[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006210689A - Copper foil for high frequency printed wiring board and its production method - Google Patents

Copper foil for high frequency printed wiring board and its production method Download PDF

Info

Publication number
JP2006210689A
JP2006210689A JP2005021401A JP2005021401A JP2006210689A JP 2006210689 A JP2006210689 A JP 2006210689A JP 2005021401 A JP2005021401 A JP 2005021401A JP 2005021401 A JP2005021401 A JP 2005021401A JP 2006210689 A JP2006210689 A JP 2006210689A
Authority
JP
Japan
Prior art keywords
copper foil
layer
printed wiring
wiring board
roughening treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005021401A
Other languages
Japanese (ja)
Inventor
Hisatoku Manabe
久徳 真鍋
Wataru Kawamoto
渉 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2005021401A priority Critical patent/JP2006210689A/en
Publication of JP2006210689A publication Critical patent/JP2006210689A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper foil for a high frequency printed wiring board which can obtain high peel strength to a high frequency substrate represented by a PPE resin impregnated base material, and can raise linearity of a circuit bottom line after circuit pattern formation by etching by realizing ultra low roughness of a roughened surface and reduce transmission loss, and to provide its manufacturing method. <P>SOLUTION: In the copper foil for a high frequency printed wiring board and its manufacturing method, a roughening treatment layer consisting of spherical fine roughening particle of a diameter of 0.05 to 1.0 μm is applied to at least one surface of a copper foil. Furthermore, a heat-resistant/rust proofing layer consisting of at least one or more kinds among molybdenum, nickel, tungsten, phosphorus, cobalt and germanium is applied on the roughening treatment layer; a chromate film is further applied on the heat-resistant/rust proofing layer; and a silane coupling agent layer is further applied on the chromate film layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明はプリント配線板用銅箔及びその製造方法に関するものであり、更に詳しくは高周波プリント配線板用銅箔及びその製造方法に関するものである。   The present invention relates to a copper foil for printed wiring boards and a method for producing the same, and more particularly to a copper foil for high-frequency printed wiring boards and a method for producing the same.

銅箔は電子、電気材料用としては特にプリント配線板用途に大量に使用されている。
プリント配線板は高性能化、高信頼性化が進んでおり、そのため要求特性は複雑で且つ多様化してきている。このプリント配線板の構成材料の一つとなっている銅箔についても同様に、厳しい品質要求が課せられて来ている。
Copper foil is used in large quantities especially for printed wiring boards for electronic and electrical materials.
Printed wiring boards have been improved in performance and reliability. Therefore, required characteristics are complicated and diversified. Similarly, strict quality requirements have been imposed on copper foil, which is one of the constituent materials of this printed wiring board.

プリント配線板製造では、まず銅箔の粗面側を絶縁性の合成樹脂含浸基材と合わせて積層し、プレスにより加熱圧着して銅張積層板を得る。一般によく使用されるガラスエポキシ基板(FR-4)では170 ℃前後の温度で1〜2時間のプレスにより完成する。また、ポリイミド樹脂、ハロゲンフリー樹脂、高耐熱性樹脂、低誘電率樹脂等を使用した特殊樹脂含浸基材では200℃、2時間のプレスといった高温を必要とする場合もある。   In the production of a printed wiring board, first, the rough side of a copper foil is laminated together with an insulating synthetic resin-impregnated base material, and heat-pressed by a press to obtain a copper-clad laminate. In general, a glass epoxy substrate (FR-4) often used is completed by pressing at a temperature of about 170 ° C. for 1 to 2 hours. A special resin-impregnated base material using polyimide resin, halogen-free resin, high heat resistance resin, low dielectric constant resin, or the like may require a high temperature such as 200 ° C. for 2 hours.

プリント配線板用銅箔としては片側粗面、片側光沢面を持つ電解銅箔が圧倒的に多く使用されている。通常、電解銅箔は銅の電解液から電着装置により、銅を電解析出させ、未処理銅箔と呼ばれる原箔を製造し、次に処理装置により一連の表面処理を行う。   As copper foils for printed wiring boards, electrolytic copper foils having one side rough surface and one side glossy surface are overwhelmingly used. Usually, the electrolytic copper foil is subjected to electrolytic deposition of copper from an electrolytic solution of copper by an electrodeposition apparatus to produce a raw foil called untreated copper foil, and then a series of surface treatments are performed by a processing apparatus.

一般的には、未処理銅箔粗面側(非光沢面側)を酸洗し、粗面化処理を行い樹脂との引き剥がし強さを確保する処理を行い、さらにその引き剥がし性における耐熱、耐薬品などの特性やエッチング特性などを向上、安定化させる処理を行い完成される。これらの処理についてはさまざまな技術が開発、提案され、高機能性表面となっている。最近のプリント配線板の高密度化においては、例えば薄物プリント配線板やビルドアップ工法のプリント配線板では絶縁層となる樹脂層が極めて薄くなっているため、銅箔粗面が大きい場合、層間絶縁性に問題が生じる可能性がある。   In general, the untreated copper foil rough surface side (non-glossy surface side) is pickled, roughened and treated to ensure the peel strength from the resin, and the heat resistance in its peelability The process is completed by improving and stabilizing the chemical resistance and etching characteristics. Various techniques have been developed and proposed for these treatments, resulting in a highly functional surface. In the recent increase in the density of printed wiring boards, for example, in thin printed wiring boards and build-up printed wiring boards, the resin layer that becomes the insulating layer is extremely thin. May cause problems.

また、ファインライン化により、銅箔粗面が小さい方がライン間の絶縁を保てるなどの理由により粗面側は低粗度化が望まれてきている。しかし引き剥がし強さが十分でないと製造工程中や製品となった後での銅箔回路の剥がれや浮き等、デラミネーションの問題が生じてくるので、両者を満足する表面処理が最も好ましいが、互いに相反する事であるので優れた方法が要求されている。   In addition, by making fine lines, it is desired to reduce the roughness on the rough surface side for the reason that the smaller copper foil rough surface can maintain insulation between lines. However, if the peel strength is not enough, delamination problems such as peeling and floating of the copper foil circuit during the manufacturing process and after becoming a product will occur, so the surface treatment that satisfies both is most preferable, An excellent method is required because they are mutually contradictory.

また、さらにプリント配線板においてはガラスエポキシ基材(FR-4)が多数を占めていたが、近年の電子機器の小型化、軽量化、高機能化、環境負荷物質の使用低減及びPbレスはんだの使用頻度上昇に伴う実装温度上昇等の理由により特殊樹脂含浸基材の使用頻度が高くなってきている。特に電子機器の多機能化に於いては短時間で大容量の情報を正確にやりとりする必要性が生じてきており、信号の高速化即ち高周波化が必要となってきている。   Furthermore, glass epoxy substrates (FR-4) accounted for the majority of printed wiring boards, but in recent years electronic devices have become smaller, lighter, more functional, less environmentally hazardous substances are used, and Pb-less soldering is required. The use frequency of special resin-impregnated base materials is increasing for reasons such as an increase in mounting temperature accompanying an increase in the use frequency. In particular, in the multi-functionalization of electronic devices, it is necessary to exchange a large amount of information accurately in a short time, and it is necessary to increase the speed of signals, that is, to increase the frequency.

高周波信号を扱う基板に使用されるプリント配線板には信号の品質を高める目的で伝送損失の低い基材が要求されており、銅箔にも同様の特性が要求されている。伝送損失は大きく分けて導体損、誘電体損、幅射損の3因子に分類することができ、この内銅箔が起因するのが導体損である。導体損とは電気信号の周波数がGHz帯の領域に入ると電流は導体内部には流れにくくなり導体の表面のみに流れる表皮効果の影響が極めて強くなり、このために電流の流れる有効断面積が減少し抵抗が上昇する現象である。本現象を低減する方法としては銅箔の基材接着面側の粗面粗度を超低粗度化することで達成できる事が知られている。   A printed wiring board used for a substrate that handles high-frequency signals requires a base material with low transmission loss for the purpose of improving signal quality, and copper foils are also required to have similar characteristics. Transmission loss can be broadly classified into three factors: conductor loss, dielectric loss, and width radiation loss. The inner copper foil is caused by the conductor loss. Conductor loss means that when the frequency of an electrical signal enters the GHz band region, current does not flow easily inside the conductor and the skin effect that flows only on the surface of the conductor becomes extremely strong. It is a phenomenon in which resistance decreases and increases. As a method for reducing this phenomenon, it is known that it can be achieved by reducing the roughness of the copper foil on the substrate adhesion surface side to an extremely low roughness.

それは粗面粗度の大きい銅箔を使用しパターンを形成した場合、銅箔粗面形状の凹凸により回路ボトムラインの直線性が悪く、湾曲した不規則な形状を呈する。このため表皮効果により信号の流れる距離が長くなるため、信号の品質が悪くなる問題が生じる。一方、超低粗度銅箔の場合、粗面形状の凹凸が殆ど無いため回路ボトムラインの直線性が極めて高くなり、その結果信号の流れる距離が粗面粗度の大きい銅箔よりも短くなり信号の遅延等の問題が生じにくくなる為である。   That is, when a pattern is formed using a copper foil having a large roughness, the circuit bottom line has poor linearity due to the irregularities of the rough shape of the copper foil, and exhibits a curved irregular shape. For this reason, since the distance that the signal flows is increased due to the skin effect, there arises a problem that the signal quality is deteriorated. On the other hand, in the case of an ultra-low roughness copper foil, the circuit bottom line linearity is extremely high because there is almost no roughness on the rough surface, and as a result, the distance that the signal flows is shorter than the copper foil with a large roughness. This is because problems such as signal delay are less likely to occur.

この様に銅箔の基材接着面側を超低粗度にする事で伝送損失を低減させることは可能となるが一方で基材との機械的投錨効果が低くなり引き剥がし強さが著しく低下する問題が生じてくる。特に、PPE(ポリフェニレンエーテル)樹脂含浸基材を代表とした高周波基材は銅箔との密着力が極めて弱く、更に、先に記した超低粗度は接着力向上とは相反する特性であることから伝送損失の低減、引き剥がし強さの向上の両特性を同時に満足させる処理方法が待たれていた。   In this way, it is possible to reduce the transmission loss by making the copper foil substrate adhesion surface side ultra low roughness, but on the other hand, the mechanical anchoring effect with the substrate becomes low and the peeling strength is remarkably high. Decreasing problems arise. In particular, high-frequency substrates represented by PPE (polyphenylene ether) resin-impregnated substrates have extremely weak adhesion to copper foil, and the ultra-low roughness described above is a characteristic that is contrary to improved adhesion. Therefore, there has been a waiting for a processing method that satisfies both the characteristics of reduction of transmission loss and improvement of peeling strength.

以上の様に強い引き剥がし強さと超低粗度粗面の両特性を同時に満足させる様々な銅箔処理方法が開発されている。従来の技術では、たとえばヒ素を含む酸性電解浴中で 3段の電解処理を行う方法(特許文献1参照)や、また、ヒ素、アンチモン、ビスマス、セレン、テルルを含む酸性銅電解浴中で限界電流密度前後で電解する方法(特許文献2、特許文献3参照)などがあり、実際にはヒ素が多用されている。   As described above, various copper foil treatment methods have been developed that satisfy both the properties of strong peel strength and ultra-low roughness rough surface at the same time. In the conventional technique, for example, a method of performing three-stage electrolytic treatment in an acidic electrolytic bath containing arsenic (see Patent Document 1), or in an acidic copper electrolytic bath containing arsenic, antimony, bismuth, selenium, and tellurium is limited. There are methods of electrolysis before and after the current density (see Patent Document 2 and Patent Document 3), and arsenic is often used in practice.

また、クロム又はタングステンの1種又は2種を含む酸性銅電解浴中で限界電流密度前後で電解する方法(特許文献4)もある。また、粗化処理層を形成する電解浴中に0.001〜5g/Lのゲルマニウムを添加し粗化粒子を形成する方法(特許文献5)もある。更に、酸性電解浴中にモリブデンと鉄、コバルト、ニッケルの内の少なくとも一種類を含有させ粗化粒子を形成する方法(特許文献6)もある。   There is also a method of electrolysis around a limit current density in an acidic copper electrolytic bath containing one or two of chromium or tungsten (Patent Document 4). There is also a method (Patent Document 5) in which 0.001 to 5 g / L of germanium is added to an electrolytic bath for forming a roughened layer to form roughened particles. Further, there is a method (Patent Document 6) in which at least one of molybdenum, iron, cobalt, and nickel is contained in an acidic electrolytic bath to form coarse particles.

しかし、上記のような従来の方法においては、ヒ素、セレン、テルルのような人体に有害な物質を使用することは特に近年厳しくなってきた環境問題上使用が極めて制限されてきている。プリント配線板再利用あるいは産業廃棄物の観点でも銅箔に含まれる有害成分の蓄積が懸念され、代替方法が強く要求されている。   However, in the conventional methods as described above, the use of substances harmful to the human body such as arsenic, selenium, and tellurium has been extremely limited due to environmental problems that have become particularly severe in recent years. From the viewpoint of reuse of printed wiring boards or industrial waste, there is concern about accumulation of harmful components contained in copper foil, and alternative methods are strongly demanded.

また、クロム又はタングステンを含む方法、ゲルマニウムを含む方法、モリブデンと鉄、コバルト、ニッケルの内の少なくとも一種類を含む方法は確かに無添加に比べ均一性は向上し使用頻度の高いFR-4基材等では機械的投錨効果により強い引き剥がし強さが得られるが、高周波プリント配線板用途で使用するには依然として粗面粗度が大きいため回路ボトムラインの直線性に劣り伝送損失が大きくなる不具合が生じ良くない。
特公昭53−38700号 特公昭53−39327号 特公昭54−38053号 特許第2717911号 特許第3201850号 特開平11−256389号
In addition, the method containing chromium or tungsten, the method containing germanium, and the method containing at least one of molybdenum and iron, cobalt, and nickel certainly improve the uniformity compared to the additive-free FR-4 group. For materials, etc., strong peeling strength can be obtained due to the mechanical anchoring effect, but the roughness of the rough surface is still large for use in high-frequency printed wiring board applications, resulting in inferior circuit bottom line linearity and increased transmission loss. Is not good.
JP-B 53-38700 Japanese Patent Publication No.53-39327 Japanese Patent Publication No.54-38053 Japanese Patent No. 2717911 Japanese Patent No. 3121850 JP-A-11-256389

本願発明の解決しようとする課題は容易な方法でPPE樹脂含浸基材を代表とする高周波基板に対して強い引き剥がし強さを得ることができ、また、超低粗度にする事でエッチングによる回路パターン形成後の回路ボトムラインの直線性を向上させ伝送損失の大幅な低減が可能となる新しい高周波プリント配線板用銅箔及びその製造方法を提供することを課題とする。   The problem to be solved by the present invention is that it is possible to obtain a strong peeling strength with respect to a high-frequency substrate typified by a PPE resin-impregnated base material by an easy method, and by etching with ultra-low roughness It is an object of the present invention to provide a new copper foil for a high-frequency printed wiring board and a method for manufacturing the same, which can improve the linearity of the circuit bottom line after forming a circuit pattern and can greatly reduce transmission loss.

高周波プリント配線板用銅箔として上記した超低粗度、強い引き剥がし強さを同時に満足させる為様々な銅箔処理方法を検討した結果、銅箔の少なくとも一方の面に直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層を施し、更に該粗化処理層上にモリブデン、ニッケル、タングステン、リン、コバルト、ゲルマニウムの内の少なくとも一種類以上からなる耐熱・防錆層を施し、更に該耐熱・防錆層上にクロメート皮膜層を施し、更に該クロメート皮膜層上にシランカップリング剤層を施す事で銅箔処理面の十点平均粗さRzを2.5μm以下にする事ができ、更に上記表面処理を施した銅箔を用い高周波基材とプレスにより加熱圧着し銅張積層板を製造した場合、引き剥がし強さが強い、エッチングによる回路パターン形成後の回路ボトムラインの直線性が高く伝送損失の低減が可能となる高周波プリント配線板用銅箔及びその製造方法である。   As a result of investigating various copper foil treatment methods to satisfy the above-mentioned ultra-low roughness and strong peel strength at the same time as a copper foil for high-frequency printed wiring boards, the diameter is 0.05 to 1.0 μm on at least one surface of the copper foil. A heat treatment / rust prevention comprising at least one of molybdenum, nickel, tungsten, phosphorus, cobalt, and germanium on the roughening layer. Applying a layer, further applying a chromate film layer on the heat and rust preventive layer, and further applying a silane coupling agent layer on the chromate film layer, the ten-point average roughness Rz of the copper foil treated surface is 2.5 μm or less. In addition, when a copper-clad laminate is manufactured by hot pressing with a high-frequency substrate and press using the copper foil with the above surface treatment, the circuit after forming a circuit pattern by etching is strong. Bo Reduction of high transmission loss linearity of Murain is possible to become the high frequency copper foil for printed wiring boards and a manufacturing method thereof.

本願発明の効果は銅箔の少なくとも一方の面に上記表面処理を行うことによりPPE樹脂含浸基材を代表とする高周波基材と強い引き剥がし強さを得ることが可能となり、超低粗度であるのでエッチングによる回路パターン形成後の回路ボトムラインの直線性を向上させ伝送損失の大幅な低減が可能となる特徴を有する。本願発明の表面処理を施した銅箔は近年ますます厳しい特性を求められているプリント配線板の特に高周波プリント配線板用銅箔として非常に適している。また、ファインパターン、超低粗度、外観色調が黒色系可能という特徴を有する事からプラズマディスプレイにおける電磁波シールド用銅箔にも適している。   The effect of the present invention is that by performing the above surface treatment on at least one surface of the copper foil, it becomes possible to obtain a high-frequency substrate represented by a PPE resin-impregnated substrate and a strong peeling strength, and with an ultra-low roughness As a result, the linearity of the circuit bottom line after circuit pattern formation by etching is improved, and transmission loss can be significantly reduced. The copper foil subjected to the surface treatment of the present invention is very suitable as a copper foil for a high-frequency printed wiring board, particularly for a printed wiring board that has been required to have increasingly severe characteristics in recent years. In addition, since it has the characteristics that fine pattern, ultra-low roughness and appearance color tone can be black, it is also suitable for copper foil for electromagnetic wave shielding in plasma displays.

以下に本願発明について詳述する。
本願発明は以下に詳述する何れの表面処理が欠けても目的とする表面処理銅箔を得ることは出来ない。
まず、使用する未処理銅箔であるが圧延、電解銅箔に限定する必要性は無く何れの銅箔を使用しても良い。
The present invention is described in detail below.
In the present invention, even if any of the surface treatments described in detail below is lacking, the intended surface-treated copper foil cannot be obtained.
First, although it is the untreated copper foil to be used, there is no need to limit to rolling and electrolytic copper foil, and any copper foil may be used.

(直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層)
粗化処理層は未処理銅箔表面に行う一層目表面処理層であり水溶液電解めっき法により形成するものである。本処理層を施すことにより樹脂基材との濡れ性が向上し銅張積層板成型後の引き剥がし強さが向上する。
(Roughening treatment layer consisting of spherical fine roughening particles having a diameter of 0.05 to 1.0 μm)
The roughening treatment layer is a first surface treatment layer formed on the surface of the untreated copper foil and is formed by an aqueous solution electroplating method. By applying this treatment layer, the wettability with the resin base material is improved, and the peel strength after molding the copper-clad laminate is improved.

また、本処理は微細な粗化粒子からなる粗化処理層であり、先にも触れたが一般的な粗化処理方法とは異なり粗面粗度の上昇を極めて低く抑えることが可能であり、高いエッチング精度、エッチングによる回路パターン形成後の回路ボトムラインの直線性が高く出来る利点もある。また、未処理銅箔と粗化処理層との固着性も高くいわゆる粉落ちが少ない利点もある。   In addition, this treatment is a roughening treatment layer consisting of fine roughening particles, and as mentioned earlier, unlike the general roughening treatment method, it is possible to suppress the increase in roughness of the surface extremely low. Also, there is an advantage that the linearity of the circuit bottom line after the high etching accuracy and the circuit pattern formation by etching can be increased. In addition, there is an advantage that the non-treated copper foil and the roughened layer are highly fixed and so-called powder fall is small.

本願発明の粗化粒子の直径が0.05〜1.0μmの範囲の場合全ての特性に於いて良好であるがこの範囲外では、0.05μm未満の場合、基材樹脂との引き剥がし強さが得られにくくなる不具合が生じる場合がある。一方、1.0μmを超える場合は粗面粗度が大きくなり、その結果エッチング精度が悪くなる、エッチング残が発生しやすくなる等の不具合が生じる場合がある。   When the diameter of the roughened particles of the present invention is in the range of 0.05 to 1.0 μm, all the characteristics are good, but outside this range, when the diameter is less than 0.05 μm, the peel strength from the base resin is obtained. There may be a problem that becomes difficult. On the other hand, when the thickness exceeds 1.0 μm, the roughness of the rough surface increases, and as a result, problems such as poor etching accuracy and easy etching residue may occur.

また、本願発明の粗化粒子直径は処理を施す未処理銅箔面の形状、粗面粗度、電解電流密度の影響を強く受ける。例えば未処理銅箔表面粗度が小さく、電解電流密度が高い場合粗化粒子直径は小さくなる傾向であり、逆に、未処理銅箔表面粗度が大きく、電解電流密度が低い場合粗化粒子直径は大きくなる傾向である。このため目的とする粗化粒子直径を得るためには処理を施す未処理銅箔面の粗面粗度により電解電流密度を設定するのが効果的である。   The roughened particle diameter of the present invention is strongly influenced by the shape of the untreated copper foil surface to be treated, the roughness of the rough surface, and the electrolytic current density. For example, when the untreated copper foil surface roughness is small and the electrolytic current density is high, the roughened particle diameter tends to be small. Conversely, when the untreated copper foil surface roughness is large and the electrolytic current density is low, roughened particles The diameter tends to increase. For this reason, in order to obtain the target rough particle diameter, it is effective to set the electrolytic current density according to the roughness of the untreated copper foil surface to be treated.

本処理層の外観色調は茶色〜黒色を呈し硫酸・硫酸銅浴に添加する活性有機イオウ化合物のスルフォン酸塩と金属イオンの組み合わせにより銅箔の色調をコントロールする事が可能である。例えば、活性有機イオウ化合物のスルフォン酸塩の単独添加若しくは活性有機イオウ化合物のスルフォン酸塩とタングステンイオン、コバルトイオン、ニッケルイオンの内の少なくとも一種類以上との組合わせ添加の場合は粗化処理層は茶色〜茶褐色を呈し、活性有機イオウ化合物のスルフォン酸塩とチタンイオン、モリブデンイオンの内の少なくとも一種類以上との組合わせ添加の場合は茶褐色〜黒色を呈する。   The appearance color tone of this treatment layer is brown to black, and the color tone of the copper foil can be controlled by a combination of a sulfonate salt of an active organic sulfur compound added to a sulfuric acid / copper sulfate bath and metal ions. For example, in the case of adding a sulfonate of an active organic sulfur compound alone or a combination of a sulfonate of an active organic sulfur compound and at least one of tungsten ion, cobalt ion and nickel ion, a roughened layer Exhibits brown to brown color, and exhibits brown to black color when added in combination with a sulfonate salt of an active organic sulfur compound and at least one of titanium ions and molybdenum ions.

活性有機イオウ化合物のスルフォン酸塩は、一般式NaSO3-R1-S-S-R2-SO3Naで表される対称若しくは非対称のジスルフィドスルフォン酸塩、又は、一般式HS-R1- SO3Na若しくは一般式HS-Ar- SO3Naで表されるチオールのスルホン酸を使用する。式中、R1,R2は炭素原子2若しくは3のアルキレン基を表しており同一であっても、異なっても良い。また、Arはアロマチックス基を表している。本願発明に好適な活性有機イオウ化合物のスルホン酸塩の代表的な化合物は化1、化2、化3、及び化4に示すものである。 The sulfonate of the active organic sulfur compound is a symmetric or asymmetrical disulfide sulfonate represented by the general formula NaSO 3 -R 1 -SSR 2 -SO 3 Na, or a general formula HS-R 1 -SO 3 Na or The thiol sulfonic acid represented by the general formula HS-Ar-SO 3 Na is used. In the formula, R 1 and R 2 represent an alkylene group having 2 or 3 carbon atoms and may be the same or different. Ar represents an aromatic group. Representative compounds of the sulfonate salt of the active organic sulfur compound suitable for the present invention are those shown in Chemical Formula 1, Chemical Formula 2, Chemical Formula 3, and Chemical Formula 4.

Figure 2006210689
Figure 2006210689

Figure 2006210689
Figure 2006210689

Figure 2006210689
Figure 2006210689

Figure 2006210689
Figure 2006210689

金属イオンの供給源は硫酸イオン以外の不純物イオンの混入を防ぐために硫酸塩を用いるのが好ましいが特に限定されるものでは無い。
本粗化処理層を施す電解浴及び電解条件としては例えば以下に示す条件が挙げられるが
特にこれに限定されるものではない。
The metal ion supply source is preferably a sulfate but is not particularly limited in order to prevent mixing of impurity ions other than sulfate ions.
Examples of the electrolytic bath and electrolysis conditions for applying the roughening treatment layer include the following conditions, but are not particularly limited thereto.

(電解液組成)
(1)硫酸銅五水和物 10〜100g/L(特に好ましくは30〜70g/L)
(2)硫酸 20〜200g/L(特に好ましくは50〜130g/L)
(3)3-メルカプト-1-プロパンスルホン酸ナトリウム 0.005〜2g/L(特に好ましくは0.03〜1g/L)
(4)タングステン酸ナトリウムニ水和物 0.0018〜0.18g/L(特に好ましくは0.009
〜0.09g/L)
(5)モリブデン酸二ナトリウム二水和物 0.05〜1g/L(特に好ましくは0.1〜0.5g
/L)
(6)硫酸コバルト七水和物 3〜100g/L(特に好ましくは5〜70g/L)
(7)硫酸ニッケル六水和物 3〜100g/L(特に好ましくは5〜70g/L)
(8)24%硫酸チタン溶液 0.76〜15.2mL/L(特に好ましくは1.52〜4.56mL/L)
(Electrolytic solution composition)
(1) Copper sulfate pentahydrate 10-100 g / L (particularly preferably 30-70 g / L)
(2) Sulfuric acid 20 to 200 g / L (particularly preferably 50 to 130 g / L)
(3) Sodium 3-mercapto-1-propanesulfonate 0.005 to 2 g / L (particularly preferably 0.03 to 1 g / L)
(4) Sodium tungstate dihydrate 0.0018-0.18 g / L (particularly preferably 0.009
(~ 0.09g / L)
(5) Disodium molybdate dihydrate 0.05-1 g / L (particularly preferably 0.1-0.5 g
/ L)
(6) Cobalt sulfate heptahydrate 3-100 g / L (particularly preferably 5-70 g / L)
(7) Nickel sulfate hexahydrate 3 to 100 g / L (particularly preferably 5 to 70 g / L)
(8) 24% titanium sulfate solution 0.76 to 15.2 mL / L (particularly preferably 1.52 to 4.56 mL / L)

(電解条件)
電流密度 3〜100A/dm2(特に好ましくは5〜50A/dm2
電気量 40〜200A・sec/dm2(特に好ましくは60〜150A・sec/dm2
液温 20〜70℃(特に好ましくは30〜50℃)
陽極 白金
硫酸銅五水和物は10〜100g/Lが適当でありこの範囲外では、10g/L未満の場合、
析出効率が悪くなり、十分な引き剥がし強さが得られにくくなる。また、十分な引き剥がし強さを得るために電解反応時間を長くする必要があり不経済である等の不具合を生じる。逆に100g/Lを超える場合、粗化粒子の発生が多くなり粗面粗度が上昇する、粗化粒子の粉落ちが酷くなる等の不具合を生じる。
(Electrolysis conditions)
Current density 3 to 100 A / dm 2 (particularly preferably 5 to 50 A / dm 2 )
Electricity 40 ~ 200A ・ sec / dm 2 (Preferably 60 ~ 150A ・ sec / dm 2 )
Liquid temperature 20-70 ° C (particularly preferably 30-50 ° C)
Anode Platinum Copper sulphate pentahydrate is suitably 10-100g / L. Outside this range, if less than 10g / L,
Precipitation efficiency deteriorates, and it becomes difficult to obtain sufficient peeling strength. In addition, in order to obtain a sufficient peel strength, it is necessary to lengthen the electrolytic reaction time, resulting in disadvantages such as being uneconomical. Conversely, when it exceeds 100 g / L, the generation | occurrence | production of roughening particle | grains increases, rough surface roughness raises, and the malfunction of the powder fall of roughening particle | grains will arise.

上記電解浴組成の内(1)〜(3)までは必須であるが(4)〜(8)は必要に応じ添加すれば良い。例えばタングステンイオン、コバルトイオン、ニッケルイオンの添加は(1)〜(3)のみの場合よりも粗化粒子直径が大きくなる為機械的投錨効果に優れ引き剥がし強さが強くなる。また、チタンイオン、モリブデンイオンの添加は色調を黒色化することが可能となるのでプラズマディスプレイ用途等で黒色銅箔が求められる場合などに適している。もちろん、活性有機イオウ化合物のスルフォン酸塩単独使用でも十分に効果があり、また、その他組合わせも可能である。   Among the above electrolytic bath compositions, (1) to (3) are essential, but (4) to (8) may be added as necessary. For example, the addition of tungsten ions, cobalt ions, and nickel ions makes the coarse particle diameter larger than in the cases of (1) to (3) alone, so that the mechanical anchoring effect is excellent and the peel strength is increased. Further, the addition of titanium ions and molybdenum ions makes it possible to make the color tone black, so that it is suitable when a black copper foil is required for plasma display applications. Of course, the use of a sulfonate salt of an active organic sulfur compound is sufficiently effective, and other combinations are possible.

(モリブデン、ニッケル、タングステン、リン、コバルト、ゲルマニウムの内の少なくとも一種類以上からなる耐熱・防錆層)
耐熱・防錆層は一層目処理層となる球状の微細な粗化粒子からなる粗化処理層形成後に行う二層目表面処理層であり水溶液電解めっき法により形成するものである。本処理層を施すことにより様々な特性が向上し、例えば、耐熱性、防錆性が向上する、エッチング後の銅残が防止できる等の特性が付与される。エッチング後の銅残についてはその詳細なメカニズムは分かっていないが粗化処理層上に銅以外の異種金属層を処理することで発生がなくなることから銅張積層板成型時に基材中成分と銅の反応によりエッチングされにくい化合物が生成していると考えられる。
(Heat-resistant / rust-proof layer composed of at least one of molybdenum, nickel, tungsten, phosphorus, cobalt, germanium)
The heat-resistant / rust-proof layer is a second surface treatment layer formed after the formation of a roughening treatment layer composed of spherical fine roughening particles as a first treatment layer, and is formed by an aqueous electrolytic plating method. By applying this treatment layer, various characteristics are improved. For example, characteristics such as improved heat resistance and rust prevention, and prevention of copper residue after etching can be imparted. Although the detailed mechanism of the copper residue after etching is not known, it is eliminated by treating different types of metal layers other than copper on the roughened layer. It is considered that a compound that is difficult to be etched is generated by this reaction.

本耐熱・防錆層はニッケル、コバルトを基本とした合金層にする事が更に好ましい。この理由としてはニッケル単独層、ニッケル-コバルト層は回路形成時によく使用される塩化第二鉄や塩化第二銅のエッチング液には可溶であるものの、パターンめっき法等でよく使用されるアルカリエッチング液には不溶であり、電気絶縁性を損なうエッチング残(ステイン)を生じるという重大な欠点を有している。近年の回路の狭小化を考えた場合、塩化第二鉄、塩化第二銅でファインパターンが描けるのはもちろん必須条件であるが、レジストなどの多種多様化によりアルカリエッチング性も必須条件である。   More preferably, the heat- and rust-proof layer is an alloy layer based on nickel or cobalt. The reason for this is that the nickel single layer and the nickel-cobalt layer are soluble in ferric chloride and cupric chloride etchants that are often used in circuit formation, but are often used in pattern plating methods. It has a serious drawback that it is insoluble in the etching solution and causes an etching residue (stain) that impairs electrical insulation. When considering the narrowing of circuits in recent years, it is an indispensable condition that a fine pattern can be drawn with ferric chloride or cupric chloride, but alkali etching is also an indispensable condition due to various types of resists.

また、コバルト単独層では亜鉛ほどではないが耐薬品性が悪く、塩酸浸漬後、金めっき等で使用されるシアン化物浴浸漬後にアンダーカッティングが生じる欠点を有する。一方、耐熱・防錆層をモリブデン、タングステン、リン、ゲルマニウムの内の少なくとも一種類以上を含むニッケル及び/又はコバルトからなる耐熱・防錆層とした場合、上記した特性の他にアルカリエッチング液に可溶となる、活性処理液浸漬後のアンダーカッティングが無くなる等の特性が付与され極めて汎用性の高い銅箔になる。   In addition, although the cobalt single layer is not as good as zinc, it has the disadvantage that undercutting occurs after immersion in hydrochloric acid and after immersion in a cyanide bath used in gold plating or the like. On the other hand, when the heat / rust preventive layer is a heat / rust preventive layer made of nickel and / or cobalt containing at least one of molybdenum, tungsten, phosphorus, and germanium, in addition to the above characteristics, the alkali etchant Properties such as being soluble and eliminating undercutting after immersion in the active treatment solution are imparted to provide a highly versatile copper foil.

耐熱・防錆層の析出量も重要であり50〜1000mg/m2の範囲が好ましく、更に好ましくは100〜500mg/m2である。本合金バリアー層の析出量が50mg/m2未満の場合、本合金バリアーの効力が十分に発揮できず耐熱性、防錆性が悪くなる、エッチング後に銅残が発生する等の不具合が生じる場合がある。一方、1000mg/m2を超える場合、これ以上の析出は特性上の向上も認められず、銅の純度が下がる、コスト高となり不経済である。
本耐熱・防錆層を施す電解浴としては例えば以下に示す組成が良いが特にこれに限定されるものではない。
Precipitation amount of heat and anticorrosive layer is also important range of 50 to 1000 mg / m 2 are preferred, more preferably from 100 to 500 mg / m 2. When the deposition amount of this alloy barrier layer is less than 50 mg / m 2 , the effectiveness of this alloy barrier cannot be fully exerted, resulting in poor heat resistance and rust prevention, and copper defects may occur after etching. There is. On the other hand, when it exceeds 1000 mg / m 2 , no further improvement in properties is observed, and the purity of copper decreases, resulting in high costs and uneconomical.
The electrolytic bath for applying the heat and rust preventive layer has, for example, the following composition, but is not particularly limited thereto.

(コバルト-モリブデン層の場合)
硫酸コバルト七水和物 10〜100g/L(特に好ましくは20〜50g/L)
モリブデン酸二ナトリウム二水和物 1〜80g/L(特に好ましくは5〜50g/L)
クエン酸三ナトリウム二水和物 5〜100g/L(特に好ましくは20〜60g/L)
pH 4.0〜10.0(特に好ましくは5.0〜7.0)
(Cobalt-molybdenum layer)
Cobalt sulfate heptahydrate 10-100 g / L (particularly preferably 20-50 g / L)
Disodium molybdate dihydrate 1-80 g / L (particularly preferably 5-50 g / L)
Trisodium citrate dihydrate 5-100 g / L (particularly preferably 20-60 g / L)
pH 4.0 to 10.0 (particularly preferably 5.0 to 7.0)

(ニッケル−リン層-タングステン層の場合)
硫酸ニッケル六水和物 10〜100g/L(特に好ましくは20〜50g/L)
次亜リン酸ナトリウム一水和物 0.1〜10g/L(特に好ましくは 0.5〜5g/L)
タングステン酸ナトリウム二水和物 0.1〜20g/L(特に好ましくは0.5〜10g/L)
酢酸ナトリウム三水和物 2〜20g/L(特に好ましくは3〜15g/L)
pH 3.0〜5.5(特に好ましくは3.5〜5.0)
(In the case of nickel-phosphorus layer-tungsten layer)
Nickel sulfate hexahydrate 10-100g / L (particularly preferably 20-50g / L)
Sodium hypophosphite monohydrate 0.1-10 g / L (particularly preferably 0.5-5 g / L)
Sodium tungstate dihydrate 0.1-20 g / L (particularly preferably 0.5-10 g / L)
Sodium acetate trihydrate 2-20g / L (particularly preferably 3-15g / L)
pH 3.0-5.5 (particularly preferably 3.5-5.0)

(コバルト-ニッケル-タングステン層の場合)
硫酸コバルト七水和物 10〜100g/L(特に好ましくは20〜50g/L)
硫酸ニッケル六水和物 10〜100g/L(特に好ましくは20〜50g/L)
タングステン酸ナトリウム二水和物 1〜80g/L(特に好ましくは5〜50g/L)
クエン酸三ナトリウム二水和物 5〜100g/L(特に好ましくは20〜60g/L)
pH 4.0〜7.0(特に好ましくは5.0〜7.0)
(Cobalt-nickel-tungsten layer)
Cobalt sulfate heptahydrate 10-100 g / L (particularly preferably 20-50 g / L)
Nickel sulfate hexahydrate 10-100g / L (particularly preferably 20-50g / L)
Sodium tungstate dihydrate 1-80 g / L (particularly preferably 5-50 g / L)
Trisodium citrate dihydrate 5-100 g / L (particularly preferably 20-60 g / L)
pH 4.0-7.0 (particularly preferably 5.0-7.0)

(コバルト-ニッケル-ゲルマニウム層の場合)
硫酸コバルト七水和物 10〜100g/L(特に好ましくは20〜50g/L)
硫酸ニッケル六水和物 10〜100g/L(特に好ましくは20〜50g/L)
二酸化ゲルマニウム 0.1〜10g/L(特に好ましくは0.3〜3g/L)
クエン酸三ナトリウム二水和物 5〜100g/L(特に好ましくは20〜60g/L)
pH 3.0〜10.0(特に好ましくは4.0〜7.0)
また導電性の付与として硫酸ナトリウムを添加してもよい。
(Cobalt-nickel-germanium layer)
Cobalt sulfate heptahydrate 10-100 g / L (particularly preferably 20-50 g / L)
Nickel sulfate hexahydrate 10-100g / L (particularly preferably 20-50g / L)
Germanium dioxide 0.1-10 g / L (particularly preferably 0.3-3 g / L)
Trisodium citrate dihydrate 5-100 g / L (particularly preferably 20-60 g / L)
pH 3.0 to 10.0 (particularly preferably 4.0 to 7.0)
Moreover, you may add sodium sulfate as provision of electroconductivity.

本耐熱・防錆層を施す電解条件としては例えば以下に示す条件が良いが特にこれに限定されるものではない。
電流密度 0.1〜10.0A/dm2(特に好ましくは0.5〜5.0A/dm2
電気量 5.0〜40.0A・sec/dm2(特に好ましくは10.0〜30.0A・sec/dm2
液温 20〜50℃(特に好ましくは 25〜40℃)
陽極 白金
The electrolysis conditions for applying the heat and rust preventive layer are, for example, the following conditions, but are not particularly limited thereto.
Current density 0.1 to 10.0 A / dm 2 (particularly preferably 0.5 to 5.0 A / dm 2 )
Electricity 5.0 ~ 40.0A ・ sec / dm 2 (Preferably 10.0 ~ 30.0A ・ sec / dm 2 )
Liquid temperature 20-50 ° C (particularly preferably 25-40 ° C)
Anode platinum

(クロメート皮膜層)
クロメート皮膜層は一層目処理層である球状の微細な粗化粒子からなる粗化処理層、二層目表面処理であるモリブデン、ニッケル、タングステン、リン、コバルト、ゲルマニウムの内の少なくとも一種類以上からなる耐熱・防錆層を形成した後の三層目表面処理層であり水溶液電解めっき法又は水溶液への浸漬により形成するものである。このクロメート皮膜層を施す事により様々な特性が向上し、例えば、防錆性を向上させる、基材との引き剥がし強さが向上する等の効果をもたらす。
(Chromate film layer)
The chromate film layer is a roughened layer consisting of fine spherical rough particles as the first treatment layer, and at least one of molybdenum, nickel, tungsten, phosphorus, cobalt and germanium as the second layer surface treatment. This is the third surface treatment layer after forming the heat-resistant / rust-proof layer, and is formed by aqueous electrolytic plating or immersion in aqueous solution. By applying this chromate film layer, various properties are improved, and for example, the effect of improving the rust prevention property and the peeling strength with the base material is brought about.

また、このクロメート皮膜層を形成させる浴は公知のものでよく、例えばクロム酸、重クロム酸ナトリウム、重クロム酸カリウムなどの6価クロムを有する物であればい。尚、クロメート皮膜層形成後のクロムの析出形態はCr(OH)3とCr203が混在した状態であり、人体に悪影響を及ぼす6価クロムはなく3価クロムの形態で析出している。クロム酸液はアルカリ性、酸性のどちらでもかまわない。上記2種類のクロム酸液はそれぞれ長所、短所があり、使用目的に応じて使い分ければよいが、アルカリ性クロム酸液を使用した場合酸性クロム酸液に比べクロメート皮膜層の耐食性がわずかに劣る、基材との引き剥がし強さがわずかに劣ると言う欠点があるが本願発明表面処理上にアルカリ性クロム酸液でクロメート皮膜層を施しても上記した問題は発生しない。 Moreover, the bath for forming this chromate film layer may be a known bath, and any material having hexavalent chromium such as chromic acid, sodium dichromate, potassium dichromate, etc. may be used. Incidentally, precipitation form of chromium after chromate film layer formed is in a state in which Cr (OH) 3 and Cr 2 0 3 are mixed, is precipitated in the form of trivalent chromium not adversely affect hexavalent chromium on the human body . The chromic acid solution may be alkaline or acidic. Each of the above two types of chromic acid solution has advantages and disadvantages, and may be properly used depending on the purpose of use. However, when an alkaline chromic acid solution is used, the chromate film layer has a slightly lower corrosion resistance than the acidic chromic acid solution. Although there is a disadvantage that the peel strength with the substrate is slightly inferior, the above-mentioned problem does not occur even when a chromate film layer is applied with an alkaline chromic acid solution on the surface treatment of the present invention.

また、アルカリ性クロム酸液として特公昭58-15950号にある亜鉛イオン、6価クロムイオンを含むアルカリ性ジンククロメート液を使用してもよく、本クロム酸液を使用することで、クロム単独酸液からのクロメート皮膜層よりも防錆性を向上させる事が出来る。   In addition, an alkaline zinc chromate solution containing zinc ions and hexavalent chromium ions described in Japanese Patent Publication No. 58-15950 may be used as the alkaline chromic acid solution. Rust prevention can be improved compared to the chromate film layer.

クロメート皮膜層を施す電解浴及び電解条件としては例えば以下に示す様な浴組成、条件が挙げられるが特にこれに限定されるものではない。
重クロム酸ナトリウム 10g/L
浴温度 30℃
pH 4.2
電流密度 0.5A/dm2
電解時間 5秒
陽極 白金
Examples of the electrolytic bath and electrolysis conditions for applying the chromate film layer include, but are not limited to, bath compositions and conditions as shown below.
Sodium dichromate 10g / L
Bath temperature 30 ℃
pH 4.2
Current density 0.5A / dm 2
Electrolysis time 5 seconds Anode Platinum

(シランカップリング剤層)
シランカップリング剤層は一層目処理層である球状の微細な粗化粒子からなる粗化処理層、二層目表面処理であるモリブデン、ニッケル、タングステン、リン、コバルト、ゲルマニウムの内の少なくとも一種類以上からなる耐熱・防錆層、三層目表面処理層であるクロメート皮膜層を形成した後に行う四層目表面処理層であり適量を水等に添加し水溶液として浸漬処理又はスプレー処理などにより施す。シランカップリング剤層を施すことにより引き剥がし強さを向上させるのみならず、過酷試験後の引き剥がし強さの劣化も抑制する事ができ、更に防錆性も向上させ、優れた汎用性を備えたプリント配線板用銅箔となる。シランカップリング剤はエポキシ基、アミノ基、メルカプト基、ビニル基、メタクリロキシ基、スチリル基等多種あるがそれぞれ異なった特性を有し、また、基材との相性もあり選択して使用する必要がある。
(Silane coupling agent layer)
The silane coupling agent layer is at least one of a roughening treatment layer comprising spherical fine roughening particles as the first treatment layer and molybdenum, nickel, tungsten, phosphorus, cobalt, and germanium as the second surface treatment. It is a 4th layer surface treatment layer that is formed after the heat-resistant / rust-proof layer and the 3rd surface treatment layer are formed, and an appropriate amount is added to water and applied as an aqueous solution by dipping or spraying. . By applying a silane coupling agent layer, not only can the peel strength be improved, but also the deterioration of the peel strength after severe testing can be suppressed, and the rust prevention property has also been improved, providing excellent versatility. It becomes the copper foil for printed wiring boards provided. There are various types of silane coupling agents such as epoxy group, amino group, mercapto group, vinyl group, methacryloxy group, styryl group, etc., but each has different characteristics, and it is compatible with the base material, so it is necessary to select it. is there.

シランカップリング剤層を施す浴としては例えば以下に示す様な組成、条件が挙げられるが特にこれに限定されるものではない。
γ−アミノプロピルトリエトキシシラン 2mL/L
浴温度 30℃
浸漬時間 15秒
Examples of the bath for applying the silane coupling agent layer include, but are not particularly limited to, the following composition and conditions.
γ-Aminopropyltriethoxysilane 2mL / L
Bath temperature 30 ° C
Immersion time 15 seconds

以下に本願発明の実施例を説明する。
(実施例1〜16)
Examples of the present invention will be described below.
(Examples 1 to 16)

福田金属箔粉工業製未処理銅箔:SV-10μmを用意した。該銅箔は未処理の状態では何れの面も光沢を呈するがそれぞれの面の粗面粗度Rz(十点平均粗さ)は異なり、一般的に粗面、マット面、非ドラム面等と呼ばれるめっき終了面のRzは0.8μmであり、光沢面、シャイニー面、ドラム面等と呼ばれるめっき開始面のRzは1.4μmである。尚、これ以降SV箔のめっき終了面を粗面、めっき開始面を平滑面と呼称する。   Untreated copper foil manufactured by Fukuda Metal Foil Powder Industry: SV-10 μm was prepared. The copper foil is glossy on any surface in an untreated state, but the rough surface roughness Rz (ten-point average roughness) of each surface is different, and is generally rough surface, mat surface, non-drum surface, etc. Rz of the plating finish surface called 0.8 μm, and Rz of the plating start surface called glossy surface, shiny surface, drum surface, etc. is 1.4 μm. Hereinafter, the plating end surface of the SV foil is referred to as a rough surface, and the plating start surface is referred to as a smooth surface.

まず該未処理銅箔を硫酸濃度100g/L、浴温度30℃の硫酸溶液に60秒間浸漬し表面の酸化層の除去を行い、次いで水洗を行った。
次いで、本願発明の一層目表面処理層となる球状の微細な粗化粒子からなる粗化処理層を以下に示す電解浴組成、浴温度、電解条件で実施例1〜16について処理を施した。
硫酸銅五水和物 50g/L
硫酸 100g/L
添加剤 表1参照
浴温度 40℃
電流密度 表1参照
電解時間 表1参照
陽極 白金
銅箔に処理を施した面は表1を参照
First, the untreated copper foil was immersed in a sulfuric acid solution having a sulfuric acid concentration of 100 g / L and a bath temperature of 30 ° C. for 60 seconds to remove the surface oxide layer, and then washed with water.
Next, the roughening treatment layer composed of spherical fine roughening particles to be the first surface treatment layer of the present invention was treated with respect to Examples 1 to 16 with the following electrolytic bath composition, bath temperature, and electrolysis conditions.
Copper sulfate pentahydrate 50g / L
Sulfuric acid 100g / L
Additives See Table 1 Bath temperature 40 ° C
Current density See Table 1 Electrolysis time See Table 1 Anode See Table 1 for the surface treated with platinum copper foil

水洗後、本願発明の二層目表面処理層となる耐熱・防錆層を実施例1〜16について陽極に白金を使用し、浴温度30℃の一定とし表1に示す電解浴組成、pH、電解条件で処理を施した。   After washing with water, the heat- and rust-preventing layer to be the second surface treatment layer of the present invention uses platinum as the anode for Examples 1 to 16, and the electrolytic bath composition shown in Table 1 with a constant bath temperature of 30 ° C, pH, The treatment was performed under electrolytic conditions.

水洗後、本願発明の三層目表面処理層となるクロメート皮膜層を実施例1〜16について以下に示す電解浴組成、pH、電解条件で処理を施した。
重クロム酸ナトリウム 10g/L
浴温度 30℃
pH 4.2
電流密度 0.5A/dm2
電解時間 5秒
陽極 白金
After washing with water, the chromate film layer serving as the third surface treatment layer of the present invention was treated with the electrolytic bath composition, pH, and electrolysis conditions shown below for Examples 1 to 16.
Sodium dichromate 10g / L
Bath temperature 30 ℃
pH 4.2
Current density 0.5A / dm 2
Electrolysis time 5 seconds Anode Platinum

水洗後、本願発明の四層目表面処理であるシランカップリング剤層を実施例1〜16について以下に示す浴組成、浴温度、浸漬時間で処理を施した。
γ−アミノプロピルトリエトキシシラン 2mL/L
浴温度 30℃
浸漬時間 15秒
シランカップリング剤層を形成した後は水洗を行うことなく自然乾燥を行った。
After washing with water, the silane coupling agent layer, which is the fourth surface treatment of the present invention, was treated with the bath composition, bath temperature, and immersion time shown below for Examples 1 to 16.
γ-Aminopropyltriethoxysilane 2mL / L
Bath temperature 30 ° C
Immersion time 15 seconds After the silane coupling agent layer was formed, it was naturally dried without being washed with water.

以上、四層から成る本願発明表面処理を行った実施例1〜16の表面処理銅箔について表面に処理を施した各元素の析出量を定量した結果を表2に示す。
次にこの表面処理銅箔とA社製のPPE樹脂含浸基材をプレスにより200℃-2時間の条件で加熱圧着し銅張積層板を作製した。
Table 2 shows the results of quantifying the amount of each element deposited on the surface of the surface-treated copper foils of Examples 1 to 16 subjected to the surface treatment of the present invention comprising four layers as described above.
Next, this surface-treated copper foil and a PPE resin-impregnated base material manufactured by Company A were hot-pressed under a condition of 200 ° C. for 2 hours by a press to produce a copper-clad laminate.

比較例Comparative example

以下に比較例を説明する。
(比較例1)
A comparative example will be described below.
(Comparative Example 1)

SV-10μmの粗面側に耐熱・防錆層を施さなかった事以外は実施例1〜16と同じ方法で表面処理を行い、同じ方法で銅張積層板を作製した。電解浴組成、電解条件を表1に示し、表面に処理を施した各元素の析出量を定量した結果を表2に示す。
(比較例2)
A surface treatment was performed in the same manner as in Examples 1 to 16 except that a heat-resistant / rust-proof layer was not applied to the rough surface side of SV-10 μm, and a copper-clad laminate was produced in the same manner. The electrolytic bath composition and electrolysis conditions are shown in Table 1, and the results of quantifying the amount of precipitation of each element treated on the surface are shown in Table 2.
(Comparative Example 2)

SV-10μmの粗面側にクロメート皮膜層を施さなかった事以外は実施例1〜16と同じ方法で表面処理を行い、同じ方法で銅張積層板を作製した。電解浴組成、電解条件を表1に示し、表面に処理を施した各元素の析出量を定量した結果を表2に示す。
(比較例3)
Surface treatment was performed in the same manner as in Examples 1 to 16 except that the chromate film layer was not applied to the rough surface side of SV-10 μm, and a copper clad laminate was produced in the same manner. The electrolytic bath composition and electrolysis conditions are shown in Table 1, and the results of quantifying the amount of precipitation of each element treated on the surface are shown in Table 2.
(Comparative Example 3)

SV-10μmの粗面側にシランカップリング剤層を施さなかった事以外は実施例1〜16と同じ方法で表面処理を行い、同じ方法で銅張積層板を作製した。電解浴組成、電解条件を表1に示し、表面に処理を施した各元素の析出量を定量した結果を表2に示す。
(比較例4)
Surface treatment was performed in the same manner as in Examples 1 to 16 except that the silane coupling agent layer was not applied to the rough surface side of SV-10 μm, and a copper clad laminate was produced in the same manner. The electrolytic bath composition and electrolysis conditions are shown in Table 1, and the results of quantifying the amount of precipitation of each element treated on the surface are shown in Table 2.
(Comparative Example 4)

SV-10μmの粗面側に球状の微細な粗化粒子からなる粗化処理層を施さなかった事以外は実施例1〜16と同じ方法で表面処理を行い、同じ方法で銅張積層板を作製した。電解浴組成、電解条件を表1に示し、表面に処理を施した各元素の析出量を定量した結果を表2に示す。
(比較例5)
Surface treatment was performed in the same manner as in Examples 1 to 16 except that a roughening treatment layer composed of spherical fine roughening particles was not applied to the rough surface side of SV-10 μm, and a copper clad laminate was formed in the same manner. Produced. The electrolytic bath composition and electrolysis conditions are shown in Table 1, and the results of quantifying the amount of precipitation of each element treated on the surface are shown in Table 2.
(Comparative Example 5)

まずSV-10μmを硫酸濃度100g/L、浴温度30℃の硫酸溶液に60秒間浸漬し表面の酸化層の除去を行い、次いで水洗を行った。次いで該銅箔の平滑面側に以下に示す電解浴組成、浴温度、電解条件で粗化処理を施した。
硫酸銅五水和物 100g/L
硫酸 100g/L
無水クロム酸 0.1g/L
タングステン酸ナトリウム 0.01g/L
浴温度 40℃
電流密度 10A/dm2
電解時間 20秒
陽極 白金
First, SV-10 μm was immersed in a sulfuric acid solution having a sulfuric acid concentration of 100 g / L and a bath temperature of 30 ° C. for 60 seconds to remove the surface oxide layer, and then washed with water. Next, a roughening treatment was performed on the smooth surface side of the copper foil under the following electrolytic bath composition, bath temperature, and electrolytic conditions.
Copper sulfate pentahydrate 100g / L
Sulfuric acid 100g / L
Chromic anhydride 0.1g / L
Sodium tungstate 0.01g / L
Bath temperature 40 ℃
Current density 10A / dm 2
Electrolysis time 20 seconds Anode Platinum

水洗後、以下にしめす電解浴組成、浴温度、電解条件でカバーめっきを施した。
硫酸銅五水和物 250g/L
硫酸 100g/L
浴温度 45℃
電流密度 10A/dm2
電解時間 30秒
陽極 白金
After washing with water, cover plating was performed with the following electrolytic bath composition, bath temperature, and electrolytic conditions.
Copper sulfate pentahydrate 250g / L
Sulfuric acid 100g / L
Bath temperature 45 ℃
Current density 10A / dm 2
Electrolysis time 30 seconds Anode Platinum

水洗後、以下にしめす電解浴組成、浴温度、電解条件で耐熱・防錆層を施した。
硫酸コバルト七水和物 40g/L
モリブデン酸二ナトリウム二水和物 25g/L
クエン酸三ナトリウム二水和物 40g/L
pH 5.6
浴温度 30℃
陽極 白金
After washing with water, a heat-resistant / rust-proof layer was applied with the following electrolytic bath composition, bath temperature, and electrolytic conditions.
Cobalt sulfate heptahydrate 40g / L
Disodium molybdate dihydrate 25g / L
Trisodium citrate dihydrate 40g / L
pH 5.6
Bath temperature 30 ℃
Anode platinum

水洗後、以下に示す電解浴組成、pH、電解条件でクロメート皮膜層を施した。
重クロム酸ナトリウム 10g/L
浴温度 30℃
pH 4.2
電流密度 0.5A/dm2
電解時間 5秒
陽極 白金
After washing with water, a chromate film layer was applied with the following electrolytic bath composition, pH, and electrolysis conditions.
Sodium dichromate 10g / L
Bath temperature 30 ℃
pH 4.2
Current density 0.5A / dm 2
Electrolysis time 5 seconds Anode Platinum

水洗後、以下に示す浴組成、浴温度、浸漬時間でシランカップリング剤層を施した。
γ−アミノプロピルトリエトキシシラン 2mL/L
浴温度 30℃
浸漬時間 15秒
シランカップリング剤層を形成した後は水洗を行うことなく自然乾燥を行った。
After washing with water, a silane coupling agent layer was applied with the following bath composition, bath temperature, and immersion time.
γ-Aminopropyltriethoxysilane 2mL / L
Bath temperature 30 ° C
Immersion time 15 seconds After the silane coupling agent layer was formed, it was naturally dried without being washed with water.

以上の様にして得られた表面処理銅箔を実施例1〜16と同じ方法で銅張積層板を作製した。電解浴組成、電解条件を表1に示し、表面に処理を施した各元素の析出量を定量した結果を表2に示す。 A copper clad laminate was produced from the surface-treated copper foil obtained as described above in the same manner as in Examples 1-16. The electrolytic bath composition and electrolysis conditions are shown in Table 1, and the results of quantifying the amount of precipitation of each element treated on the surface are shown in Table 2.

以上のようにして得られた銅張積層板の引き剥がし強さ、銅箔処理面粗度(Rz:十点平均粗さ)、粗化粒子の直径、エッチングによる回路パターン形成後の回路ボトムラインの直線性、エッチング後の銅残を評価した結果を表2に示す。尚、エッチングによる回路パターン形成後の回路ボトムラインの直線性、エッチング後の銅残の評価方法を以下に示す。   Peel strength of copper-clad laminate obtained as described above, copper foil treated surface roughness (Rz: 10-point average roughness), roughened particle diameter, circuit bottom line after circuit pattern formation by etching Table 2 shows the results of evaluating the linearity and the copper residue after etching. In addition, the evaluation method of the linearity of the circuit bottom line after the circuit pattern formation by an etching and the copper residue after an etching is shown below.

(エッチングによる回路パターン形成後の回路ボトムラインの直線性)
液状レジストでライン/スペース=50μm/50μmのパターン印刷後、塩化第二銅エッチングにより回路パターンを形成した。電子顕微鏡により倍率2000倍で回路パターンを上面から観察しボトムラインの直線性を判別した。
ボトムラインの湾曲が認められず高い直線性を有する ○
ボトムラインが湾曲している ×
(Linearity of circuit bottom line after circuit pattern formation by etching)
After pattern printing of line / space = 50 μm / 50 μm with a liquid resist, a circuit pattern was formed by cupric chloride etching. The circuit pattern was observed from the upper surface with an electron microscope at a magnification of 2000 to determine the linearity of the bottom line.
High linearity with no bottom line curvature ○
The bottom line is curved ×

(エッチング後の銅残)
銅張積層板の銅箔エッチング部分において銅の溶け残りの有無を目視にて観察した。
銅の溶け残りが無い ○
銅の溶け残りが有る ×
(Copper residue after etching)
The presence or absence of unmelted copper was visually observed in the copper foil etched portion of the copper clad laminate.
There is no unmelted copper ○
There is unmelted copper ×

Figure 2006210689
Figure 2006210689

Figure 2006210689
Figure 2006210689

表2に示した通り実施例1〜16の本願発明表面処理層を有する銅箔は高周波基材であるPPE樹脂含浸基材との引き剥がし強さが強く、粗化粒子が極めて細かい事から(図2〜4参照)粗面粗度の上昇を極めて低くする事が出来るためエッチングによる回路パターン形成後の回路ボトムラインの直線性も極めて高く(図6参照)、エッチング後の銅残の心配もなく高周波プリント配線板用銅箔として極めて高い特性を有していることが分かる。   As shown in Table 2, the copper foils having the surface treatment layers of Examples 1 to 16 of the present invention have strong peeling strength from the PPE resin-impregnated base material, which is a high-frequency base material, and the coarse particles are extremely fine ( (Refer to Fig.2-4) Since the increase in roughness of the rough surface can be made extremely low, the linearity of the circuit bottom line after circuit pattern formation by etching is also extremely high (see Fig.6), and there is a concern about copper residue after etching. It can be seen that it has extremely high characteristics as a copper foil for high-frequency printed wiring boards.

次に本願発明処理を一種類行わなかった比較例1〜4について記す。耐熱・防錆層を行わなかった比較例1は引き剥がし強さが低く、また、エッチング後の銅残が確認される。クロメート皮膜層処理を行わなかった比較例2も引き剥がし強さが低く、また、エッチング後の銅残が確認される。シランカップリング剤処理を行わなかった比較例3は引き剥がし強さが弱いことが確認できる。粗化処理を行わなかった比較例4も引き剥がし強さが弱いことが確認できる。   Next, Comparative Examples 1 to 4 in which one type of the present invention treatment was not performed will be described. In Comparative Example 1 in which the heat-resistant / rust-proof layer was not applied, the peel strength was low, and the copper residue after etching was confirmed. In Comparative Example 2 in which the chromate film layer treatment was not performed, the peel strength was low, and the copper residue after etching was confirmed. It can be confirmed that Comparative Example 3 in which the silane coupling agent treatment was not performed has a weak peel strength. It can be confirmed that Comparative Example 4 in which the roughening treatment was not performed also has a low peel strength.

また、粗化処理浴添加剤としてタングステン、クロムを用いた比較例5は粗化粒子が乱雑で粗面粗度が高い為(図5参照)機械的投錨効果により引き剥がし強さは強いもののエッチングにるパターン形成後の回路のボトムラインの直線性が悪く(図7参照)伝送損失が極めて大きくなる事が予想される。以上の様に本願発明処理は本文記載の四層処理の全てが揃い初めて高い効果が発現できる事が分かり、一層でも欠ければ高周波プリント配線板用銅箔としては十分な特性が得られないことが分かる。 In Comparative Example 5 using tungsten and chromium as a roughening treatment bath additive, the roughening particles are messy and the roughness of the rough surface is high (see Fig. 5). The linearity of the bottom line of the circuit after the pattern formation is poor (see FIG. 7), and the transmission loss is expected to be extremely large. As described above, it is understood that the present invention treatment can exhibit a high effect only when all the four-layer treatments described in the text are completed, and if it lacks even one layer, sufficient characteristics cannot be obtained as a copper foil for a high-frequency printed wiring board. I understand.

本願発明表面処理方法を用い作製した銅箔はPPE樹脂含浸基材を代表とする高周波基板に対して強い引き剥がし強さを得ることができ、また、超低粗度であることからエッチングによる回路パターン形成後のエッチングによる回路パターン形成後の回路ボトムラインの直線性ボトムラインの直線性を向上させ伝送損失の大幅な低減が可能となる新しい高周波プリント配線板用銅箔であり将来的には今以上に回路ピッチ間の細線化が予想される用途においても十分に対応出来るものと考えられる。また、ファインパターン、超低粗度、外観色調が黒色系可能という特徴を有する事からプラズマディスプレイにおける電磁波シールド用銅箔にも適している。   The copper foil produced by using the surface treatment method of the present invention can obtain a strong peeling strength against a high-frequency substrate typified by a PPE resin-impregnated base material, and it has an ultra-low roughness, so a circuit by etching. Circuit bottom line linearity after circuit pattern formation by etching after pattern formation New copper foil for high-frequency printed wiring boards that can improve the linearity of the bottom line and greatly reduce transmission loss. As described above, it is considered that the present invention can sufficiently cope with applications in which thinning between circuit pitches is expected. In addition, since it has the characteristics that fine pattern, ultra-low roughness and appearance color tone can be black, it is also suitable for copper foil for electromagnetic wave shielding in plasma displays.

表面処理銅箔断面模式図Cross section of surface treated copper foil 実施例1本願発明表面処理銅箔処理面側電子顕微鏡写真Example 1 Surface treatment copper foil treated surface side electron micrograph of the present invention 実施例5本願発明表面処理銅箔処理面側電子顕微鏡写真Example 5 Surface-treated copper foil treated surface side electron micrograph of the present invention 実施例9本願発明表面処理銅箔処理面側電子顕微鏡写真Example 9 Surface treatment copper foil treated surface side electron micrograph of the present invention 比較例5表面処理銅箔処理面側電子顕微鏡写真Comparative Example 5 Surface-treated copper foil treated surface side electron micrograph 実施例1本願発明表面処理銅箔回路上面電子顕微鏡写真Example 1 Surface treatment copper foil circuit top surface electron micrograph of the present invention 比較例5表面処理銅箔回路上面電子顕微鏡写真Comparative Example 5 Surface-treated copper foil circuit top surface electron micrograph

符号の説明Explanation of symbols

1………銅箔
2………球状の微細な粗化粒子からなる粗化処理層
3………耐熱・防錆層
4………クロメート皮膜層
5………シランカップリング剤層
DESCRIPTION OF SYMBOLS 1 ......... Copper foil 2 ......... Roughening process layer 3 which consists of spherical fine roughening particle | grains ......... Heat resistant / rust prevention layer 4 ......... Chromate film layer 5 ......... Silane coupling agent layer

Claims (6)

銅箔の少なくとも一方の面に直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層を有し、且つ前記該粗化処理層上にモリブデン、ニッケル、タングステン、リン、コバルト、ゲルマニウムの内の少なくとも一種類以上からなる耐熱・防錆層を有し、且つ前記該耐熱・防錆層上にクロメート皮膜層を有し、且つ前記クロメート皮膜層上にシランカップリング剤層を有することを特徴とする高周波プリント配線板用銅箔。   It has a roughening treatment layer composed of spherical fine roughening particles having a diameter of 0.05 to 1.0 μm on at least one surface of the copper foil, and molybdenum, nickel, tungsten, phosphorus, on the roughening treatment layer, It has a heat / rust preventive layer made of at least one of cobalt and germanium, and has a chromate film layer on the heat / rust preventive layer, and a silane coupling agent layer on the chromate film layer. A copper foil for a high-frequency printed wiring board, comprising: 粗化処理層形成後の銅箔表面粗さRzが2.5μm以下であることを特徴とする請求項1に記載の高周波プリント配線板用銅箔   2. The copper foil for a high-frequency printed wiring board according to claim 1, wherein the surface roughness Rz of the copper foil after the roughening treatment layer is formed is 2.5 μm or less. 銅箔の少なくとも一方の面に直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層を施し、且つ前記該粗化処理層上にモリブデン、ニッケル、タングステン、リン、コバルト、ゲルマニウムの内の少なくとも一種類以上からなる耐熱・防錆層を施し、且つ前記該耐熱・防錆層上にクロメート皮膜層を施し、且つ前記クロメート皮膜層上にシランカップリング剤層を施すことを特徴とする高周波プリント配線板用銅箔の製造方法。   A roughening treatment layer made of spherical fine roughening particles having a diameter of 0.05 to 1.0 μm is applied to at least one surface of the copper foil, and molybdenum, nickel, tungsten, phosphorus, cobalt is provided on the roughening treatment layer. Applying a heat / rust preventive layer comprising at least one of germanium, applying a chromate film layer on the heat / rust preventive layer, and applying a silane coupling agent layer on the chromate film layer. The manufacturing method of the copper foil for high frequency printed wiring boards characterized by these. 直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層を形成する電解浴が活性有機イオウ化合物のスルフォン酸塩を含む硫酸・硫酸銅浴であることを特徴とする請求項3に記載の高周波プリント配線板用銅箔の製造方法。   The electrolytic bath for forming a roughening treatment layer composed of spherical fine roughening particles having a diameter of 0.05 to 1.0 μm is a sulfuric acid / copper sulfate bath containing a sulfonate salt of an active organic sulfur compound. Item 4. A method for producing a copper foil for a high-frequency printed wiring board according to Item 3. 直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層を形成する電解浴が活性有機イオウ化合物のスルフォン酸塩及びタングステンイオン、モリブデンイオン、コバルトイオン、ニッケルイオン、チタンイオンの内の少なくとも一種類以上を含む硫酸・硫酸銅浴であることを特徴とする請求項3に記載の高周波プリント配線板用銅箔の製造方法。   Electrolytic baths that form roughening treatment layers composed of spherical fine roughening particles having a diameter of 0.05 to 1.0 μm are sulfonates of active organic sulfur compounds, tungsten ions, molybdenum ions, cobalt ions, nickel ions, titanium ions. 4. The method for producing a copper foil for a high-frequency printed wiring board according to claim 3, wherein the sulfuric acid / copper sulfate bath contains at least one of the above. 直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層を形成する電解液中の活性有機イオウ化合物のスルフォン酸塩が一般式NaSO3-R1-S-S-R2-SO3Naで表される対称若しくは非対称のジスルフィドスルフォン酸塩、又は、一般式HS-R1- SO3Na若しくは一般式HS-Ar- SO3Naで表されるチオールのスルホン酸であることを特徴とする請求項3〜5のいずれかに記載の高周波プリント配線板用銅箔の製造方法。(式中、R1,R2は炭素原子2若しくは3のアルキレン基を表しており同一であっても、異なっても良い。また、Arはアロマチックス基を表している) The sulfonate salt of the active organic sulfur compound in the electrolytic solution forming the roughened layer composed of spherical fine roughened particles having a diameter of 0.05 to 1.0 μm is represented by the general formula NaSO 3 —R 1 —SSR 2 —SO 3. A symmetric or asymmetrical disulfide sulfonate represented by Na, or a thiol sulfonic acid represented by the general formula HS-R 1 -SO 3 Na or the general formula HS-Ar-SO 3 Na A method for producing a copper foil for a high-frequency printed wiring board according to any one of claims 3 to 5. (Wherein R 1 and R 2 represent an alkylene group having 2 or 3 carbon atoms, and may be the same or different. Ar represents an aromatic group)
JP2005021401A 2005-01-28 2005-01-28 Copper foil for high frequency printed wiring board and its production method Pending JP2006210689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021401A JP2006210689A (en) 2005-01-28 2005-01-28 Copper foil for high frequency printed wiring board and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021401A JP2006210689A (en) 2005-01-28 2005-01-28 Copper foil for high frequency printed wiring board and its production method

Publications (1)

Publication Number Publication Date
JP2006210689A true JP2006210689A (en) 2006-08-10

Family

ID=36967179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021401A Pending JP2006210689A (en) 2005-01-28 2005-01-28 Copper foil for high frequency printed wiring board and its production method

Country Status (1)

Country Link
JP (1) JP2006210689A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119902A (en) * 2005-09-27 2007-05-17 Hitachi Cable Ltd Nickel plating solution and its preparation method, nickel plating method, and printed wiring board copper foil
JP2008132757A (en) * 2006-10-27 2008-06-12 Mitsui Mining & Smelting Co Ltd Surface treated copper foil for manufacturing flexible copper clad laminate, and flexible copper clad laminate obtained by using surface treated copper foil
JP2008156727A (en) * 2006-12-26 2008-07-10 Furukawa Circuit Foil Kk Surface-treated copper foil
JP2008285751A (en) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd Surface treated copper foil, copper clad laminate obtainable using the surface treated copper foil, and printed circuit board obtainable using the copper clad laminate
JP2009242945A (en) * 2008-03-31 2009-10-22 Ls Mtron Ltd Surface treating method of copper foil for printed circuit, copper foil produced by the same, and plating apparatus
WO2010061736A1 (en) * 2008-11-25 2010-06-03 日鉱金属株式会社 Copper foil for printed circuit
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
CN102061494A (en) * 2009-11-12 2011-05-18 福田金属箔粉工业株式会社 Processed copper foil, coarsening treatment method of unprocessed copper foil and laminated plate with copper foil applied
WO2011090175A1 (en) * 2010-01-22 2011-07-28 古河電気工業株式会社 Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board
CN102215632A (en) * 2010-04-06 2011-10-12 福田金属箔粉工业株式会社 Copper foil for processing copper clad laminate, copper clad laminate and printed wiring board equipped with copper clad laminate
CN102215635A (en) * 2010-04-06 2011-10-12 福田金属箔粉工业株式会社 Copper foil for processing copper clad laminate, copper clad laminate and printed wiring board equipped with copper clad laminate
JP2012184498A (en) * 2011-02-18 2012-09-27 Jx Nippon Mining & Metals Corp Electrolytic copper foil for electromagnetic-wave shielding, and manufacturing method therefor
WO2012169249A1 (en) 2011-06-07 2012-12-13 Jx日鉱日石金属株式会社 Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
WO2013047272A1 (en) * 2011-09-30 2013-04-04 Jx日鉱日石金属株式会社 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
WO2013065831A1 (en) * 2011-11-04 2013-05-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit
JP2013119240A (en) * 2011-12-08 2013-06-17 Furukawa Electric Co Ltd:The Copper clad laminate for high frequency substrate, and surface treated copper foil used for the same
JP2013155415A (en) * 2012-01-31 2013-08-15 Furukawa Electric Co Ltd:The Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission
KR20130137104A (en) 2012-06-06 2013-12-16 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Copper foil for printed wiring board, process for preparing the same, and printed wiring board using the copper foil
KR20140081143A (en) * 2012-12-21 2014-07-01 에스케이이노베이션 주식회사 Multi-layer flexible metal-clad laminate and manufacturing method for thereof
JP2015127136A (en) * 2013-11-27 2015-07-09 Jx日鉱日石金属株式会社 Copper foil with carrier, print wiring board, print circuit board, copper-clad laminate and production method of print wiring board
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board
WO2016035876A1 (en) * 2014-09-05 2016-03-10 古河電気工業株式会社 Copper foil, copper clad laminated plate, and substrate
JP2016149438A (en) * 2015-02-12 2016-08-18 福田金属箔粉工業株式会社 Treatment copper foil, copper-clad laminate using the treatment copper foil, and print circuit board
JP2016188431A (en) * 2016-06-06 2016-11-04 Jx金属株式会社 Copper foil for printed circuit
KR20160135369A (en) * 2013-02-28 2016-11-25 미쓰이금속광업주식회사 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
WO2017026490A1 (en) * 2015-08-12 2017-02-16 古河電気工業株式会社 Copper foil for high-frequency circuit, copper-clad laminate sheet, and printed-wiring board
US9580829B2 (en) 2010-05-07 2017-02-28 Jx Nippon Mining & Metals Corporation Copper foil for printed circuit
JP2017141489A (en) * 2016-02-09 2017-08-17 福田金属箔粉工業株式会社 High chroma treated copper foil, copper-clad laminate using the treated copper foil and manufacturing method of the treated copper foil
KR20190075054A (en) 2016-12-14 2019-06-28 후루카와 덴키 고교 가부시키가이샤 Surface treated copper foil and copper clad laminate
JPWO2020230870A1 (en) * 2019-05-15 2020-11-19
CN112118666A (en) * 2019-06-20 2020-12-22 中兴通讯股份有限公司 PCB device capable of reducing insertion loss and processing method
CN113383117A (en) * 2019-02-04 2021-09-10 松下知识产权经营株式会社 Surface-treated copper foil, and copper-clad laminate, resin-coated copper foil, and circuit board using same
CN114929944A (en) * 2019-12-24 2022-08-19 日本电解株式会社 Surface-treated copper foil and method for producing same
CN115044947A (en) * 2022-06-17 2022-09-13 山东金宝电子股份有限公司 Surface treatment method for improving adhesive force of copper foil and resin
TWI808775B (en) * 2021-06-03 2023-07-11 日商三井金屬鑛業股份有限公司 Coarse treatment of copper foil, copper foil laminates and printed wiring boards
TWI808777B (en) * 2021-06-03 2023-07-11 日商三井金屬鑛業股份有限公司 Coarse treatment of copper foil, copper foil laminates and printed wiring boards
JP7580069B2 (en) 2019-05-15 2024-11-11 パナソニックIpマネジメント株式会社 Copper-clad laminate, resin-coated copper foil, and circuit board using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340596A (en) * 1998-05-21 1999-12-10 Furukawa Electric Co Ltd:The Copper foil for printed circuit board and copper foil attached with resin
JP2001288595A (en) * 2000-04-05 2001-10-19 Nikko Materials Co Ltd Copper foil for laser hole opening
JP2002134858A (en) * 2000-10-25 2002-05-10 Hitachi Cable Ltd Copper foil for printed boards
JP2003171781A (en) * 2001-09-28 2003-06-20 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuit board, and production method therefor
JP2004260068A (en) * 2003-02-27 2004-09-16 Furukawa Techno Research Kk Copper foil for shielding electromagnetic wave, and electromagnetic wave shielding structure
JP2004263289A (en) * 2002-10-25 2004-09-24 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and production method therefor
JP2004339558A (en) * 2003-05-14 2004-12-02 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340596A (en) * 1998-05-21 1999-12-10 Furukawa Electric Co Ltd:The Copper foil for printed circuit board and copper foil attached with resin
JP2001288595A (en) * 2000-04-05 2001-10-19 Nikko Materials Co Ltd Copper foil for laser hole opening
JP2002134858A (en) * 2000-10-25 2002-05-10 Hitachi Cable Ltd Copper foil for printed boards
JP2003171781A (en) * 2001-09-28 2003-06-20 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuit board, and production method therefor
JP2004263289A (en) * 2002-10-25 2004-09-24 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and production method therefor
JP2004260068A (en) * 2003-02-27 2004-09-16 Furukawa Techno Research Kk Copper foil for shielding electromagnetic wave, and electromagnetic wave shielding structure
JP2004339558A (en) * 2003-05-14 2004-12-02 Fukuda Metal Foil & Powder Co Ltd Low rough surface electrolytic copper foil, and its production method

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119902A (en) * 2005-09-27 2007-05-17 Hitachi Cable Ltd Nickel plating solution and its preparation method, nickel plating method, and printed wiring board copper foil
JP2008132757A (en) * 2006-10-27 2008-06-12 Mitsui Mining & Smelting Co Ltd Surface treated copper foil for manufacturing flexible copper clad laminate, and flexible copper clad laminate obtained by using surface treated copper foil
JP2008156727A (en) * 2006-12-26 2008-07-10 Furukawa Circuit Foil Kk Surface-treated copper foil
JP2008285751A (en) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd Surface treated copper foil, copper clad laminate obtainable using the surface treated copper foil, and printed circuit board obtainable using the copper clad laminate
JP2009242945A (en) * 2008-03-31 2009-10-22 Ls Mtron Ltd Surface treating method of copper foil for printed circuit, copper foil produced by the same, and plating apparatus
JP2013174017A (en) * 2008-11-25 2013-09-05 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
WO2010061736A1 (en) * 2008-11-25 2010-06-03 日鉱金属株式会社 Copper foil for printed circuit
JPWO2010061736A1 (en) * 2008-11-25 2012-04-26 Jx日鉱日石金属株式会社 Copper foil for printed circuit
CN102224281A (en) * 2008-11-25 2011-10-19 吉坤日矿日石金属株式会社 Copper foil for printed circuit
US8524378B2 (en) 2008-11-25 2013-09-03 Jx Nippon Mining & Metals Corporation Copper foil for printed circuit
JP5318886B2 (en) * 2008-11-25 2013-10-16 Jx日鉱日石金属株式会社 Copper foil for printed circuit
JP2010236058A (en) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd Roughening-processed copper foil, method of manufacturing roughening-processed copper foil and copper clad laminate
CN102061494B (en) * 2009-11-12 2016-03-16 福田金属箔粉工业株式会社 The roughened method of process Copper Foil and untreated Copper Foil and copper clad panel
JP2011105960A (en) * 2009-11-12 2011-06-02 Fukuda Metal Foil & Powder Co Ltd Treated copper foil, method for roughening untreated copper foil, and copper-clad laminate
CN102061494A (en) * 2009-11-12 2011-05-18 福田金属箔粉工业株式会社 Processed copper foil, coarsening treatment method of unprocessed copper foil and laminated plate with copper foil applied
KR101830994B1 (en) 2010-01-22 2018-02-21 후루카와 덴키 고교 가부시키가이샤 Roughened copper foil, method for producing same, copper clad laminated board, and printed circuit board
JP2011168887A (en) * 2010-01-22 2011-09-01 Furukawa Electric Co Ltd:The Roughened copper foil, method for producing the same, copper-clad laminate, and printed circuit board
CN102803576A (en) * 2010-01-22 2012-11-28 古河电气工业株式会社 Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board
WO2011090175A1 (en) * 2010-01-22 2011-07-28 古河電気工業株式会社 Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board
CN102215632A (en) * 2010-04-06 2011-10-12 福田金属箔粉工业株式会社 Copper foil for processing copper clad laminate, copper clad laminate and printed wiring board equipped with copper clad laminate
CN102215635A (en) * 2010-04-06 2011-10-12 福田金属箔粉工业株式会社 Copper foil for processing copper clad laminate, copper clad laminate and printed wiring board equipped with copper clad laminate
JP2011219789A (en) * 2010-04-06 2011-11-04 Fukuda Metal Foil & Powder Co Ltd Treated copper foil for copper-clad laminate, copper-clad laminate obtained by sticking the treated copper foil to insulating resin substrate, and printed wiring board obtained by using the copper-clad laminate
US10472728B2 (en) 2010-05-07 2019-11-12 Jx Nippon Mining & Metals Corporation Copper foil for printed circuit
US9580829B2 (en) 2010-05-07 2017-02-28 Jx Nippon Mining & Metals Corporation Copper foil for printed circuit
JP2012184498A (en) * 2011-02-18 2012-09-27 Jx Nippon Mining & Metals Corp Electrolytic copper foil for electromagnetic-wave shielding, and manufacturing method therefor
US9060431B2 (en) 2011-06-07 2015-06-16 Jx Nippon Mining & Metals Corporation Liquid crystal polymer copper-clad laminate and copper foil used for said laminate
CN103562440B (en) * 2011-06-07 2016-04-06 Jx日矿日石金属株式会社 The Copper Foil used in liquid crystalline polymers copper clad laminate and this veneer sheet
WO2012169249A1 (en) 2011-06-07 2012-12-13 Jx日鉱日石金属株式会社 Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
CN103562440A (en) * 2011-06-07 2014-02-05 Jx日矿日石金属株式会社 Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
WO2013047272A1 (en) * 2011-09-30 2013-04-04 Jx日鉱日石金属株式会社 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
KR20180026584A (en) * 2011-09-30 2018-03-12 제이엑스금속주식회사 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
CN103857833B (en) * 2011-09-30 2018-09-07 Jx日矿日石金属株式会社 Excellent copper foil, its manufacturing method and printed wiring board or negative electrode battery material using the electrolytic copper foil with resin adhesiveness
JPWO2013047272A1 (en) * 2011-09-30 2015-03-26 Jx日鉱日石金属株式会社 Copper foil excellent in adhesiveness with resin, method for producing the same, and printed wiring board or battery negative electrode material using the electrolytic copper foil
KR102059280B1 (en) * 2011-09-30 2019-12-24 제이엑스금속주식회사 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
WO2013065831A1 (en) * 2011-11-04 2013-05-10 Jx日鉱日石金属株式会社 Copper foil for printed circuit
JP2013096003A (en) * 2011-11-04 2013-05-20 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
JP2013119240A (en) * 2011-12-08 2013-06-17 Furukawa Electric Co Ltd:The Copper clad laminate for high frequency substrate, and surface treated copper foil used for the same
JP2013155415A (en) * 2012-01-31 2013-08-15 Furukawa Electric Co Ltd:The Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission
KR20130137104A (en) 2012-06-06 2013-12-16 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Copper foil for printed wiring board, process for preparing the same, and printed wiring board using the copper foil
US10645805B2 (en) * 2012-12-21 2020-05-05 Nexflex Co., Ltd. Multi-layer flexible metal-clad laminate and manufacturing method thereof
KR102038137B1 (en) * 2012-12-21 2019-10-30 주식회사 넥스플렉스 Multi-layer flexible metal-clad laminate and manufacturing method for thereof
US20150373843A1 (en) * 2012-12-21 2015-12-24 Sk Innovation Co., Ltd. Multi-layer flexible metal-clad laminate and manufacturing method thereof
KR20140081143A (en) * 2012-12-21 2014-07-01 에스케이이노베이션 주식회사 Multi-layer flexible metal-clad laminate and manufacturing method for thereof
KR20160135369A (en) * 2013-02-28 2016-11-25 미쓰이금속광업주식회사 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
KR102116928B1 (en) * 2013-02-28 2020-05-29 미쓰이금속광업주식회사 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
JP2015127136A (en) * 2013-11-27 2015-07-09 Jx日鉱日石金属株式会社 Copper foil with carrier, print wiring board, print circuit board, copper-clad laminate and production method of print wiring board
TWI627882B (en) * 2014-01-17 2018-06-21 Jx Nippon Mining & Metals Corp Surface treatment copper foil, copper foil with carrier, printed wiring board, copper clad laminate, laminated body, and printed wiring board manufacturing method
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board
WO2016035876A1 (en) * 2014-09-05 2016-03-10 古河電気工業株式会社 Copper foil, copper clad laminated plate, and substrate
CN106574389A (en) * 2014-09-05 2017-04-19 古河电气工业株式会社 Copper foil, copper clad laminated plate, and substrate
KR20170039084A (en) 2014-09-05 2017-04-10 후루카와 덴키 고교 가부시키가이샤 Copper foil, copper clad laminated plate, and substrate
JP5972486B1 (en) * 2014-09-05 2016-08-17 古河電気工業株式会社 Copper foil, copper clad laminate, and substrate
JP2016149438A (en) * 2015-02-12 2016-08-18 福田金属箔粉工業株式会社 Treatment copper foil, copper-clad laminate using the treatment copper foil, and print circuit board
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board
CN107113971A (en) * 2015-08-12 2017-08-29 古河电气工业株式会社 High-frequency circuit copper foil, copper clad laminate, printed circuit board
WO2017026490A1 (en) * 2015-08-12 2017-02-16 古河電気工業株式会社 Copper foil for high-frequency circuit, copper-clad laminate sheet, and printed-wiring board
CN107113971B (en) * 2015-08-12 2019-04-26 古河电气工业株式会社 High-frequency circuit copper foil, copper clad laminate, printed circuit board
JP6089160B1 (en) * 2015-08-12 2017-03-01 古河電気工業株式会社 Copper foil for high frequency circuits, copper clad laminates, printed wiring boards
KR20170097054A (en) 2015-08-12 2017-08-25 후루카와 덴키 고교 가부시키가이샤 Copper foil for high-frequency circuit, copper-clad laminate sheet, and printed-wiring board
KR102347860B1 (en) 2016-02-09 2022-01-05 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Treated copper foil having high chroma, copper-clad laminate using the treated copper foil and manufacturing method of the treated copper foil
TWI728012B (en) * 2016-02-09 2021-05-21 日商福田金屬箔粉工業股份有限公司 High-chroma processed copper foil, copper clad laminate using the processed copper foil, and manufacturing method of the processed copper foil
KR20170094485A (en) * 2016-02-09 2017-08-18 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Treated copper foil having high chroma, copper-clad laminate using the treated copper foil and manufacturing method of the treated copper foil
JP2017141489A (en) * 2016-02-09 2017-08-17 福田金属箔粉工業株式会社 High chroma treated copper foil, copper-clad laminate using the treated copper foil and manufacturing method of the treated copper foil
JP2016188431A (en) * 2016-06-06 2016-11-04 Jx金属株式会社 Copper foil for printed circuit
KR20190075054A (en) 2016-12-14 2019-06-28 후루카와 덴키 고교 가부시키가이샤 Surface treated copper foil and copper clad laminate
CN113383117A (en) * 2019-02-04 2021-09-10 松下知识产权经营株式会社 Surface-treated copper foil, and copper-clad laminate, resin-coated copper foil, and circuit board using same
WO2020230870A1 (en) * 2019-05-15 2020-11-19 パナソニックIpマネジメント株式会社 Copper-clad laminated plate, resin-clad copper foil, and circuit substrate using said plate and foil
JPWO2020230870A1 (en) * 2019-05-15 2020-11-19
CN113795377A (en) * 2019-05-15 2021-12-14 松下知识产权经营株式会社 Copper-clad laminate, resin-coated copper foil, and circuit board using same
JP7580069B2 (en) 2019-05-15 2024-11-11 パナソニックIpマネジメント株式会社 Copper-clad laminate, resin-coated copper foil, and circuit board using the same
CN112118666A (en) * 2019-06-20 2020-12-22 中兴通讯股份有限公司 PCB device capable of reducing insertion loss and processing method
CN114929944A (en) * 2019-12-24 2022-08-19 日本电解株式会社 Surface-treated copper foil and method for producing same
TWI808775B (en) * 2021-06-03 2023-07-11 日商三井金屬鑛業股份有限公司 Coarse treatment of copper foil, copper foil laminates and printed wiring boards
TWI808777B (en) * 2021-06-03 2023-07-11 日商三井金屬鑛業股份有限公司 Coarse treatment of copper foil, copper foil laminates and printed wiring boards
CN115044947A (en) * 2022-06-17 2022-09-13 山东金宝电子股份有限公司 Surface treatment method for improving adhesive force of copper foil and resin
CN115044947B (en) * 2022-06-17 2023-09-29 山东金宝电子有限公司 Surface treatment method for improving adhesion of copper foil and resin

Similar Documents

Publication Publication Date Title
JP2006210689A (en) Copper foil for high frequency printed wiring board and its production method
JP2717911B2 (en) Copper foil for printed circuit and manufacturing method thereof
US4387006A (en) Method of treating the surface of the copper foil used in printed wire boards
CN1940145B (en) Nickel plating solution and its preparation method, nickel plating method and printed wiring board copper foil
US9028972B2 (en) Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board and printed wiring board
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
JP5885054B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP3081026B2 (en) Electrolytic copper foil for printed wiring boards
JPH07233497A (en) Non-cyan copper-zinc electroplating bath, surface treatment of copper foil for printed circuit board using the bath, and the copper foil for printed circuit board
WO2009084839A2 (en) Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
US6419811B2 (en) Method for surface treatment of copper foil
JP2010180454A (en) Surface-treated copper foil, method for manufacturing the same and copper-clad laminate
US5234573A (en) Method of surface treatment of copper foil for printed circuit boards and copper foil for printed circuit boards
JP4309817B2 (en) Method for producing blackened surface-treated copper foil for electromagnetic wave shielding
JP2920083B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP2005206915A (en) Copper foil for printed circuited board, and its production method
US20130189538A1 (en) Method of manufacturing copper foil for printed wiring board, and copper foil printed wiring board
KR100654737B1 (en) Method of manufacturing Surface-treated Copper Foil for PCB having fine-circuit pattern and Surface-treated Copper Foil thereof
JP2010141227A (en) Rolled copper foil for printed wiring board
JP2717910B2 (en) Copper foil for printed circuit and manufacturing method thereof
CN111194362B (en) Surface-treated copper foil, and copper-clad plate and printed wiring board using same
JP3623621B2 (en) Copper foil surface treatment method
EP2590487B1 (en) Process to manufacture fine grain surface copper foil with high peeling strength and environmental protection for printed circuit boards
JP3564460B2 (en) Copper foil for printed wiring board and method for producing the same
JP2631061B2 (en) Copper foil for printed circuit and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Effective date: 20100611

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A02