JP2006213960A - Method and device for producing endless belt - Google Patents
Method and device for producing endless belt Download PDFInfo
- Publication number
- JP2006213960A JP2006213960A JP2005027423A JP2005027423A JP2006213960A JP 2006213960 A JP2006213960 A JP 2006213960A JP 2005027423 A JP2005027423 A JP 2005027423A JP 2005027423 A JP2005027423 A JP 2005027423A JP 2006213960 A JP2006213960 A JP 2006213960A
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical metal
- metal matrix
- endless belt
- masking material
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
本発明は、金属母型へ電鋳法により形成されたエンドレスベルトを製造するに際して、円筒状金属母型及び円筒状金属母型からの電析被膜の離型法に関するものであり、電子写真装置・静電記録装置等の画像形成装置に用いられる定着ベルト及び、有機感光体等の基体となるベルト基材の製造に係る手段に関する。 The present invention relates to a cylindrical metal matrix and a method for releasing an electrodeposited film from the cylindrical metal matrix when an endless belt formed on a metal matrix by electroforming is manufactured. The present invention relates to a fixing belt used in an image forming apparatus such as an electrostatic recording apparatus, and means relating to the manufacture of a belt base material serving as a substrate such as an organic photoreceptor.
電鋳プロセスにおいて、母型や電鋳金型等に電気メッキにより所定厚みの電析被膜を形成後、母型から電析被膜を離型する方法として離型被膜を形成する方法が主に用いられている。離型被膜の形成方法としてワックスやグリースなどを塗布する機械的処理被膜法や10%NaOH溶液中での陽極電解やクロム酸溶液等の化学処理液により形成する化学的処理被膜法等がある。 In an electroforming process, a method of forming a release coating is mainly used as a method of releasing an electrodeposition coating from a mother mold after forming an electrodeposition coating of a predetermined thickness on a mother die or an electroforming mold by electroplating. ing. As a method for forming a release film, there are a mechanically treated film method in which wax or grease is applied, a chemical treatment film method in which an anodic electrolysis in a 10% NaOH solution or a chemical treatment solution such as a chromic acid solution is used.
しかしこれらの処理被膜法は処理剤の廃液処理コストが高いことや、対環境性が悪く、また被膜精度が低いという問題点がある。化学的処理法では対環境性、被膜精度について改善を施した有機ヨウ素系薬剤によるもの(例えば特許文献1参照)やチオ尿素誘導体からなる薬剤(特許文献2参照)による離型剤等が提案されている。さらに離型被膜形成を完全ドライ方式で形成可能な化学的酸化被膜形成法(例えば特許文献3参照)も提案されている。 However, these treatment coating methods have a problem that the cost of treating the waste liquid of the treatment agent is high, the environmental resistance is poor, and the coating accuracy is low. As chemical treatment methods, mold release agents based on organic iodine-based chemicals (for example, see Patent Document 1) that have been improved in terms of environmental resistance and coating accuracy, and drugs made from thiourea derivatives (see Patent Document 2) have been proposed. ing. Furthermore, a chemical oxide film forming method (see, for example, Patent Document 3) that can form a release film by a completely dry method has been proposed.
これらはいずれも離型被膜をあらかじめ母型表面に形成することで離型処理を行う方法で応用範囲は広い、しかしエンドレスベルト部材等のような円筒形状物に対する離型の場合、電析被膜形成時の浴処方及び電析出条件により被膜に発生する応力の影響により金型へ密着がより厳しい状態となり、これらの離型被膜形成法で離型可能なのは添加剤等により応力調整がなされた限定された被膜特性を有するものになっていた。またこの方法の場合は電鋳前の離型被膜形成の処理工程及びその専用設備が必要になる。 All of these are methods of releasing treatment by forming a release film on the surface of the mold in advance, and the range of application is wide. However, in the case of releasing from cylindrical objects such as endless belt members, an electrodeposition film is formed. Due to the influence of the stress generated on the film due to the bath prescription and electrodeposition conditions, the adhesion to the mold becomes more severe, and the release can be released by these release film forming methods is limited by the stress adjustment by additives etc. It had a coating characteristic. In the case of this method, a process for forming a release film before electroforming and its dedicated equipment are required.
一方、エンドレスベルト形態系で離型処理法としては円筒形状の母型からの脱型法として電析被膜形成後、離型処理を容易する為に電鋳後の端面部の剥離切断処理を施したものや(例えば特許文献4参照)、さらに加えて端面処理後に密着している電析被膜内へ圧縮空気を供給することで離型を行う方法等(例えば特許文献5参照)が提案されている。この方法の場合、離型処理前に離型を容易にする為の端面剥離工程が必要であり母型構造が複雑化しコストUP要因となり、また被膜の応力を制御する為に応力減少剤の添加量の制約が必要となり被膜特性として限定されたものになり硬度及び靭性の高い被膜特性を必要とするエンドレスベルトの場合、確実な離型性を得るには限界があり高能率での離型処理が困難となっていた。 On the other hand, as a mold release treatment method in the endless belt form system, after the electrodeposition film is formed as a mold release method from the cylindrical mother mold, the end face part after electroforming is peeled and cut to facilitate the mold release process. (For example, see Patent Document 4), and in addition, a method for releasing mold by supplying compressed air into the electrodeposited film that is in close contact after the end face treatment has been proposed (for example, see Patent Document 5). Yes. In the case of this method, an end face peeling process is required to facilitate mold release before the mold release process, which complicates the matrix structure and increases costs. In addition, a stress reducing agent is added to control the stress of the film. For endless belts that require limited amount and limited coating properties and require coating properties with high hardness and toughness, there is a limit to obtaining reliable release properties, and high-efficiency release processing Has become difficult.
一方、円筒状の母型に電析されたニッケル合金系のメッキ被膜を、電磁誘導加熱を利用し、直接メッキ被膜のみを加熱し母型と被膜の熱膨張差を発生させることにより離型する方法(例えば特許文献6参照)が提案されている。この方法の場合加熱制御する為に出力100KHzの高周波インバータが適用されているが、通常電波法によりその動作周波数は20KHzから100KHzまでの範囲に規制されており、効率の面から考えると数十KHz程度の動作周波数で動作させることが望ましく、また電信モールス信号等の標準電話信号への影響を避けることを考慮すると40KHz未満がより好ましいとされている。 On the other hand, the nickel alloy plating film electrodeposited on the cylindrical mother mold is released by using electromagnetic induction heating and heating only the plating film directly to generate a thermal expansion difference between the mother mold and the coating film. A method (see, for example, Patent Document 6) has been proposed. In this method, a high-frequency inverter with an output of 100 KHz is applied to control the heating, but the operating frequency is normally restricted to a range from 20 KHz to 100 KHz by the radio wave method, and considering the efficiency, it is several tens of KHz. It is desirable to operate at a certain operating frequency, and it is considered that less than 40 KHz is more preferable in view of avoiding the influence on standard telephone signals such as telegraphic Morse signals.
しかし、離型する被膜の膜厚が薄肉なるほど被膜の固有の特性による発熱表皮深さとの関係から、動作周波数はより高く設定しなければならないので、薄肉エンドレスベルトの場合、動作周波数を下げることは困難となる。また、発熱効率を高める為にメッキ被膜面と加熱体との隙間をできるだけ小さくする必要があり、加熱装置に対し冶具の位置精度を高くする必要があり、治具の寸法精度と製造する際の冶具の位置を精度良く管理する必要があり、製造上での管理が難しくコスト高になるという問題がある。 However, as the film thickness of the film to be released becomes thinner, the operating frequency must be set higher due to the relationship with the heat generation skin depth due to the inherent characteristics of the film. It becomes difficult. In addition, in order to increase the heat generation efficiency, it is necessary to make the gap between the plating film surface and the heating element as small as possible, and it is necessary to increase the positional accuracy of the jig relative to the heating device. There is a problem that it is necessary to manage the position of the jig with high accuracy, and management in manufacturing is difficult and costly.
このように定着ベルト等に用いられるエンドレスベルト形状の部材の製造において、被膜形成時の処方及び電析条件により円筒状母型からの離型性が大きく変化し、離型性の面から作製可能な電析被膜種が限定されており、より耐磨耗性、耐屈曲性の優れた被膜特性を有する薄肉のエンドレスベルトを、環境性を充分考慮した製法で製造することが困難とされていた。
そこで本発明の目的は上記問題点を克服し定着ベルト部材等において、従来の方法では作製が困難とされてきた、より耐熱、耐磨耗、耐屈曲性等の性能向上が可能な広範囲の電析被膜特性を有したベルト部材の作製が可能となる環境性を考慮した簡便で高能率な脱型法を提供することにある。 Accordingly, an object of the present invention is to overcome the above-mentioned problems and to fix a wide range of electric power which can be improved in performance such as heat resistance, wear resistance, and bending resistance, which has been difficult to manufacture with conventional methods in fixing belt members and the like. It is an object of the present invention to provide a simple and highly efficient demolding method in consideration of environmental characteristics that enables the production of a belt member having an analysis coating characteristic.
上記課題を解決する為、本発明者らは鋭意検討を行った結果、円筒状金属母型に電鋳された電析被膜を前記円筒状金属母型から離型させるエンドレスベルトの製造方法であって、前記円筒状金属母型の側面の一端に形成された液体噴出孔を、導電性を有するマスキング材で、前記円筒状金属母型と離間して覆い、更に、前記円筒状金属母型の他端を絶縁性の部材で覆い、その後、電鋳液に、前記円筒状金属母型の他端を下にして前記マスキング材の一部が電鋳液から露出するように浸漬し、前記円筒状金属母型および前記マスキング材の表面に電析被膜を形成し、その後、前記円筒状金属母型に設けられた噴出孔を介して液体を電析被膜と円筒状金属母型との界面へ供給することにより前記電析被膜と前記円筒状金属母型との界面に離型被膜を形成し、その後、前記電析被膜を前記円筒状金属母型から離型を高能率で可能になる手法を見出しことにより本発明に至った。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, have found a method for producing an endless belt in which an electrodeposited film electroformed on a cylindrical metal matrix is released from the cylindrical metal matrix. Then, a liquid ejection hole formed at one end of the side surface of the cylindrical metal matrix is covered with a conductive masking material so as to be separated from the cylindrical metal matrix, and further, the cylindrical metal matrix The other end is covered with an insulating member, and then immersed in the electroforming liquid so that a part of the masking material is exposed from the electroforming liquid with the other end of the cylindrical metal matrix facing down. An electrodeposited film is formed on the surface of the metal mold and the masking material, and then the liquid is transferred to the interface between the electrodeposited film and the cylindrical metal mold via the ejection holes provided in the cylindrical metal mold. A release coating at the interface between the electrodeposited coating and the cylindrical metal matrix Formed, then completed the present invention by finding method comprising releasing the electrostatic 析被 layer from the cylindrical metal mold possible with high efficiency.
更に、本発明は、円筒状金属母型の側面に電鋳された電析被膜を前記円筒状金属母型から離型してエンドレスベルトを形成するエンドレスベルトの製造装置であって、前記円筒状金属母型は、液体を前記金属母型から噴出する液体噴出孔と、前記円筒状金属母型と間隙を介して形成された前記噴出孔を覆う導電性を有するマスキング材とを有するエンドレスベルトの製造装置により製造することができる。 Furthermore, the present invention is an endless belt manufacturing apparatus for forming an endless belt by releasing an electrodeposited film electroformed on a side surface of a cylindrical metal matrix from the cylindrical metal matrix. The metal matrix is an endless belt having a liquid ejection hole for ejecting liquid from the metal matrix, and a conductive masking material covering the ejection hole formed through the gap with the cylindrical metal matrix. It can be manufactured by a manufacturing apparatus.
従来の母型からの離型方法では、離型が困難とされた高硬度、高強度領域での被膜特性を有したベルトの離型が本発明により可能になり、定着ベルト等に要求されている、より高耐久性、耐磨耗性に優れて被膜特性を有する基材から広範囲での被膜特性を有したエンドレスベルト基材の提供が可能となった。 In the conventional mold release method, the present invention enables the release of a belt having high hardness and coating properties in a high strength region, which is difficult to release, and is required for a fixing belt or the like. In addition, it has become possible to provide an endless belt base material having a wide range of coating characteristics from a base material having higher durability and abrasion resistance and coating characteristics.
本発明による離型方法は硬度及び強度が高く、熱膨張係数が小さく、母型への密着へ強い応力をうけているエンドレスベルトの離型法として最も大きなメリットが発揮されるがこうした本発明は一般的な金型の離型法にも応用可能である。 The mold release method according to the present invention has the highest merit as the mold release method of an endless belt that has high hardness and strength, a small coefficient of thermal expansion, and is subjected to strong stress on the adhesion to the mother mold. It can also be applied to general mold release methods.
本発明の第1の実施形態を、図面を用いて説明する。 A first embodiment of the present invention will be described with reference to the drawings.
図1は、第1の実施形態の離型法の一例を示すものであり、円筒状金属性母型1に用いてマスキング材3を取り付け後に電析被膜2を形成した状態を示すものである。図1において円筒状金属性母型1の一端の外周面状に設けられた液体噴出孔6をマスキング材3にてあらかじめマスキングを施したのち、電鋳法によりマスキング材3の一部を含め(図2A部詳細参照)所定厚みの電析被膜2が形成されている。マスキング材3と円筒状金属製母型1との間には間隙が形成されている。
FIG. 1 shows an example of a mold release method according to the first embodiment, and shows a state in which an
電析皮膜2を形成する際は、円筒状金属性母型1の他端は絶縁リング4により電析被膜2の形成が防止されている。
When forming the
電析被膜2を円筒状金属性母型1から離型する際には、絶縁リング4を外し、液体供給管5へ液体を液体供給部(不図示)から供給する。液体供給管5から供給された液体は、噴射孔6から噴射され、噴射孔6から噴射された液体は、円筒状金属母型とマスキング材3との間隙からマスキング材3の端部の電析皮膜2に到達する。
When the
図2は図1のA部の拡大図で、矢印は液体の流れる方向を示している。マスキング材3の端部に形成された電析皮膜2は、液体の圧力により円筒状金属母型1押し上げられるように離型され、液体は電析皮膜2の離型部から更に進入し、電析皮膜2は円筒状金属母型から離型される。電析皮膜2と円筒状金属母型1とは間に液体を狭持した状態になるので、円筒状金属母型1から離型された電析被膜2が円筒状金属母型1から分離することができる。
FIG. 2 is an enlarged view of part A in FIG. 1, and the arrows indicate the direction in which the liquid flows. The
離型後マスキング材を含めた両端部の不要部をカットすることでエンドレスベルトとしての基材が作製される。 The base material as an endless belt is produced by cutting unnecessary portions at both ends including the masking material after release.
つまり、本発明は、円筒状金属性母型1の表面に電鋳法により形成されたエンドレスベルトを母型から離型する際に、円筒状金属性母型1の外周面上に液体を噴射する噴出孔6を有した母型を用い、噴出孔6上に噴射孔6を覆うように円筒状のマスキンング材3を形成後、所定の電析被膜2を形成する。円筒状金属性母型1の内面より噴出孔6を介して液体を噴射供給することにより円筒状金属性母型1と形成された電析被膜2との界面に薄膜液体による離型被膜を形成することにより母型からの離型を行うものである(以下、ウォータジェット法と称する)。
That is, according to the present invention, when the endless belt formed by electroforming on the surface of the cylindrical
電鋳法で形成する電析被膜の材質はNi、Ni−Fe、Ni−Fe、Ni−Fe−Co合金等があるが、その他、例えば鉄、またはその合金、銅またはその合金、コバルト、または,その合金、タングステン合金、微粒子分散金属などがある。 There are Ni, Ni-Fe, Ni-Fe, Ni-Fe-Co alloy, etc. as the material of the electrodeposition film formed by the electroforming method. For example, iron, an alloy thereof, copper or an alloy thereof, cobalt, or , Its alloys, tungsten alloys, fine particle dispersed metals, etc.
本発明では液体噴出構造を有する円筒状金属性母型1の表面の液体噴出孔部にあらかじめ導電性を有するマスキング材3で覆っておく。マスキング材3は後で行われる離型時の液体噴出経路を確保する為の補助材として用いられ電析被膜形成時にマスキング部の一部と同時に電鋳することにより連続したエンドレスベルトが形成される。
In the present invention, the liquid ejection hole portion on the surface of the cylindrical
電析被膜2の厚さはベルトの形態として約10〜200μmが適用範囲である。
The thickness of the
本発明におけるマスキング材は、円筒状金属母型に嵌め合いするので、円筒状金属母型と相似形をしていることが好ましく、寸法については、円筒状母型よりも若干大きめである必要がある。 Since the masking material in the present invention fits into the cylindrical metal matrix, it is preferable that the masking material has a similar shape to the cylindrical metal matrix, and the dimensions need to be slightly larger than the cylindrical matrix. is there.
円筒状金属母型よりも大きすぎると円筒状金属母型とマスキング材との間隙が大きくなりすぎ、電析後の接合部の均一性を確保できなくなる場合があるので、間隙が0.02mm以下であることが好ましく、間隙が狭すぎると円筒状金属母型との勘合が困難になるので、0.01mm以上であることが好ましい。 If it is too large than the cylindrical metal matrix, the gap between the cylindrical metal matrix and the masking material becomes too large, and it may not be possible to ensure the uniformity of the joint after electrodeposition, so the gap is 0.02 mm or less. It is preferable that the gap is too narrow, so that fitting with the cylindrical metal matrix becomes difficult.
マスキング材の厚さは、電析被膜の膜厚の10μm〜200μmであることが好ましい。マスキング材の膜厚が薄すぎると取り付けの時の作業性悪くなり、また厚すぎると後加工の端面加工が困難になる場合がある。 The thickness of the masking material is preferably 10 μm to 200 μm, which is the film thickness of the electrodeposited film. If the film thickness of the masking material is too thin, workability at the time of attachment is deteriorated, and if it is too thick, end face processing in post-processing may be difficult.
マスキング材質については、電析被膜との密着性を確保する必要があり、電析皮膜が、Ni、Ni−Fe、Ni−Fe、Ni−Fe−Co合金等である場合は、ニッケル、ニッケル合金あるいはFe−Cr−Ni系のステンレス合金(SUS)材等が好ましい。 Regarding the masking material, it is necessary to ensure adhesion with the electrodeposited film. When the electrodeposited film is Ni, Ni-Fe, Ni-Fe, Ni-Fe-Co alloy, etc., nickel, nickel alloy Or a Fe-Cr-Ni series stainless steel alloy (SUS) material etc. are preferred.
本実施形態では、少なくとも、電析出被膜との接合部となる断面部において導電性が有る形態であることが好ましい。これは液体噴出孔からマスキング材を介して母型と電析された被膜界面へ高圧液体を供給する為、マスキング材の断面部と電析被膜とは完全な接合状態を確保する必要がある。マスキング材の幅については噴射孔がマスクキングされ、且つ電析被膜を形成が容易であれば特に限定されるものではないが、作業性と噴射液の回り込み等を考えると、10mm以上が好ましい。上限は、広すぎると装置が大きくなる、あるいは、不要な電析皮膜をマスキング材に電析させることになるので、50mm以下であることが好ましい。 In this embodiment, it is preferable that it is a form which has electroconductivity in the cross-sectional part used as a junction part with an electrodeposition coating film at least. This is because a high-pressure liquid is supplied from the liquid jetting hole to the interface between the matrix and the electrodeposited film through the masking material, and it is necessary to ensure a complete bonding state between the cross-sectional portion of the masking material and the electrodeposited film. The width of the masking material is not particularly limited as long as the injection holes are masked and it is easy to form an electrodeposited film, but it is preferably 10 mm or more in view of workability and wraparound of the injection liquid. If the upper limit is too wide, the apparatus becomes large, or an unnecessary electrodeposited film is electrodeposited on the masking material. Therefore, the upper limit is preferably 50 mm or less.
電析皮膜は、少なくともマスキング部材の端部で密着していれば良いので、マスキング部材の端部が上述の材料で構成されていればよい事は言うまでもない。 Since the electrodeposited film only needs to be in close contact with at least the end of the masking member, it is needless to say that the end of the masking member may be made of the above-described material.
マスキング材の材質は、電鋳する被膜材質と材料特性が近いものが、密着性を確保するうえで好ましく、例えばニッケル及びニッケル合金、鉄系の電鋳被膜には、ニッケル及び、Ni合金、ステンレス合金等が好ましく、銅合金系には銅、リン青銅等が好ましい。 The material of the masking material is preferably close to the material properties of the film to be electroformed to ensure adhesion. For example, nickel and nickel alloy, and iron-based electroformed film include nickel, Ni alloy, and stainless steel. Alloys are preferred, and copper, phosphor bronze, etc. are preferred for the copper alloy system.
取り付け位置は噴射液がバランスよく電析被膜面を供給されるよう噴射孔に対してマスキング材の中心位置になることが好ましい。 The mounting position is preferably the center position of the masking material with respect to the spray holes so that the spray liquid is supplied to the electrodeposition coating surface in a well-balanced manner.
本発明における高圧液体とは、界面への浸透性の点から表面張力が100mN/m以下のものが好ましく、シリコーンオイル(TSF451−100):20.9mN/m、トルエン:28.4mN/m、鉱油:29.7mN/m、グリセリン:63.1mN/m、純水:72.0mN/m(界面活性剤を微量混入すると20〜30mN/m)等の液体を用いることが可能であるが、取り扱いが簡便で対環境性の面から純水が好ましい。純水に混入する界面活性剤としては、脂肪酸ナトリウム、脂肪酸カリウム、アルファスルホ脂肪酸エステルナトリウム、直鎖アルキルベンゼン系の直鎖アルキルベンゼンスルホン酸ナトリウム等、高級アルコール系のアルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム等の陰イオン界面活性剤、しょ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等の陽イオン界面活性剤、アルキルアミノ脂肪酸ナトリウム、アルキルベタイン、アルキルアミンオキシド等の両性界面活性剤、および、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等の非イオン界面活性剤を用いることができる。 The high-pressure liquid in the present invention preferably has a surface tension of 100 mN / m or less from the viewpoint of permeability to the interface, silicone oil (TSF451-100): 20.9 mN / m, toluene: 28.4 mN / m, It is possible to use liquids such as mineral oil: 29.7 mN / m, glycerin: 63.1 mN / m, pure water: 72.0 mN / m (20 to 30 mN / m when a small amount of surfactant is mixed), Pure water is preferable in terms of easy handling and environmental friendliness. Surfactants mixed in pure water include fatty acid sodium, fatty acid potassium, sodium alphasulfo fatty acid ester sodium, linear alkylbenzene-based linear alkylbenzene sulfonate sodium, etc., higher alcohol-based alkyl sulfate sodium, alkyl ether sulfate sodium , Anionic surfactants such as sodium alpha olefin sulfonate and sodium alkyl sulfonate, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether Amphoteric surfactants such as cationic surfactants such as alkylamino fatty acid sodium, alkylbetaine, and alkylamine oxide , And can be used alkyltrimethylammonium salt, a nonionic surfactant such as dialkyl dimethyl ammonium salts.
噴射時の圧力は離型する電析被膜の材質、厚みにより異なるが、圧力が弱すぎると離型する為の離型被膜の形成が不十分となり効果が小さく、また圧力が高すぎると電析被膜裂けが発生する為、適時噴射圧の最適化調整を行う必要があり、噴射圧力を最適化することで広範囲の寸法形状及び材質の被膜の離型に対応可能となる。 The pressure at the time of spraying varies depending on the material and thickness of the electrodeposition film to be released, but if the pressure is too weak, the formation of the release film for releasing becomes insufficient and the effect is small, and if the pressure is too high, the electrodeposition is Since film tearing occurs, it is necessary to adjust the injection pressure in a timely manner, and by optimizing the injection pressure, it becomes possible to deal with release of a film having a wide range of dimensions and materials.
噴射孔は、噴射液が均一に母型と被膜との界面へ供給されるように外周面の同心円上に設けることが好ましい。この時の噴射孔の角度は電析された被膜側へ積極的に供給されるような傾斜角を有した噴射孔であってもよい。 The injection holes are preferably provided on concentric circles on the outer peripheral surface so that the injection liquid is uniformly supplied to the interface between the matrix and the coating. The angle of the injection hole at this time may be an injection hole having an inclination angle that is positively supplied to the electrodeposited film side.
以下本発明を実施例によりさらに具体的に説明する。但し本発明は係る実施例のみに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited only to the embodiment.
まず、離型するベルトとして長さ350mm、内径24mm、厚み30μmの電鋳ニッケル及び電鋳ニッケル−鉄合金からなる2種類のエンドレスベルトを下記の条件で作製した。作成されたエンドレスベルトの被膜特性は、下記の特性であった。 First, two types of endless belts made of electroformed nickel and an electroformed nickel-iron alloy having a length of 350 mm, an inner diameter of 24 mm, and a thickness of 30 μm were produced as the belt to be released under the following conditions. The coating characteristics of the produced endless belt were as follows.
材質はステンレス合金で、寸法は、直径24mm、長さ450mmの円筒状金属製母型を使用した。円筒状金属製母型は、一端から180mmの同心円上に、φ1mmで均等の間隔で8個の噴出孔が形成されている。 The material was a stainless alloy, and the dimensions were a cylindrical metal matrix with a diameter of 24 mm and a length of 450 mm. The cylindrical metal mother die has eight ejection holes formed at a uniform interval of φ1 mm on a concentric circle of 180 mm from one end.
マスキング材は、円筒状ニッケル材で、厚み30μm、幅20mm、内径寸法が母型対してプラス0.015μm公差であるものを使用しマスキング位置を噴射孔部中心とマスキング材と幅中心一致するようセットし、電鋳後の被膜がマスキング材の中心位置まで形成されるように電鋳浴槽内にセットし、所定厚みのエンドレスベルトを作製した後、液体噴流圧0.8〜1.6Mpaの条件で離型した。なお、ここでの,噴流圧とは,噴流ノズルからの吐出圧力である。 The masking material is a cylindrical nickel material that has a thickness of 30 μm, a width of 20 mm, and an inner diameter dimension of plus 0.015 μm with respect to the mother die, and the masking position coincides with the center of the injection hole and the width of the masking material. Set and set in an electroforming bath so that the coating film after electroforming is formed up to the center position of the masking material, and after producing an endless belt of a predetermined thickness, conditions of liquid jet pressure 0.8 to 1.6 Mpa I released the mold. Here, the jet pressure is the discharge pressure from the jet nozzle.
離型性の比較例として、電鋳後に離型性を確保する為に両端面部の一部を、剥離処理をしたものと、しないものについてそれぞれ組み合わせたものを下記電鋳条件にて同様に作製し、10℃の純水液槽での浸漬処理後の離型性について評価した。評価は、すべて各条件で、5本ベルトを試作した。 As a comparative example of releasability, in order to ensure releasability after electroforming, a part of both end face parts were combined in the same manner under the following electroforming conditions in combination with those that were peeled off and those that were not. Then, the release property after the immersion treatment in a 10 ° C. pure water bath was evaluated. All belts were prototyped under the same conditions.
<電鋳ニッケル−鉄合金ベルトの電鋳条件>
硫酸ニッケル(140g/l)、
硫酸第一鉄(7g/l)、
ホウ酸(30g/l)、
塩化ナトリウム(25g/l)、
サッカリンナトリウム(0.3g/l)、
ラウリル硫酸ナトリウム(0.02g/l)
浴温度40℃、
PH 2.75
電流密度1.7A/dm2
<電鋳ニッケル−鉄合金ベルト被膜特性>
硬度 Hv(0.1kg)500〜600
引っ張り強度 1500〜2100MPA
<電鋳ニッケルベルトの電鋳条件>
スルファミン酸ニッケル四水塩(450g/l)、
塩化ニッケル10g/l)
硼酸(40g/l)
サッカリン(0.05〜0.1g/l)、
2−ブチン1、4ジオール(0.3〜0.5g/l )
ピット防止剤
浴温50℃、
PH 4
電流密度 7A/dm2
<電鋳ニッケルベルト被膜特性>
硬度 Hv(0.1kg)250〜400
引っ張り強度 800〜1200MPa
(実施例1〜2)
本発明による方法により作製した電鋳ニッケルのエンドレスベルトをウォータジェット法で離型を行った結果、吐出圧力0.8Mpa時はやや抵抗があったが、吐出圧力1.0Mpaで実施後は全く抵抗なく離型ができることが確認された。
<Electroforming conditions of electroformed nickel-iron alloy belt>
Nickel sulfate (140 g / l),
Ferrous sulfate (7 g / l),
Boric acid (30 g / l),
Sodium chloride (25 g / l),
Saccharin sodium (0.3 g / l),
Sodium lauryl sulfate (0.02 g / l)
Bath temperature 40 ° C,
PH 2.75
Current density 1.7A / dm2
<Electrocast nickel-iron alloy belt coating characteristics>
Hardness Hv (0.1 kg) 500-600
Tensile strength 1500-2100MPA
<Electroforming conditions of electroformed nickel belt>
Nickel sulfamate tetrahydrate (450 g / l),
Nickel chloride 10g / l)
Boric acid (40 g / l)
Saccharin (0.05-0.1 g / l),
2-
Pit inhibitor, bath temperature 50 ° C,
Current density 7A / dm2
<Characteristics of electroformed nickel belt coating>
Hardness Hv (0.1 kg) 250-400
Tensile strength 800-1200MPa
(Examples 1-2)
As a result of releasing the electroformed nickel endless belt produced by the method according to the present invention by the water jet method, there was a slight resistance when the discharge pressure was 0.8 Mpa, but there was no resistance after the discharge pressure of 1.0 Mpa. It was confirmed that mold release was possible.
(実施例3〜4)
本発明による方法により作製した電鋳ニッケル−鉄合金のエンドレスベルトをウォータジェット法で離型を行った結果、液体供給圧力1.4Mpaではやや抵抗があったが離型が可能であり、吐出圧力1.6Mpaで実施後は全く抵抗なく離型できることが確認された。
(Examples 3 to 4)
As a result of releasing the electroless nickel-iron alloy endless belt produced by the method according to the present invention by the water jet method, the liquid supply pressure was 1.4 Mpa, but there was some resistance, but the release was possible. It was confirmed that the mold could be released without any resistance after the operation at 1.6 Mpa.
(実施例5)
実施例の条件で電析被膜厚みを10μm、100μm、200μmにして作製した。電鋳ニッケル及び電鋳ニッケル−鉄合金のエンドレスベルトをウォータジェット法にて離型を行った結果,何れもノズルからの噴流圧を調整することで離型が可能であった。
(Example 5)
The electrodeposited film thickness was set to 10 μm, 100 μm, and 200 μm under the conditions of the example. As a result of releasing the electroless nickel and electroless nickel-iron alloy endless belts by the water jet method, the release was possible by adjusting the jet pressure from the nozzle.
(実施例6)
実施例の条件でマスキング材の厚みを10μ、100μm、200μmにして作製した電鋳ニッケル及び電鋳ニッケル−鉄合金のエンドレスベルトをウォータジェット法にて離型を行った結果、問題なく離型が可能であった。
(Example 6)
As a result of releasing the electroless nickel and the electrocast nickel-iron alloy endless belt produced by setting the thickness of the masking material to 10 μm, 100 μm, and 200 μm under the conditions of the examples by the water jet method, the mold release is no problem. It was possible.
(比較例1〜2)
電鋳ニッケルのエンドレスベルトを作製し母型からの離型前に電鋳被膜両端面の一部を剥離処理したものと、剥離処理しないものとを、従来の純水液による浸漬処理による離型を行った結果、端面剥離処理を施したものは離型が可能であったが、端面離型処理をしないものについては離型時の抵抗が高く離型できなかった。
(Comparative Examples 1-2)
Molded endless belt made of electroformed nickel and partly peeled off both ends of the electroformed film before releasing from the mother mold and part not peeled off by conventional immersion in pure water As a result, it was possible to release the material subjected to the end face peeling treatment, but the one not subjected to the end face releasing treatment had a high resistance at the time of releasing and could not be released.
(比較例3〜4)
電鋳ニッケル−鉄合金のエンドレスベルトを作製し母型からの離型前に電鋳被膜両端面の一部を剥離処理したものと、剥離処理しないものとを、従来の純水液による浸漬処理による離型を行った結果、端面剥離処理の有無に関係なく全く離型不可能であった。
(Comparative Examples 3-4)
An electroless nickel-iron alloy endless belt was prepared, and both of the electroformed coating end faces were peeled before being released from the mother mold, and those that were not peeled were treated with a conventional pure water solution. As a result of performing the mold release, the mold release was impossible at all regardless of the presence or absence of the end face peeling treatment.
(比較例5)
実施例の条件で電析被膜厚みを8μm、210、250μmにして作製した。
電鋳ニッケル及び電鋳ニッケル−鉄合金のエンドレスベルトをウォータジェット法にて離型を行った結果,膜厚が薄い8μm品は一部電析被膜の破れが発生し、
膜厚が厚い210μm、250μm品は、離型時に抵抗が著しく大きくなり
離型が困難であった。
(Comparative Example 5)
The electrodeposition film thickness was 8 μm, 210, and 250 μm under the conditions of the example.
As a result of releasing the endless belt of electroformed nickel and electroformed nickel-iron alloy by the water jet method, some of the 8μm thin film has a broken electrodeposition film.
When the film thickness was 210 μm or 250 μm, the resistance was remarkably increased at the time of releasing, and releasing was difficult.
(比較例6)
実施例の条件でマスキング材の厚みを5μm、8μm、210μm、300μmにして作製した電鋳ニッケル及び電鋳ニッケル−鉄合金のエンドレスベルトをウォータジェット法にて離型を行った結果、マスキング材の厚みが5μm、8μmと極度に薄いものは、変形しやすく、マスキンングのはめあいの作業性がわるくなり、また,剛性低下により噴流時の液体の逃げが多くなり,離型効率の低下現象が見られた。逆に厚みが210μm、300μmと厚いものは、離型そのものは、問題はないが、離型後の端面加工処理が困難であった。
(Comparative Example 6)
As a result of releasing the endless belts of electroformed nickel and electrocast nickel-iron alloy produced by setting the thickness of the masking material to 5 μm, 8 μm, 210 μm, and 300 μm under the conditions of the examples by the water jet method, When the thickness is extremely thin, such as 5μm and 8μm, it is easy to deform, and the workability of masking fit becomes difficult. Also, due to the decrease in rigidity, the escape of liquid during jet flow increases, and the phenomenon of reduced mold release efficiency is observed. It was. On the contrary, when the thickness is 210 μm or 300 μm, there is no problem with the mold release itself, but the end face processing after the mold release is difficult.
<離型性判定基準>
○:所定の時間で抵抗なく完全に離型
△:途中で抵抗あるが離型可能
×:離型不可
以上の結果からも本発明の母型を用いてのウォータジェット法による離型法は、従来の電鋳後の離型性を容易にする為の端面部剥離処理を必要なしに、電鋳ニッケルによるエンドレスベルト及び、従来法では離型が困難とされていた、硬度が高く、弾性変形がしにくい電鋳ニッケル−鉄合金等によるエンドレスベルトの離型が可能であることが確認された。
<Releasability criteria>
○: Completely release without resistance at a predetermined time Δ: Resisting in the middle but possible to release ×: Not available for release From the above results, the release method by the water jet method using the mother die of the present invention is Endless belt made of electroformed nickel and the conventional method has been difficult to release without the need for end face peeling to facilitate releasability after conventional electroforming. High hardness and elastic deformation. It was confirmed that the endless belt can be released from an electroformed nickel-iron alloy that is difficult to peel.
1 母型
2 エンドレスベルト(電析被膜)
3 円筒状マスキング材
4 絶縁リング
5 液体噴出孔
1
3
Claims (6)
前記円筒状金属母型は、液体を前記金属母型から噴出する液体噴出孔と、
前記円筒状金属母型と間隙を介して形成された前記噴出孔を覆う導電性を有するマスキング材とを有するエンドレスベルトの製造装置。 An endless belt manufacturing apparatus for forming an endless belt by releasing an electrodeposited film electroformed on a side surface of a cylindrical metal matrix from the cylindrical metal matrix,
The cylindrical metal matrix has a liquid ejection hole for ejecting liquid from the metal matrix,
An apparatus for manufacturing an endless belt, comprising: the cylindrical metal matrix; and a conductive masking material covering the ejection holes formed through a gap.
で、
前記円筒状金属母型の側面の一端に形成された液体噴出孔を、導電性を有するマスキング材で、前記円筒状金属母型と離間して覆い、更に、前記円筒状金属母型の他端を絶縁性の部材で覆い、
その後、電鋳液に、前記円筒状金属母型の他端を下にして前記マスキング材の一部が電鋳液から露出するように浸漬し、前記円筒状金属母型および前記マスキング材の表面に電析被膜を形成し、
その後、前記円筒状金属母型に設けられた噴出孔を介して液体を電析被膜と円筒状金属母型との界面へ供給することにより前記電析被膜と前記円筒状金属母型との界面に離型被膜を形成し、
その後、前記電析被膜を前記円筒状金属母型から離型することを特徴とするエンドレスベルトの製造方法。 A method for producing an endless belt in which an electrodeposited film electroformed on a cylindrical metal matrix is released from the cylindrical metal matrix,
so,
The liquid ejection hole formed at one end of the side surface of the cylindrical metal matrix is covered with a conductive masking material while being spaced apart from the cylindrical metal matrix, and further, the other end of the cylindrical metal matrix Covered with an insulating material,
Thereafter, the electroplating solution is immersed so that a part of the masking material is exposed from the electroforming solution with the other end of the cylindrical metal die facing down, and the surface of the cylindrical metal die and the masking material An electrodeposition film is formed on
Thereafter, the liquid is supplied to the interface between the electrodeposited film and the cylindrical metal matrix through an ejection hole provided in the cylindrical metal matrix, thereby the interface between the electrodeposited film and the cylindrical metal matrix. A release film is formed on
Thereafter, the electrodeposition coating is released from the cylindrical metal matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005027423A JP2006213960A (en) | 2005-02-03 | 2005-02-03 | Method and device for producing endless belt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005027423A JP2006213960A (en) | 2005-02-03 | 2005-02-03 | Method and device for producing endless belt |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006213960A true JP2006213960A (en) | 2006-08-17 |
Family
ID=36977427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005027423A Pending JP2006213960A (en) | 2005-02-03 | 2005-02-03 | Method and device for producing endless belt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006213960A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110714210A (en) * | 2019-11-18 | 2020-01-21 | 河南理工大学 | Core mould for electroforming to prepare thin-wall seamless metal round pipe |
CN113322498A (en) * | 2021-07-01 | 2021-08-31 | 河南理工大学 | Demolding device and method for electroforming thin-wall metal fixing tube |
-
2005
- 2005-02-03 JP JP2005027423A patent/JP2006213960A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110714210A (en) * | 2019-11-18 | 2020-01-21 | 河南理工大学 | Core mould for electroforming to prepare thin-wall seamless metal round pipe |
CN113322498A (en) * | 2021-07-01 | 2021-08-31 | 河南理工大学 | Demolding device and method for electroforming thin-wall metal fixing tube |
CN113322498B (en) * | 2021-07-01 | 2022-09-06 | 河南理工大学 | Demolding device and method for electroforming thin-wall metal fixing tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106413267B (en) | The manufacturing method of Copper foil with carrier, laminate, the manufacturing method of printing distributing board and electronic equipment | |
CN106413268A (en) | Carrier-attached copper foil, laminate, method for manufacturing printed-wiring board and method for manufacturing electronic device | |
JP2010270402A (en) | Coating for improving wear performance of article and coating method of article | |
JP2006213960A (en) | Method and device for producing endless belt | |
JP4863723B2 (en) | Endless belt release method and apparatus | |
US5194698A (en) | Apparatus and method using a permanent mandrel for manufacture of electrical circuitry | |
JPWO2012176883A1 (en) | Metal foil manufacturing method and manufacturing apparatus | |
JP4881049B2 (en) | Conductor roll for electroplating | |
JP2014211630A (en) | Fixing metal multi-layer member | |
JP3023618B2 (en) | Continuous casting mold and method of manufacturing the same | |
TW200841800A (en) | Composite material for eletric and electronic parts, electric and electronic parts, and method of producing the composite material for electric and electronic parts | |
JP2010159470A (en) | Lost-wax electroforming method | |
JPH11254095A (en) | Graphite mold for continuous casting | |
Wulf et al. | Electrochemical techniques as innovative tools for fabricating divertor and blanket components in fusion technology | |
Sels et al. | Digital LIGA: exploitation of droplet-on-demand inkjet printing to fabricate complex mechanical structures by electroforming | |
CN108738249B (en) | Method for manufacturing wiring substrate | |
JP5294101B1 (en) | Laval nozzle electroforming method and electroformed laval nozzle | |
KR101630382B1 (en) | copper plating method of an Al based FPCB | |
JP2019195813A (en) | Nozzle and method of manufacturing the same | |
JP4192069B2 (en) | Method for forming metal thin film pattern with ultrafine shape on the surface | |
JPH06240486A (en) | Production of electroformed die | |
JP2005231023A (en) | Electrode tool for electrochemical machining and its manufacturing method | |
JP6475446B2 (en) | Mold manufacturing method | |
KR20100037364A (en) | The electrochemical machining electrode and manufacturing method thereof | |
JP2000000830A (en) | Preparation of metal mold for molding synthetic resin |