[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006218367A - Gas-hydrate feeding method to pressure gasification tank - Google Patents

Gas-hydrate feeding method to pressure gasification tank Download PDF

Info

Publication number
JP2006218367A
JP2006218367A JP2005032757A JP2005032757A JP2006218367A JP 2006218367 A JP2006218367 A JP 2006218367A JP 2005032757 A JP2005032757 A JP 2005032757A JP 2005032757 A JP2005032757 A JP 2005032757A JP 2006218367 A JP2006218367 A JP 2006218367A
Authority
JP
Japan
Prior art keywords
pressure
mixer
gasification tank
gas
pressure gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005032757A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
鈴木  剛
Goro Taguchi
梧郎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005032757A priority Critical patent/JP2006218367A/en
Publication of JP2006218367A publication Critical patent/JP2006218367A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy saving type pellet supplying method which does not need a compressor to boost the pressure of a low pressure gas. <P>SOLUTION: The energy saving type pellet supplying method is a method to supply the gas-hydrate and water after mixing with a mixer to the high pressure gasification tank. The method comprises a charging step (1) of supplying the gas-hydrate (a) to the mixer 18 under normal pressure, a pressurized water injection step (2) of generating swirling flow by supplying the pressurized water w' from the high pressure gasification tank 17 to a swirling chamber 34 in the mixer, swirling the gas-hydrate in an agitation turbulance chamber 33 under the swirling chamber which rides on the swirling flow and compressing the gas g generated in the mixer by utilizing the elevation of the water level, a discharging step (3) of supplying a mixed matter b of the gas-hydrate and the pressurized water which is swirling in the agitation discharging chamber and a water injection degassing step (4) of introducing the high pressure gas g' collected at the upper part of the mixer utilizing the pressurized water from the high pressure gasification tank after withdrawing the gas-hydrate in the mixer into the high pressure gasification tank. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高圧ガス化槽へのガスハイドレート供給方法及び装置、更に詳しくは、ガスタービン発電設備などのガス需要側が必要とするガス圧に対応するために高圧に保持されているガス化槽内にガスハイドレートを効率的に供給する高圧ガス化槽へのガスハイドレート供給方法及び装置に関するものである。   The present invention relates to a method and apparatus for supplying gas hydrate to a high-pressure gasification tank, and more particularly, a gasification tank held at a high pressure to cope with a gas pressure required by a gas demand side such as a gas turbine power generation facility. The present invention relates to a method and apparatus for supplying gas hydrate to a high-pressure gasification tank that efficiently supplies gas hydrate.

天然ガスハイドレート(NGH)は、高いガス包蔵性(即ち、天然ガスに対して1/170の体積となる。)を持っているばかりでなく、液化天然ガス(LNG)のように、マイナス162℃の極低温に保持する必要が無く、例えば、常温下においては、マイナス10℃〜マイナス30℃程度のあまり低くない温度に保持して輸送、あるいは貯蔵できる特性を持っている。   Natural gas hydrate (NGH) not only has a high gas storage property (that is, a volume of 1/170 with respect to natural gas), but also minus 162 like liquefied natural gas (LNG). There is no need to keep it at an extremely low temperature of ° C. For example, it has a characteristic that it can be transported or stored while being kept at a very low temperature of about minus 10 ° C to minus 30 ° C at room temperature.

このため、天然ガスハイドレートは、LNGに代わる天然ガスの新たな輸送あるいは貯蔵手段としてエネルギー業界から注目されている。   For this reason, natural gas hydrate is attracting attention from the energy industry as a new means of transporting or storing natural gas in place of LNG.

この天然ガスハイドレートは、例えば、直径が10〜50mm程度のペレット状に加工した後、輸送あるいは貯蔵することが考えられているが、包蔵した天然ガスを燃料として使用する場合には、ペレット状の天然ガスハイドレートを加熱して天然ガスと水とに熱分解し、この熱分解によって得られた天然ガスを消費地に搬送することが考えられる。   For example, this natural gas hydrate is considered to be transported or stored after being processed into pellets having a diameter of about 10 to 50 mm. It is conceivable that the natural gas hydrate is heated and pyrolyzed into natural gas and water, and the natural gas obtained by this pyrolysis is transported to the consumption area.

例えば、ガスハイドレートを用いる分散型コージェネレーション型設備においては、輸送容器によって天然ガスハイドレートを輸送し、この輸送容器から高圧容器に間欠的に天然ガスハイドレートを送出し、高圧容器内の天然ガスハイドレートを空調設備の空調負荷によって加温された循環水によって天然ガスと水とに熱分解し、得られた高圧の天然ガスをガスタービンなどのガス消費機器に供給する方法が採用されている(例えば、特許文献1参照。)。   For example, in a distributed cogeneration type facility using gas hydrate, the natural gas hydrate is transported by a transport container, and the natural gas hydrate is intermittently sent from the transport container to the high pressure container. A method is adopted in which gas hydrate is pyrolyzed into natural gas and water by circulating water heated by the air conditioning load of the air conditioning equipment, and the resulting high-pressure natural gas is supplied to gas consuming equipment such as a gas turbine. (For example, refer to Patent Document 1).

また、固化した状態の天然ガスハイドレートに水を添加して加圧しながら分解容器に供給し、この分解容器の内部で天然ガスハイドレートを加熱して天然ガスと水とに分解し、発生した天然ガスを高圧のまま分解容器から取り出して外部の利用設備に供給するガス供給方法が提案されている(例えば、特許文献2参照。)。
特開2003−254084号公報 特開2003−322296号公報
In addition, water was added to the solidified natural gas hydrate and pressurized and supplied to the decomposition vessel, and the natural gas hydrate was heated to decompose into natural gas and water inside the decomposition vessel. A gas supply method has been proposed in which natural gas is taken out from a decomposition vessel with high pressure and supplied to an external utilization facility (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 2003-254084 JP 2003-322296 A

上記のように、天然ガスハイドレートは、例えば、常圧下において、マイナス10℃〜マイナス30℃程度のあまり低くない温度で保管可能であるが、ガスタービン発電設備の場合、燃料である天然ガスを、例えば、35ata(3.43MPa)程度の高圧に昇圧してガスタービン燃焼器に供給する必要がある。   As described above, the natural gas hydrate can be stored at a temperature that is not so low, for example, about minus 10 ° C. to minus 30 ° C. under normal pressure. For example, it is necessary to increase the pressure to about 35 ata (3.43 MPa) and supply it to the gas turbine combustor.

その際、天然ガスハイドレートを耐圧容器内で熱分解して得られた天然ガスを、そのまま、あるいは圧力調整してガスタービン燃焼器などのガス消費機器に供給する方法を採用することにより、ガス圧縮機によって再昇圧する必要のないことから、ガス圧縮機の駆動動力ロスを防ぐことができる。   At that time, by adopting a method of supplying natural gas obtained by pyrolyzing natural gas hydrate in a pressure vessel to gas consuming equipment such as a gas turbine combustor as it is or by adjusting the pressure, Since it is not necessary to increase the pressure again by the compressor, it is possible to prevent the driving power loss of the gas compressor.

しかしながら、耐圧容器内が、上記のように、35ataあるいはそれ以上の高圧に保持されている場合、この耐圧容器内に常圧、若しくは常圧に近い状態下にある天然ガスハイドレートを供給することが極めて困難である。   However, when the pressure vessel is maintained at a high pressure of 35 ata or higher as described above, natural gas hydrate is supplied into the pressure vessel at or near normal pressure. Is extremely difficult.

すなわち、耐圧容器内の高圧ガスが逆流し、流入した分のガスをノックアウトドラムを介して再圧縮を要すること、また、耐圧容器内圧力の変動をもたらしたガスタービン等の運転に支障を来すためである。また、高圧水で押し込む等の方法も考えられるが、天然ガスハイドレートは、水より比重が軽く、浮上し易いことから、天然ガスハイドレートを収容している輸送容器よりも圧力の高い高圧容器に単に供給しようとしても水のみが供給され、肝心の天然ガスハイドレートが後に残ることになる。そのため、天然ガスハイドレートを供給するための混合器を使用する方法が考えられる。   That is, the high-pressure gas in the pressure vessel reversely flows, and it is necessary to recompress the gas that has flowed in through the knockout drum, which also hinders the operation of gas turbines and the like that have caused fluctuations in the pressure vessel pressure Because. Although a method of pushing in with high-pressure water is also conceivable, natural gas hydrate has a lighter specific gravity than water and is likely to float, so a high-pressure vessel with a higher pressure than a transport vessel containing natural gas hydrate Even if it is simply supplied, only water is supplied, and the essential natural gas hydrate is left behind. Therefore, a method using a mixer for supplying natural gas hydrate is conceivable.

図7は、本発明者らが考案した従来型のガスハイドレート供給装置の構成図であり、耐圧容器である高圧ガス化槽17の上方に中空円筒状の混合器8を設けている。この混合器8は、その上部にNGH投入弁1を有するNGH投入管11を有すると共に、NGH排出弁4を有するNGH排出管14によって混合器8の底部とガス化槽7の上部とを接続している。また、循環水ポンプ9と注水弁2とを有する注水管12によってガス化槽7の底部と混合器8の側部とを接続している。更に、混合器8の側部に均圧弁6を有する低圧ガス抜き管16を設けている。   FIG. 7 is a configuration diagram of a conventional gas hydrate supply device devised by the present inventors, in which a hollow cylindrical mixer 8 is provided above a high-pressure gasification tank 17 which is a pressure-resistant vessel. The mixer 8 has an NGH inlet pipe 11 having an NGH inlet valve 1 at the upper part thereof, and connects the bottom of the mixer 8 and the upper part of the gasification tank 7 by an NGH outlet pipe 14 having an NGH outlet valve 4. ing. Further, the bottom of the gasification tank 7 and the side of the mixer 8 are connected by a water injection pipe 12 having a circulating water pump 9 and a water injection valve 2. Further, a low-pressure degassing pipe 16 having a pressure equalizing valve 6 is provided on the side of the mixer 8.

図8は、この天然ガスハイドレート供給装置の作動説明図であり、この図を参照してペレット状に加工され、かつ、常圧下に晒されている天然ガスハイドレートpを混合器8によって高圧のガス化槽7内に間欠的に投入する方法について説明する。   FIG. 8 is an operation explanatory view of this natural gas hydrate supply device. With reference to this figure, the natural gas hydrate p processed into a pellet and exposed to normal pressure is pressurized by the mixer 8. A method of intermittently charging the gasification tank 7 will be described.

図8(a)は、NGH充填工程であり、注水弁2と、NGH排出弁4と、均圧弁6とを閉じるとともに、所定量の水wを有する混合器8内を常圧に保持した後、NGH投入弁1を開弁して混合器8内に常圧下のNGH(p)を所定量供給する工程である。   FIG. 8A shows an NGH filling process after the water injection valve 2, the NGH discharge valve 4 and the pressure equalizing valve 6 are closed and the inside of the mixer 8 having a predetermined amount of water w is maintained at normal pressure. In this step, the NGH charging valve 1 is opened to supply a predetermined amount of NGH (p) under normal pressure into the mixer 8.

図8(b)は、加圧水注入工程であり、NGH投入弁1を閉じるとともに、注水弁2を開いて注水管12より混合器8内に高圧(例えば、35ata程度)の加圧水w’を注入して混合器8内を昇圧するとともに、水面を上昇させて熱分解によって生じた天然ガスgを水面の上昇とともに加圧する。   FIG. 8B shows a pressurized water injection process, in which the NGH charging valve 1 is closed, the water injection valve 2 is opened, and high-pressure (for example, about 35 data) pressurized water w ′ is injected into the mixer 8 from the water injection pipe 12. Then, the pressure inside the mixer 8 is increased, and the natural gas g generated by pyrolysis by raising the water surface is pressurized as the water surface rises.

図8(c)は、NGH排出工程であり、注水管12より混合器8内に高圧(例えば、35ata程度)の加圧水w’を注入しながら、NGH排出弁4を開放して図示しないガス化槽内に加圧水w’とNGH(p)の混合体bを排出する状態を示している。   FIG. 8 (c) shows an NGH discharge process. While injecting pressurized water w ′ having a high pressure (for example, about 35 ata) into the mixer 8 from the water injection pipe 12, the NGH discharge valve 4 is opened to perform gasification (not shown). The state which discharges the mixture b of pressurized water w 'and NGH (p) in the tank is shown.

図8(d)は、NGH排出工程の続きの工程であり、混合器8内の全てのNGH(p)を図示しないガス化槽内に排出する状態を示している。   FIG. 8D is a process subsequent to the NGH discharge process, and shows a state where all NGH (p) in the mixer 8 is discharged into a gasification tank (not shown).

図8(e)は、放圧工程であり、注水弁2とNGH排出弁4とを閉じるとともに、均圧弁6を開放して混合器8内の高圧(例えば、35ata程度)の天然ガスgを減圧して図示しないノックアウトドラムに回収するようにしている。但し、この場合、放圧工程の開始時には低圧ガス抜き管16の接合部より上に水面があるため、天然ガスgと共に水wが流出する。   FIG. 8 (e) shows a pressure release process, in which the water injection valve 2 and the NGH discharge valve 4 are closed, and the pressure equalizing valve 6 is opened so that the high-pressure (for example, about 35 ata) natural gas g in the mixer 8 is removed. The pressure is reduced and recovered in a knockout drum (not shown). However, in this case, the water w flows out together with the natural gas g because the water surface is above the joint portion of the low-pressure degassing pipe 16 at the start of the pressure release process.

図8(f)は、均圧弁6を閉じた後、NGH投入弁1を開いてNGH(p)を投下できる状態を示している。   FIG. 8 (f) shows a state in which, after the pressure equalizing valve 6 is closed, the NGH closing valve 1 can be opened to drop NGH (p).

このノックアウトドラム内に回収した低圧のガスをガスタービン発電設備に供給する場合には、同併する水を分離した後、図示しない圧縮機によって、再度、所定のガス圧(例えば、35ata程度)に昇圧する必要があった。このため、気液分離器と圧縮機が必要であり、更に、この圧縮機の駆動動力が必要になるなどの問題があった。   When supplying the low-pressure gas recovered in the knockout drum to the gas turbine power generation facility, after separating the water together, it is again set to a predetermined gas pressure (for example, about 35 data) by a compressor (not shown). It was necessary to boost the pressure. For this reason, a gas-liquid separator and a compressor are required, and further, there is a problem that driving power of the compressor is required.

本発明は、このような従来の問題を解消するためになされたものであって、その目的とするところは、低圧の天然ガスを昇圧する圧縮機を必要としない省エネ型のペレット供給方法及び装置を提供することにある。   The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide an energy-saving pellet supply method and apparatus that does not require a compressor for boosting low-pressure natural gas. Is to provide.

上記課題を解決するため、本発明は、次のように構成される。   In order to solve the above problems, the present invention is configured as follows.

請求項1に記載の本発明は、ガスハイドレートと水とを混合器で混合して高圧ガス化槽に供給する方法において、
(1)前記混合器に常圧下でガスハイドレートを供給するガスハイドレート充填工程と、
(2)前記混合器内に設けた旋回室に前記高圧ガス化槽からの高圧水を供給して旋回流を発生させるとともに、この旋回流に乗って前記旋回室の下方にある攪乱乱流室内のガスハイドレートを旋回させ、かつ、水位の上昇を利用して混合器内で発生したガスを圧縮する加圧水注入工程と、
(3)前記攪乱排出室内で旋回しているガスハイドレートと高圧水との混合体を前記高圧ガス化槽に供給するガスハイドレート排出工程と、
(4)前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっていた高圧のガスを、前記高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に導く注水ガス抜き工程とからなる高圧ガス化槽へのガスハイドレート供給方法である。
The present invention according to claim 1 is a method of mixing gas hydrate and water in a mixer and supplying the mixture to a high-pressure gasification tank.
(1) a gas hydrate filling step of supplying gas hydrate to the mixer under normal pressure;
(2) Supplying high-pressure water from the high-pressure gasification tank to a swirl chamber provided in the mixer to generate a swirl flow, and riding the swirl flow in a turbulent turbulence chamber below the swirl chamber A pressurized water injection step of rotating the gas hydrate and compressing the gas generated in the mixer using the rise of the water level,
(3) a gas hydrate discharge step of supplying a mixture of gas hydrate swirling in the disturbance discharge chamber and high-pressure water to the high-pressure gasification tank;
(4) After discharging the gas hydrate in the mixer to the high-pressure gasification tank, the high-pressure gas accumulated in the upper part of the mixer is utilized using high-pressure water supplied from the high-pressure gasification tank. This is a gas hydrate supply method to a high-pressure gasification tank comprising a water injection gas venting step leading into the high-pressure gasification tank.

請求項2に記載の本発明は、ガスハイドレートがペレット状に加工されたガスハイドレートである請求項1記載の高圧ガス化槽へのガスハイドレート供給方法である。   The present invention described in claim 2 is the gas hydrate supply method to the high-pressure gasification tank according to claim 1, wherein the gas hydrate is a gas hydrate processed into a pellet form.

請求項3に記載の本発明は、ガスハイドレートと高圧水との混合体を形成して高圧ガス化槽に供給する混合器と、内部に散水パイプを備えた高圧ガス化槽と、該高圧ガス化槽と前記散水パイプ間を結ぶ温水循環経路と、前記高圧ガス化槽で分離したガスをガス消費設備に供給する配管とからなり、
前記混合器は、円筒状の本体と、該本体の上部に配した円錐体と、該円錐体の上部に設けた旋回室と、該旋回室の接線方向に配した高圧水供給管とを有し、
かつ、前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっているガスを高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に供給するガス抜き出し管を混合器の最上部に設け、更に、混合器低部に残留水を高圧ガス化槽へ導く排水管を備えたことを特徴とする高圧ガス化槽へのガスハイドレート供給装置である。
The present invention described in claim 3 is a mixer for forming a mixture of gas hydrate and high-pressure water and supplying the mixture to a high-pressure gasification tank, a high-pressure gasification tank having a watering pipe inside, and the high-pressure gas tank. A hot water circulation path connecting the gasification tank and the watering pipe, and a pipe for supplying gas separated in the high-pressure gasification tank to the gas consuming equipment,
The mixer has a cylindrical main body, a cone disposed on the upper portion of the main body, a swirling chamber provided on the upper portion of the conical body, and a high-pressure water supply pipe disposed in a tangential direction of the swirling chamber. And
And after paying out the gas hydrate in the mixer to the high-pressure gasification tank, the gas accumulated in the upper part of the mixer is used in the high-pressure gasification tank using high-pressure water supplied from the high-pressure gasification tank. The gas hydrate to the high-pressure gasification tank is provided with a gas extraction pipe at the top of the mixer, and a drain pipe for introducing residual water to the high-pressure gasification tank at the lower part of the mixer It is a supply device.

請求項4に記載の本発明は、ガスハイドレートと高圧水との混合体を形成して高圧ガス化槽に供給する混合器と、内部に散水パイプを備えた高圧ガス化槽と、該高圧ガス化槽と前記散水パイプ間を結ぶ温水循環経路と、前記高圧ガス化槽で分離したガスをガス消費設備に供給する配管とからなり、
前記混合器の本体は、上部が円筒状の旋回室、下部が円錐体から成り、
前記旋回室の接線方向に配した高圧水供給管、
前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっているガスを高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に供給するガス抜き出し管を前記混合器最上部に備え、
前記混合器に残留水を高圧ガス化槽へ導く排水管を設けたことを特徴とする高圧ガス化槽へのガスハイドレート供給装置である。
The present invention described in claim 4 is a mixer for forming a mixture of gas hydrate and high-pressure water and supplying the mixture to a high-pressure gasification tank, a high-pressure gasification tank having a watering pipe inside, and the high-pressure gasification tank. A hot water circulation path connecting the gasification tank and the watering pipe, and a pipe for supplying the gas separated in the high-pressure gasification tank to the gas consuming equipment,
The mixer body has a cylindrical swirl chamber at the top and a cone at the bottom.
A high-pressure water supply pipe arranged in a tangential direction of the swirl chamber;
After the gas hydrate in the mixer is discharged to the high-pressure gasification tank, the gas accumulated in the upper part of the mixer is supplied into the high-pressure gasification tank using high-pressure water supplied from the high-pressure gasification tank. A degassing tube at the top of the mixer,
The apparatus for supplying gas hydrate to a high-pressure gasification tank is characterized in that a drain pipe for introducing residual water to the high-pressure gasification tank is provided in the mixer.

上記したように、請求項1に記載の発明は、ガスハイドレートと水とを混合器で混合して高圧ガス化槽に供給する方法において、(1)前記混合器に常圧下でガスハイドレートを供給するガスハイドレート充填工程と、(2)前記混合器内に設けた旋回室に前記高圧ガス化槽からの高圧水を供給して旋回流を発生させるとともに、この旋回流に乗って前記旋回室の下方にある攪乱乱流室内のガスハイドレートを旋回させ、かつ、水位の上昇を利用して混合器内で発生したガスを圧縮する加圧水注入工程と、(3)前記攪乱排出室内で旋回しているガスハイドレートと高圧水との混合体を前記高圧ガス化槽に供給するガスハイドレート排出工程と、(4)前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっていた高圧のガスを、前記高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に導く注水ガス抜き工程とから構成されているから、混合器内に溜まったガスをノックアウトドラムなどのタンクに、一旦、貯蔵する必要が無い。すなわち、前述した放圧ガスの気液分離器や再圧縮が不要となり、非常に経済的である。   As described above, the invention according to claim 1 is a method of mixing gas hydrate and water in a mixer and supplying the mixture to a high-pressure gasification tank. (1) Gas hydrate in the mixer under normal pressure A gas hydrate filling step of supplying the gas, and (2) supplying a high-pressure water from the high-pressure gasification tank to a swirl chamber provided in the mixer to generate a swirl, and riding on the swirl A pressurized water injection step of swirling the gas hydrate in the turbulent turbulent flow chamber below the swirl chamber and compressing the gas generated in the mixer using the rise in water level; and (3) in the turbulent discharge chamber. A gas hydrate discharging step of supplying a mixture of swirling gas hydrate and high pressure water to the high pressure gasification tank; and (4) after discharging the gas hydrate in the mixer to the high pressure gasification tank. The reservoir at the top of the mixer Since the high-pressure gas that has been used is composed of a water-injecting degassing step for introducing the high-pressure gas into the high-pressure gasification tank using the high-pressure water supplied from the high-pressure gasification tank, the gas accumulated in the mixer There is no need to store in a tank such as a knockout drum. That is, the gas-liquid separator or recompression of the above-mentioned released gas is unnecessary, which is very economical.

また、請求項2に記載の発明は、請求項1において、ガスハイドレートの形状がペレットであることを特徴とする。このため、特殊な形状に成形する必要はなく、通常の形成形態であるペレットをそのまま使用することができる。   The invention according to claim 2 is characterized in that, in claim 1, the shape of the gas hydrate is a pellet. For this reason, it is not necessary to shape | mold into a special shape, The pellet which is a normal formation form can be used as it is.

また、請求項3に記載の発明は、ガスハイドレートと高圧水との混合体を形成して高圧ガス化槽に供給する混合器と、内部に散水パイプを備えた高圧ガス化槽と、該高圧ガス化槽と前記散水パイプ間を結ぶ温水循環経路と、前記高圧ガス化槽で分離したガスをガス消費設備に供給する配管とからなり、
前記混合器は、円筒状の本体と、該本体の上部に配した円錐体と、該円錐体の上部に設けた旋回室と、該旋回室の接線方向に配した高圧水供給管とを有し、
かつ、前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっているガスを高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に供給するガス抜き出し管を混合器の最上部に設け、更に、混合器底部に残留水を高圧ガス化槽へ導く排水管を備えたので、混合器内に溜まったガスをノックアウトドラム等のタンクに、一旦、貯蔵する必要が無い。これにより、ノックアウトドラムで低圧化したガスを昇圧する必要も無いことから、昇圧用の圧縮機も不要となり、非常に経済的である。
The invention described in claim 3 is a mixer for forming a mixture of gas hydrate and high-pressure water and supplying the mixture to a high-pressure gasification tank, a high-pressure gasification tank having a watering pipe inside, and A hot water circulation path connecting the high-pressure gasification tank and the watering pipe, and a pipe for supplying gas separated in the high-pressure gasification tank to the gas consuming equipment,
The mixer has a cylindrical main body, a cone disposed on the upper portion of the main body, a swirling chamber provided on the upper portion of the conical body, and a high-pressure water supply pipe disposed in a tangential direction of the swirling chamber. And
And after paying out the gas hydrate in the mixer to the high-pressure gasification tank, the gas accumulated in the upper part of the mixer is used in the high-pressure gasification tank using high-pressure water supplied from the high-pressure gasification tank. A gas extraction pipe is installed at the top of the mixer, and a drain pipe that guides residual water to the high-pressure gasification tank is provided at the bottom of the mixer. In addition, there is no need to store it once. As a result, there is no need to pressurize the gas whose pressure has been reduced by the knockout drum, so that a compressor for boosting is not necessary, which is very economical.

更に、請求項4に記載の発明は、請求項3に記載の混合器を更に簡略化した構造としたものである。これにより、請求項3に記載の混合器と同等の混合排出性能を有し、更に、混合器の製造を容易にできるのである。   Furthermore, the invention described in claim 4 has a structure in which the mixer described in claim 3 is further simplified. Thereby, it has the mixing discharge performance equivalent to the mixer of Claim 3, and also can manufacture a mixer easily.

以下、本発明の実施の形態を図面を用いて説明する。なお、この実施の形態では、ペレット状に加工された天然ガスハイドレート(NGH)を例に取る。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, natural gas hydrate (NGH) processed into a pellet is taken as an example.

図1は、本発明に係る高圧ガス化槽へのペレット供給装置を含む、NGHガス化システムの全体図であり、NGHフィードドラム21と、混合器18と、高圧ガス化槽17と、熱交換器20と、ミスト分離器22とを備えている。   FIG. 1 is an overall view of an NGH gasification system including a pellet supply device to a high-pressure gasification tank according to the present invention. An NGH feed drum 21, a mixer 18, a high-pressure gasification tank 17, and heat exchange A vessel 20 and a mist separator 22 are provided.

図1を用いてNGHペレットpのガス化方法を説明する。   A method for gasifying the NGH pellet p will be described with reference to FIG.

まず、NGHペレットpを混合器18へNGH投入管11、及びNGH投入弁1を介して常圧で投入する。   First, the NGH pellet p is charged into the mixer 18 through the NGH charging pipe 11 and the NGH charging valve 1 at normal pressure.

次に、ポンプ19と、注水弁2と、ポンプ23を有する注水管12から混合器18内に高圧ガス化槽17の水を注入することにより、混合器18内を高圧ガス化槽17と同じ圧力になるまで加圧する。この際、ポンプ23は、ポンプ19の吐出圧力が十分であれば、必ずしも必要としない。   Next, the water in the high-pressure gasification tank 17 is injected into the mixer 18 from the water injection pipe 12 having the pump 19, the water injection valve 2, and the pump 23, so that the inside of the mixer 18 is the same as the high-pressure gasification tank 17. Pressurize until pressure is reached. At this time, the pump 23 is not necessarily required if the discharge pressure of the pump 19 is sufficient.

加圧終了後、NGH排出弁4を開け、注水しながら混合器18内のNGHペレットpを高圧ガス化槽17へ送る。   After the pressurization is completed, the NGH discharge valve 4 is opened, and the NGH pellets p in the mixer 18 are sent to the high-pressure gasification tank 17 while pouring water.

混合器18内のNGHペレットpが無くなった後、高圧ガス抜き弁3を開け、高圧ガス抜き管13を介して、混合器18の上部に溜まった高圧ガスを、すべて高圧ガス化槽17に排出する。   After the NGH pellet p in the mixer 18 disappears, the high-pressure gas vent valve 3 is opened, and all the high-pressure gas accumulated in the upper portion of the mixer 18 is discharged to the high-pressure gasification tank 17 through the high-pressure gas vent pipe 13. To do.

その後、均圧弁6、及び排水弁5を開け、ポンプ24により混合器18内の水を高圧ガス化槽17へ送る。この際、混合器18には、均圧弁6及び均圧管16から天然ガスを導入するのが好ましい。   Thereafter, the pressure equalizing valve 6 and the drain valve 5 are opened, and the water in the mixer 18 is sent to the high-pressure gasification tank 17 by the pump 24. At this time, it is preferable to introduce natural gas into the mixer 18 from the pressure equalizing valve 6 and the pressure equalizing pipe 16.

この後、再び、NGHペレットpがNGHフィードドラム21より投入され、上記工程を、順次、行い、高圧ガス化槽17へ間欠的に送られる。ここで、混合器18を複数設けることで、NGHペレットpの高圧ガス化槽17への投入を連続的に行うようにすることもできる。   Thereafter, the NGH pellet p is again fed from the NGH feed drum 21, and the above steps are sequentially performed and intermittently sent to the high-pressure gasification tank 17. Here, by providing a plurality of mixers 18, the NGH pellets p can be continuously charged into the high-pressure gasification tank 17.

一方、高圧ガス化槽17では、ポンプ19、配管25、熱交換器20を経て、高圧ガス化槽17の水を循環し、NGHペレットpにスプレーしている。この際、熱交換器20により循環水を加温しているので、効率良くガス化できる。更に、熱交換器の熱媒体として図示しないNGHプラントで発生する復水を利用すれば、低温排水の熱回収を行うことも可能である。   On the other hand, in the high-pressure gasification tank 17, the water in the high-pressure gasification tank 17 is circulated through the pump 19, the pipe 25, and the heat exchanger 20, and sprayed on the NGH pellet p. At this time, since the circulating water is heated by the heat exchanger 20, it can be efficiently gasified. Furthermore, if condensate generated in an NGH plant (not shown) is used as a heat medium for the heat exchanger, it is possible to recover heat from low-temperature waste water.

高圧ガス化槽17でガス化した天然ガスは、ミスト分離器22を経て図示しない需要先に高圧ガスg’として供給される。また、ミスト分離器22で分離した水(ミスト)wは、配管30を経て高圧ガス化槽17に戻すようになっている。   The natural gas gasified in the high-pressure gasification tank 17 is supplied as a high-pressure gas g ′ to a customer (not shown) via the mist separator 22. The water (mist) w separated by the mist separator 22 is returned to the high-pressure gasification tank 17 through the pipe 30.

図2は、本発明に係るガスハイドレート供給装置の構成図である。ここで、混合器18の上部と高圧ガス化槽17の上部を高圧ガス抜き弁3を有する高圧ガス抜き管13で連結すること、及び混合器18の底部と高圧ガス化槽17を配水管5とポンプ24を有する配水管15で連結することにより、従来のノックアウトドラムや圧縮機を用いずに、NGHペレットpを高圧ガス化槽17へ送ることができる。NGHペレットpの供給操作については、後で詳細に説明する。   FIG. 2 is a configuration diagram of a gas hydrate supply apparatus according to the present invention. Here, the upper part of the mixer 18 and the upper part of the high-pressure gasification tank 17 are connected by a high-pressure gas vent pipe 13 having the high-pressure gas vent valve 3, and the bottom part of the mixer 18 and the high-pressure gasification tank 17 are connected to the water distribution pipe 5. By connecting with the water distribution pipe 15 having the pump 24, the NGH pellet p can be sent to the high-pressure gasification tank 17 without using a conventional knockout drum or compressor. The operation of supplying the NGH pellet p will be described in detail later.

上記混合器18は、図3に示すように、有底円筒状の本体31の内部に円錐体32を設け、下部に攪乱排出室33を、上部に円筒状の旋回室34を設けている。この旋回室34の外周面には、注水管12及び低圧ガス抜き管16が、上部には、NGH投入管11及び高圧ガス抜き管13が夫々接続している。また、本体31の底部には、NGH排出管14及び配水管15が接続している。更に、本体31の側部には、円錐体32と本体31の間に溜まるガスを抜くための滞留ガス排出管13’がある。   As shown in FIG. 3, the mixer 18 is provided with a cone 32 inside a cylindrical body 31 with a bottom, a disturbance discharge chamber 33 at the bottom, and a cylindrical swirl chamber 34 at the top. The water injection pipe 12 and the low pressure vent pipe 16 are connected to the outer peripheral surface of the swirl chamber 34, and the NGH input pipe 11 and the high pressure vent pipe 13 are connected to the upper part, respectively. Further, the NGH discharge pipe 14 and the water distribution pipe 15 are connected to the bottom of the main body 31. Further, at the side of the main body 31, there is a stagnant gas discharge pipe 13 'for removing the gas accumulated between the cone 32 and the main body 31.

図4は、図3の混合器18において、高圧ガス排出管13をNGH投入管11に設けた態様である。こうすることで、旋回室の上部のみならず、NGH投入管11内に溜まる高圧ガスをも高圧ガス化槽17へ送ることができる。   FIG. 4 is a mode in which the high-pressure gas discharge pipe 13 is provided in the NGH input pipe 11 in the mixer 18 of FIG. By doing so, not only the upper part of the swirl chamber but also the high-pressure gas accumulated in the NGH input pipe 11 can be sent to the high-pressure gasification tank 17.

また、図5は、図3若しくは図4の混合器18において、本体31の下部を円錐体のみ、すなわち、攪乱排出室33を無くした態様である。こうすることで、旋回室34で発生する旋回流をそのままNGH排出管14へ導くことができる。ここで、高圧ガス排出管13は、NGH投入管11に設けることもできる。   FIG. 5 shows a mode in which, in the mixer 18 in FIG. 3 or FIG. By doing so, the swirl flow generated in the swirl chamber 34 can be directly guided to the NGH discharge pipe 14. Here, the high-pressure gas discharge pipe 13 can also be provided in the NGH input pipe 11.

次に、NGHペレットの供給操作を図3の混合器を例に詳細に説明する。   Next, the operation of supplying NGH pellets will be described in detail using the mixer of FIG. 3 as an example.

図6(a)は、NGH充填工程であり、注水弁2と、高圧ガス抜き弁3,3’と、NGH排出弁4と、排水弁5が「閉」の状態で、なおかつ、混合器18内に所定量の水wを蓄えた状態において、均圧弁6を「開」にして混合器18内を常圧にした後、NGH投入弁1を「開」にしてペレット状に加工されたNGH(p)をフィードドラム21(図1参照)から混合器18内に供給する。   FIG. 6A shows an NGH filling process, in which the water injection valve 2, the high-pressure degassing valves 3, 3 ′, the NGH discharge valve 4, and the drain valve 5 are in the “closed” state, and the mixer 18 In a state in which a predetermined amount of water w is stored, the pressure equalizing valve 6 is “opened” and the inside of the mixer 18 is brought to normal pressure, and then the NGH inlet valve 1 is “opened” and processed into pellets. (P) is fed into the mixer 18 from the feed drum 21 (see FIG. 1).

図6(b)は、加圧水注入工程であり、上記NGH投入弁1及び均圧弁6を「開」から「閉」に切替後、注水弁2を「閉」から「開」に切り替えて注水管12から混合器18の旋回室34にガス化槽17(図1参照)からの高圧水(例えば、35ata(3.43MPa)程度)w’を供給すると、混合器18の旋回室34内に矢印aのような旋回流が発生するとともに、この旋回流に乗って攪乱乱流室33内のNGH(p)も旋回する。このとき、混合器18の水位が上昇し、混合器18の上部にあるガスg(均圧弁6より流入したガスと混合器18内で発生した微量の天然ガス)が圧縮され、昇圧する(例えば、35ata程度)。   FIG. 6B shows a pressurized water injection process. After the NGH charging valve 1 and the pressure equalizing valve 6 are switched from “open” to “closed”, the water injection valve 2 is switched from “closed” to “open”. When the high-pressure water (for example, about 35 data (3.43 MPa)) w ′ from the gasification tank 17 (see FIG. 1) is supplied from 12 to the swirl chamber 34 of the mixer 18, an arrow appears in the swirl chamber 34 of the mixer 18. A swirling flow such as a is generated, and NGH (p) in the turbulent flow chamber 33 also swirls on this swirling flow. At this time, the water level of the mixer 18 rises, and the gas g (the gas flowing in from the pressure equalizing valve 6 and a small amount of natural gas generated in the mixer 18) at the top of the mixer 18 is compressed and increased in pressure (for example, , About 35ata).

図6(c)は、NGH排出工程であり、注水管12より混合器18内にガス化槽17からの高圧水w’を注入しながら、NGH排出弁4を開放すると、混合器18の攪乱排出室33内で旋回しているNGH(p)と高圧水w’との混合体bがNGH排出管14を通って高圧(例えば、35ata程度)のガス化槽17内に供給される。   FIG. 6C shows an NGH discharge process. When the NGH discharge valve 4 is opened while injecting high-pressure water w ′ from the gasification tank 17 into the mixer 18 from the water injection pipe 12, the mixer 18 is disturbed. A mixture b of NGH (p) swirling in the discharge chamber 33 and high-pressure water w ′ is supplied through the NGH discharge pipe 14 into the high-pressure (for example, about 35 data) gasification tank 17.

図6(d)は、図6(c)のNGH排出工程の続きの工程であり、注水管12より混合器18内にガス化槽17からの高圧水w’を供給し続けることにより、混合器18内の全てのNGH(p)が高圧水w’とともにガス化槽17内に供給される。   FIG. 6 (d) is a continuation process of the NGH discharging process of FIG. 6 (c), and mixing is performed by continuously supplying high-pressure water w ′ from the gasification tank 17 into the mixer 18 from the water injection pipe 12. All the NGH (p) in the vessel 18 is supplied into the gasification tank 17 together with the high-pressure water w ′.

図6(e)は、注水ガス抜き工程であり、NGH排出弁4を「開」から「閉」に切り替えた後、高圧ガス抜き弁3,3’を「開」にすると、混合器18の上部及び円錐体と本体の間に溜まっていた高圧の天然ガスgが、その圧力を維持しながら高圧水w’とともに高圧ガス抜き管13を通ってガス化槽17内に戻される。このため、既に説明した昇圧用の圧縮機やノックアウトドラムが不要となる。   FIG. 6 (e) shows a water injection gas venting process. After the NGH discharge valve 4 is switched from "open" to "closed", the high-pressure gas vent valves 3, 3 'are "opened". The high-pressure natural gas g accumulated between the upper part and the cone and the main body is returned to the gasification tank 17 through the high-pressure degassing pipe 13 together with the high-pressure water w ′ while maintaining the pressure. This eliminates the need for the pressurizing compressor and knockout drum already described.

図6(f)は、排水工程であり、注水弁2を「開」から「閉」に切り替えるとともに、均圧弁6及び排水弁5を「閉」から「開」に切り替えると、混合器18内が常圧になるとともに、混合器18内に残留している高圧水w’がポンプ24(図1参照)によってガス化槽17内に戻される。混合器18内の水wが所定量になったところで排水弁5を「閉」にする。以下、図6(a)乃至図6(f)の工程を繰り返す。   FIG. 6F shows a drainage process. When the water injection valve 2 is switched from “open” to “closed” and the pressure equalizing valve 6 and the drain valve 5 are switched from “closed” to “open”, the inside of the mixer 18 is changed. Becomes a normal pressure, and the high-pressure water w ′ remaining in the mixer 18 is returned into the gasification tank 17 by the pump 24 (see FIG. 1). When the water w in the mixer 18 reaches a predetermined amount, the drain valve 5 is closed. Hereinafter, the steps of FIGS. 6A to 6F are repeated.

以上の説明では、混合器18が単数の場合について説明したが、1基のガス化槽17に対して複数の混合器18を設け、当該混合器18の作動タイミングを、適宜、ずらすことによってガス化槽17内にNGH(p)をほぼ連続的に供給することができる。   In the above description, the case where the number of the mixers 18 is single has been described, but a plurality of mixers 18 are provided for one gasification tank 17, and the operation timing of the mixers 18 is appropriately shifted so as to change the gas. NGH (p) can be supplied into the chemical conversion tank 17 almost continuously.

本発明に係る高圧ガス化槽へのペレット供給装置を含むNGHガス化システムの全体図である。It is a general view of the NGH gasification system containing the pellet supply apparatus to the high pressure gasification tank which concerns on this invention. 本発明によるガスハイドレート供給装置の構成図である。It is a block diagram of the gas hydrate supply apparatus by this invention. 混合器の一部断面を含む斜視図である。It is a perspective view containing the partial cross section of a mixer. 混合器の一部断面を含む斜視図である。It is a perspective view containing the partial cross section of a mixer. 混合器の一部断面を含む斜視図である。It is a perspective view containing the partial cross section of a mixer. (a)NGH充填工程図、(b)加圧水注入工程図、(c)NGH排出工程図、(d)NGH排出工程図、(e)注水ガス抜き工程図、(f)排水工程図である。(A) NGH filling process diagram, (b) pressurized water injection process diagram, (c) NGH discharge process diagram, (d) NGH discharge process diagram, (e) injected water degassing process diagram, (f) drainage process diagram. 従来の高圧ガス化槽へのペレット供給装置の構成図である。It is a block diagram of the pellet supply apparatus to the conventional high pressure gasification tank. (a)NGH充填工程図、(b)加圧水注入工程図、(c)NGH排出工程図、(d)NGH排出工程図、(e)注水ガス抜き工程図、(f)排水工程図である。(A) NGH filling process diagram, (b) pressurized water injection process diagram, (c) NGH discharge process diagram, (d) NGH discharge process diagram, (e) injected water degassing process diagram, (f) drainage process diagram.

符号の説明Explanation of symbols

a ガスハイドレート
b ガスハイドレートと高圧水との混合体
g’高圧のガス
w 水
w’高圧水
p NGHペレット
17 高圧ガス化槽
18 混合器
20 熱交換器
21 NGHフィードドラム
22 ミスト分離器
33 攪乱乱流室
34 旋回室
a Gas hydrate b Mixture of gas hydrate and high pressure water g 'High pressure gas w Water w' High pressure water p NGH pellet 17 High pressure gasification tank 18 Mixer 20 Heat exchanger 21 NGH feed drum 22 Mist separator 33 Disturbance turbulence chamber 34 Swirl chamber

Claims (4)

ガスハイドレートと水とを混合器で混合して高圧ガス化槽に供給する方法において、
(1)前記混合器に常圧下でガスハイドレートを供給するガスハイドレート充填工程と、
(2)前記混合器内に設けた旋回室に前記高圧ガス化槽からの高圧水を供給して旋回流を発生させるとともに、この旋回流に乗って前記旋回室の下方にある攪乱乱流室内のガスハイドレートを旋回させ、かつ、水位の上昇を利用して混合器内で発生したガスを圧縮する加圧水注入工程と、
(3)前記攪乱排出室内で旋回しているガスハイドレートと高圧水との混合体を前記高圧ガス化槽に供給するガスハイドレート排出工程と、
(4)前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっていた高圧のガスを、前記高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に導く注水ガス抜き工程とからなる高圧ガス化槽へのガスハイドレート供給方法。
In a method of mixing gas hydrate and water with a mixer and supplying them to a high-pressure gasification tank,
(1) a gas hydrate filling step of supplying gas hydrate to the mixer under normal pressure;
(2) Supplying high-pressure water from the high-pressure gasification tank to a swirl chamber provided in the mixer to generate a swirl flow, and riding the swirl flow in a turbulent turbulence chamber below the swirl chamber A pressurized water injection step of rotating the gas hydrate and compressing the gas generated in the mixer using the rise of the water level,
(3) a gas hydrate discharge step of supplying a mixture of gas hydrate swirling in the disturbance discharge chamber and high-pressure water to the high-pressure gasification tank;
(4) After discharging the gas hydrate in the mixer to the high-pressure gasification tank, the high-pressure gas accumulated in the upper part of the mixer is utilized using high-pressure water supplied from the high-pressure gasification tank. A method for supplying gas hydrate to a high-pressure gasification tank comprising a water-injecting degassing step leading into the high-pressure gasification tank.
ガスハイドレートがペレット状に加工されたガスハイドレートである請求項1記載の高圧ガス化槽へのガスハイドレート供給方法。 The method for supplying gas hydrate to a high-pressure gasification tank according to claim 1, wherein the gas hydrate is a gas hydrate processed into a pellet form. ガスハイドレートと高圧水との混合体を形成して高圧ガス化槽に供給する混合器と、内部に散水パイプを備えた高圧ガス化槽と、該高圧ガス化槽と前記散水パイプ間を結ぶ温水循環経路と、前記高圧ガス化槽で分離したガスをガス消費設備に供給する配管とからなり、
前記混合器は、円筒状の本体と、該本体の上部に配した円錐体と、該円錐体の上部に設けた旋回室と、該旋回室の接線方向に配した高圧水供給管とを有し、
かつ、前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっているガスを高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に供給するガス抜き出し管を混合器の最上部に設け、更に、混合器低部に残留水を高圧ガス化槽へ導く排水管を備えたことを特徴とする高圧ガス化槽へのガスハイドレート供給装置。
A mixer for forming a mixture of gas hydrate and high-pressure water and supplying the mixture to the high-pressure gasification tank, a high-pressure gasification tank having a watering pipe inside, and connecting the high-pressure gasification tank and the watering pipe It consists of a hot water circulation path and piping for supplying gas separated in the high-pressure gasification tank to the gas consuming equipment,
The mixer has a cylindrical main body, a cone disposed on the upper portion of the main body, a swirling chamber provided on the upper portion of the conical body, and a high-pressure water supply pipe disposed in a tangential direction of the swirling chamber. And
And after paying out the gas hydrate in the mixer to the high-pressure gasification tank, the gas accumulated in the upper part of the mixer is used in the high-pressure gasification tank using high-pressure water supplied from the high-pressure gasification tank. The gas hydrate to the high-pressure gasification tank is provided with a gas extraction pipe at the top of the mixer, and a drain pipe for introducing residual water to the high-pressure gasification tank at the lower part of the mixer Feeding device.
ガスハイドレートと高圧水との混合体を形成して高圧ガス化槽に供給する混合器と、内部に散水パイプを備えた高圧ガス化槽と、該高圧ガス化槽と前記散水パイプ間を結ぶ温水循環経路と、前記高圧ガス化槽で分離したガスをガス消費設備に供給する配管とからなり、
前記混合器の本体は、上部が円筒状の旋回室、下部が円錐体から成り、
前記旋回室の接線方向に配した高圧水供給管、
前記混合器内のガスハイドレートを高圧ガス化槽に払い出した後、前記混合器の上部に溜まっているガスを高圧ガス化槽から供給される高圧水を利用して高圧ガス化槽内に供給するガス抜き出し管を前記混合器最上部に備え、
前記混合器に残留水を高圧ガス化槽へ導く排水管を設けたことを特徴とする高圧ガス化槽へのガスハイドレート供給装置。
A mixer for forming a mixture of gas hydrate and high-pressure water and supplying the mixture to the high-pressure gasification tank, a high-pressure gasification tank having a watering pipe inside, and connecting the high-pressure gasification tank and the watering pipe It consists of a hot water circulation path and piping for supplying gas separated in the high-pressure gasification tank to the gas consuming equipment,
The mixer body has a cylindrical swirl chamber at the top and a cone at the bottom.
A high-pressure water supply pipe arranged in a tangential direction of the swirl chamber;
After the gas hydrate in the mixer is discharged to the high-pressure gasification tank, the gas accumulated in the upper part of the mixer is supplied into the high-pressure gasification tank using high-pressure water supplied from the high-pressure gasification tank. A degassing tube at the top of the mixer,
An apparatus for supplying gas hydrate to a high-pressure gasification tank, wherein the mixer is provided with a drain pipe for introducing residual water to the high-pressure gasification tank.
JP2005032757A 2005-02-09 2005-02-09 Gas-hydrate feeding method to pressure gasification tank Withdrawn JP2006218367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032757A JP2006218367A (en) 2005-02-09 2005-02-09 Gas-hydrate feeding method to pressure gasification tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032757A JP2006218367A (en) 2005-02-09 2005-02-09 Gas-hydrate feeding method to pressure gasification tank

Publications (1)

Publication Number Publication Date
JP2006218367A true JP2006218367A (en) 2006-08-24

Family

ID=36981028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032757A Withdrawn JP2006218367A (en) 2005-02-09 2005-02-09 Gas-hydrate feeding method to pressure gasification tank

Country Status (1)

Country Link
JP (1) JP2006218367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232258A (en) * 2007-03-20 2008-10-02 Mitsui Eng & Shipbuild Co Ltd Gas hydrate re-gasifying device
JP2010018752A (en) * 2008-07-14 2010-01-28 Japan Oil Gas & Metals National Corp Gasifying method of gas hydrate and gasifying system thereof
WO2014208791A1 (en) * 2013-06-27 2014-12-31 동국대학교 산학협력단 Apparatus for revaporizing gas hydrate pellets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232258A (en) * 2007-03-20 2008-10-02 Mitsui Eng & Shipbuild Co Ltd Gas hydrate re-gasifying device
JP2010018752A (en) * 2008-07-14 2010-01-28 Japan Oil Gas & Metals National Corp Gasifying method of gas hydrate and gasifying system thereof
WO2014208791A1 (en) * 2013-06-27 2014-12-31 동국대학교 산학협력단 Apparatus for revaporizing gas hydrate pellets
US9744508B2 (en) 2013-06-27 2017-08-29 Dongshin Hydraulics Co., Ltd. Apparatus for revaporizing gas hydrate pellets

Similar Documents

Publication Publication Date Title
CN105152509B (en) The supercritical processing methods of supercritical reaction device, supercritical reaction system and sludge
CN204939232U (en) Supercritical reaction device and supercritical reaction system
CN102559278A (en) System for cooling syngas
US20240198306A1 (en) Reaction chamber for supercritical water oxidation reactor
JP2006218367A (en) Gas-hydrate feeding method to pressure gasification tank
JP2002356685A (en) Method and apparatus for producing gas hydrate
JP4022452B2 (en) Gas hydrate regasifier
JP5091554B2 (en) Raw material input device
CN108854167B (en) Recycling system of condensate after methane steam conversion in coke oven gas
JP5698361B2 (en) Natural gas regasification equipment
JP2006175345A (en) Method and apparatus for supplying gas hydrate to gasification tank
CN103432919A (en) Device for preparing ammonium hydroxide by liquid ammonia
CN207108722U (en) Synthesize ammonia Desalting Water System
JP4575700B2 (en) Gas storage method
CN107381503B (en) A kind of system and method for sulfide hydrogen conversion gas purification
US12084365B2 (en) Charging water oxidation reactor using recovered reactor energy
CN218871302U (en) Gasification heat recovery deaerator unloading gas condensate recovery unit
JP5215706B2 (en) Solid-gas two-phase material pushing device
JP2006160841A (en) Method and apparatus for gasifying gas hydrate
RU2508392C2 (en) Slime dumping from reactor for production of synthesis gas
JP2007238697A (en) Methods of production and regasification and apparatus for production and regasification of gas hydrate
JP2003327969A (en) Hydrogenation treatment installation and hydrogenation treatment method
US20130267614A1 (en) Biogas to liquid fuel converter
JP2003307299A (en) Hydrate tank device
KR101420929B1 (en) Regasification system for unloading of NGH carrier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513