[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006208136A - Collector for analyzing contaminant - Google Patents

Collector for analyzing contaminant Download PDF

Info

Publication number
JP2006208136A
JP2006208136A JP2005019365A JP2005019365A JP2006208136A JP 2006208136 A JP2006208136 A JP 2006208136A JP 2005019365 A JP2005019365 A JP 2005019365A JP 2005019365 A JP2005019365 A JP 2005019365A JP 2006208136 A JP2006208136 A JP 2006208136A
Authority
JP
Japan
Prior art keywords
contaminant
analysis
collection
gas
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005019365A
Other languages
Japanese (ja)
Other versions
JP4706269B2 (en
Inventor
Akira Sakata
陽 坂田
Takako Sakai
香子 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005019365A priority Critical patent/JP4706269B2/en
Publication of JP2006208136A publication Critical patent/JP2006208136A/en
Application granted granted Critical
Publication of JP4706269B2 publication Critical patent/JP4706269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collector for analyzing a contaminant constituted so that a molecular chemical contaminant is selectively collected from an analyzing gas and the collection of the contaminant is performed with the elapse of time without fixing/restricting an analyzing method by providing a base material formed of this substance as the surface of a photomask to a collection part without using the photomask in order to analyze the surface contaminant of the photomask. <P>SOLUTION: In the collector for analyzing the contaminant equipped with a suction part for sucking the analyzing gas with the elapse of time and the collection part for collecting the molecular chemical contaminant with the elapse of time, the collection part is composed of the base material and the surface substance layer formed on the surface of the base material, the surface substance layer comprises this substance as the surface of a desired material, the collection part is equipped with a means for selectively collecting the contaminant and this selective collection means of the contaminant is constituted so as to selectively collect the contaminant on the surface of the surface substance layer by heating or cooling the surface of the surface substance layer using a Peltier element or a lamp heater. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電子製品の製造に影響を与える、気体中に浮遊する分子汚染物質が製造材料へ経時に付着した汚染物質を分析検出するための、気体−固体表面相互作用、化学的相互作用、物理的相互作用を利用した汚染物質を分析するための汚染物分析用捕集装置に関する。   The present invention relates to gas-solid surface interaction, chemical interaction, physics for analyzing and detecting contaminants that affect the manufacture of electronic products, and that molecular contaminants suspended in the gas adhere to the manufacturing material over time. The present invention relates to a pollutant analysis collection device for analyzing pollutants using mechanical interaction.

多くの電子製品、例えば、半導体、フラットパネルディスプレイや、医療、食品などの製造プロセスおよび技術は、その多くは、クリーンルームで作業が実施されている。従来、クリーンルームでは、粒子状のゴミ(浮遊パーティクル)が問題視され、物理的な固体形状で、一定の大きさを呈するものが制限の対象であった。近年、気体中の浮遊分子汚染物質または気相分子汚染物質(Air bone Molecular Contamination:AMC、以下AMCと表記)が製造材料表面に化学的相互作用によって付着し、表面分子汚染(Surface Molecular Contamination:SMC,以下SMCと表記)となり、性能劣化や製品不良の要因となる問題が発生している。このようなSMCの問題、例えば、半導体プロセスでは、例えばレジストのT―トッピング、不完全なエピタキシャル成長、不均質な酸化物層の成長、腐蝕工程の不均一腐食反応、配線材料の密着性不良などを引き起こし、電子製品として正常な電気的特性が得られなくなる原因となる。その他に、光学装置産業においてhazingなど光学的性能の劣化影響、ハードディスクドライブでは回転ディスクと読み取りプローブとの摩擦による摩耗劣化影響などの要因として挙げられる。   Many electronic products, such as semiconductors, flat panel displays, medical and food manufacturing processes and technologies, many of which work in a clean room. Conventionally, in a clean room, particulate dust (floating particles) has been regarded as a problem, and a physical solid shape having a certain size has been a target of restriction. In recent years, air-borne molecular contamination (AMC, hereinafter referred to as AMC) in a gas has adhered to the surface of a manufacturing material by chemical interaction, and surface molecular contamination (SMC). , Hereinafter referred to as SMC), causing problems that cause performance degradation and product defects. Such SMC problems such as resist T-topping, imperfect epitaxial growth, heterogeneous oxide layer growth, heterogeneous corrosion reaction in the corrosion process, poor adhesion of wiring materials, etc. This causes a failure to obtain normal electrical characteristics as an electronic product. In addition, it can be cited as factors such as optical performance degradation effects such as “hazing” in the optical device industry, and wear degradation effects due to friction between the rotating disk and the reading probe in hard disk drives.

有害なSMCを引き起こす種々のAMCは、クリーンルームではその存在が当該分野では公知であり、例えば半導体分野、例えば米国では、SEMI規格F21−95クラスA,B,C,Dにグループ分類されている。   Various AMCs that cause harmful SMCs are known in the art in the clean room and are grouped in SEMI standards F21-95 class A, B, C, D, for example, in the semiconductor field, for example in the United States.

AMCの供給源としては、クリーンルームの屋外から外気処理された供給気体については、外気に含まれる自動車の排気ガスを始め、種々の産業廃棄物や動植物からの蒸発散の分子汚染物質が十分に濾過処理されず、クリーンルーム内に流入する、又はクリーンルーム内においては、粒子捕集フィルターの構成材料、気密シーラント材からの分子汚染物質、又は設置された製造装置、使用する製造材料からのガス放出などが挙げられる。さらに別の供給源としては、クリーンルーム内の作業者からの呼吸による生理的活動排出物、又は衣服などからのガス放出が挙げられる。   As for the supply source of AMC, for the supply gas that has been treated outside from the clean room, the exhaust gas from automobiles contained in the outside air and various industrial waste and molecular contaminants of evapotranspiration from animals and plants are sufficiently filtered. It is not treated and flows into the clean room, or in the clean room, the constituent material of the particle collection filter, the molecular contaminants from the airtight sealant material, or the installed manufacturing equipment, the gas release from the manufacturing material used, etc. Can be mentioned. Still other sources include physiological activity emissions from breathing from workers in a clean room, or outgassing from clothing or the like.

これらのSMCの監視については、その分析やモニタリングが考案されている。しかし、例えば、上記で例示したSEMI規格F21−95クラスA,B,C,Dの分類すべてを分析、又はモニタする単一機器や装置は存在しない。現在の技術は、有機物、無機物など特定の物性種のみを検出する装置のみで、問題がある。   Analysis and monitoring have been devised for monitoring these SMCs. However, for example, there is no single device or apparatus that analyzes or monitors all the classifications of the SEMI standards F21-95 classes A, B, C, and D exemplified above. The current technology has a problem only with a device that detects only specific physical species such as organic matter and inorganic matter.

一般に、気相中に含まれる分子レベルの成分は蒸気圧や分子構造など、その物質のもつ物理化学的特性と固体表面の分子結合状態や温度などに関係して固体表面に吸着・付着する。吸着・付着量は、その一部の物質は気体中の濃度に比例して平衡吸着するため、固体表面への極微量吸着量を計測することで気相中の濃度を逆算して求めることが出来る。   In general, components at the molecular level contained in the gas phase are adsorbed and adhered to the solid surface in relation to the physicochemical properties of the substance, such as vapor pressure and molecular structure, and the molecular bonding state and temperature of the solid surface. Adsorption / adhesion amount can be obtained by back-calculating the concentration in the gas phase by measuring the very small amount adsorbed on the solid surface because some of the substance is in equilibrium adsorbed in proportion to the concentration in the gas. I can do it.

現存のモニタリング技術においては、化学種の特定情報を得る方法として分析用気体のサンプルを吸着媒体に一旦捕集し、クロマトグラム分析する手法を利用したものや、水晶振動子マイクロバランス(Quartz Crystal Microbalance:
QCM)や表面弾性波(Surface Acoustic Wave:SAW)を利用した技術がある。この方法は、センサ表面に蓄積された物質量の多少に応じた周波数変化を汚染量として換算する原理である。
In the existing monitoring technology, as a method for obtaining specific information on chemical species, a sample of an analysis gas is temporarily collected on an adsorption medium and a method of performing chromatogram analysis or a quartz crystal microbalance (Quartz Crystal Microbalance) is used. :
There is a technique using QCM) or surface acoustic wave (SAW). This method is based on the principle of converting the frequency change corresponding to the amount of the substance accumulated on the sensor surface as the amount of contamination.

また、現存の装置では、センサ表面への付着物質選択方法として、熱的作用をその原理とし、センサ上流部に気体加熱器を備えた出願(特許文献1参照)もある。しかしながら、気体の加熱では汚染物の沸点を利用した選択性の観点からは選択性が不十分である。なぜならば、汚染物選択を行うべきはセンサ表面の温度である。センサ表面に沸点選択性を有することが本質であり、センサ表面温度が該汚染物質の沸点であることが必要である。   In addition, in the existing apparatus, there is an application (see Patent Document 1) in which a thermal action is used as a principle for selecting a substance to be attached to the sensor surface and a gas heater is provided in the upstream part of the sensor. However, gas heating is insufficient in terms of selectivity utilizing the boiling point of contaminants. This is because the temperature of the sensor surface should be selected for contaminant selection. It is essential that the sensor surface has boiling point selectivity, and the sensor surface temperature needs to be the boiling point of the contaminant.

他のセンサ表面への付着物質制御方法としては、半導体製造業界では、雰囲気汚染から材料を隔離すべく、材料を容器内に格納することが行われていて、その容器の材質から発生する脱ガス成分に着目し、該脱ガス成分のみを検出するセンサを容器内に装着し、容器内にセンサ内臓させた出願(特許文献2参照)がある。   As another method for controlling substances adhering to the sensor surface, in the semiconductor manufacturing industry, in order to isolate the material from atmospheric contamination, the material is stored in a container, and degassing generated from the material of the container is performed. There is an application (see Patent Document 2) in which a sensor that detects only the degassed component is mounted in a container and the sensor is built in the container.

上述の特許文献1、又は2はいずれも分析方法が固定・限定されている。また、該SMC物質の選択性について不十分である。また、さらに気体が例えば特定波長の光源や電子線、放射線環境下に存在する場合における、汚染物質との反応生成物質の捕集については網羅していない。以上の種々の問題がある。   In any of the above-mentioned Patent Documents 1 and 2, the analysis method is fixed and limited. Also, the selectivity of the SMC material is insufficient. Furthermore, it does not cover collection of reaction products with pollutants when a gas is present in a light source, electron beam, or radiation environment of a specific wavelength, for example. There are various problems as described above.

以下に、公知文献を記す。
特開2004−69686号公報 特開2004−47929号公報
The known literature is described below.
JP 2004-69686 A JP 2004-47929 A

本発明の課題は、フォトマスクの表面汚染物質の分析をするため、フォトマスクを使うのでなく、フォトマスクの表面と同一の物質を形成した基材を捕集部に設けて、分析方法が固定・限定されずに、分析用気体から分子状化学汚染物質の捕集が選択的であり、経時的に汚染物質の捕集を行うことを可能とする汚染物分析用捕集装置を提供すること。 The object of the present invention is not to use a photomask to analyze the surface contaminants of the photomask, but to provide a base material on which the same material as the surface of the photomask is formed in the collecting part, and the analysis method is fixed -To provide a collection device for contaminant analysis, which is not limited and can selectively collect molecular chemical pollutants from an analysis gas and can collect contaminants over time. .

本発明の請求項1に係る発明は、分析用の気体中(以下分析用気体と記す)から分子状化学汚染物質を経時的に吸引する吸引部と、該吸引部により吸引された分子状汚染物質を経時的に捕集する捕集部を備えた汚染物質分析用捕集装置であって、捕集部は、基材と、その表面に表面物質層を形成し、前記表面物質層は、所望の材料表面と同一物質からなることを特徴とする汚染物分析用捕集装置である。   The invention according to claim 1 of the present invention includes a suction part for sucking molecular chemical contaminants in an analysis gas (hereinafter referred to as analysis gas) over time, and molecular contamination sucked by the suction part. A pollutant analysis collection device including a collection unit for collecting substances over time, the collection unit forming a substrate and a surface material layer on the surface, the surface material layer, It is a collection device for contaminant analysis characterized by comprising the same substance as the desired material surface.

本発明の請求項2に係る発明は、前記基材は、金属よりなることを特徴とする請求項1記載の汚染物分析用捕集装置である。   The invention according to claim 2 of the present invention is the contaminant analysis collection apparatus according to claim 1, wherein the substrate is made of metal.

本発明では、捕集部の基材上に、形成する表面物質層が、所望の材料表面と同一物質からなる等、任意に、複数種類の表面物質層を選択することが可能となる。   In the present invention, it is possible to arbitrarily select a plurality of types of surface material layers such that the surface material layer to be formed is made of the same material as the desired material surface on the base material of the collection part.

本発明の請求項3に係る発明は、前記捕集部が、物理、又は化学的反応により汚染物質を選択的に捕集する手段と、分析用気体以外の気体による汚染を受けないようにする防護手段とを備えることを特徴とする請求項1、又は2記載の汚染物分析用捕集装置である。   The invention according to claim 3 of the present invention is such that the collection part does not receive contamination by a gas other than a gas for analysis and means for selectively collecting a contaminant by physical or chemical reaction. The contaminant analysis collection device according to claim 1, further comprising a protection means.

本発明の請求項4に係る発明は、前記汚染物質を選択的に捕集する手段は、前記表面物質層の表面を特定温度に加熱、又は冷却することにより、前記表面物質層の表面に汚染物質を選択的に捕集することを特徴とする請求項3記載の汚染物分析用捕集装置である。   The invention according to claim 4 of the present invention is characterized in that the means for selectively collecting the contaminants contaminates the surface of the surface material layer by heating or cooling the surface of the surface material layer to a specific temperature. 4. The contaminant analysis collection apparatus according to claim 3, wherein the substance is selectively collected.

本発明の請求項5に係る発明は、前記汚染物質を選択的に捕集する手段は、前記表面物質層の表面近傍の分析用気体へ特定波長の光線の照射することにより、前記表面物質層の表面に汚染物質を選択的に捕集することを特徴とする請求項3記載の汚染物分析用捕集装置である。   The invention according to claim 5 of the present invention is characterized in that the means for selectively collecting the contaminant is the surface material layer by irradiating the analysis gas near the surface of the surface material layer with a light beam having a specific wavelength. 4. The contaminant analysis collection apparatus according to claim 3, wherein contaminants are selectively collected on the surface of the contaminant analysis apparatus.

本発明の請求項6に係る発明は、前記汚染物質を選択的に捕集する手段は、前記表面物質層の表面近傍の分析用気体へ特定波長の放射線の照射することにより、前記表面物質層の表面に汚染物質を選択的に捕集することを特徴とする請求項3記載の汚染物分析用捕集装置である。   The invention according to claim 6 of the present invention is characterized in that the means for selectively collecting the contaminant is the surface material layer by irradiating the analysis gas near the surface of the surface material layer with radiation of a specific wavelength. 4. The contaminant analysis collection apparatus according to claim 3, wherein contaminants are selectively collected on the surface of the contaminant analysis apparatus.

本発明では、表面物質層の表面を特定温度に加熱、若しくは冷却、又は特定波長の光線の照射することにより、表面物質層の表面に汚染物質を選択的に捕集することが可能となる。   In the present invention, it is possible to selectively collect contaminants on the surface of the surface material layer by heating or cooling the surface of the surface material layer to a specific temperature, or by irradiating light of a specific wavelength.

本発明の汚染物分析用捕集装置を用いれば、分析用気体中に存在する分子汚染物質(AMC)より、汚染される材料表面と同一とした表面物質層を形成した捕集部に付着する物質(SMC)の組成のうちの特定の成分毎に、その沸点温度に表面物質層を加熱若しくは冷却、又は特定の放射線を照射下の環境等、任意に設定することにより、所定の汚染物質のみを経時的、かつ、選択的に捕集することができ、分析用気体の種々の成分の捕集を総合的に行い、分析用気体中の分子汚染物質の分析・評価に利用可能となる。   If the collection device for contaminant analysis of the present invention is used, it adheres to the collection part which formed the same surface material layer as the contaminated material surface from the molecular contaminant (AMC) present in the analysis gas. For each specific component of the composition of the substance (SMC), by heating or cooling the surface material layer to its boiling temperature, or arbitrarily setting the environment under irradiation with specific radiation, etc., only predetermined pollutants Can be selectively collected over time, and various components of the analysis gas can be collected comprehensively and used for analysis and evaluation of molecular contaminants in the analysis gas.

請求項1に係る本発明によれば、捕集部の表面物質層にフォトマスクの表面と同じ材質を形成することにより、フォトマスクを使うのでなく、前記表面物質層に、複数個の材質、例えば石英材と遮光膜材等を用いて、経時的に汚染物質の捕集を行うことができる。   According to the present invention according to claim 1, by forming the same material as the surface of the photomask on the surface material layer of the collection part, a plurality of materials can be formed on the surface material layer instead of using a photomask. For example, contaminants can be collected over time using a quartz material and a light shielding film material.

以下、本発明の汚染物分析用捕集装置の構造概略を図1に示す。図1は斜視図であり、捕集装置100は、巻き取り状とした捕集リール10とリール駆動装置20の捕集部と、吸引部の、排気ポンプ30、吸引管40、吸引口50、吸気バルブ60、排気口70、排気バルブ80で構成される。汚染物質を含んだ気体(分析用気体)900は、排気ポンプ30により、吸引口50から吸引され、吸引管40に設けられた開口部41A,41Bを貫通する捕集リール10の表面の一部である暴露表面10Aに到達し、汚染物質付着後、排気口70から排出される。リール駆動装置20により捕集リール10は図中矢印で示すように所定の速度で連続的に掃引、又は一定時間間隔で断続的に巻き取られ、経時変化する汚染物質の捕集動作が行われる。また、リール駆動装置20、排気ポンプ30、吸気バルブ60、排気バルブ80はそれぞれリール駆動制御器310、排気ポンプ制御器320、バルブ開閉制御器330で制御され、装置全体では、中央制御器300で統合制御される。   FIG. 1 shows a schematic structure of the contaminant analysis collection apparatus of the present invention. FIG. 1 is a perspective view, and a collection device 100 includes a collection reel 10 and a collection unit of a reel driving device 20 that are wound up, and an exhaust pump 30, a suction pipe 40, a suction port 50 of a suction unit, An intake valve 60, an exhaust port 70, and an exhaust valve 80 are configured. A gas (analysis gas) 900 containing a contaminant is sucked from the suction port 50 by the exhaust pump 30 and part of the surface of the collection reel 10 passing through the openings 41 </ b> A and 41 </ b> B provided in the suction pipe 40. The exposed surface 10A is reached, and after the contaminant is attached, it is discharged from the exhaust port 70. The collection reel 10 is continuously swept at a predetermined speed as shown by an arrow in the figure or intermittently wound at regular intervals as shown by arrows in the figure, and a pollutant collecting operation that changes with time is performed. . Further, the reel driving device 20, the exhaust pump 30, the intake valve 60, and the exhaust valve 80 are controlled by a reel drive controller 310, an exhaust pump controller 320, and a valve opening / closing controller 330, respectively. Integrated control.

図1の参考図に示すように、捕集リール10の基材1の表面の少なくとも片面は表面物質層2が形成され、該表面物質層は汚染分析したい材料と同一の物質で構成されていることが望ましい。例えばフォトマスクの表面汚染を分析したい場合は、フォトマスクには無機物、無機酸化物、金属、金属酸化物または、複数以上の混合物質が形成されており、前記表面物質層2は、珪素、SiO,Cr,CrO,Ta,TaSi,TaSiO,TaSiN,TaBN,CrN,CrON,Mo,MoSi,Zr,ZrSi,MoZrSi等
で形成される。表面物質層の形成にはスパッタリング、蒸着、原子層蓄積、コーティングなどが利用可能である。
As shown in the reference diagram of FIG. 1, a surface material layer 2 is formed on at least one surface of the substrate 1 of the collection reel 10, and the surface material layer is composed of the same material as the material to be analyzed for contamination. It is desirable. For example, when it is desired to analyze the surface contamination of the photomask, the photomask is formed with an inorganic material, an inorganic oxide, a metal, a metal oxide, or a mixture of a plurality of materials, and the surface material layer 2 is made of silicon, SiO. , Cr, CrO, Ta, TaSi, TaSiO, TaSiN, TaBN, CrN, CrON, Mo, MoSi, Zr, ZrSi, MoZrSi, or the like. Sputtering, vapor deposition, atomic layer accumulation, coating, etc. can be used to form the surface material layer.

図2A、図2Bに捕集リール10の詳細の一例の平面図を示す。なお、参考図は、側断面図である。図2Aは、捕集リール10の片側面に突起11が連続して形成されており、巻き取り時に表裏が密着して反対面に付着物質が転写することを防ぐスペーサーとして機能する。図2Bは、連続したリブ状様とした事例である。   2A and 2B are plan views showing an example of the details of the collection reel 10. The reference drawing is a sectional side view. In FIG. 2A, protrusions 11 are continuously formed on one side surface of the collection reel 10, and function as a spacer that prevents adhesion substances from being transferred to the opposite surface due to close contact between the front and back during winding. FIG. 2B is an example of a continuous rib shape.

図3は、図1上のY−Y‘面の部分拡大図であり、該汚染物質の選択性を任意の沸点温度に設定することにより可能とする構造断面であり、以下図3にて説明する。沸点制御手段は、例えば暴露表面10Aの加熱・冷却両方が可能なペルチェ素子210であり、吸引管40内に導かれた捕集リール10の暴露表面10Aの直上片面(図3A)もしくは上下両面(図3B)に設置した温調ユニット200の内部に設置する。暴露表面10Aでの温度はペルチェ素子210と暴露表面10Aと等距離αの位置に設置した、捕集リール10と同一材料とした測定面を温度計220で測定する。温度計220はペルチェ素子210を所定の温度となるよう、温度制御器230にフィードバックし、その温度を制御する。沸点制御が加熱のみで良い場合はペルチェ素子210に代わり熱線ヒータや赤外線ランプヒータ、でも良い。   FIG. 3 is a partially enlarged view of the YY ′ plane in FIG. 1, which is a structural cross section that enables the selectivity of the contaminant to be set to an arbitrary boiling point temperature, and will be described below with reference to FIG. 3. To do. The boiling point control means is, for example, a Peltier element 210 that can both heat and cool the exposed surface 10A. It is installed inside the temperature control unit 200 installed in FIG. 3B). The temperature on the exposed surface 10A is measured with a thermometer 220 on the measurement surface made of the same material as the collection reel 10 and placed at the same distance α between the Peltier element 210 and the exposed surface 10A. The thermometer 220 feeds back the Peltier element 210 to the temperature controller 230 so as to reach a predetermined temperature, and controls the temperature. When the boiling point control is only heating, a heat ray heater or an infrared lamp heater may be used instead of the Peltier element 210.

沸点選択性を利用する場合、基板1及び表面物質層2は、加熱、又は冷却をうける。ステンレスはその表面を電界研磨などで平滑化が可能であり、実効表面積を少なく出来ることが知られている。捕集リール10の基材1にステンレスを用いた場合、その基材1は実効表面積が低減され、加熱・冷却による材質自身からのアウトガス放出を低減できる効果があり、捕集物質に対する影響が少なく好都合である。   When utilizing the boiling point selectivity, the substrate 1 and the surface material layer 2 are heated or cooled. It is known that the surface of stainless steel can be smoothed by electropolishing or the like, and the effective surface area can be reduced. When stainless steel is used for the base material 1 of the collection reel 10, the base material 1 has an effect of reducing the effective surface area, reducing the outgas emission from the material itself by heating and cooling, and has little influence on the collected material. Convenient.

さらに、汚染物質の磁性を選択性として利用する場合、ステンレスの場合、それぞれ非磁性、着磁性が基材自身で選択できる利点がある。   Furthermore, when using the magnetic properties of contaminants as selectivity, stainless steel has the advantage that non-magnetic and magnetic properties can be selected by the substrate itself.

さらに、ステンレスなどの金属は静電気の帯電が無いことから、汚染物質の帯電電荷(正負)に対して反発・吸引作用を与えない利点がある。   Furthermore, since metals such as stainless steel have no electrostatic charge, there is an advantage that no repulsion or suction action is given to the charged charges (positive and negative) of the contaminants.

ステンレス以外の金属では、選択性の一候補として、触媒性を示すTiOや、腐食性物質に対してはAg,Auなどが挙げられる。   For metals other than stainless steel, examples of selectivity include TiO exhibiting catalytic properties, and Ag, Au, etc. for corrosive substances.

図4に図3同様の断面図を示す。図4は該汚染物質がさらに特定波長の光源や電子線、放射線環境下にある場合における捕集リール10材質との反応生成物質の捕集を意図して行う実施例を示す。光源410や電子線源420、放射線源430は暴露表面10Aの領域に照射されれば良い。本実施例では吸引管40に照射ユニット400を設置し、内部に光源410または電子線源420、放射線源430を設置した。照射ユニット400は図3A,図3B同様、暴露表面10Aの直上片面もしくは両面に配置する。光源410の線源にはレーザー発振器、又は一般に真空紫外線領域に輝線スペクトルを有する重水素ランプ、又は遠紫外線領域に輝線スペクトルを有するキセノンランプ、又は近紫外線から可視光、又は近赤外線領域に連続波長帯を有するハロゲンランプなどが適用可能である。光源410,電子線源420,放射線源430には、さらにその内部にフィルター440もしくは回折格子光学系450など波長選択手段をさらに有しても良い。照射ユニット400は図3(B)同様上下両面に配置しても良い。   FIG. 4 shows a cross-sectional view similar to FIG. FIG. 4 shows an embodiment in which collection of a reaction product with the material of the collection reel 10 when the pollutant is in a light source, electron beam, or radiation environment of a specific wavelength is intended. The light source 410, the electron beam source 420, and the radiation source 430 may be irradiated to the area of the exposed surface 10A. In this embodiment, the irradiation unit 400 is installed in the suction tube 40, and the light source 410 or the electron beam source 420 and the radiation source 430 are installed inside. As in FIGS. 3A and 3B, the irradiation unit 400 is arranged on one or both sides immediately above the exposed surface 10A. The source of the light source 410 is a laser oscillator, generally a deuterium lamp having an emission line spectrum in the vacuum ultraviolet region, a xenon lamp having an emission line spectrum in the far ultraviolet region, or a continuous wavelength in the near ultraviolet to visible light or near infrared region. A halogen lamp having a band or the like is applicable. The light source 410, the electron beam source 420, and the radiation source 430 may further include wavelength selection means such as a filter 440 or a diffraction grating optical system 450 therein. The irradiation unit 400 may be disposed on both the upper and lower surfaces as in FIG.

図5A〜Bに、捕集済の捕集リール10が捕集前後で汚染を受けないように防護手段を備える場合の実施例を示す。なお、図5Aは上面図で、5Bは、その側断面図である。吸引管40に気密構造とする送り側カセット510A、受け側カセット510Bを脱着可能
なように気密接続する。吸引管40には両カセット510A,510Bを気密接続可能とする気密ポート42A,42Bをそれぞれ設置する。両カセット510A,510Bには開閉扉520A,520Bを設ける。開閉扉520A、520BはOリング590を用いて気密を確保する。両カセット510A、510Bには不純物を含まず、かつ捕集物質に化学的反応を示さない不活性ガス、例えば窒素ガスを供給する。供給されるガスは流量調整器530で流量調整し、捕集物質の熱脱離を防ぐために少なくとも沸点以下に温度調整する熱交換器540を介し、バルブ550A、550Bから供給する。供給ガスは流量と同時に圧力計560A,560Bにて両カセット510A,510B内を外部に対して正圧に保つように制御を行う。正圧が保たれた時点で開閉扉520A,520Bを開く。捕集リールが送り側カセット510Aからリール駆動装置20にて送出され、気密ポート42A,42Bを通過して反対側の受け側カセット510Bに捕集リール10が巻き取り、格納され捕集が完了する。両カセット510A,510Bの取り外しは、開閉扉520A、520B、バルブ550A、550Bを閉じる。次に接続バルブ570A、570Bを閉じると送り側カセット510A,受け側カセット510Bが気密封止される。接続継ぎ手580A,580Bから両カセット510A,510Bを取り外せば良い。
FIGS. 5A and 5B show an embodiment in which protective means is provided so that the collected collection reel 10 is not contaminated before and after collection. 5A is a top view and 5B is a side sectional view thereof. The feeding side cassette 510A and the receiving side cassette 510B having an airtight structure are hermetically connected to the suction pipe 40 so as to be detachable. The suction pipe 40 is provided with air-tight ports 42A and 42B that enable both cassettes 510A and 510B to be air-tightly connected. Both cassettes 510A and 510B are provided with opening and closing doors 520A and 520B. The open / close doors 520A and 520B use an O-ring 590 to ensure airtightness. Both cassettes 510A and 510B are supplied with an inert gas, for example, nitrogen gas, which does not contain impurities and does not show a chemical reaction with the collected material. The supplied gas is supplied from valves 550A and 550B through a heat exchanger 540 that adjusts the flow rate by a flow rate adjuster 530 and adjusts the temperature to at least the boiling point or less in order to prevent thermal desorption of the collected substance. At the same time as the flow rate, the supply gas is controlled by the pressure gauges 560A and 560B so as to keep the inside of both cassettes 510A and 510B at a positive pressure with respect to the outside. When the positive pressure is maintained, the opening / closing doors 520A and 520B are opened. The collecting reel is sent out from the feeding-side cassette 510A by the reel driving device 20, passes through the airtight ports 42A and 42B, the collecting reel 10 is taken up and stored in the receiving-side cassette 510B on the opposite side, and the collecting is completed. . Removal of both cassettes 510A and 510B closes the open / close doors 520A and 520B and the valves 550A and 550B. Next, when the connection valves 570A and 570B are closed, the feeding side cassette 510A and the receiving side cassette 510B are hermetically sealed. What is necessary is just to remove both cassettes 510A and 510B from the connection joints 580A and 580B.

図5に示した上記実施例では本発明の汚染物分析用捕集装置を大気圧下で使用する事例を説明したが、減圧装置に接続して減圧気体中に浮遊する汚染物質を捕集する場合について同様に図6を用いて説明する。減圧下の気体を吸入する場合は吸気口50を減圧装置710にゲートバルブ720などを介して気密接続すればよい。送り側カセット510A、受け側カセット510Bは前述の通り吸引管40に気密接続されているから、気密ポート42A、42Bを通じて同圧密閉となる。従って減圧装置710外部の周辺気体が捕集リール10に接触することは無い。捕集リール10が送り側カセット510Aから受け側カセット510Bに巻き取りが完了したら気密ポート42A、42B、開閉扉520A、520Bを閉じる。次に受け側カセット510Bを吸引管40から取り外す。取り外した段階では受け側カセット510B内は真空である。窒素などの不活性ガスで充填したい場合は図5での説明通り熱交換器540、550B、接続継ぎ手580B、接続バルブ570Bを介して、差圧計560Bが大気圧以上になるまで供給すれば良い。   In the above embodiment shown in FIG. 5, the case of using the pollutant analysis collecting apparatus of the present invention under atmospheric pressure has been described. However, the pollutant floating in the decompressed gas is collected by connecting to the decompressing apparatus. The case will be described with reference to FIG. When inhaling gas under reduced pressure, the intake port 50 may be airtightly connected to the decompression device 710 via a gate valve 720 or the like. Since the feeding side cassette 510A and the receiving side cassette 510B are hermetically connected to the suction pipe 40 as described above, they are hermetically sealed through the hermetic ports 42A and 42B. Therefore, ambient gas outside the decompression device 710 does not come into contact with the collection reel 10. When the collection reel 10 has been wound from the feeding cassette 510A to the receiving cassette 510B, the airtight ports 42A and 42B and the open / close doors 520A and 520B are closed. Next, the receiving side cassette 510B is removed from the suction tube 40. At the stage of removal, the inside of the receiving cassette 510B is vacuum. When it is desired to fill with an inert gas such as nitrogen, it may be supplied until the differential pressure gauge 560B reaches atmospheric pressure or higher via the heat exchangers 540 and 550B, the connection joint 580B and the connection valve 570B as described in FIG.

一般に減圧環境は平均自由工程を基準に粘性流、中間流、分子流に区分される。減圧環境中の気体分子の動きは分子速度が真空度によって異なることから、捕集に費やした気体容積は大気圧とは異なり、汚染物質が捕集リール10の暴露表面10Aへの接触機会(効率)を考慮すべきである。排気ポンプ30は減圧装置710の真空度以下に排気能力を備えたものを選択する必要があり、接触機会(効率)は捕集リール10の巻き取り時間で調整すればよい。   Generally, the decompression environment is divided into viscous flow, intermediate flow, and molecular flow based on the mean free process. Since the movement of gas molecules in a reduced-pressure environment has a different molecular velocity depending on the degree of vacuum, the volume of gas consumed for collection is different from atmospheric pressure, and the opportunity for contaminants to contact the exposed surface 10A of the collection reel 10 (efficiency) ) Should be considered. It is necessary to select an exhaust pump 30 having an exhaust capability below the vacuum level of the decompression device 710, and the contact opportunity (efficiency) may be adjusted by the winding time of the collection reel 10.

上述の説明によって、気体中に存在する分子汚染(AMC)のうち、所望の材料表面と同一とした捕集媒体の表面物質層に付着する物質(SMC)を捕集するため、表面物質層の表面温度を任意に設定することで分子状化学汚染物質を連続、かつ、選択的に捕集し、種々の分析・評価手段に利用可能な汚染物分析用捕集装置が実現した。   According to the above description, in order to collect the substance (SMC) adhering to the surface material layer of the collection medium that is the same as the desired material surface among the molecular contamination (AMC) existing in the gas, By setting the surface temperature arbitrarily, molecular chemical contaminants can be collected continuously and selectively, and a contaminant analysis collection device that can be used for various analysis and evaluation means has been realized.

本発明の汚染物分析用捕集装置の第1の実施例を示す説明図である。It is explanatory drawing which shows the 1st Example of the collection apparatus for contaminant analysis of this invention. A〜Bは、本発明の部分図で、第2の実施例を示す説明図である。AB is a partial view of the present invention, and is an explanatory view showing a second embodiment. A〜Bは、本発明の部分拡大図で、第3の実施例を示す側断面図である。AB is the elements on larger scale of this invention, and is a sectional side view which shows a 3rd Example. 本発明の部分拡大図で、第4の実施例を示す側断面図である。It is the elements on larger scale of this invention, and is a sectional side view which shows a 4th Example. 本発明の汚染物分析用捕集装置の第5の実施例を示す図面で、Aは上面図、Bは側断面図である。It is drawing which shows 5th Example of the collection apparatus for contaminant analysis of this invention, A is a top view, B is a sectional side view. 本発明の汚染物分析用捕集装置の第6の実施例を示す上面図である。It is a top view which shows the 6th Example of the collection apparatus for contaminant analysis of this invention.

符号の説明Explanation of symbols

1…基材
2…表面物質
10…捕集リール
10A…暴露表面
20…リール駆動装置
30…排気ポンプ
40…吸引管
41A…開口部
41B…開口部
42A…気密ポート
42B…気密ポート
50…吸引口
60…吸気バルブ
70…排気口
80…排気バルブ
100…捕集装置
200…温調ユニット
210…ペルチェ素子
220…温度計
230…温度制御器
300…中央制御器
310…リール駆動装置
320…排気ポンプ制御器
330…バルブ開閉器
340…温度制御器
400…照射ユニット
410…光源
420…電子線源
430…放射線源
440…フィルター
450…回折格子光学系
510A…送り側カセット
510B…受け側カセット
520A…開閉扉
520B…開閉扉
530…流量調整器
540…熱交換器
550A…バルブ
550B…バルブ
560A…圧力計
560B…圧力計
570A…バルブ
570B…バルブ
580A…接続継ぎ手
580B…接続継ぎ手
590…Oリング
710…減圧装置
720…ゲートバルブ
900…汚染物質を含んだ気体
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Surface substance 10 ... Collection reel 10A ... Exposed surface 20 ... Reel drive device 30 ... Exhaust pump 40 ... Suction pipe 41A ... Opening part 41B ... Opening part 42A ... Airtight port 42B ... Airtight port 50 ... Suction port 60 ... Intake valve 70 ... Exhaust port 80 ... Exhaust valve 100 ... Collection device 200 ... Temperature control unit 210 ... Peltier element 220 ... Thermometer 230 ... Temperature controller 300 ... Central controller 310 ... Reel drive device 320 ... Exhaust pump control 330 ... Valve switch 340 ... Temperature controller 400 ... Irradiation unit 410 ... Light source 420 ... Electron beam source 430 ... Radiation source 440 ... Filter 450 ... Diffraction grating optical system 510A ... Sending side cassette 510B ... Receiving side cassette 520A ... Opening / closing door 520B ... Opening / closing door 530 ... Flow rate regulator 540 ... Heat exchanger 550A ... Valve 550B ... Valve 560 ... pressure gauge 560B ... pressure gauge 570A ... valve 570B ... valve 580A ... connection joint 580B ... connection joint 590 ... O-ring 710 ... decompressor 720 ... gate valves 900 ... gas containing contaminants

Claims (6)

分析用の気体中(以下分析用気体と記す)から分子状化学汚染物質を経時的に吸引する吸引部と、該吸引部により吸引された分子状汚染物質を経時的に捕集する捕集部を備えた汚染物質分析用捕集装置であって、捕集部は、基材と、その表面に表面物質層を形成し、前記表面物質層は、所望の材料表面と同一物質からなることを特徴とする汚染物分析用捕集装置。   A suction part for sucking molecular chemical contaminants from analysis gas (hereinafter referred to as analysis gas) with time, and a collection part for collecting molecular contaminants sucked by the suction part with time The collection device for pollutant analysis, comprising: a collecting portion forming a base material and a surface material layer on the surface thereof, wherein the surface material layer is made of the same material as a desired material surface. Characteristic collection device for contaminant analysis. 前記基材は、金属よりなることを特徴とする請求項1記載の汚染物分析用捕集装置。   The said base material consists of metals, The collection apparatus for contaminant analysis of Claim 1 characterized by the above-mentioned. 前記捕集部が、物理、又は化学的反応により汚染物質を選択的に捕集する手段と、分析用気体以外の気体による汚染を受けないようにする防護手段とを備えることを特徴とする請求項1、又は2記載の汚染物分析用捕集装置。   The said collection part is equipped with the means to selectively collect contaminants by physical or chemical reaction, and the protection means to prevent contamination by gas other than the gas for analysis, It is characterized by the above-mentioned. Item 3. The collection device for contaminant analysis according to Item 1 or 2. 前記汚染物質を選択的に捕集する手段は、前記表面物質層の表面を特定温度に加熱、又は冷却することにより、前記表面物質層の表面に汚染物質を選択的に捕集することを特徴とする請求項3記載の汚染物分析用捕集装置。   The means for selectively collecting the contaminants selectively collects contaminants on the surface of the surface material layer by heating or cooling the surface of the surface material layer to a specific temperature. The collection device for contaminant analysis according to claim 3. 前記汚染物質を選択的に捕集する手段は、前記表面物質層の表面近傍の分析用気体へ特定波長の光線の照射することにより、前記表面物質層の表面に汚染物質を選択的に捕集することを特徴とする請求項3記載の汚染物分析用捕集装置。   The means for selectively collecting the contaminants selectively collects the contaminants on the surface of the surface material layer by irradiating the analysis gas near the surface of the surface material layer with a light beam having a specific wavelength. 4. The contaminant analysis collection apparatus according to claim 3, wherein 前記汚染物質を選択的に捕集する手段は、前記表面物質層の表面近傍の分析用気体へ特定波長の放射線の照射することにより、前記表面物質層の表面に汚染物質を選択的に捕集することを特徴とする請求項3記載の汚染物分析用捕集装置。   The means for selectively collecting the pollutant selectively collects the pollutant on the surface of the surface material layer by irradiating the analysis gas near the surface of the surface material layer with radiation of a specific wavelength. 4. The contaminant analysis collection apparatus according to claim 3, wherein
JP2005019365A 2005-01-27 2005-01-27 Contaminant collection device Expired - Fee Related JP4706269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019365A JP4706269B2 (en) 2005-01-27 2005-01-27 Contaminant collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019365A JP4706269B2 (en) 2005-01-27 2005-01-27 Contaminant collection device

Publications (2)

Publication Number Publication Date
JP2006208136A true JP2006208136A (en) 2006-08-10
JP4706269B2 JP4706269B2 (en) 2011-06-22

Family

ID=36965167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019365A Expired - Fee Related JP4706269B2 (en) 2005-01-27 2005-01-27 Contaminant collection device

Country Status (1)

Country Link
JP (1) JP4706269B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204561A (en) * 2008-02-29 2009-09-10 Toppan Printing Co Ltd Sensor for detecting chemical substance, and chemical substance detector using the same
JP2009281858A (en) * 2008-05-22 2009-12-03 Shimizu Corp Method of manufacturing quartz vibrator and pollution concentration measuring instrument
JP2012063337A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Separating and condensing device for mixture
KR20210069932A (en) * 2019-12-04 2021-06-14 국방과학연구소 Gas collecting unit, Gas analysis apparatus including the unit, and Method thereof
WO2022250197A1 (en) * 2021-05-28 2022-12-01 주식회사 선반도체 Residual gas and surface ion analysis system accompanied by moisture content measurement using condensation temperature

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503569A (en) * 1988-05-28 1991-08-08 ブルーケル‐フランツェン・アナリィティク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A method and apparatus for continuously and automatically collecting analytical samples without interruption, and for storing and processing samples and data for occasional evaluation.
JPH06504851A (en) * 1991-11-27 1994-06-02 ジーイーシー − マーコニ リミテッド Analyte immunological detection device
JPH0921785A (en) * 1995-07-07 1997-01-21 Toshiba Corp Impurity detection method
JPH10123028A (en) * 1996-10-22 1998-05-15 Fujitsu Ltd Method for detecting contamination in vacuum apparatus
JPH1183700A (en) * 1997-07-15 1999-03-26 Nec Corp Gas sampling device, gas analyzer using the gas sampling device and gas analysis method
JPH11218526A (en) * 1998-02-04 1999-08-10 Nec Corp Analyzing method
JP2000304734A (en) * 1999-04-21 2000-11-02 Shimizu Corp Detecting method for contaminant in air
JP2001264295A (en) * 2000-03-21 2001-09-26 Hitachi Plant Eng & Constr Co Ltd Solid surface adsorption evaluating method for contaminant
JP2001338967A (en) * 2000-05-29 2001-12-07 Hitachi Kokusai Electric Inc Board processing device
JP2002257696A (en) * 2001-02-28 2002-09-11 Shimizu Corp Method of detecting pollutant in air
JP2002286600A (en) * 2001-03-27 2002-10-03 Toshiba Corp Collector for evaluating cleanness of atmospheric air
JP2002333394A (en) * 2001-05-09 2002-11-22 Fujitsu Ltd Measuring method of concentration of molecular contamination and measuring apparatus therefor
JP2004047929A (en) * 2002-05-13 2004-02-12 Fujitsu Ltd Molecular contamination monitoring system, storing/carrying container and molecular contamination sensor
JP2004069686A (en) * 2002-06-24 2004-03-04 Particle Measuring Syst Inc System and method for monitoring molecular contamination

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503569A (en) * 1988-05-28 1991-08-08 ブルーケル‐フランツェン・アナリィティク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A method and apparatus for continuously and automatically collecting analytical samples without interruption, and for storing and processing samples and data for occasional evaluation.
JPH06504851A (en) * 1991-11-27 1994-06-02 ジーイーシー − マーコニ リミテッド Analyte immunological detection device
JPH0921785A (en) * 1995-07-07 1997-01-21 Toshiba Corp Impurity detection method
JPH10123028A (en) * 1996-10-22 1998-05-15 Fujitsu Ltd Method for detecting contamination in vacuum apparatus
JPH1183700A (en) * 1997-07-15 1999-03-26 Nec Corp Gas sampling device, gas analyzer using the gas sampling device and gas analysis method
JPH11218526A (en) * 1998-02-04 1999-08-10 Nec Corp Analyzing method
JP2000304734A (en) * 1999-04-21 2000-11-02 Shimizu Corp Detecting method for contaminant in air
JP2001264295A (en) * 2000-03-21 2001-09-26 Hitachi Plant Eng & Constr Co Ltd Solid surface adsorption evaluating method for contaminant
JP2001338967A (en) * 2000-05-29 2001-12-07 Hitachi Kokusai Electric Inc Board processing device
JP2002257696A (en) * 2001-02-28 2002-09-11 Shimizu Corp Method of detecting pollutant in air
JP2002286600A (en) * 2001-03-27 2002-10-03 Toshiba Corp Collector for evaluating cleanness of atmospheric air
JP2002333394A (en) * 2001-05-09 2002-11-22 Fujitsu Ltd Measuring method of concentration of molecular contamination and measuring apparatus therefor
JP2004047929A (en) * 2002-05-13 2004-02-12 Fujitsu Ltd Molecular contamination monitoring system, storing/carrying container and molecular contamination sensor
JP2004069686A (en) * 2002-06-24 2004-03-04 Particle Measuring Syst Inc System and method for monitoring molecular contamination

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204561A (en) * 2008-02-29 2009-09-10 Toppan Printing Co Ltd Sensor for detecting chemical substance, and chemical substance detector using the same
JP2009281858A (en) * 2008-05-22 2009-12-03 Shimizu Corp Method of manufacturing quartz vibrator and pollution concentration measuring instrument
JP2012063337A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Separating and condensing device for mixture
KR20210069932A (en) * 2019-12-04 2021-06-14 국방과학연구소 Gas collecting unit, Gas analysis apparatus including the unit, and Method thereof
KR102264407B1 (en) * 2019-12-04 2021-06-15 국방과학연구소 Gas collecting unit, Gas analysis apparatus including the unit, and Method thereof
WO2022250197A1 (en) * 2021-05-28 2022-12-01 주식회사 선반도체 Residual gas and surface ion analysis system accompanied by moisture content measurement using condensation temperature
KR20220160981A (en) * 2021-05-28 2022-12-06 주식회사 선반도체 Residual gas and surface ion analysis system with moisture content measurement using condensation temperature
KR102532670B1 (en) * 2021-05-28 2023-05-16 주식회사 선반도체 Residual gas and surface ion analysis system with moisture content measurement using condensation temperature

Also Published As

Publication number Publication date
JP4706269B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US6159421A (en) Method of cleaning gases
JP2009010392A (en) System and method for determining and controlling contamination
CN106415235A (en) Aerosol mass sensor and sensing method
JP6345421B2 (en) Gas barrier property evaluation apparatus and evaluation method
JP4706269B2 (en) Contaminant collection device
EP1670566A1 (en) Reactive gas filter
WO2004086466A2 (en) System and method for monitoring contamination
Mehdizadeh et al. Inertial impaction on MEMS balance chips for real-time air quality monitoring
WO2008140210A1 (en) Soft x-ray photoionization charger
JP5158642B2 (en) Contamination concentration measuring device
JP2003315221A (en) Organic compound analyzer
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JP2007147437A (en) Device for measuring suspended particulate matter
JPH09313869A (en) Gas cleaning device
JP3460465B2 (en) Gas cleaning method and equipment
TW200416930A (en) System and method for monitoring contamination
JP2000304734A (en) Detecting method for contaminant in air
JP3446985B2 (en) Gas cleaning method and apparatus
JP2004200402A (en) Air cleaner, maintenance procedure thereof, and manufacturing device of semiconductor
JP2007064647A (en) Gas monitoring system
JP5521307B2 (en) Particle collection device and particle collection method
JPH04349285A (en) Magnetic disk evaluating device
JP5149415B2 (en) Recovery device, recovery method and analysis method
US6450682B1 (en) Method and apparatus for predicting the end of life of a gas scrubber
JP5146748B2 (en) Quartz crystal manufacturing method, contamination concentration measuring apparatus, and clean room

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees