[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006211900A - Hybrid power driving mechanism - Google Patents

Hybrid power driving mechanism Download PDF

Info

Publication number
JP2006211900A
JP2006211900A JP2006137034A JP2006137034A JP2006211900A JP 2006211900 A JP2006211900 A JP 2006211900A JP 2006137034 A JP2006137034 A JP 2006137034A JP 2006137034 A JP2006137034 A JP 2006137034A JP 2006211900 A JP2006211900 A JP 2006211900A
Authority
JP
Japan
Prior art keywords
motor
electric
generator
power
driven shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006137034A
Other languages
Japanese (ja)
Other versions
JP2006211900A5 (en
Inventor
Shoji Iwami
尚二 石見
Seiichi Iwami
清一 石見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006137034A priority Critical patent/JP2006211900A/en
Publication of JP2006211900A publication Critical patent/JP2006211900A/en
Publication of JP2006211900A5 publication Critical patent/JP2006211900A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid power driving mechanism with a structure that is simplified, reduced weight and cost, and in addition, capable of improving fuel economy. <P>SOLUTION: The hybrid power driving mechanism is constituted of an engine power source motive shaft 1A, a driven shaft 1B, a mechanism 1 for both the generator and the motor, consisting of a stator equivalent part 1C and a rotor equivalent part 1D, a motor serving also as a generator 2, consisting of a stator equivalent part 2A and a rotor equivalent part 2B, a storage battery 3, and an apparatus 4 for stopping the rotation of the engine power source motive shaft, when an engine is not in operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は混成動力伝動機構に関し、特に、自動車や鉄道車輌や船等に適用できる混成動力伝動機構に関するものである。  The present invention relates to a hybrid power transmission mechanism, and more particularly to a hybrid power transmission mechanism applicable to automobiles, railway vehicles, ships, and the like.

従来の混成動力伝動機構には、燃費性能が高度なものから低度なものまで、様々な機構が提案され、近年、例えば、混成動力自動車として実用化されている。混成動力自動車として実用化されているものは、燃費性能が高度なものの一例であり、具体的には、発動機動力源原動軸と従動軸との間に、発電機構に動力を伝達するための歯車部材を組み合わせて構成した動力分割機構を設けるようにしている。  Various conventional hybrid power transmission mechanisms from high to low fuel efficiency have been proposed and have recently been put into practical use, for example, as hybrid power vehicles. What is put into practical use as a hybrid-powered vehicle is an example of a high fuel efficiency performance. Specifically, it is used to transmit power to a power generation mechanism between a power source driving shaft and a driven shaft. A power split mechanism configured by combining gear members is provided.

ところで、従来の混成動力伝動機構のように、発動機動力源原動軸と従動軸との間に動力分割機構を設けるようにした場合、構造が複雑で、重量が大きく、かつ、コストが高くなるという問題があった。  By the way, when the power split mechanism is provided between the motor power source driving shaft and the driven shaft as in the conventional hybrid power transmission mechanism, the structure is complicated, the weight is increased, and the cost is increased. There was a problem.

本発明は、上記従来の動力分割機構を設けた混成動力伝動機構の有する問題点に鑑み、構造を簡単に、重量を小さく、かつ、コストを低くし、さらに、燃費性能を向上することができるようにした混成動力伝動機構を提供することを目的とする。  In view of the problems of the hybrid power transmission mechanism provided with the conventional power split mechanism, the present invention can simplify the structure, reduce the weight, reduce the cost, and further improve the fuel efficiency. An object of the present invention is to provide a hybrid power transmission mechanism.

上記目的を達成するため、本発明の混成動力伝動機構は、発動機動力源原動軸と従動軸との間に動力分割機構を介さないで、発動機動力源原動軸と従動軸との回転速度差で発電させることができるようにした発電機構を設けたことを特徴とする。  In order to achieve the above object, the hybrid power transmission mechanism of the present invention has a rotational speed between the motor power source driving shaft and the driven shaft without using a power split mechanism between the motor power source driving shaft and the driven shaft. It is characterized by providing a power generation mechanism that can generate power with a difference.

この場合において、発動機動力源原動軸と従動軸との回転速度差で発電させることにより、その発電に要する軸トルクを発動機動力源原動軸と従動軸とに同等に発生させるようにすることができる。  In this case, by generating power with the difference in rotational speed between the motor power source driving shaft and the driven shaft, the shaft torque required for the power generation is generated equally between the motor power source driving shaft and the driven shaft. Can do.

また、発電機構の固定子相当部を発動機動力源原動軸に、回転子相当部を従動軸に、それぞれ固着することができる。  Further, the stator equivalent part of the power generation mechanism can be fixed to the motor power source driving shaft and the rotor equivalent part to the driven shaft.

また、発電機構の回転子相当部を発動機動力源原動軸に、固定子相当部を従動軸に、それぞれ固着することができる。  Further, the rotor equivalent portion of the power generation mechanism can be fixed to the motor power source driving shaft, and the stator equivalent portion can be fixed to the driven shaft.

また、発電機構を発電機構兼電動機構とし、該発電機構兼電動機構の固定子相当部を発動機動力源原動軸に、回転子相当部を従動軸に、それぞれ固着することができる。  Further, the power generation mechanism can be a power generation mechanism / electric mechanism, and the stator equivalent portion of the power generation mechanism / electric mechanism can be fixed to the motor power source driving shaft and the rotor equivalent portion to the driven shaft.

また、発電機構を発電機構兼電動機構とし、該発電機構兼電動機構の回転子相当部を発動機動力源原動軸に、固定子相当部を従動軸に、それぞれ固着することができる。  Further, the power generation mechanism may be a power generation mechanism / electric mechanism, and the rotor equivalent portion of the power generation mechanism / electric mechanism may be fixed to the motor power source driving shaft and the stator equivalent portion to the driven shaft.

また、従動軸に連動させた電動機兼発電機を設けることができる。  An electric motor / generator linked to the driven shaft can be provided.

また、発電機構兼電動機構と電動機兼発電機とを一体化して、従動軸に固着した発電機構兼電動機構の固定子相当部を、電動機兼発電機の回転子相当部と兼用するようにすることができる。  Further, the generator / electric mechanism and the electric motor / generator are integrated so that the stator equivalent portion of the electric generator / electric mechanism fixed to the driven shaft is also used as the rotor equivalent portion of the electric motor / generator. be able to.

また、前記電動機兼発電機の回転子相当部に永久磁石を用いることができる。  Moreover, a permanent magnet can be used for the rotor equivalent part of the said motor / generator.

本発明の混成動力伝動機構は、発動機動力源原動軸と従動軸との間に動力分割機構を介さないで、発動機動力源原動軸と従動軸との回転速度差で発電するようにした発電機構を設けるようにしているので、発動機を作動させている場合、発動機動力源原動軸と従動軸との回転速度差で発電させることにより、その発電に要する軸トルクを発動機動力源原動軸と従動軸とに同等に発生させるようにすることができる。
この場合、その発電に要する軸トルク、すなわち、発動機動力源原動軸と従動軸とに発生する発電負荷軸トルクは、その発電で発生させる電力、すなわち、発電機構に及ぼす発電負荷電力を変化させることにより制御することができる。
これにより、発動機動力源原動軸の回転速度を高くして発動機動力源原動軸と従動軸との回転速度差を大きくするほど、発電機構で発生する電力を大きくすることができるとともに、発動機動力源原動軸と従動軸とに発生する発電負荷軸トルクを大きくすることができる。
すなわち、混成動力伝動機構の発電機構に、発動機動力源原動軸と従動軸との間の可変伝達トルク軸継手の機能、より具体的には、一種のクラッチのような機能を持たせることができる。
そして、本発明の混成動力伝動機構によれば、発動機動力源原動軸を回転駆動する発動機の動力で発電機構に発電させた時に従動軸に軸トルクが発生するので、その軸トルクに相当する分だけ、発電機構(発電機構兼電動機構)の電気容量を小さくすることができる。
また、従来の混成動力伝動機構のような動力分割機構を必要としないため、構造を簡単に、重量を小さく、かつ、コストを低くし、さらに、燃費性能を向上することができる。
In the hybrid power transmission mechanism of the present invention, power is generated with a difference in rotational speed between the motor power source driving shaft and the driven shaft without using a power split mechanism between the motor power source driving shaft and the driven shaft. Since the power generation mechanism is provided, when the motor is operated, the shaft torque required for the power generation is generated by generating the power with the rotational speed difference between the motor power source driving shaft and the driven shaft. It can be generated equally on the driving shaft and the driven shaft.
In this case, the shaft torque required for the power generation, that is, the power generation load shaft torque generated on the motor power source driving shaft and the driven shaft changes the power generated by the power generation, that is, the power generation load power exerted on the power generation mechanism. Can be controlled.
As a result, as the rotational speed of the motor power source driving shaft is increased to increase the rotational speed difference between the motor power source driving shaft and the driven shaft, the power generated by the power generation mechanism can be increased and It is possible to increase the power generation load shaft torque generated in the power source driving shaft and the driven shaft.
In other words, the power generation mechanism of the hybrid power transmission mechanism can have a function of a variable transmission torque shaft coupling between the motor power source driving shaft and the driven shaft, more specifically, a function like a kind of clutch. it can.
According to the hybrid power transmission mechanism of the present invention, when the power generation mechanism generates power with the power of the motor that rotationally drives the motor power source driving shaft, shaft torque is generated in the driven shaft, which corresponds to the shaft torque. Accordingly, the electric capacity of the power generation mechanism (power generation mechanism / electric mechanism) can be reduced.
Further, since a power split mechanism such as a conventional hybrid power transmission mechanism is not required, the structure can be simplified, the weight can be reduced, the cost can be reduced, and the fuel efficiency can be improved.

また、蓄電池を設けることにより、発電機構に及ぼす発電負荷電力の一部又は全部を蓄電池に蓄えることができる。  Further, by providing the storage battery, a part or all of the generated load power exerted on the power generation mechanism can be stored in the storage battery.

また、従動軸に連動させた電動機兼発電機を設けることにより、発電機構に及ぼす発電負荷電力の一部又は全部を電動機兼発電機に供給し、発電機構と電動機兼発電機との両方で従動軸に軸トルクを発生させることができ、これにより、従動軸により大きい軸トルクを発生させることができる。
そして、この場合、発動機動力源原動軸の回転速度を高くして発動機動力源原動軸と従動軸との回転速度差を大きくするほど、発電機構から電動機兼発電機に供給する電力を大きくすることができるので、発電機構が従動軸に発生させる発電負荷軸トルクと電動機兼発電機が従動軸に発生させる軸トルクの両方を大きくすることができる。
これにより、従動軸により一層大きい軸トルクを発生させることができる。
また、この場合、発電機構に及ぼす発電負荷電力を零にすることにより、発動機動力源原動軸と従動軸とに発生する発電負荷軸トルクを零にすることができ、これにより、電動機兼発電機に蓄電池の電力を供給し、従動軸に発動機動力源原動軸の回転方向と逆方向の軸トルクを発生させることができる(自動車でいえば、発動機作動時に後進させることができるので、歯車式変速装置を不要にすることができる。)。
In addition, by providing an electric motor / generator linked to the driven shaft, a part or all of the generated load power on the electric power generation mechanism is supplied to the electric motor / generator, and both the electric power generation mechanism and the electric motor / generator are driven. A shaft torque can be generated on the shaft, and thereby a larger shaft torque can be generated on the driven shaft.
In this case, the power supplied from the generator mechanism to the motor / generator increases as the rotational speed of the motor power source driving shaft is increased to increase the rotational speed difference between the motor power source driving shaft and the driven shaft. Therefore, it is possible to increase both the power generation load shaft torque generated by the power generation mechanism on the driven shaft and the shaft torque generated by the motor / generator on the driven shaft.
Thereby, a larger shaft torque can be generated in the driven shaft.
Also, in this case, the power generation load shaft torque generated on the motor power source driving shaft and the driven shaft can be reduced to zero by setting the power generation load power applied to the power generation mechanism to zero. The power of the storage battery can be supplied to the machine, and the shaft torque in the direction opposite to the rotational direction of the motor power source driving shaft can be generated on the driven shaft (in the case of an automobile, it can be moved backward when the motor is operating, A gear transmission can be dispensed with.)

また、発電機構を電動機構として機能させた上でその電動機構に蓄電池の電力を供給することにより、従動軸の回転速度を発動機動力源原動軸の回転速度よりも高くすることができる(自動車でいえば、オーバードライブ、ハイトップにすることができる。)。  Further, by causing the power generation mechanism to function as an electric mechanism and supplying the electric power of the storage battery to the electric mechanism, the rotational speed of the driven shaft can be made higher than the rotational speed of the motor power source driving shaft (automobile) Speaking of which, it can be overdriven and high top.)

また、この混成動力伝動機構は、発動機が低回転速度の時に充分な負荷可能軸トルクを発生させることができない種類のものである場合、発動機が低回転速度の時に発電機構に及ぼす発電負荷電力を零にする又は小さくすることにより、発動機の回転速度を無理なく高くすることができ、これにより、発動機に無理を生じさせないようにすることができる(自動車でいえば、歯車式変速装置を不要にすることができる。)。  In addition, this hybrid power transmission mechanism is of a type that cannot generate sufficient loadable shaft torque when the motor is at a low rotational speed, and generates a power generation load on the power generation mechanism when the motor is at a low rotational speed. By making the electric power zero or small, it is possible to increase the rotational speed of the motor without difficulty, thereby preventing the motor from becoming unreasonable. Equipment can be dispensed with.)

また、電動機兼発電機に蓄電池の電力を供給して従動軸の回転速度を高くすることにより、発動機の回転速度を無理なく高くすることができ、これにより、発動機に無理を生じさせないようにさせることができる。  Also, by supplying the electric power of the storage battery to the motor / generator and increasing the rotational speed of the driven shaft, the rotational speed of the motor can be increased reasonably, so that the motor does not become unreasonable. Can be made.

また、発動機動力源原動軸又は従動軸に歯車式変速装置を設けることにより、発動機に無理を生じさせないようにすることができるとともに、従動軸に多様性に富んだ軸トルクを発生させることができる(自動車でいえば、レーシングカー、スポーツカーに適用することができる。)。  In addition, by providing a gear-type transmission on the motor power source driving shaft or driven shaft, it is possible to prevent the motor from being forced and to generate a variety of shaft torques on the driven shaft. (Speaking of automobiles, it can be applied to racing cars and sports cars.)

また、この混成動力伝動機構は、発電機構を設けているので、発動機を作動させていない場合、発動機不作動時発動機動力源原動軸回転制止装置を設けて発電機構を電動機構として機能させた上で、その電動機構に蓄電池の電力を供給させることにより、従動軸に順と逆との回転方向の軸トルクを発生させることができる。  In addition, since this hybrid power transmission mechanism is provided with a power generation mechanism, when the motor is not operated, a motor power source driving shaft rotation stop device is provided when the motor is inactive, and the power generation mechanism functions as an electric mechanism. After that, by supplying the electric power of the storage battery to the electric mechanism, it is possible to generate axial torque in the rotational direction in the forward and reverse directions on the driven shaft.

また、電動機兼発電機に蓄電池の電力を供給することにより、従動軸に順と逆との回転方向の軸トルクを発生させることができる。  Further, by supplying the electric power of the storage battery to the motor / generator, it is possible to generate axial torque in the forward and reverse rotational directions on the driven shaft.

また、電動機構と電動機兼発電機とに蓄電池の電力を供給することにより、電動機構と電動機兼発電機の両方で、従動軸に順と逆との回転方向の軸トルクを発生させることができる(自動車でいえば、前後進させることができるので、歯車式変速装置を不要にすることができる。)。  Moreover, by supplying the electric power of the storage battery to the electric mechanism and the electric motor / generator, both the electric mechanism and the electric motor / generator can generate axial torques in the forward and reverse rotational directions on the driven shaft. (Since it is possible to move forward and backward in the case of an automobile, a gear transmission can be eliminated.)

また、この混成動力伝動機構は、発動機を始動させる場合、従動軸が回転している時(自動車でいえば、走行中)は、発動機不作動時発動機動力源原動軸回転制止装置の機能を解除した上で発電機構に発電負荷電力を及ぼし発電させることにより、発動機動力源原動軸に発動機を始動させるための軸トルクを発生させることができる。
一方、従動軸が回転していない時(自動車でいえば、停車中)は、発動機不作動時発動機動力源原動軸回転制止装置の機能を解除するとともに、発電機構を電動機構として機能させた上で、その電動機構に蓄電池の電力を供給させることにより、発動機動力源原動軸に発動機を始動させるための軸トルクを発生させることができる。
これらにより、発動機始動専用電動機を不要にすることができる。
Further, this hybrid power transmission mechanism, when starting the motor, when the driven shaft is rotating (running in the case of an automobile), when the motor is not operating, A shaft torque for starting the motor can be generated in the motor power source driving shaft by canceling the function and applying power to the power generation mechanism to generate power.
On the other hand, when the driven shaft is not rotating (stopping in the case of an automobile), the function of the motor power source driving shaft rotation stop device is canceled when the motor is inactive, and the power generation mechanism is made to function as an electric mechanism. In addition, by supplying the electric power of the storage battery to the electric mechanism, it is possible to generate shaft torque for starting the motor on the motor power source driving shaft.
As a result, the motor for exclusive use of starting the engine can be eliminated.

また、この混成動力伝動機構は、従動軸が回転している時(自動車でいえば、走行中)で、かつ、発動機を作動させている時には、発動機動力源原動軸の回転速度を低くした上で、また、発動機を作動させていない時には、発動機不作動時発動機動力源原動軸回転制止装置を機能させた上で、発電機構に発動機動力源原動軸と従動軸との回転速度差で発電することにより、発電した電力量に相当する分、従動軸系の運動エネルギーを減少させることができる。  Further, this hybrid power transmission mechanism reduces the rotational speed of the motor power source driving shaft when the driven shaft is rotating (running in the case of an automobile) and when the motor is operating. In addition, when the motor is not operated, the motor power source driving shaft rotation stop device is operated when the motor is not operated, and the generator mechanism is connected to the motor power source driving shaft and the driven shaft. By generating electric power with a difference in rotational speed, the kinetic energy of the driven shaft system can be reduced by an amount corresponding to the amount of electric power generated.

また、電動機兼発電機に発電させることにより、従動軸系の運動エネルギーを減少させることができる。  Further, the kinetic energy of the driven shaft system can be reduced by causing the motor / generator to generate power.

また、発電機構と電動機兼発電機とに同時に発電させることにより、従動軸系の運動エネルギーを減少させることができる。
これにより、発電機構と電動機兼発電機との両方を回生制動機として機能させることができる。
In addition, the kinetic energy of the driven shaft system can be reduced by causing the power generation mechanism and the motor / generator to generate power simultaneously.
As a result, both the power generation mechanism and the motor / generator can function as a regenerative brake.

また、この混成動力伝動機構は、発電機構兼電動機構と電動機兼発電機とを一体化して、従動軸に固着した発電機構兼電動機構の固定子相当部を、電動機兼発電機の回転子相当部と兼用するようにすることができる。
このように、発電機構兼電動機構と電動機兼発電機とを一体化することにより、混成動力伝動機構の構造を簡単にすることができる。
In addition, this hybrid power transmission mechanism integrates the generator / electric mechanism and the electric motor / generator, and the stator equivalent portion of the electric generator / electric mechanism fixed to the driven shaft is equivalent to the rotor of the electric motor / generator. Can also be used as a part.
Thus, the structure of the hybrid power transmission mechanism can be simplified by integrating the power generation mechanism / electric mechanism and the motor / generator.

さらに、この混成動力伝動機構は、電動機兼発電機の回転子相当部に永久磁石を用いることができる。
このように、電動機兼発電機の回転子相当部に永久磁石を用いることにより、電動機兼発電機を交流同期電動機(DCブラシレスモータ)にすることができ、混成動力伝動機構の構造を一層簡単にすることができる。
Furthermore, this hybrid power transmission mechanism can use a permanent magnet for the rotor equivalent part of the motor / generator.
Thus, by using a permanent magnet for the rotor equivalent part of the motor / generator, the motor / generator can be an AC synchronous motor (DC brushless motor), and the structure of the hybrid power transmission mechanism can be further simplified. can do.

以下、本発明の混成動力伝動機構の実施の形態を図1〜図7に示す実施例の図面に基づいて説明する。  DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the hybrid power transmission mechanism of the present invention will be described below with reference to the drawings of the embodiments shown in FIGS.

図1に本発明の混成動力伝動機構の第1実施例を示す。
この混成動力伝動機構は、発動機動力源原動軸1Aと、従動軸1Bと、固定子相当部(本明細書において、外郭側部分をいう。)1C及び回転子相当部(本明細書において、中心側部分をいう。)1Dからなる発電機構兼電動機構1と、固定子相当部2A及び回転子相当部2Bからなる電動機兼発電機2と、蓄電池3と、発動機不作動時発動機動力源原動軸回転制止装置4とによって構成するようにしている。
本実施例においては、発電機構兼電動機構1の固定子相当部1Cを発動機動力源原動軸1Aに、回転子相当部1Dを従動軸1Bに、それぞれ固着するようにしている。
これにより、この混成動力伝動機構は、前記機能を奏することができる。
この場合、電動機兼発電機2の回転子相当部2Bに永久磁石を用いることができ、これにより、電動機兼発電機を交流同期電動機(DCブラシレスモータ)にすることができ、混成動力伝動機構の構造を一層簡単にすることができる。
FIG. 1 shows a first embodiment of the hybrid power transmission mechanism of the present invention.
This hybrid power transmission mechanism includes a motor power source driving shaft 1A, a driven shaft 1B, a stator equivalent portion (referred to as an outer side portion in this specification) 1C and a rotor equivalent portion (in this specification, (Refers to the center side portion.) A generator / electric mechanism 1 comprising 1D, an electric motor / generator 2 comprising a stator equivalent part 2A and a rotor equivalent part 2B, a storage battery 3, and a motor power when the engine is inactive. The power source shaft rotation stopping device 4 is configured.
In this embodiment, the stator equivalent portion 1C of the power generation mechanism / electric mechanism 1 is fixed to the motor power source driving shaft 1A, and the rotor equivalent portion 1D is fixed to the driven shaft 1B.
Thereby, this hybrid power transmission mechanism can exhibit the function.
In this case, a permanent magnet can be used for the rotor equivalent portion 2B of the electric motor / generator 2, whereby the electric motor / generator can be an AC synchronous electric motor (DC brushless motor), and the hybrid power transmission mechanism The structure can be further simplified.

図2に本発明の混成動力伝動機構の第2実施例を示す。
本実施例においては、発電機構兼電動機構1の回転子相当部1Dを発動機動力源原動軸1Aに、固定子相当部1Cを従動軸1Bに、それぞれ固着するようにしている。
これにより、この混成動力伝動機構は、前記機能を奏することができる。
この場合、電動機兼発電機2の回転子相当部2Bに永久磁石を用いることができ、これにより、電動機兼発電機を交流同期電動機(DCブラシレスモータ)にすることができ、混成動力伝動機構の構造を一層簡単にすることができる。
FIG. 2 shows a second embodiment of the hybrid power transmission mechanism of the present invention.
In this embodiment, the rotor equivalent part 1D of the power generation mechanism / electric mechanism 1 is fixed to the motor power source driving shaft 1A, and the stator equivalent part 1C is fixed to the driven shaft 1B.
Thereby, this hybrid power transmission mechanism can exhibit the function.
In this case, a permanent magnet can be used for the rotor equivalent portion 2B of the electric motor / generator 2, whereby the electric motor / generator can be an AC synchronous electric motor (DC brushless motor), and the hybrid power transmission mechanism The structure can be further simplified.

図3に本発明の混成動力伝動機構を四輪自動車10に適用した一実施例を示す。
この四輪自動車10は、発電機構兼電動機構1と、電動機兼発電機2と、蓄電池3と、発動機不作動時発動機動力源原動軸回転制止装置4と、発動機5と、自在軸継手6と、差動歯車装置7と、車輪8とからその主要部が構成される。
これにより、二輪駆動二輪回生制動の混成動力四輪自動車とすることができる。
FIG. 3 shows an embodiment in which the hybrid power transmission mechanism of the present invention is applied to a four-wheeled vehicle 10.
The four-wheeled vehicle 10 includes a power generation mechanism / electric mechanism 1, an electric motor / generator 2, a storage battery 3, a motor power source driving shaft rotation restraint device 4, a motor 5, and a free shaft when the motor is inactive. The joint 6, the differential gear device 7, and the wheel 8 constitute the main part.
Thereby, it can be set as the hybrid power four-wheeled vehicle of two-wheel drive two-wheel regenerative braking.

図4に本発明の混成動力伝動機構を四輪自動車10に適用した一実施例を示す。
この四輪自動車10は、発電機構兼電動機構1と、車輪8に連動するように配設した電動機兼発電機2と、蓄電池3と、発動機不作動時発動機動力源原動軸回転制止装置4と、発動機5と、自在軸継手6と、差動歯車装置7と、車輪8とからその主要部が構成される。
これにより、四輪駆動四輪回生制動の混成動力四輪自動車とすることができる。
FIG. 4 shows an embodiment in which the hybrid power transmission mechanism of the present invention is applied to a four-wheeled vehicle 10.
The four-wheeled vehicle 10 includes a power generation mechanism / electrical mechanism 1, an electric motor / generator 2 disposed so as to be interlocked with the wheels 8, a storage battery 3, and a motor power source driving shaft rotation stopping device when the motor is inactive. 4, the motor 5, the universal shaft joint 6, the differential gear device 7, and the wheel 8 constitute the main part.
Thereby, it can be set as the hybrid power four-wheeled vehicle of four-wheel drive four-wheel regenerative braking.

図5に本発明の混成動力伝動機構を四輪自動車10に適用した一実施例を示す。
この四輪自動車10は、発電機構兼電動機構1と、車輪8に連動するように配設した電動機兼発電機2と、蓄電池3と、発動機不作動時発動機動力源原動軸回転制止装置4と、発動機5と、自在軸継手6と、差動歯車装置7と、車輪8とからその主要部が構成される。
これにより、四輪駆動四輪回生制動の混成動力四輪自動車とすることができる。
FIG. 5 shows an embodiment in which the hybrid power transmission mechanism of the present invention is applied to a four-wheeled vehicle 10.
The four-wheeled vehicle 10 includes a power generation mechanism / electrical mechanism 1, an electric motor / generator 2 disposed so as to be interlocked with the wheels 8, a storage battery 3, and a motor power source driving shaft rotation stopping device when the motor is inactive. 4, the motor 5, the universal shaft joint 6, the differential gear device 7, and the wheel 8 constitute the main part.
Thereby, it can be set as the hybrid power four-wheeled vehicle of four-wheel drive four-wheel regenerative braking.

図6に本発明の混成動力伝動機構を四輪自動車10に適用した一実施例を示す。
この四輪自動車10は、発電機構兼電動機構1と、車輪8に連動するように配設した電動機兼発電機2と、蓄電池3と、発動機不作動時発動機動力源原動軸回転制止装置4と、発動機5と、自在軸継手6と、差動歯車装置7と、車輪8と、歯車式変速装置9(これにより、従動軸に多様性に富んだ軸トルクを発生させることができ、レーシングカー、スポーツカーに適用することができる。)とからその主要部が構成される。
これにより、四輪駆動四輪回生制動の混成動力四輪自動車とすることができる。
FIG. 6 shows an embodiment in which the hybrid power transmission mechanism of the present invention is applied to a four-wheeled vehicle 10.
The four-wheeled vehicle 10 includes a power generation mechanism / electrical mechanism 1, an electric motor / generator 2 disposed so as to be interlocked with the wheels 8, a storage battery 3, and a motor power source driving shaft rotation stopping device when the motor is inactive. 4, the motor 5, the universal shaft joint 6, the differential gear device 7, the wheel 8, and the gear-type transmission device 9 (which can generate a variety of shaft torques on the driven shaft). It can be applied to racing cars and sports cars.)
Thereby, it can be set as the hybrid power four-wheeled vehicle of four-wheel drive four-wheel regenerative braking.

図7に本発明の混成動力伝動機構の第2実施例の変形実施例を示す。
この混成動力伝動機構は、上記第2実施例の混成動力伝動機構の発電機構兼電動機構1と電動機兼発電機2とを一体化して構成したもので、発動機動力源原動軸1Aと、従動軸1Bと、発電機構兼電動機構1の回転子相当部1D、発電機構兼電動機構1の固定子相当部1C(電動機兼発電機2の回転子相当部2Bと兼用)及び電動機兼発電機2の固定子相当部2Aと、蓄電池3と、発動機不作動時発動機動力源原動軸回転制止装置4とによって構成するようにしている。
これにより、この混成動力伝動機構は、前記機能を奏することができるとともに、発電機構兼電動機構1と電動機兼発電機2とを一体化することにより、混成動力伝動機構の構造を簡単にすることができる。
この場合、電動機兼発電機2の回転子相当部2B(発電機構兼電動機構1の固定子相当部1Cと兼用)に永久磁石を用いることができ、これにより、電動機兼発電機2を交流同期電動機(DCブラシレスモータ)にすることができ、混成動力伝動機構の構造を一層簡単にすることができる。
FIG. 7 shows a modified embodiment of the second embodiment of the hybrid power transmission mechanism of the present invention.
This hybrid power transmission mechanism is configured by integrating the power generation mechanism / electric mechanism 1 and the motor / generator 2 of the hybrid power transmission mechanism of the second embodiment, and includes a motor power source driving shaft 1A and a driven The shaft 1B, the rotor equivalent part 1D of the power generation mechanism / electric mechanism 1, the stator equivalent part 1C of the power generation mechanism / electric mechanism 1 (also used as the rotor equivalent part 2B of the motor / generator 2), and the motor / generator 2 The stator equivalent part 2A, the storage battery 3, and the motor power source driving shaft rotation stopping device 4 when the motor is inactive are configured.
As a result, the hybrid power transmission mechanism can achieve the above functions, and the structure of the hybrid power transmission mechanism can be simplified by integrating the power generation mechanism / electric mechanism 1 and the motor / generator 2. Can do.
In this case, a permanent magnet can be used for the rotor equivalent portion 2B of the motor / generator 2 (also used as the stator equivalent portion 1C of the power generation mechanism / electric mechanism 1), whereby the motor / generator 2 is AC-synchronized. An electric motor (DC brushless motor) can be used, and the structure of the hybrid power transmission mechanism can be further simplified.

以上、本発明の混成動力伝動機構について、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。  As mentioned above, although the hybrid power transmission mechanism of the present invention has been described based on a plurality of embodiments, the present invention is not limited to the configurations described in the above embodiments, and the configurations thereof are appropriately made within the scope not departing from the gist thereof. Can be changed.

本発明の混成動力伝動機構は、構造を簡単に、重量を小さく、かつ、コストを低くし、さらに、燃費性能を向上することができることから、自動車の用途に好適に用いることができるほか、例えば、鉄道車輌や船等の用途にも用いることができる。  The hybrid power transmission mechanism of the present invention can be suitably used for automobile applications because the structure is simple, the weight is reduced, the cost is reduced, and the fuel efficiency can be improved. It can also be used for applications such as railway vehicles and ships.

本発明の混成動力伝動機構の第1実施例を示す説明図である。It is explanatory drawing which shows 1st Example of the hybrid power transmission mechanism of this invention. 本発明の混成動力伝動機構の第2実施例を示す説明図である。It is explanatory drawing which shows 2nd Example of the hybrid power transmission mechanism of this invention. 本発明の混成動力伝動機構を四輪自動車に適用した一実施例を示す説明図である。It is explanatory drawing which shows one Example which applied the hybrid power transmission mechanism of this invention to the four-wheeled vehicle. 本発明の混成動力伝動機構を四輪自動車に適用した一実施例を示す説明図である。It is explanatory drawing which shows one Example which applied the hybrid power transmission mechanism of this invention to the four-wheeled vehicle. 本発明の混成動力伝動機構を四輪自動車に適用した一実施例を示す説明図である。It is explanatory drawing which shows one Example which applied the hybrid power transmission mechanism of this invention to the four-wheeled vehicle. 本発明の混成動力伝動機構を四輪自動車に適用した一実施例を示す説明図である。It is explanatory drawing which shows one Example which applied the hybrid power transmission mechanism of this invention to the four-wheeled vehicle. 本発明の混成動力伝動機構の第2実施例の変形実施例を示す説明図である。It is explanatory drawing which shows the deformation | transformation Example of 2nd Example of the hybrid power transmission mechanism of this invention.

符号の説明Explanation of symbols

1 発電機構兼電動機構
1A 発動機動力源原動軸
1B 従動軸
1C 固定子相当部
1D 回転子相当部
2 電動機兼発電機
2A 固定子相当部
2B 回転子相当部
3 蓄電池
4 発動機不作動時発動機動力源原動軸回転制止装置
5 発動機
6 自在軸継手
7 差動歯車装置
8 車輪
9 歯車式変速装置
10 四輪自動車
DESCRIPTION OF SYMBOLS 1 Power generation mechanism and electric mechanism 1A Motor power source drive shaft 1B Drive shaft 1C Stator equivalent part 1D Rotor equivalent part 2 Motor / generator 2A Stator equivalent part 2B Rotor equivalent part 3 Storage battery 4 Activation when the motor is inactive Power source drive shaft rotation restraint device 5 Engine 6 Universal shaft joint 7 Differential gear device 8 Wheel 9 Gear-type transmission 10 Four-wheeled vehicle

Claims (10)

発動機動力源原動軸と従動軸との間に動力分割機構を介さないで、発動機動力源原動軸と従動軸との回転速度差で発電させることができるようにした発電機構を設けたことを特徴とする混成動力伝動機構。  Provided a power generation mechanism that can generate power with a difference in rotational speed between the motor power source driving shaft and the driven shaft without using a power split mechanism between the motor power source driving shaft and the driven shaft. Hybrid power transmission mechanism characterized by 発動機動力源原動軸と従動軸との回転速度差で発電させることにより、その発電に要する軸トルクを発動機動力源原動軸と従動軸とに同等に発生させるようにしたことを特徴とする請求項1記載の混成動力伝動機構。  By generating power with a difference in rotational speed between the motor power source driving shaft and the driven shaft, the shaft torque required for the power generation is generated equally between the motor power source driving shaft and the driven shaft. The hybrid power transmission mechanism according to claim 1. 発電機構の固定子相当部を発動機動力源原動軸に、回転子相当部を従動軸に、それぞれ固着したことを特徴とする請求項1又は2記載の混成動力伝動機構。  The hybrid power transmission mechanism according to claim 1 or 2, wherein a stator equivalent portion of the power generation mechanism is fixed to an engine power source driving shaft and a rotor equivalent portion is fixed to a driven shaft. 発電機構の回転子相当部を発動機動力源原動軸に、固定子相当部を従動軸に、それぞれ固着したことを特徴とする請求項1又は2記載の混成動力伝動機構。  3. The hybrid power transmission mechanism according to claim 1, wherein the rotor equivalent portion of the power generation mechanism is fixed to the motor power source driving shaft and the stator equivalent portion is fixed to the driven shaft. 発電機構を発電機構兼電動機構とし、該発電機構兼電動機構の固定子相当部を発動機動力源原動軸に、回転子相当部を従動軸に、それぞれ固着したことを特徴とする請求項1又は2記載の混成動力伝動機構。  The power generation mechanism is a power generation mechanism / electric mechanism, and a stator equivalent portion of the power generation mechanism / electric mechanism is fixed to an engine power source driving shaft and a rotor equivalent portion is fixed to a driven shaft. Or the hybrid power transmission mechanism of 2. 発電機構を発電機構兼電動機構とし、該発電機構兼電動機構の回転子相当部を発動機動力源原動軸に、固定子相当部を従動軸に、それぞれ固着したことを特徴とする請求項1又は2記載の混成動力伝動機構。  2. The power generation mechanism is a power generation mechanism / electric mechanism, and a rotor equivalent portion of the power generation mechanism / electric mechanism is fixed to an engine power source driving shaft, and a stator equivalent portion is fixed to a driven shaft. Or the hybrid power transmission mechanism of 2. 従動軸に連動させた電動機兼発電機を設けたことを特徴とする請求項1、2、3又は5記載の混成動力伝動機構。  6. The hybrid power transmission mechanism according to claim 1, further comprising an electric motor / generator interlocked with a driven shaft. 従動軸に連動させた電動機兼発電機を設けたことを特徴とする請求項1、2、4又は6記載の混成動力伝動機構。  The hybrid power transmission mechanism according to claim 1, 2, 4, or 6, further comprising an electric motor / generator interlocked with the driven shaft. 発電機構兼電動機構と電動機兼発電機とを一体化して、従動軸に固着した発電機構兼電動機構の固定子相当部を、電動機兼発電機の回転子相当部と兼用するようにしたことを特徴とする請求項8記載の混成動力伝動機構。  The generator / electric mechanism and the electric motor / generator are integrated, and the stator equivalent part of the electric generator / electric mechanism fixed to the driven shaft is also used as the rotor equivalent part of the electric motor / generator. The hybrid power transmission mechanism according to claim 8, characterized in that: 前記電動機兼発電機の回転子相当部に永久磁石を用いたことを特徴とする請求項7、8又は9記載の混成動力伝動機構。  10. The hybrid power transmission mechanism according to claim 7, 8 or 9, wherein a permanent magnet is used in a rotor equivalent portion of the electric motor / generator.
JP2006137034A 2005-12-01 2006-04-13 Hybrid power driving mechanism Pending JP2006211900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137034A JP2006211900A (en) 2005-12-01 2006-04-13 Hybrid power driving mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005380767 2005-12-01
JP2006137034A JP2006211900A (en) 2005-12-01 2006-04-13 Hybrid power driving mechanism

Publications (2)

Publication Number Publication Date
JP2006211900A true JP2006211900A (en) 2006-08-10
JP2006211900A5 JP2006211900A5 (en) 2007-02-01

Family

ID=36968110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137034A Pending JP2006211900A (en) 2005-12-01 2006-04-13 Hybrid power driving mechanism

Country Status (1)

Country Link
JP (1) JP2006211900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536323A (en) * 2007-08-14 2010-11-25 ▲劉▼▲剛▼ Generator with closed magnetic circuit coil
CN101242123B (en) * 2007-02-06 2011-06-08 雅马哈发动机株式会社 Engine attached with axial gap type rotating electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927814A (en) * 1972-07-07 1974-03-12
JPS5054754A (en) * 1973-09-14 1975-05-14
JPH0947095A (en) * 1995-05-19 1997-02-14 Toyota Motor Corp Power transmission and its control method
JPH10238381A (en) * 1997-02-25 1998-09-08 Denso Corp Hybrid vehicle control device
JP2000227035A (en) * 1999-02-04 2000-08-15 Toyota Motor Corp Power output device, and control method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927814A (en) * 1972-07-07 1974-03-12
JPS5054754A (en) * 1973-09-14 1975-05-14
JPH0947095A (en) * 1995-05-19 1997-02-14 Toyota Motor Corp Power transmission and its control method
JPH10238381A (en) * 1997-02-25 1998-09-08 Denso Corp Hybrid vehicle control device
JP2000227035A (en) * 1999-02-04 2000-08-15 Toyota Motor Corp Power output device, and control method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242123B (en) * 2007-02-06 2011-06-08 雅马哈发动机株式会社 Engine attached with axial gap type rotating electric machine
JP2010536323A (en) * 2007-08-14 2010-11-25 ▲劉▼▲剛▼ Generator with closed magnetic circuit coil

Similar Documents

Publication Publication Date Title
US7980349B2 (en) Drive system for vehicle
JP6666449B2 (en) Power unit
JP7011754B2 (en) Hybrid vehicle transmission and power system
JP5318185B2 (en) Vehicle drive device
CN101318460B (en) Power assembly of hybrid power automobile
JP2002204504A5 (en)
JP2003127679A5 (en)
JP2004042894A (en) All wheel drive vehicle with hybrid drive
JP2010260438A (en) Power transmission mechanism for parallel type hybrid vehicle
JP2009173272A (en) Powertrain system for hybrid electric vehicle
JP5708826B2 (en) Vehicle control system
JP2009143348A (en) Drive device for hybrid vehicle
JP2009142036A (en) Electric vehicle
JP2015519241A5 (en)
JPH08237806A (en) Composite electric vehicle
JP3933125B2 (en) Vehicle power output device
JP5446361B2 (en) Hybrid car
JP2013147235A (en) Driving device for hybrid vehicle
JP5446360B2 (en) Hybrid car
KR100999606B1 (en) A hybrid system for electric vehicles
JP2006211900A (en) Hybrid power driving mechanism
JP2013001181A (en) Power train of vehicle
JP2011057194A (en) Transmission with motor for hybrid automobile
JP2003018708A (en) Parallel hybrid electric automobile
US20040089485A1 (en) Vehicle drive arrangement having multiple-sized electric motors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100406

Free format text: JAPANESE INTERMEDIATE CODE: A02