[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006213934A - Tube for heat exchanger and manufacturing method therefor - Google Patents

Tube for heat exchanger and manufacturing method therefor Download PDF

Info

Publication number
JP2006213934A
JP2006213934A JP2005024708A JP2005024708A JP2006213934A JP 2006213934 A JP2006213934 A JP 2006213934A JP 2005024708 A JP2005024708 A JP 2005024708A JP 2005024708 A JP2005024708 A JP 2005024708A JP 2006213934 A JP2006213934 A JP 2006213934A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
mass
heat
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005024708A
Other languages
Japanese (ja)
Other versions
JP4700359B2 (en
Inventor
Kazuhiko Minami
和彦 南
Hideo Ito
秀夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005024708A priority Critical patent/JP4700359B2/en
Publication of JP2006213934A publication Critical patent/JP2006213934A/en
Application granted granted Critical
Publication of JP4700359B2 publication Critical patent/JP4700359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tube for a heat exchanger having lowered intergranular corrosion susceptibility by reducing a Cu content, and high strength. <P>SOLUTION: The tube (2) to be brazed with a fin (3) for the heat exchanger is composed of an aluminum alloy comprising 1.2-1.8 mass% Mn, 0.1-0.2 mass% Cu, 0.3-0.5 mass% Fe, 0.05-0.2 mass% Si, 0.05-0.2 mass% Ti and the balance Al with unavoidable impurities. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、ろう付によって製作されるアルミニウム熱交換器の構成部材として用いられ、特に耐食性、耐圧強度を要求される熱交換器の構成部材として好適に用いられる熱交換器用チューブおよびその製造方法に関する。さらに、この熱交換器用チューブを用いた熱交換器およびその製造方法に関する。   The present invention relates to a heat exchanger tube that is used as a constituent member of an aluminum heat exchanger manufactured by brazing, and particularly suitable as a constituent member of a heat exchanger that requires corrosion resistance and pressure strength, and a method for manufacturing the same. . Furthermore, it is related with the heat exchanger using this heat exchanger tube, and its manufacturing method.

従来から自動車用熱交換器であるコンデンサにおいては1000系アルミニウムからなる押出チューブが用いられている。その中で、コンデンサでは内圧が加わるために、薄肉化を実現しようとすれば高強度のチューブが必要となる。また、代替フロンの規制のために採用されようとしているCO2を冷媒とした熱交換器においても、高温強度を有するチューブが必要となる。このため、従来の1000系アルミニウムからなる押出チューブに代えて、3000系アルミニウム合金を用いた押出チューブが検討されている(特許文献1,2,3参照)。
特開2001−207231号公報 特開平9−170039号公報 特開2001−26832号公報
Conventionally, extruded tubes made of 1000 series aluminum have been used in condensers that are heat exchangers for automobiles. Among them, since an internal pressure is applied to the capacitor, a high-strength tube is required to reduce the thickness. In addition, a tube having high-temperature strength is also required in a heat exchanger using CO 2 as a refrigerant that is being adopted for the regulation of alternative chlorofluorocarbons. For this reason, it replaces with the conventional extruded tube which consists of 1000 series aluminum, and the extruded tube using 3000 series aluminum alloy is examined (refer patent documents 1, 2, and 3).
JP 2001-207231 A Japanese Patent Laid-Open No. 9-170039 JP 2001-26832 A

しかしながら、上記特許文献に記載されたアルミニウム合金からなる押出チューブでは、Cu含有量が多いために粒界腐食が発生しやすいという問題あった。このため、強度と耐食性を兼ね備えた押出チューブが求められている。   However, the extruded tube made of an aluminum alloy described in the above patent document has a problem that intergranular corrosion is likely to occur due to a large Cu content. For this reason, the extrusion tube which has intensity | strength and corrosion resistance is calculated | required.

この発明は、上記のような技術的背景に鑑みてなされたものであって、Cu含有量を少なくすることで、粒界腐食感受性を低くして耐食性を高め、かつ、高強度な熱交換器用チューブおよびその製造方法を提供するものである。さらに、この熱交換器用チューブを用いた熱交換器およびその製造方法を提供するものである。   The present invention has been made in view of the technical background as described above, and by reducing the Cu content, the intergranular corrosion sensitivity is lowered, the corrosion resistance is increased, and the high strength heat exchanger is used. A tube and a method for manufacturing the tube are provided. Furthermore, the present invention provides a heat exchanger using the heat exchanger tube and a method for manufacturing the heat exchanger.

即ち、本発明の熱交換器用チューブは下記〔1〕〜〔8〕に記載の構成を有する。   That is, the heat exchanger tube of the present invention has the configuration described in [1] to [8] below.

〔1〕 フィンがろう付される熱交換器用チューブであって、Mn:1.2〜1.8質量%、Cu:0.1〜0.2質量%、Fe:0.3〜0.5質量%、Si:0.05〜0.2質量%およびTi:0.05〜0.2質量%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金によって構成されていることを特徴とする熱交換器用チューブ。   [1] A heat exchanger tube to which fins are brazed, Mn: 1.2 to 1.8% by mass, Cu: 0.1 to 0.2% by mass, Fe: 0.3 to 0.5 It is characterized by containing an aluminum alloy containing mass%, Si: 0.05 to 0.2 mass%, and Ti: 0.05 to 0.2 mass%, with the balance being Al and inevitable impurities. Tube for heat exchanger.

〔2〕 ろう付相当の加熱処理後において、平均結晶粒径が200μm以下である前項1に記載の熱交換器用チューブ。   [2] The heat exchanger tube as recited in the aforementioned Item 1, wherein the average grain size is 200 μm or less after the heat treatment corresponding to brazing.

〔3〕 ろう付相当の加熱処理後において、最大結晶粒径が500μm以下である前項1または2に記載の熱交換器用チューブ。   [3] The heat exchanger tube as recited in the aforementioned Item 1 or 2, wherein the maximum crystal grain size is 500 μm or less after the heat treatment corresponding to brazing.

〔4〕 ろう付相当の加熱処理前において、3%以下または20%以上のひずみが与えられた前項1〜3のいずれか1項に記載の熱交換器用チューブ。   [4] The heat exchanger tube according to any one of items 1 to 3, wherein a strain of 3% or less or 20% or more is applied before heat treatment corresponding to brazing.

〔5〕 表面にZn溶射またはAl−Zn溶射による犠牲腐食層を備えた前項1〜4のいずれか1項に記載の熱交換器用チューブ。   [5] The heat exchanger tube according to any one of the above items 1 to 4, wherein the surface is provided with a sacrificial corrosion layer by Zn spraying or Al-Zn spraying.

〔6〕 前記アルミニウム合金におけるMn量が1.3〜1.65質量%である前項1〜5のいずれか1項に記載の熱交換器用チューブ。   [6] The heat exchanger tube according to any one of items 1 to 5, wherein the amount of Mn in the aluminum alloy is 1.3 to 1.65% by mass.

〔7〕 前記アルミニウム合金におけるCu量が0.12〜0.18質量%である前項1〜6のいずれか1項に記載の熱交換器用チューブ。   [7] The heat exchanger tube according to any one of items 1 to 6, wherein the amount of Cu in the aluminum alloy is 0.12 to 0.18% by mass.

〔8〕 前記アルミニウム合金におけるSi量が0.07〜0.18質量%である前項1〜7のいずれか1項に記載の熱交換器用チューブ。   [8] The heat exchanger tube according to any one of 1 to 7 above, wherein the amount of Si in the aluminum alloy is 0.07 to 0.18% by mass.

本発明の熱交換器用チューブの製造方法は下記〔9〕〜〔13〕に記載の構成を有する。   The manufacturing method of the tube for heat exchangers of this invention has the structure as described in following [9]-[13].

〔9〕 Mn:1.2〜1.8質量%、Cu:0.1〜0.2質量%、Fe:0.3〜0.5質量%、Si:0.05〜0.2質量%およびTi:0.05〜0.2質量%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金ビレットを押出してチューブ素材を成形し、このチューブ素材に3%以下または20%以上のひずみを付与することを特徴とする熱交換器用チューブの製造方法。   [9] Mn: 1.2 to 1.8% by mass, Cu: 0.1 to 0.2% by mass, Fe: 0.3 to 0.5% by mass, Si: 0.05 to 0.2% by mass And Ti: 0.05 to 0.2% by mass, an aluminum alloy billet composed of Al and inevitable impurities in the balance is extruded to form a tube material, and the tube material has a strain of 3% or less or 20% or more. The manufacturing method of the tube for heat exchangers characterized by providing.

〔10〕 前記チューブ素材を長手方向に引っ張ることよりひずみを付与する前項9に記載の熱交換器用チューブの製造方法。   [10] The method for manufacturing a tube for a heat exchanger as described in 9 above, wherein the strain is applied by pulling the tube material in the longitudinal direction.

〔11〕 前記チューブ素材を長手方向と垂直な断面方向に押さえ付けることによりひずみを付与する前項9に記載の熱交換器用チューブの製造方法。   [11] The method for manufacturing a tube for a heat exchanger as recited in the aforementioned Item 9, wherein strain is applied by pressing the tube material in a cross-sectional direction perpendicular to the longitudinal direction.

〔12〕 前記ビレットに対し、550〜620℃で4〜48時間の均熱処理を行う前項9〜11のいずれか1項に記載の熱交換器用チューブの製造方法。   [12] The method for producing a heat exchanger tube according to any one of items 9 to 11, wherein the billet is subjected to a soaking process at 550 to 620 ° C. for 4 to 48 hours.

〔13〕 前記チューブ素材の表面にZn溶射またはAl−Zn溶射を行う前項9〜12のいずれか1項に記載の熱交換器用チューブの製造方法。   [13] The method for manufacturing a tube for a heat exchanger according to any one of items 9 to 12, wherein the surface of the tube material is subjected to Zn spraying or Al—Zn spraying.

また、本発明の熱交換器は下記〔14〕〔15〕に記載の構成を有する。   Moreover, the heat exchanger of this invention has the structure as described in following [14] [15].

〔14〕 前項1〜8のいずれか1項に記載された熱交換器用チューブとフィンとを交互に重ねて配置するとともに、前記熱交換器用チューブにヘッダータンクを連結した状態でコア部がろう付された熱交換器であって、前記熱交換器用チューブの平均結晶粒径が200μmm以下となされていることを特徴とする熱交換器。   [14] The heat exchanger tubes and fins according to any one of the preceding items 1 to 8 are alternately stacked and the core portion is brazed in a state where a header tank is connected to the heat exchanger tubes. A heat exchanger, wherein the heat exchanger tube has an average crystal grain size of 200 μm or less.

〔15〕 前項1〜8のいずれか1項に記載された熱交換器用チューブとフィンとを交互に重ねて配置するとともに、前記熱交換器用チューブにヘッダータンクを連結した状態でコア部がろう付された熱交換器であって、前記熱交換器用チューブの最大結晶粒径が500μm以下となされていることを特徴とする熱交換器。   [15] The heat exchanger tubes and fins described in any one of the preceding items 1 to 8 are alternately stacked and the core portion is brazed in a state where a header tank is connected to the heat exchanger tubes. A heat exchanger, wherein a maximum crystal grain size of the heat exchanger tube is 500 μm or less.

本発明の熱交換器の製造方法は下記〔16〕〔17〕に記載の構成を有する。   The manufacturing method of the heat exchanger of this invention has the structure as described in following [16] [17].

〔16〕 前項1〜8のいずれか1項に記載された熱交換器用チューブとフィンとを交互に重ねて配置するとともに、前記熱交換器用チューブにヘッダータンクを連結してコア部を仮組みし、加熱することにより、熱交換器用チューブ、フィンおよびヘッダータンクをろう付することを特徴とする熱交換器の製造方法。   [16] The heat exchanger tubes and fins described in any one of the preceding items 1 to 8 are alternately stacked, and a header tank is connected to the heat exchanger tubes to temporarily assemble a core portion. A method for producing a heat exchanger, characterized by brazing the heat exchanger tubes, fins and header tank by heating.

〔17〕 ろう付加熱時の昇温速度を40℃/min以上とする前項16に記載の熱交換器の製造方法。   [17] The method for producing a heat exchanger as described in 16 above, wherein the rate of temperature increase during brazing addition heat is 40 ° C./min or more.

〔1〕の発明にかかる熱交換器用チューブは、所定のアルミニウム合金により構成されたチューブであり、Cu含有量が抑制されていることで耐食性に優れ、かつ高温強度に優れている。   The tube for a heat exchanger according to the invention of [1] is a tube made of a predetermined aluminum alloy, and is excellent in corrosion resistance and excellent in high-temperature strength because the Cu content is suppressed.

〔2〕〔3〕〔4〕の各発明にかかる熱交換器用チューブは、特に耐食性および高温強度に優れている。   [2] The tube for a heat exchanger according to each invention of [3] and [4] is particularly excellent in corrosion resistance and high temperature strength.

〔5〕の発明にかかる熱交換器用チューブは、特に耐食性に優れている。   The heat exchanger tube according to the invention [5] is particularly excellent in corrosion resistance.

〔6〕の発明にかかる熱交換器用チューブは、特に高温強度に優れている。   The heat exchanger tube according to the invention [6] is particularly excellent in high-temperature strength.

〔7〕の発明にかかる熱交換器用チューブは、特に耐食性および高温強度に優れている。   The heat exchanger tube according to the invention [7] is particularly excellent in corrosion resistance and high-temperature strength.

〔8〕の発明にかかる熱交換器用チューブは、特に高温強度に優れている。   The heat exchanger tube according to the invention [8] is particularly excellent in high-temperature strength.

〔9〕の発明にかかる熱交換器用チューブの製造方法によれば、ろう付加熱後に平均結晶粒径が200μm以下の結晶粒、あるいは最大結晶粒径が500μm以下の結晶粒を形成させ、耐食性および強度に優れた熱交換器用チューブを製造することができる。   According to the method for producing a heat exchanger tube according to the invention of [9], after the brazing heat, a crystal grain having an average crystal grain size of 200 μm or less or a crystal grain having a maximum crystal grain size of 500 μm or less is formed. A heat exchanger tube having excellent strength can be produced.

〔10〕〔11〕の各発明にかかる熱交換器用チューブの製造方法によれば、適正な量のひずみを付与できる。   [10] According to the method for manufacturing a heat exchanger tube according to each invention of [11], an appropriate amount of strain can be applied.

〔12〕の発明にかかる熱交換器用チューブの製造方法によれば、ろう付後に形成される結晶粒を小さくして耐食性および高温強度に優れた熱交換器用チューブを製造できる。   According to the method for producing a heat exchanger tube according to the invention of [12], a crystal tube formed after brazing can be made smaller to produce a heat exchanger tube excellent in corrosion resistance and high-temperature strength.

〔13〕の発明にかかる熱交換器用チューブ製造方法によれば、特に優れた耐食性を有する熱交換器用チューブを製造できる。   According to the heat exchanger tube manufacturing method according to the invention of [13], a heat exchanger tube having particularly excellent corrosion resistance can be manufactured.

〔14〕〔15〕の各発明にかかる熱交換器は、上述した熱交換器用チューブを用いたことで耐食性および高温強度に優れたものである。   [14] The heat exchanger according to each invention of [15] is excellent in corrosion resistance and high-temperature strength by using the above-described heat exchanger tube.

〔16〕の発明にかかる熱交換器の製造方法によれば、上述した熱交換器用チューブを用いたことで耐食性および高温強度に優れた熱交換器を製造できる。   According to the method for producing a heat exchanger according to the invention of [16], a heat exchanger excellent in corrosion resistance and high-temperature strength can be produced by using the above-described heat exchanger tube.

〔17〕の発明にかかる熱交換器の製造方法によれば、特に耐食性および高温強度に優れた熱交換器を製造できる。   According to the method for producing a heat exchanger according to the invention [17], a heat exchanger particularly excellent in corrosion resistance and high-temperature strength can be produced.

本発明の熱交換器用チューブは、フィンがろう付によって接合されるものであり、チューブを構成するアルミニウム合金組成を規定することにより耐食性および強度を確保し、さらに耐食性および強度に関与するろう付相当の加熱後の結晶状態、または再結晶の駆動力となる加熱前のひずみ量を規定するものである。なお、本発明におけるろう付相当の加熱処理とは、580〜620℃の温度範囲で1〜20分保持する処理である。     In the heat exchanger tube of the present invention, fins are joined by brazing, and the corrosion resistance and strength are ensured by defining the composition of the aluminum alloy that constitutes the tube, and further, brazing equivalent to corrosion resistance and strength. This defines the crystalline state after heating, or the strain amount before heating, which becomes the driving force for recrystallization. In addition, the heat treatment corresponding to brazing in the present invention is a treatment for holding for 1 to 20 minutes in a temperature range of 580 to 620 ° C.

熱交換器用チューブの形状は何ら限定されないが、図2に示すような多穴扁平管(2)を例示できる。   The shape of the heat exchanger tube is not limited at all, but a multi-hole flat tube (2) as shown in FIG. 2 can be exemplified.

熱交換器用チューブを構成するアルミニウム合金組成において、Mn,Cu,Fe,Si,Tiの添加意義と含有量を限定する理由を以下に説明する。   The reason for limiting the significance of addition and content of Mn, Cu, Fe, Si, and Ti in the aluminum alloy composition constituting the heat exchanger tube will be described below.

Mnは、チューブの高温強度に影響を及ぼす元素であり、その含有量を1.2〜1.8質量%とする必要がある。Mn量が1.2質量%未満ではその効果を得ることができず、1.8質量%を越える範囲では粗大な金属間化合物が生成して加工性が悪くなるためである。好ましいMn量は1.3〜1.65質量%である。   Mn is an element that affects the high-temperature strength of the tube, and its content needs to be 1.2 to 1.8% by mass. This is because if the amount of Mn is less than 1.2% by mass, the effect cannot be obtained, and if it exceeds 1.8% by mass, a coarse intermetallic compound is produced and the workability deteriorates. A preferable amount of Mn is 1.3 to 1.65% by mass.

Cuは、高温強度と耐食性に影響を及ぼす元素であり、その含有量を0.1〜0.2質量%とする必要がある。Cu量が0.1質量%未満では高温強度を得ることができず、0.2質量%を越える範囲では粒界腐食が発生し易くなって耐食性が低下するためである。好ましいCu量は0.12〜0.18質量%である。   Cu is an element that affects high-temperature strength and corrosion resistance, and its content needs to be 0.1 to 0.2 mass%. If the Cu content is less than 0.1% by mass, high temperature strength cannot be obtained, and if it exceeds 0.2% by mass, intergranular corrosion tends to occur and the corrosion resistance decreases. A preferable amount of Cu is 0.12 to 0.18% by mass.

Feは、高温強度と耐食性に影響を及ばす元素であり、その含有量を0.3〜0.5質量%とする必要がある。Fe量が0.3質量%未満では高温強度を得ることができず、0.5質量%を越える範囲ではチュ一ブの耐食性が悪くなるためである。好ましいFe量は0.35〜0.45質量%以下である。   Fe is an element that affects high-temperature strength and corrosion resistance, and its content must be 0.3 to 0.5 mass%. This is because if the amount of Fe is less than 0.3% by mass, high temperature strength cannot be obtained, and if it exceeds 0.5% by mass, the corrosion resistance of the tube deteriorates. A preferable amount of Fe is 0.35 to 0.45 mass% or less.

Siは、Mnの固溶度を減少させる元素であり、その含有量を0.05〜0.2質量%とする必要がある。Si量が0.05質量%未満では母合金として高度に精製された良好な鋳塊を用いる必要があって不経済であり、0.2質量%を越える範囲で添加すると高温強度を低下させるおそれがあるためである。好ましいSi量は0.07〜0.18質量%である。   Si is an element that decreases the solid solubility of Mn, and its content needs to be 0.05 to 0.2 mass%. If the Si content is less than 0.05% by mass, it is necessary to use a highly refined good ingot as a mother alloy, which is uneconomical. If added in a range exceeding 0.2% by mass, the high temperature strength may be reduced. Because there is. A preferable amount of Si is 0.07 to 0.18% by mass.

Tiは、耐食性に影響を及ぼす元素であり、その含有量を0.05〜0.2質量%とする必要がある。Ti量が0.05質量%未満ではその効果が発揮されず、0.2質量%を越える範囲では粗大な金属間化合物を形成するために成形性が悪くなるためである。好ましいTi量は0.07〜0.18質量%である。   Ti is an element that affects the corrosion resistance, and its content needs to be 0.05 to 0.2% by mass. This is because if the amount of Ti is less than 0.05% by mass, the effect is not exerted, and if it exceeds 0.2% by mass, a coarse intermetallic compound is formed, resulting in poor formability. A preferable amount of Ti is 0.07 to 0.18% by mass.

ろう付相当の加熱処理後の平均結晶粒径と最大結晶粒径を限定する理由を以下に説明する。   The reason for limiting the average crystal grain size and the maximum crystal grain size after the heat treatment equivalent to brazing will be described below.

結晶粒径は強度に影響する因子であり、結晶粒は小さい方が強度、特に高温強度は良好である。平均結晶粒径が200μmを越える範囲では十分な高温強度を得ることができず、また、最大結晶粒径が500μmを越える範囲ではチューブ板厚方向に深い粒界腐食が発生しやすくなって耐食性が悪くなる。好ましい平均結晶粒径は5〜100μmであり、好ましい最大結晶粒径は10〜200μmである。結晶粒の平均結晶粒径または最大結晶粒径のいずれか一方が上記範囲内であれば、確実に高温強度を得ることができる。   The crystal grain size is a factor that affects the strength. The smaller the crystal grain, the better the strength, particularly the high temperature strength. In the range where the average crystal grain size exceeds 200 μm, sufficient high-temperature strength cannot be obtained, and in the range where the maximum crystal grain size exceeds 500 μm, deep intergranular corrosion tends to occur in the tube plate thickness direction, resulting in corrosion resistance. Deteriorate. A preferred average crystal grain size is 5 to 100 μm, and a preferred maximum crystal grain size is 10 to 200 μm. If either one of the average crystal grain size or the maximum crystal grain size of the crystal grains is within the above range, the high temperature strength can be surely obtained.

ろう付相当の加熱前において、チューブに存在するひずみ量を限定する理由を以下に説明する。   The reason for limiting the amount of strain existing in the tube before heating equivalent to brazing will be described below.

ろう付相当の加熱処理前にチューブに存在するひずみ量は再結晶の駆動力となる。ひずみ量が3%を越え20%未満のひずみ量では、加熱後に結晶粒が粗大化してしまい、高温強度、高耐食性を確保することが困難であるため、3%以下または20%以上のひずみ量を推奨できる。好ましいひずみ量は2%以下もしくは、30%以上である。また、ひずみ量が0%のチューブにおいては、押出時の細かい結晶粒がひずみによる再結晶のための駆動力が付与されていないために細かいまま維持され、高温強度、高耐食性が得られる。このため、本願発明においてはひずみ量が0%の場合も含んでいる。   The amount of strain present in the tube before the heat treatment equivalent to brazing becomes the driving force for recrystallization. If the strain amount exceeds 3% and is less than 20%, the crystal grains become coarse after heating, and it is difficult to ensure high-temperature strength and high corrosion resistance. Therefore, the strain amount is 3% or less or 20% or more. Can be recommended. A preferable strain amount is 2% or less or 30% or more. Further, in a tube having a strain amount of 0%, fine crystal grains at the time of extrusion are kept fine because a driving force for recrystallization due to strain is not applied, and high temperature strength and high corrosion resistance are obtained. For this reason, the present invention includes a case where the strain amount is 0%.

また図2に示すように、本発明の熱交換器用チューブは、チューブ素材(2a)の表面に犠牲腐食層(10)を形成する場合は、Zn溶射もしくはAl−Zn溶射を行う必要がある。Zn溶射を行う場合は、Znの付着量を2g/m2以上20g/m2以下とすることが好ましい。Al−Zn溶射を行う場合は、溶射層厚さを5μm以上50μm以下とすることが好ましい。またAl−Zn溶射による溶射層中のZn組成は0.01質量%以上6質量%以下が好ましい。 As shown in FIG. 2, the heat exchanger tube of the present invention needs to be subjected to Zn spraying or Al—Zn spraying when the sacrificial corrosion layer (10) is formed on the surface of the tube material (2 a). In the case of performing Zn spraying, it is preferable that the amount of Zn deposited be 2 g / m 2 or more and 20 g / m 2 or less. In the case of performing Al—Zn thermal spraying, the thickness of the sprayed layer is preferably 5 μm or more and 50 μm or less. The Zn composition in the sprayed layer by Al-Zn spraying is preferably 0.01% by mass or more and 6% by mass or less.

本発明の熱交換器用チューブ(2)は、例えば上記合金組成のビレットを所要形状に押し出してチューブ素材(2a)を作製し、このチューブ素材(2a)にひずみを付与することによって作製することができる。あるいはさらに前記チューブ素材(2a)の表面にZn溶射またはAl−Zn溶射を行うことによって作製することができる。   The heat exchanger tube (2) of the present invention can be produced, for example, by extruding a billet of the above alloy composition into a required shape to produce a tube material (2a) and applying strain to the tube material (2a). it can. Alternatively, it can be produced by further performing Zn spraying or Al-Zn spraying on the surface of the tube material (2a).

チューブ素材(2a)にひずみを付与する方法は限定されない。チューブに所期する量のひずみを与える方法として、チューブ素材(2a)を長手方向に引っ張る方法やチューブ素材(2a)を断面方向に押さえ付ける方法を例示できる。長手方向に引っ張る場合は、例えば巻き出しコイルに巻かれたチューブ素材(2a)を、巻き出しコイルにブレーキをかけながら巻き取りコイルに巻き取ることにより、走行中のチューブ素材(2a)に引張力を加えてひずみを付与する方法を挙げ得る。また、断面方向に押さえ付ける場合は、例えば走行中のチューブ素材(2a)を上下ローラーで挟んで圧下する方法を挙げ得る。ひずみ付与が目的であるから、駆動式の圧延ロールを用いる必要はなく、簡易なローラーで所定量圧下できれば良い。これらのひずみ付与方法は、いずれも長尺のチューブ素材(2a)を定尺に切断する工程に組み入れた連続処理が可能である。勿論、定尺に切断後にひずみ付与を行うこともできる。また、ひずみ付与は同じ方法を多段階で行って良いし、複数の方法を組み合わせても良い。   The method for imparting strain to the tube material (2a) is not limited. Examples of a method for applying a desired amount of strain to the tube include a method of pulling the tube material (2a) in the longitudinal direction and a method of pressing the tube material (2a) in the cross-sectional direction. When pulling in the longitudinal direction, for example, the tube material (2a) wound around the unwinding coil is wound on the winding coil while braking the unwinding coil, so that the tensile force is applied to the running tube material (2a). A method of applying strain to impart strain may be mentioned. In the case of pressing in the cross-sectional direction, for example, there can be mentioned a method in which the tube material (2a) that is running is sandwiched between upper and lower rollers and pressed. Since the purpose is to impart strain, it is not necessary to use a drive-type rolling roll, and it is sufficient if the roll can be reduced by a predetermined amount with a simple roller. Any of these straining methods can be continuously processed by incorporating the long tube material (2a) into a step of cutting it into a standard. Of course, it is also possible to apply strain after cutting to a standard length. In addition, the same method may be applied in multiple stages for strain application, or a plurality of methods may be combined.

また、押出前のビレットの均熱条件は再結晶に影響する因子であり、550℃未満では均質化処理が十分では無く、620℃を越える範囲では高温であるため炉の温度管理が困難であり不経済である。均熱時間は4時間未満では均質化処理が十分では無く、48時間を越える範囲では不経済である。従って、本発明においてはビレットの均熱条件として550〜620℃で4〜48時間の均熱処理を推奨できる。特に好ましい均熱条件は570〜615℃で6時間〜36時間である。   Also, the soaking condition of the billet before extrusion is a factor affecting recrystallization. If the temperature is below 550 ° C, homogenization is not sufficient, and the temperature exceeding 620 ° C is high, so it is difficult to control the furnace temperature. It is uneconomical. If the soaking time is less than 4 hours, homogenization is not sufficient, and if it exceeds 48 hours, it is uneconomical. Therefore, in the present invention, soaking conditions at 550 to 620 ° C. for 4 to 48 hours can be recommended as soaking conditions for billets. Particularly preferable soaking conditions are 570 to 615 ° C. and 6 to 36 hours.

犠牲腐食層(10)を形成するためのZn溶射またはAl−Zn溶射の方法は特に限定されるものではないが、好ましくはアーク溶射を用いるのが良い。例えばアーク溶射機の溶射ガンをチューブ素材(2a)に対して走査する方法や、溶射ガンを固定し、走行中のチューブ素材(2a)に溶射する方法が採用される。また、押出ダイスの直後に溶射ガンを配置しておき、押出と溶射とを連続的に行う方法等を採用することができる。特に押出と溶射とを連続して行う場合には、チューブが高温であるために溶射材料の密着性が良く、生産効率も良い。上述したひずみ付与は溶射後に行えば良い。また、前記犠牲腐食層(10)は、チューブ素材(2a)の片面のみに形成しても良く、図示例のように上下両面に形成するようにしても良い。溶射処理条件は、一般的な溶射条件に従えば良い。かかる溶射は、チューブ素材(2a)の表面に形成される犠牲腐食層(10)の酸化を可及的に防止するために、窒素ガス雰囲気等の非酸化性雰囲気で行うのが良い。なお、本発明は、溶射工程とひずみ付与工程の順序を定めるものではなく、ひずみ付与後に溶射を行う場合も本発明に含まれる。   The method of Zn spraying or Al—Zn spraying for forming the sacrificial corrosion layer (10) is not particularly limited, but arc spraying is preferably used. For example, a method of scanning a spray gun of an arc sprayer with respect to the tube material (2a) or a method of fixing the spray gun and spraying the tube material (2a) while traveling is adopted. Further, it is possible to employ a method in which a spray gun is disposed immediately after the extrusion die and extrusion and spraying are continuously performed. In particular, when extrusion and thermal spraying are performed continuously, since the tube is at a high temperature, the adhesion of the thermal spray material is good and the production efficiency is also good. The strain application described above may be performed after thermal spraying. Further, the sacrificial corrosion layer (10) may be formed only on one side of the tube material (2a), or may be formed on both upper and lower sides as in the illustrated example. The thermal spraying process conditions may follow general spraying conditions. Such thermal spraying is preferably performed in a non-oxidizing atmosphere such as a nitrogen gas atmosphere in order to prevent the sacrificial corrosion layer (10) formed on the surface of the tube material (2a) as much as possible. In addition, this invention does not determine the order of a thermal spraying process and a distortion provision process, and the case where thermal spraying is performed after distortion provision is also included in this invention.

図1に示すように、本発明の熱交換器用チューブ(2)は、アルミニウム製フィン(3)と交互に積層されるとともに、前記チューブ(2)の端部をヘッダータンク(4)に連通接続され、チューブ(2)とフィン(3)、チューブ(2)とヘッダータンク(4)がろう付接合されることにより、熱交換器(1)のコア部に形成される。なお、図1の熱交換器(1)においては最外側のフィン(3)にサイドプレート(5)がろう付されている。   As shown in FIG. 1, the heat exchanger tube (2) of the present invention is alternately laminated with aluminum fins (3), and the end of the tube (2) is connected to the header tank (4). Then, the tube (2) and the fin (3), and the tube (2) and the header tank (4) are brazed and joined to form the core of the heat exchanger (1). In the heat exchanger (1) of FIG. 1, the side plate (5) is brazed to the outermost fin (3).

前記フィン(3)およびヘッダータンク(4)の材料としては、周知のものを適宜使用すれば良く、例えば、フィン材料としてはJIS 3203にZnを添加したアルミニウム合金からなる芯材にJIS 4343合金からなる皮材をクラッドしたブレージングシートを推奨でき、ヘッダータンク材料としてはJIS 3003にZnを添加したアルミニウム合金からなる芯材にJIS 4343合金からなる皮材をクラッドした材料を推奨できる。   As the material of the fin (3) and the header tank (4), a known material may be used as appropriate. For example, as the fin material, a core material made of an aluminum alloy obtained by adding Zn to JIS 3203 is used as a core material. A brazing sheet clad with a skin material made of JIS 4343 alloy can be recommended as a header tank material.

前記熱交換器(1)は、前記熱交換器用チューブ(2)、フィン(3)、ヘッダータンク(4)を仮組した状態でろう付加熱され、これらが接合される。ろう付時の加熱温度は、580〜620℃が好ましい。また、その際の昇温速度は再結晶に影響する因子であり、40℃/min以上で前記温度まで昇温することが好ましい。40℃/min未満では結晶粒径が大きくなり十分な耐食性および高温強度を得ることが困難である。好ましい昇温速度は45〜70℃/minである。   The heat exchanger (1) is subjected to brazing heat with the heat exchanger tubes (2), the fins (3), and the header tank (4) temporarily assembled, and these are joined. As for the heating temperature at the time of brazing, 580-620 degreeC is preferable. Further, the rate of temperature increase at that time is a factor affecting recrystallization, and it is preferable to increase the temperature to 40 ° C./min or higher to the above temperature. If it is less than 40 ° C./min, the crystal grain size becomes large and it is difficult to obtain sufficient corrosion resistance and high temperature strength. A preferable temperature increase rate is 45 to 70 ° C./min.

〔試験例1〕
表1に示した各種組成のアルミニウム合金からなるビレットに対して表1に示す均熱処理を施し、図2に示す幅(W)16mm×高さ(H)3mm×肉厚(T)0.5mmの多穴扁平管(2a)を押出機から押出した。また、押出機の出側において押出機の上下にアーク溶射機の溶射ガンを配置し、押出に続いて多穴扁平管(2a)の表面にZn溶射を行って犠牲腐食層(10)を形成し、さらに冷却用水槽で冷却した後、コイルに連続的に巻き取った。前記Zn溶射によるZn付着量は10g/m2とした。
[Test Example 1]
The billet made of an aluminum alloy having various compositions shown in Table 1 is subjected to soaking treatment shown in Table 1, and the width (W) 16 mm × height (H) 3 mm × thickness (T) 0.5 mm shown in FIG. The multi-hole flat tube (2a) was extruded from an extruder. Also, on the exit side of the extruder, an arc spray gun is placed above and below the extruder, followed by Zn spraying on the surface of the multi-hole flat tube (2a) to form a sacrificial corrosion layer (10). Then, after further cooling in a cooling water tank, it was continuously wound around a coil. The amount of Zn deposited by the Zn spraying was 10 g / m 2 .

次に、コイルをほどきながら多穴扁平管(2a)をカッティングする工程において、多穴扁平管(2a)の上下をローラーで挟んで長手方向と垂直な方向にひずみを付与しながらカッティングを行い、所定寸法の熱交換器用チューブ(2)を作製した。各多穴扁平管(2a)に付与したひずみ量は表1に示すとおりである。また、発明例2のひずみ量「0」はひずみ付与を行わずにカッティングしたものである。   Next, in the process of cutting the multi-hole flat tube (2a) while unwinding the coil, the upper and lower sides of the multi-hole flat tube (2a) are sandwiched between rollers and cutting is performed while applying strain in a direction perpendicular to the longitudinal direction. Then, a heat exchanger tube (2) having a predetermined size was produced. The amount of strain applied to each multi-hole flat tube (2a) is as shown in Table 1. In addition, the strain amount “0” in Invention Example 2 is obtained by cutting without applying strain.

作製した前記チューブ(1)とブレージングフィン(3)、ヘッダータンク(4)を仮組みし、ろう付することにより図2に示す表熱交換器(1)を作製した。ろう付加熱は600℃×10minとし、前記温度に達するまでの昇温速度を表1に示す速度とした。   The prepared tube (1), brazing fin (3), and header tank (4) were temporarily assembled and brazed to prepare a surface heat exchanger (1) shown in FIG. The brazing heat was 600 ° C. × 10 min, and the rate of temperature increase until the temperature was reached was shown in Table 1.

ろう付した熱交換器について、下記の試験方法により耐食性および高温強度を評価した。これらの評価結果を表1に示す。
〈耐食性〉
製作した各熱交換器に対し、ASTM−G85−A3に規定されたSWAAT試験を実施した。試験条件は、ASTM D1141による人工海水に酢酸を添加してpH3に調製した腐食試験液を用い、腐食試験液を0.5時間噴霧−湿潤1.5時間を1サイクルとし、このサイクルを400時間実施するものとした。
The brazed heat exchanger was evaluated for corrosion resistance and high temperature strength by the following test methods. These evaluation results are shown in Table 1.
<Corrosion resistance>
The SWAAT test specified in ASTM-G85-A3 was performed on each manufactured heat exchanger. The test conditions were a corrosion test solution prepared by adding acetic acid to artificial seawater according to ASTM D1141 and adjusted to pH 3 and spraying the corrosion test solution for 0.5 hour-wetting 1.5 hour for one cycle. This cycle was 400 hours. It was supposed to be implemented.

前記腐食試験後、粒界腐食深さについて、最も深いと思われる部分3箇所について断面を顕微鏡で観察し、深さを測定することで粒界腐食深さとした。そして、粒界腐食が発生していないものを◎、粒界腐食の深さが50μm以下のものを〇、粒界腐食深さが50μmを越え、100μm以下のものを△、100μmを越えるものを×とした。
〈高温強度〉
高温強度については、前記熱交換器用チューブ(2)に対して前記ろう付と同じ温度条件で熱処理を行ったものを試験材とし、この試験材の180℃における引張強度を測定した。一方対照材としてJIS A3003合金の180℃における引張強度を測定し、この対照材の強度を基準に、1.2倍以上の強度を有するものを○、1.1倍以上1.2倍未満の強度を有するものを△、1.1倍未満の強度を有するものを×として評価した。
After the corrosion test, regarding the intergranular corrosion depth, the cross section was observed with a microscope at three portions considered to be the deepest, and the depth was measured to obtain the intergranular corrosion depth. And, when the intergranular corrosion does not occur, ◎, when the intergranular corrosion depth is less than 50 μm, ○, when the intergranular corrosion depth exceeds 50 μm, less than 100 μm, Δ, more than 100 μm X.
<High temperature strength>
Regarding the high temperature strength, the heat exchanger tube (2) was heat-treated under the same temperature conditions as the brazing, and the tensile strength at 180 ° C. of the test material was measured. On the other hand, the tensile strength at 180 ° C. of JIS A3003 alloy was measured as a control material. Those having strength were evaluated as Δ, and those having strength less than 1.1 times were evaluated as ×.

Figure 2006213934
Figure 2006213934

[試験例2]
犠牲腐食層(10)の形成に際し、Zn溶射をAl−Zn溶射に変えたことを除いて上記試験例1と同じ条件で熱交換器用チューブを作製し、これらの熱交換器用チューブを用いて同じ条件で熱交換器を作製した。前記溶射層中のZn組成を1質量%とし、溶射層厚さを30μmとした。そして、試験例1と同じ方法で耐食性および高温強度を評価した。これらの結果を表1に併せて示す。
[Test Example 2]
When forming the sacrificial corrosion layer (10), heat exchanger tubes were produced under the same conditions as in Test Example 1 except that Zn spraying was changed to Al-Zn spraying, and the same heat exchanger tubes were used. A heat exchanger was produced under the conditions. The Zn composition in the sprayed layer was 1% by mass, and the thickness of the sprayed layer was 30 μm. And corrosion resistance and high temperature strength were evaluated by the same method as Test Example 1. These results are also shown in Table 1.

表1の結果から、各発明例の熱交換器用チューブは耐食性および高温強度に優れていることを確認した。   From the results in Table 1, it was confirmed that the heat exchanger tube of each invention example was excellent in corrosion resistance and high temperature strength.

本発明の熱交換器用チューブは耐食性および高温強度を兼ね備えたものであるから、特にCO2を冷媒とする熱交換器等の構成部品として好適に用いることができる。 Since the heat exchanger tube of the present invention has both corrosion resistance and high temperature strength, it can be suitably used particularly as a component part of a heat exchanger using CO 2 as a refrigerant.

本発明の熱交換器の一実施形態を示す正面図である。It is a front view which shows one Embodiment of the heat exchanger of this invention. 本発明の熱交換器用チューブの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the tube for heat exchangers of this invention.

符号の説明Explanation of symbols

1…熱交換器
2…熱交換器用チューブ
2a…チューブ素材(熱交換器用チューブ)
3…フィン
4…ヘッダータンク
10…犠牲腐食層
1… Heat exchanger
2… Heat exchanger tube
2a ... Tube material (tube for heat exchanger)
3 ... Fin
4 ... Header tank
10 ... Sacrificial corrosion layer

Claims (17)

フィンがろう付される熱交換器用チューブであって、Mn:1.2〜1.8質量%、Cu:0.1〜0.2質量%、Fe:0.3〜0.5質量%、Si:0.05〜0.2質量%およびTi:0.05〜0.2質量%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金によって構成されていることを特徴とする熱交換器用チューブ。   A heat exchanger tube to which fins are brazed, Mn: 1.2 to 1.8% by mass, Cu: 0.1 to 0.2% by mass, Fe: 0.3 to 0.5% by mass, Si: 0.05 to 0.2% by mass and Ti: 0.05 to 0.2% by mass, the balance being made of an aluminum alloy composed of Al and inevitable impurities tube. ろう付相当の加熱処理後において、平均結晶粒径が200μm以下である請求項1に記載の熱交換器用チューブ。   The heat exchanger tube according to claim 1, wherein the average crystal grain size is 200 µm or less after the heat treatment corresponding to brazing. ろう付相当の加熱処理後において、最大結晶粒径が500μm以下である請求項1または2に記載の熱交換器用チューブ。   The tube for a heat exchanger according to claim 1 or 2, wherein the maximum crystal grain size is 500 µm or less after the heat treatment corresponding to brazing. ろう付相当の加熱処理前において、3%以下または20%以上のひずみが与えられた請求項1〜3のいずれか1項に記載の熱交換器用チューブ。   The heat exchanger tube according to any one of claims 1 to 3, wherein a strain of 3% or less or 20% or more is applied before the heat treatment corresponding to brazing. 表面にZn溶射またはAl−Zn溶射による犠牲腐食層を備えた請求項1〜4のいずれか1項に記載の熱交換器用チューブ。   The heat exchanger tube according to any one of claims 1 to 4, further comprising a sacrificial corrosion layer formed by Zn spraying or Al-Zn spraying on a surface. 前記アルミニウム合金におけるMn量が1.3〜1.65質量%である請求項1〜5のいずれか1項に記載の熱交換器用チューブ。   The tube for heat exchangers according to any one of claims 1 to 5, wherein an amount of Mn in the aluminum alloy is 1.3 to 1.65% by mass. 前記アルミニウム合金におけるCu量が0.12〜0.18質量%である請求項1〜6のいずれか1項に記載の熱交換器用チューブ。   The amount of Cu in the said aluminum alloy is 0.12-0.18 mass%, The tube for heat exchangers of any one of Claims 1-6. 前記アルミニウム合金におけるSi量が0.07〜0.18質量%である請求項1〜7のいずれか1項に記載の熱交換器用チューブ。   The tube for heat exchangers according to any one of claims 1 to 7, wherein the amount of Si in the aluminum alloy is 0.07 to 0.18 mass%. Mn:1.2〜1.8質量%、Cu:0.1〜0.2質量%、Fe:0.3〜0.5質量%、Si:0.05〜0.2質量%およびTi:0.05〜0.2質量%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金ビレットを押出してチューブ素材を成形し、このチューブ素材に3%以下または20%以上のひずみを付与することを特徴とする熱交換器用チューブの製造方法。 Mn: 1.2-1.8% by mass, Cu: 0.1-0.2% by mass, Fe: 0.3-0.5% by mass, Si: 0.05-0.2% by mass and Ti: A tube material is formed by extruding an aluminum alloy billet containing 0.05 to 0.2% by mass, the balance being Al and inevitable impurities, and applying a strain of 3% or less or 20% or more to the tube material. The manufacturing method of the tube for heat exchangers characterized by these. 前記チューブ素材を長手方向に引っ張ることよりひずみを付与する請求項9に記載の熱交換器用チューブの製造方法。   The manufacturing method of the tube for heat exchangers of Claim 9 which provides distortion by pulling the said tube raw material to a longitudinal direction. 前記チューブ素材を長手方向と垂直な方向に押さえ付けることによりひずみを付与する請求項9に記載の熱交換器用チューブの製造方法。   The manufacturing method of the tube for heat exchangers of Claim 9 which provides distortion by pressing the said tube raw material in the direction perpendicular | vertical to a longitudinal direction. 前記ビレットに対し、550〜620℃で4〜48時間の均熱処理を行う請求項9〜11のいずれか1項に記載の熱交換器用チューブの製造方法。   The method for producing a heat exchanger tube according to any one of claims 9 to 11, wherein the billet is subjected to a soaking process at 550 to 620 ° C for 4 to 48 hours. 前記チューブ素材の表面にZn溶射またはAl−Zn溶射を行う請求項9〜12のいずれか1項に記載の熱交換器用チューブの製造方法。   The manufacturing method of the tube for heat exchangers of any one of Claims 9-12 which performs Zn spraying or Al-Zn spraying on the surface of the said tube raw material. 請求項1〜8のいずれか1項に記載された熱交換器用チューブとフィンとを交互に重ねて配置するとともに、前記熱交換器用チューブにヘッダータンクを連結した状態でコア部がろう付された熱交換器であって、前記熱交換器用チューブの平均結晶粒径が200μmm以下となされていることを特徴とする熱交換器。   The heat exchanger tubes and fins according to any one of claims 1 to 8 are alternately stacked and the core portion is brazed with a header tank connected to the heat exchanger tubes. A heat exchanger, wherein an average crystal grain size of the heat exchanger tube is 200 μm or less. 請求項1〜8のいずれか1項に記載された熱交換器用チューブとフィンとを交互に重ねて配置するとともに、前記熱交換器用チューブにヘッダータンクを連結した状態でコア部がろう付された熱交換器であって、前記熱交換器用チューブの最大結晶粒径が500μm以下となされていることを特徴とする熱交換器。   The heat exchanger tubes and fins according to any one of claims 1 to 8 are alternately stacked and the core portion is brazed with a header tank connected to the heat exchanger tubes. A heat exchanger, wherein the maximum crystal grain size of the heat exchanger tube is 500 μm or less. 請求項1〜8のいずれか1項に記載された熱交換器用チューブとフィンとを交互に重ねて配置するとともに、前記熱交換器用チューブにヘッダータンクを連結してコア部を仮組みし、加熱することにより、熱交換器用チューブ、フィンおよびヘッダータンクをろう付することを特徴とする熱交換器の製造方法。   The heat exchanger tubes and fins according to any one of claims 1 to 8 are alternately stacked and arranged, and a header tank is connected to the heat exchanger tubes to temporarily assemble a core portion, and heating is performed. A method of manufacturing a heat exchanger, characterized in that a heat exchanger tube, fins, and a header tank are brazed. ろう付加熱時の昇温速度を40℃/min以上とする請求項16に記載の熱交換器の製造方法。
The manufacturing method of the heat exchanger of Claim 16 which makes the temperature increase rate at the time of brazing additional heat 40 degrees C / min or more.
JP2005024708A 2005-02-01 2005-02-01 Manufacturing method of heat exchanger tube Expired - Fee Related JP4700359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024708A JP4700359B2 (en) 2005-02-01 2005-02-01 Manufacturing method of heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024708A JP4700359B2 (en) 2005-02-01 2005-02-01 Manufacturing method of heat exchanger tube

Publications (2)

Publication Number Publication Date
JP2006213934A true JP2006213934A (en) 2006-08-17
JP4700359B2 JP4700359B2 (en) 2011-06-15

Family

ID=36977403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024708A Expired - Fee Related JP4700359B2 (en) 2005-02-01 2005-02-01 Manufacturing method of heat exchanger tube

Country Status (1)

Country Link
JP (1) JP4700359B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121108A (en) * 2006-10-16 2008-05-29 Showa Denko Kk Tubes for heat exchanger, and manufacturing method of the same
JP2010082658A (en) * 2008-09-30 2010-04-15 Calsonic Kansei Corp Method for brazing heat exchanger made of aluminum
WO2011148781A1 (en) * 2010-05-25 2011-12-01 住友軽金属工業株式会社 Method for producing aluminum alloy heat exchanger
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
JP2013190191A (en) * 2012-03-15 2013-09-26 Sumitomo Light Metal Ind Ltd Aluminum alloy flat tube for heat exchangers, method of manufacturing the same, heat exchanger core, and method of manufacturing the same
US10150186B2 (en) 2014-12-11 2018-12-11 Uacj Corporation Brazing method
US10640852B2 (en) 2017-03-30 2020-05-05 Uacj Corporation Aluminum-alloy clad material and method of manufacturing the same
US10661395B2 (en) 2014-07-30 2020-05-26 Uacj Corporation Aluminum-alloy brazing sheet
JP2020143340A (en) * 2019-03-06 2020-09-10 昭和電工株式会社 Manufacturing method of aluminum alloy for photosensitive drum base and aluminum alloy extruded material for photosensitive drum base
US11007609B2 (en) 2016-11-29 2021-05-18 Uacj Corporation Brazing sheet and manufacturing method thereof
US11298779B2 (en) 2017-11-08 2022-04-12 Uacj Corporation Brazing sheet and manufacturing method thereof
US11320217B2 (en) 2016-01-14 2022-05-03 Uacj Corporation Heat exchanger and method of manufacturing the same
US11571769B2 (en) 2018-09-11 2023-02-07 Uacj Corporation Method of manufacturing a brazing sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143997A (en) * 1994-11-22 1996-06-04 Furukawa Electric Co Ltd:The Aluminum alloy fin material for low temperature brazing and brazing sheet, and production of heat exchanger made of aluminum alloy, and heat exchanger made of aluminum alloy
JPH09296262A (en) * 1996-05-08 1997-11-18 Furukawa Electric Co Ltd:The Drawn tube excellent in corrosion resistance
JP2002172485A (en) * 2000-12-04 2002-06-18 Furukawa Electric Co Ltd:The Aluminum extrusion multi-hole pipe for brazing excellent in corrosion resistance
JP2002361405A (en) * 2000-09-25 2002-12-18 Showa Denko Kk Method for manufacturing heat exchanger
JP2003027166A (en) * 2001-07-17 2003-01-29 Kobe Steel Ltd Aluminum alloy clad plate for heat exchanger having excellent erosion resistance and formability
JP2003225760A (en) * 2002-01-30 2003-08-12 Denso Corp Aluminum heat exchanger manufacturing method
JP2004124166A (en) * 2002-10-02 2004-04-22 Denso Corp Aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability, and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143997A (en) * 1994-11-22 1996-06-04 Furukawa Electric Co Ltd:The Aluminum alloy fin material for low temperature brazing and brazing sheet, and production of heat exchanger made of aluminum alloy, and heat exchanger made of aluminum alloy
JPH09296262A (en) * 1996-05-08 1997-11-18 Furukawa Electric Co Ltd:The Drawn tube excellent in corrosion resistance
JP2002361405A (en) * 2000-09-25 2002-12-18 Showa Denko Kk Method for manufacturing heat exchanger
JP2002172485A (en) * 2000-12-04 2002-06-18 Furukawa Electric Co Ltd:The Aluminum extrusion multi-hole pipe for brazing excellent in corrosion resistance
JP2003027166A (en) * 2001-07-17 2003-01-29 Kobe Steel Ltd Aluminum alloy clad plate for heat exchanger having excellent erosion resistance and formability
JP2003225760A (en) * 2002-01-30 2003-08-12 Denso Corp Aluminum heat exchanger manufacturing method
JP2004124166A (en) * 2002-10-02 2004-04-22 Denso Corp Aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability, and production method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121108A (en) * 2006-10-16 2008-05-29 Showa Denko Kk Tubes for heat exchanger, and manufacturing method of the same
JP2010082658A (en) * 2008-09-30 2010-04-15 Calsonic Kansei Corp Method for brazing heat exchanger made of aluminum
WO2011148781A1 (en) * 2010-05-25 2011-12-01 住友軽金属工業株式会社 Method for producing aluminum alloy heat exchanger
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
JP2013190191A (en) * 2012-03-15 2013-09-26 Sumitomo Light Metal Ind Ltd Aluminum alloy flat tube for heat exchangers, method of manufacturing the same, heat exchanger core, and method of manufacturing the same
US10661395B2 (en) 2014-07-30 2020-05-26 Uacj Corporation Aluminum-alloy brazing sheet
US10150186B2 (en) 2014-12-11 2018-12-11 Uacj Corporation Brazing method
US11320217B2 (en) 2016-01-14 2022-05-03 Uacj Corporation Heat exchanger and method of manufacturing the same
US11007609B2 (en) 2016-11-29 2021-05-18 Uacj Corporation Brazing sheet and manufacturing method thereof
US10640852B2 (en) 2017-03-30 2020-05-05 Uacj Corporation Aluminum-alloy clad material and method of manufacturing the same
US11298779B2 (en) 2017-11-08 2022-04-12 Uacj Corporation Brazing sheet and manufacturing method thereof
US11571769B2 (en) 2018-09-11 2023-02-07 Uacj Corporation Method of manufacturing a brazing sheet
JP2020143340A (en) * 2019-03-06 2020-09-10 昭和電工株式会社 Manufacturing method of aluminum alloy for photosensitive drum base and aluminum alloy extruded material for photosensitive drum base

Also Published As

Publication number Publication date
JP4700359B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP3276790B2 (en) Method for producing aluminum alloy brazing sheet, heat exchanger using the brazing sheet, and method for producing the heat exchanger
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5055881B2 (en) Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5258636B2 (en) Thin brazing sheet fin material for high temperature brazing and manufacturing method of heat exchanger using the same
JP4700359B2 (en) Manufacturing method of heat exchanger tube
EP3121301B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP2008121108A (en) Tubes for heat exchanger, and manufacturing method of the same
WO2014065355A1 (en) Aluminum alloy brazing sheet for fin, heat exchanger, and method for producing heat exchanger
WO2015002315A1 (en) Brazing sheet for heat exchanger, and method for manufacturing said sheet
JP2009022981A (en) Aluminum alloy brazing sheet having high-strength and production method therefor
JP2010214379A (en) Thin-walled brazing sheet fin material for high-temperature brazing, and method for manufacturing heat exchanger using the same
JPH11335764A (en) Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
US20030000610A1 (en) Aluminum alloy piping material for automotive piping excelling in corrosion resistance and workability
WO2019044545A1 (en) Brazing sheet for heat exchanger fin and manufacturing method thereof
JP2011038164A (en) Aluminum-clad material for heat-exchangers
JP5416439B2 (en) Aluminum alloy brazed body, heat treatment method thereof, and heat exchanger
JP2009293059A (en) High strength aluminum alloy fin material having excellent erosion resistance, method for producing the same, and automobile heat exchanger
JP2016182616A (en) Aluminum alloy cladding material and manufacturing method of the same
JP5101812B2 (en) High corrosion resistance tube for heat exchanger, heat exchanger and method for producing the same
JP2006015377A (en) Aluminum alloy brazing sheet for heat exchanger
US20050221111A1 (en) High strength long-life aluminium tube material with high sagging resistance
JP5431046B2 (en) Manufacturing method of brazing structure made of aluminum alloy for heat exchanger excellent in high temperature durability
JP2009249728A (en) Extruded flat perforated pipe for heat exchanger, and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees