 ° C., as shown in Table 1. A carbon fiber with Sr / Sp = 1.02 was obtained.

比較例2
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に乾湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数12000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.30とした。次にアミノ等量が2000、粘度が2000センチポイズのアミノ変性シリコーンをノニオン界面活性剤で8:2(重量比)の割合にて乳化したものをディップ方式で付着量が6重量%となるように付着させ、150℃の熱風にて11kg/束の圧接力を掛けながら乾燥(キュアリング)させた。さらにポリオキシエチレンオレイルエーテルをディップ方式で付着量が0.3重量%となるように付着させ、150℃の熱風にて11kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.02の炭素繊維を得た。
Comparative Example 2
The spinning dope used in Example 1 was drawn in a dimethyl sulfoxide aqueous solution by a dry and wet spinning method at a draw ratio of 13.0, washed with water, and a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 12000, Acrylic yarn was obtained. The raw yarn was heated in air at 250 ° C., and an oxidized fiber having a moisture content of 4.0% by weight was obtained while drawing at a draw ratio of 1.05. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.30. Next, an amino-modified silicone having an amino equivalent of 2000 and a viscosity of 2000 centipoise is emulsified with a nonionic surfactant at a ratio of 8: 2 (weight ratio) so that the adhesion amount becomes 6 wt% by the dip method. It was attached and dried (curing) while applying a pressure of 11 kg / bundle with hot air at 150 ° C. Furthermore, polyoxyethylene oleyl ether was attached by a dip method so that the amount of attachment was 0.3% by weight, and dried (curing) while applying a pressure of 11 kg / bundle with hot air at 150 ° C. The carbon fiber of Sr / Sp = 1.02 shown in 1 was obtained.

比較例3
実施例1で用いた紡糸原液をジメチルスルホキシド水溶液中に湿式紡糸法にて延伸倍率13.0で延伸し水洗して、単糸繊度1.1dtex、単糸本数3000本の炭素繊維前駆体となるアクリル原糸を得た。この原糸を200T/mの撚り数となるように撚りを掛けてから、250℃の空気中で加熱し、延伸倍率1.05で延伸しながら水分率4.0重量%の酸化繊維を得た。この酸化繊維を1400℃の窒素雰囲気中で炭素化し炭化繊維を得た。この炭化繊維を重炭酸アンモニウム水溶液中で陽極酸化を施し、繊維表面の酸素原子数/炭素原子数=0.40とした。次にポリオキシエチレンオレイルエーテルをディップ方式で付着量が1.0重量%となるように付着させ、150℃の熱風にて0.5kg/束の圧接力を掛けながら乾燥(キュアリング)させることにより、表1に示すSr/Sp=1.05の炭素繊維を得た。
Comparative Example 3
The spinning dope used in Example 1 was drawn in a dimethyl sulfoxide aqueous solution by a wet spinning method at a draw ratio of 13.0 and washed with water to obtain a carbon fiber precursor having a single yarn fineness of 1.1 dtex and a single yarn number of 3000. Acrylic raw yarn was obtained. The raw yarn is twisted so as to have a twist number of 200 T / m and then heated in air at 250 ° C. to obtain an oxidized fiber having a moisture content of 4.0% by weight while being drawn at a draw ratio of 1.05. It was. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbonized fiber. This carbonized fiber was anodized in an aqueous solution of ammonium bicarbonate, and the number of oxygen atoms / number of carbon atoms on the fiber surface was set to 0.40. Next, polyoxyethylene oleyl ether is attached by dip method so that the attached amount becomes 1.0% by weight, and dried (curing) while applying a pressure of 0.5 kg / bundle with hot air at 150 ° C. Thus, carbon fibers with Sr / Sp = 1.05 shown in Table 1 were obtained.

これらの実施例および比較例の各試料について、上述した(1)水浸透度、(2)繊維−繊維間静摩擦係数、(3)扁平度、(4)交絡度、(5)分散度の評価をそれぞれ行い、その結果を表2に示した。   About each sample of these Examples and Comparative Examples, (1) water penetration degree, (2) fiber-fiber static friction coefficient, (3) flatness, (4) entanglement degree, (5) evaluation of dispersity The results are shown in Table 2.

評価は、◎を優秀、○を良、△をやや不良、×を不可として、4段階の判定を行い、その判定結果を表2に併せて示した。本発明の実施例では◎(優秀)、○(良)を合格としている。   The evaluation was made in four steps, with ◎ being excellent, ○ being good, △ being slightly bad, and × being impossible, and the determination results are also shown in Table 2. In the examples of the present invention, ◎ (excellent) and ◯ (good) are acceptable.

その結果、表1および表2から分かるように、本発明の実施例1〜11の炭素繊維はいずれも良好な分散性を有しており、抄紙用原料として好ましいものであったのに対して、比較例1〜3の炭素繊維は分散性が悪く、抄紙用原料として好ましいものではなかった。   As a result, as can be seen from Tables 1 and 2, all of the carbon fibers of Examples 1 to 11 of the present invention had good dispersibility, whereas they were preferable as raw materials for papermaking. The carbon fibers of Comparative Examples 1 to 3 have poor dispersibility and were not preferable as a papermaking raw material.

Figure 2006219808
Figure 2006219808

Figure 2006219808
Figure 2006219808

Claims (6)

炭素繊維フィラメントからなる繊維束の水浸透度が、水洗濯前で1mg/g以上、水洗濯後で0.5mg/g以下であり、かつ、本文で規定する水洗濯後の繊維束の繊維−繊維間静摩擦係数が0.01〜0.3であることを特徴とする抄紙用炭素繊維。 A fiber bundle made of carbon fiber filaments has a water permeability of 1 mg / g or more before water washing, 0.5 mg / g or less after water washing, and the fibers of the fiber bundle after water washing specified in the text- A carbon fiber for papermaking, wherein a coefficient of static friction between fibers is 0.01 to 0.3. 該繊維束の扁平度および交絡度がそれぞれ1〜50および1〜10であることを特徴とする請求項1に記載の抄紙用炭素繊維。 The carbon fiber for papermaking according to claim 1, wherein the flatness and the entanglement degree of the fiber bundle are 1 to 50 and 1 to 10, respectively. 該炭素繊維フィラメントが、一般式(1)にて示される水洗濯耐久性のない親水性化合物を含むサイジング剤にてサイズ処理されたものであることを特徴とする請求項1または2に記載の抄紙用炭素繊維。
R1O−POA−R2 ・・・・・・・・・・・・・・(1)
(ここで、POA:炭素数2〜4の少なくとも1種類以上のアルキレンオキサイドからなるポリオキシアルキレン、R1、R2:炭素数1〜50の脂肪族炭化水素基、炭素数1〜50の芳香族炭化水素基、炭素数1〜50の脂環族炭化水素基および水素から選ばれるいずれか、O:酸素。)
3. The carbon fiber filament according to claim 1, wherein the carbon fiber filament has been sized with a sizing agent containing a hydrophilic compound having a water-washing durability and represented by the general formula (1). 4. Carbon fiber for papermaking.
R1O-POA-R2 (1)
(Here, POA: polyoxyalkylene composed of at least one alkylene oxide having 2 to 4 carbon atoms, R1, R2: aliphatic hydrocarbon group having 1 to 50 carbon atoms, aromatic carbonization having 1 to 50 carbon atoms) Any one selected from a hydrogen group, an alicyclic hydrocarbon group having 1 to 50 carbon atoms, and hydrogen, O: oxygen.)
X線光電子分光法による該炭素繊維フィラメント表面の酸素原子と炭素原子との原子数比が0.35以下であることを特徴とする請求項1〜3のいずれかに記載の抄紙用炭素繊維。 The carbon fiber for papermaking according to any one of claims 1 to 3, wherein an atomic ratio of oxygen atoms to carbon atoms on the surface of the carbon fiber filament by X-ray photoelectron spectroscopy is 0.35 or less. 該炭素繊維フィラメントからなる繊維束が、1〜100T/mの撚りを掛けられた撚糸であることを特徴とする請求項1〜4のいずれかに記載の抄紙用炭素繊維。 The carbon fiber for papermaking according to any one of claims 1 to 4, wherein the fiber bundle made of the carbon fiber filament is a twisted yarn twisted at 1 to 100 T / m. 該炭素繊維フィラメントが、シリコーン皮膜でコーティングされていることを特徴とする請求項1〜5のいずれかに記載の抄紙用炭素繊維。 The carbon fiber for papermaking according to any one of claims 1 to 5, wherein the carbon fiber filament is coated with a silicone film.
JP2005371655A 2005-01-13 2005-12-26 Papermaking carbon fiber Pending JP2006219808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371655A JP2006219808A (en) 2005-01-13 2005-12-26 Papermaking carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005006172 2005-01-13
JP2005371655A JP2006219808A (en) 2005-01-13 2005-12-26 Papermaking carbon fiber

Publications (1)

Publication Number Publication Date
JP2006219808A true JP2006219808A (en) 2006-08-24

Family

ID=36982315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371655A Pending JP2006219808A (en) 2005-01-13 2005-12-26 Papermaking carbon fiber

Country Status (1)

Country Link
JP (1) JP2006219808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037668A (en) * 2008-07-31 2010-02-18 Toray Ind Inc Method for producing carbon fiber web
WO2011089929A1 (en) 2010-01-20 2011-07-28 東レ株式会社 Carbon fiber bundles
JP2011144473A (en) * 2010-01-14 2011-07-28 Mitsubishi Plastics Inc Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material
JP2013155475A (en) * 2013-02-27 2013-08-15 Toray Ind Inc Method for producing carbon fiber web

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037668A (en) * 2008-07-31 2010-02-18 Toray Ind Inc Method for producing carbon fiber web
JP2011144473A (en) * 2010-01-14 2011-07-28 Mitsubishi Plastics Inc Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material
WO2011089929A1 (en) 2010-01-20 2011-07-28 東レ株式会社 Carbon fiber bundles
KR20120118464A (en) 2010-01-20 2012-10-26 도레이 카부시키가이샤 Carbon fiber bundles
JP2013155475A (en) * 2013-02-27 2013-08-15 Toray Ind Inc Method for producing carbon fiber web

Similar Documents

Publication Publication Date Title
JP4094670B2 (en) “Carbon fibers, acrylic fibers, and methods for producing them”
JP5772012B2 (en) Carbon fiber for filament winding molding and method for producing the same
JP5264150B2 (en) Carbon fiber strand and method for producing the same
JP2004026605A (en) Greige goods for glass fiber yarn and glass fiber yarn made using this
US6503624B2 (en) Carbon fiber precursor fiber bundle and manufacturing method of the same
JP4568912B2 (en) Isotropic pitch-based carbon fiber spun yarn, composite yarn and fabric using the same, and production method thereof
JP2015067910A (en) Carbon fiber and manufacturing method thereof
JP5682139B2 (en) Carbon fiber bundle
JP2010037668A (en) Method for producing carbon fiber web
JP7342700B2 (en) Carbon fiber bundle and its manufacturing method
US20210079563A1 (en) Carbon fiber and method of manufacturing same
JP2006219808A (en) Papermaking carbon fiber
JP2000160436A (en) Carbon fiber, and production of precursor for carbon fiber
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP2004316052A (en) Oil formulation for producing carbon fiber and method for producing the carbon fiber
JP4457747B2 (en) Carbon fiber bundle
JP2019151956A (en) Carbon fiber bundle, carbon fiber and manufacturing method of carbon fiber bundle
JP2018145562A (en) Carbon fiber precursor acrylic fiber bundle and manufacturing method of carbon fiber bundle using the same
JP5729406B2 (en) Carbon fiber web manufacturing method
Lakshmanan et al. Effect of nano-polysiloxane based finishing on handle properties of jute blended fabric
JP2023133739A (en) carbon fiber bundle
JPH054463B2 (en)
JP2007332518A (en) Oil agent composition, carbon fiber precursor acrylic fiber bundle and its production method, and carbon fiber bundle
JP2004076246A (en) Carbon fiber bundle
JP7456377B2 (en) Continuous carbon fiber bundle package