JP2006205067A - Porous membrane - Google Patents
Porous membrane Download PDFInfo
- Publication number
- JP2006205067A JP2006205067A JP2005020872A JP2005020872A JP2006205067A JP 2006205067 A JP2006205067 A JP 2006205067A JP 2005020872 A JP2005020872 A JP 2005020872A JP 2005020872 A JP2005020872 A JP 2005020872A JP 2006205067 A JP2006205067 A JP 2006205067A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- porous membrane
- porous
- water
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
Description
本発明は、飲料水製造、浄水処理、排水処理などの水処理、食品工業分野に好適な多孔質膜に関する。特に排水処理において活性汚泥槽内に浸漬し固液分離に好適に用いられる多孔質膜に関する。 The present invention relates to a porous membrane suitable for water treatment such as drinking water production, water purification treatment, wastewater treatment, and the food industry. In particular, the present invention relates to a porous membrane that is immersed in an activated sludge tank and suitably used for solid-liquid separation in wastewater treatment.
近年、多孔質膜は、飲料水製造、浄水処理、排水処理などの水処理分野、食品工業分野等様々な方面で利用されている。飲料水製造、浄水処理、排水処理などの水処理分野においては、多孔質膜が従来の砂濾過、凝集沈殿過程の代替として水中の不純物を除去するために用いられるようになってきている。排水処理分野では活性汚泥と呼ばれる微生物集合体により、フロック化した汚泥と処理水とを分離する活性汚泥処理プロセスが広く用いられている。また、食品工業分野においては、発酵に用いた酵母の分離除去や処理原液の濃縮を目的として、多孔質膜が用いられている。 In recent years, porous membranes have been used in various fields such as water treatment fields such as drinking water production, water purification, and wastewater treatment, and food industry. In the field of water treatment such as drinking water production, water purification treatment, and wastewater treatment, porous membranes have been used to remove impurities in water as an alternative to conventional sand filtration and coagulation sedimentation processes. In the wastewater treatment field, an activated sludge treatment process for separating flocified sludge and treated water by a microorganism aggregate called activated sludge is widely used. In the food industry field, porous membranes are used for the purpose of separating and removing yeasts used for fermentation and concentrating treatment stock solutions.
排水処理分野では活性汚泥と呼ばれる微生物集合体により、フロック化した汚泥と処理水とを分離する活性汚泥処理プロセスが広く用いられている。この場合、沈殿法により固液分離を行なう場合、活性汚泥を高濃度化して分解処理を進めて処理効率を上げようとすると、後段の沈殿池において汚泥の沈降性不良を生じる場合があり、水質の悪化を防止するための管理作業が繁雑になる。そこで、この汚泥と処理水との固液分離に膜分離技術を利用することで、高濃度活性汚泥処理を行なった場合にも水質の悪化を招かず省スペースになる。 In the wastewater treatment field, an activated sludge treatment process for separating flocified sludge and treated water by a microorganism aggregate called activated sludge is widely used. In this case, when solid-liquid separation is performed by the precipitation method, increasing the activated sludge concentration and proceeding the decomposition process to increase the treatment efficiency may result in poor sedimentation of the sludge in the subsequent sedimentation basin. The management work to prevent the deterioration is complicated. Therefore, by using membrane separation technology for the solid-liquid separation between the sludge and the treated water, even when the high concentration activated sludge treatment is performed, the water quality is not deteriorated and the space is saved.
上述のように多様に用いられる多孔質膜は、浄水処理や排水処理などの水処理分野においては処理水量が大きいため、透水性能の向上が求められている。透水性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費を節約でき、膜交換費や設置面積の点からも有利である。また、分離対象物質の堆積、付着、閉塞等による透水性の低下(ファウリング)がおこると運転の安定性に支障をきたし、曝気洗浄の曝気量を多くしたり薬品洗浄頻度を多くする必要があり、高運転コストにつながるため低ファウリング膜が求められている。また、浄水処理では透過水の殺菌や膜のバイオファウリング防止の目的で、次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、酸、アルカリ、塩素、界面活性剤などで膜そのものを洗浄するため、多孔質膜には化学的耐久性(耐薬品性)が求められる。さらに、水道水製造では、家畜の糞尿などに由来するクリプトスポリジウムなどの塩素に対して耐性のある病原性微生物が浄水場で処理しきれず、処理水に混入する事故が1990年代から顕在化していることから、このような事故を防ぐため、多孔質膜には、原水が処理水に混入しないよう十分な分離特性と高い物理的耐久性が要求されている。 As described above, porous membranes that are used in various ways have a large amount of treated water in the field of water treatment such as water purification treatment and wastewater treatment, and are therefore required to improve water permeability. If the water permeation performance is excellent, the membrane area can be reduced, and the equipment becomes compact, so that the equipment cost can be saved, which is advantageous from the viewpoint of membrane replacement cost and installation area. In addition, if water permeability decreases (fouling) due to deposition, adhesion, blockage, etc. of the separation target substance, the stability of operation is hindered, and it is necessary to increase the amount of aeration and the frequency of chemical cleaning. There is a need for a low fouling membrane because it leads to high operating costs. In addition, in the water purification treatment, a disinfectant such as sodium hypochlorite is added to the membrane module part for the purpose of sterilizing the permeated water and preventing biofouling of the membrane, or the membrane with acid, alkali, chlorine, surfactant, etc. In order to clean itself, the porous membrane is required to have chemical durability (chemical resistance). Furthermore, in tap water production, pathogenic microorganisms resistant to chlorine such as Cryptosporidium derived from livestock manure cannot be treated at the water purification plant, and accidents mixed into the treated water have become apparent since the 1990s. Therefore, in order to prevent such an accident, the porous membrane is required to have sufficient separation characteristics and high physical durability so that raw water is not mixed into the treated water.
このように、多孔質膜には、優れた分離特性、化学的耐久性(耐薬品性)、物理的耐久性、透過性能および低ファウリング性が求められる。 Thus, the porous membrane is required to have excellent separation characteristics, chemical durability (chemical resistance), physical durability, permeation performance, and low fouling properties.
そこで、これらの要求性能のなかで特に化学的耐久性、物理的耐久性を満足するために、ポリフッ化ビニリデン系樹脂を用いた多孔質膜が使用されるようになってきている。しかしながら、ポリフッ化ビニリデン系樹脂はこのままでは低ファウリング性が充分であるとはいえない。膜表面へのファウリング抑制をはかる方法としては、疎水性の大きな微生物ほど疎水性相互作用により吸着能が大きく、疎水性物質は疎水性固体表面に吸着しやすいという報告があり(非特許文献1)、疎水性のポリフッ化ビニリデン膜を親水化することにより吸着を抑制し低ファウリング性を付与する事ができる。ポリフッ化ビニリデン膜の親水化方法としては特許文献1のように膜表面および細孔内表面に親水性ポリマーをコーティングする方法があるが、親水性ポリマーが剥離すると低ファウリング性を維持できないと考えられる。そこで親水性ポリマーをコーティングせずにブレンドすれば膜表面が削れた場合でも親水性ポリマーが膜表面に存在し低ファウリング性を維持できると考えられる。 Therefore, in order to satisfy chemical durability and physical durability among these required performances, porous membranes using polyvinylidene fluoride resins have been used. However, it cannot be said that the polyvinylidene fluoride resin has sufficient low fouling properties as it is. As a method for suppressing fouling on the membrane surface, there is a report that a microorganism having a larger hydrophobicity has a higher adsorption ability due to hydrophobic interaction, and a hydrophobic substance is more likely to be adsorbed on a hydrophobic solid surface (Non-patent Document 1). ), Hydrophilicity of the hydrophobic polyvinylidene fluoride film can suppress adsorption and provide low fouling properties. As a method for hydrophilizing a polyvinylidene fluoride membrane, there is a method of coating a hydrophilic polymer on the membrane surface and the pore inner surface as in Patent Document 1, but it is considered that low fouling properties cannot be maintained if the hydrophilic polymer is peeled off. It is done. Therefore, it is considered that if blending without coating the hydrophilic polymer, the hydrophilic polymer is present on the membrane surface even when the membrane surface is scraped and the low fouling property can be maintained.
しかし、一般的に特許文献2のように親水性ポリマーをポリフッ化ビニリデン系樹脂とブレンドする場合、そのままブレンドし製膜する場合はポリフッ化ビニリデン系樹脂との相溶性が悪いため製膜性が悪くなり、製膜できた場合も水中で使用する間に親水性ポリマーが膜外へ溶出し低ファウリング性を維持できない問題があった。
本発明は、従来の技術の上述した問題点を解決し、低ファウリング性に優れたポリフッ化ビニリデン系樹脂多孔質膜を提供することを目的とするものである。 The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a polyvinylidene fluoride resin porous membrane excellent in low fouling properties.
上記課題を解決するため、本発明は、次の特徴を有するものである。すなわち
(1)膜構造中に
In order to solve the above problems, the present invention has the following features. (1) In the film structure
3種の分子ユニットを含むことを特徴とする多孔質膜。 A porous membrane comprising three kinds of molecular units.
(2)ポリフッ化ビニリデン系樹脂と、ポリアクリル酸エステル系樹脂および/またはポリメタクリル酸エステル系樹脂と、ポリビニルピロリドン系樹脂を含んでいることを特徴とする(1)に記載の多孔質膜。 (2) The porous film according to (1), comprising a polyvinylidene fluoride resin, a polyacrylate resin and / or a polymethacrylate resin, and a polyvinylpyrrolidone resin.
(3)ポリフッ化ビニリデン系樹脂と、アクリル酸エステル系単量体および/またはメタクリル酸エステル系単量体とビニルピロリドンを主成分とする共重合体を含んでいることを特徴とする(1)に記載の多孔質膜。 (3) It contains a polyvinylidene fluoride resin, a copolymer containing acrylic acid ester monomer and / or methacrylate ester monomer and vinylpyrrolidone as main components (1) 2. The porous membrane according to 1.
(4)前記多孔質膜が平膜である(1)〜(3)のいずれかに記載の多孔質膜。 (4) The porous membrane according to any one of (1) to (3), wherein the porous membrane is a flat membrane.
(5)前記多孔質膜が中空糸膜である(1)〜(3)のいずれかに記載の多孔質膜。 (5) The porous membrane according to any one of (1) to (3), wherein the porous membrane is a hollow fiber membrane.
(6)有機繊維からなる多孔質基材を有してなる(1)〜(5)のいずれかに記載の多孔質膜。 (6) The porous membrane according to any one of (1) to (5), comprising a porous substrate made of organic fibers.
(7)純水透過係数が1×10−9m3/m2・Pa・s以上である(1)〜(6)のいずれかに記載の多孔質膜。 (7) The porous membrane according to any one of (1) to (6), wherein a pure water permeability coefficient is 1 × 10 −9 m 3 / m 2 · Pa · s or more.
(8)0.10μm以下の微粒子阻止率が90%以上である(1)〜(7)のいずれかに記載の多孔質膜。 (8) The porous film according to any one of (1) to (7), wherein a fine particle blocking ratio of 0.10 μm or less is 90% or more.
(9)(1)〜(8)のいずれかに記載の多孔質膜を備えた固液分離装置。 (9) A solid-liquid separator comprising the porous membrane according to any one of (1) to (8).
(10)前記多孔質膜が活性汚泥槽に浸漬されている、(9)に記載の固液分離装置。 (10) The solid-liquid separator according to (9), wherein the porous membrane is immersed in an activated sludge tank.
(11)前記多孔質膜に対し処理原液を実質的に平行に流す手段を備えている(9)または(10)に記載の固液分離装置。 (11) The solid-liquid separation device according to (9) or (10), comprising means for flowing a processing stock solution substantially parallel to the porous membrane.
(12)(1)〜(8)のいずれかの多孔質膜を用いて処理原液中の懸濁物を除去する、固液分離方法。 (12) A solid-liquid separation method in which a suspension in a processing stock solution is removed using the porous membrane according to any one of (1) to (8).
(13)(9)〜(12)のいずれかに記載の固液分離装置を用いて液体中の懸濁物を除去する、固液分離方法。 (13) A solid-liquid separation method in which a suspension in a liquid is removed using the solid-liquid separation device according to any one of (9) to (12).
親水性成分の溶出がなく、化学的耐久性、物理的耐久性を有する、低ファウリング性ポリフッ化ビニリデン系樹脂多孔質膜を提供する。 Provided is a low fouling polyvinylidene fluoride resin porous membrane having no chemical elution of hydrophilic components and having chemical durability and physical durability.
以下に本発明の多孔質膜の詳細を説明する。 Details of the porous membrane of the present invention will be described below.
本発明において多孔質膜は膜構造中にAフッ化ビニリデン、Bアクリル酸エステルまたはメタクリル酸エステル、CビニルピロリドンのA,B,Cの分子ユニットを含んでいる事を特徴とする。 In the present invention, the porous film is characterized in that the film structure contains A, B, and C molecular units of A vinylidene fluoride, B acrylic ester or methacrylic ester, and C vinyl pyrrolidone.
A,B,Cは膜構造中に含有しておればよく、好ましくは膜中に重合体すなわち樹脂の一部として存在している。A,B,Cはそれぞれ別の樹脂に含有していてもよく、A,B,Cのうち2つ以上が共重合体として含有していてもよい。 A, B, and C may be contained in the film structure, and are preferably present as a part of the polymer, that is, the resin in the film. A, B, and C may be contained in different resins, and two or more of A, B, and C may be contained as a copolymer.
中でも好ましくは、多孔質膜はポリフッ化ビニリデン系樹脂と、ポリアクリル酸エステル系樹脂および或いはポリメタクリル酸エステル系樹脂と、ポリビニルピロリドン系樹脂を含んでいる多孔質膜である。 Among them, the porous film is preferably a porous film containing a polyvinylidene fluoride resin, a polyacrylic acid ester resin and / or a polymethacrylic acid ester resin, and a polyvinylpyrrolidone resin.
すなわち、ポリフッ化ビニリデン系樹脂を膜素材として用いる事で膜の物理的耐久性、化学的耐久性に優れた膜を得る事ができ、親水性のメタクリル酸エステル系樹脂、さらに親水性のポリビニルピロリドン系樹脂を含んでいる事により膜の親水化を図り、低ファウリング性を付与することができる。一般にポリビニルピロリドン系樹脂のような親水性ポリマーはポリフッ化ビニリデン系樹脂のような疎水性ポリマーとは相溶性が悪く、混合して製膜できたとしても水中で使用したときにポリビニルピロリドン系樹脂だけが水中に溶出し、親水性を維持できない。一方、例えばポリメタクリル酸エステル系樹脂は親水性で、ポリフッ化ビニリデン系樹脂に対し分子レベルで相溶することが解っており(S.P.Nunes, K.V.Peinemann, Journal of Membrane Science 1992, 73 P25)、ポリビニルピロリドン系樹脂に対しても親和性がある。このことからポリフッ化ビニリデン系樹脂がポリアクリル酸エステル系樹脂やポリメタクリル酸エステル系樹脂と共に存在する事で相溶化剤として働き、ポリビニルピロリドン系樹脂が膜中で相溶し、分散することができる。このとき、ポリビニルピロリドン系樹脂はミクロドメインを形成し微分散していると考えられる。 That is, by using a polyvinylidene fluoride resin as a film material, a film excellent in physical durability and chemical durability of the film can be obtained. Hydrophilic methacrylic acid ester resin and hydrophilic polyvinyl pyrrolidone By including a resin, the membrane can be made hydrophilic and low fouling properties can be imparted. In general, hydrophilic polymers such as polyvinylpyrrolidone resins are not compatible with hydrophobic polymers such as polyvinylidene fluoride resins, and even when mixed to form a film, only polyvinylpyrrolidone resins can be used when used in water. Elutes in water and cannot maintain hydrophilicity. On the other hand, for example, polymethacrylic acid ester resins are hydrophilic and are known to be compatible with polyvinylidene fluoride resins at the molecular level (SP Nunes, KV Peinemann, Journal of Membrane Science 1992). 73 P25), and also has an affinity for polyvinylpyrrolidone resins. Therefore, the presence of the polyvinylidene fluoride resin together with the polyacrylate ester resin or the polymethacrylate ester resin serves as a compatibilizing agent, and the polyvinylpyrrolidone resin can be dissolved and dispersed in the film. . At this time, it is considered that the polyvinylpyrrolidone-based resin forms microdomains and is finely dispersed.
ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数種類のフッ化ビニリデン共重合体を含有していても構わない。フッ化ビニリデン共重合体としては、フッ化ビニル、四フッ化エチレン、六フッ化プロピレンおよび三フッ化塩化エチレンからなる群から選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。このなかで製膜性、化学的耐久性、コストの点からフッ化ビニリデンホモポリマーがより好ましく用いられる。 The polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and at least one selected from the group consisting of vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and ethylene trifluoride chloride. . Among these, vinylidene fluoride homopolymer is more preferably used from the viewpoint of film forming property, chemical durability, and cost.
ポリアクリル酸エステル系樹脂とは特に限定しないが例えばメチルアクリレート、エチルアクリレート、n−ブチルアクリレート、iso−ブチルアクリレート、tert−ブチルアクリレート、2−エチルヘキシルアクリレート、グリシジルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレートなどアクリル酸エステル系モノマーの単独重合体、これらの共重合体、さらには他の共重合可能なビニル系モノマーとの共重合体を示す。 Although it does not specifically limit with polyacrylic ester resin, for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, etc. A homopolymer of an acrylate ester monomer, a copolymer thereof, and a copolymer with another copolymerizable vinyl monomer are shown.
ポリメタクリル酸エステル系樹脂とは特に限定しないが、例えばメチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、iso−ブチルメタクリレート、tert−ブチルメタクリレート、2−エチルヘキシルメタクリレート、グリシジルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレートなどメタクリル酸エステル系モノマーの単独重合体、これらの共重合体、さらには他の共重合可能なビニル系モノマーとの共重合体を示す。これらポリアクリル酸エステル系樹脂、ポリメタクリル酸エステル系樹脂のなかでポリフッ化ビニリデン系樹脂との相溶性、製膜性、コストの点からポリメチルメタクリレートがより好ましく用いられる。 Although it does not specifically limit with polymethacrylate resin, For example, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate A homopolymer of a methacrylic acid ester monomer, a copolymer thereof, and a copolymer with another copolymerizable vinyl monomer. Among these polyacrylic acid ester resins and polymethacrylic acid ester resins, polymethyl methacrylate is more preferably used from the viewpoint of compatibility with polyvinylidene fluoride resin, film forming property, and cost.
ポリビニルピロリドン系樹脂とはビニルピロリドン単独重合体、他の共重合可能なビニル系モノマーとの共重合体を示す。 The polyvinylpyrrolidone resin refers to a vinylpyrrolidone homopolymer and a copolymer with other copolymerizable vinyl monomers.
またこれらの樹脂の重量平均分子量は、要求される膜の強度と透水性能によって適宜選択すれば良いが、多孔質膜への加工性を考慮すると、5千〜200万、さらには1万〜100万の範囲内であることが好ましい。重量平均分子量がこの範囲よりも大きくなると、樹脂溶液の粘度が高くなりすぎ、またこの範囲よりも小さくなると、樹脂溶液の粘度が低くなりすぎ、いずれも多孔質膜を成形することが困難になり、また、使用中に溶出するおそれがある。 The weight average molecular weight of these resins may be appropriately selected depending on the required strength and water permeability of the membrane, but considering the processability to a porous membrane, it is 5,000 to 2,000,000, and further 10,000 to 100 It is preferably within the range of 10,000. When the weight average molecular weight is larger than this range, the viscosity of the resin solution becomes too high. When the weight average molecular weight is smaller than this range, the viscosity of the resin solution becomes too low, and it becomes difficult to form a porous film. In addition, there is a risk of elution during use.
尚、本発明の多孔質膜は本目的を逸脱しない範囲において上記以外の樹脂、界面活性剤、無機微粒子等を含有あるいは付着していてもよい。特に限定しないが例えばポリ酢酸ビニル等の樹脂、ポリビニルアルコール、ポリエチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等の界面活性剤、シリカ微粒子、活性炭微粒子等の無機微粒子である。 The porous film of the present invention may contain or adhere other resins, surfactants, inorganic fine particles and the like other than those described above without departing from the object of the present invention. Although not particularly limited, for example, resins such as polyvinyl acetate, surfactants such as polyvinyl alcohol, polyethylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester, and inorganic fine particles such as silica fine particles and activated carbon fine particles.
また、本発明はポリフッ化ビニリデン系樹脂と、アクリル酸エステル系単量体および/またはメタクリル酸エステル系単量体のいずれかとビニルピロリドンを主成分とする共重合体を含んでいることを特徴とする多孔質膜も特に好ましい態様である。 Further, the present invention is characterized by comprising a polyvinylidene fluoride resin, and a copolymer mainly composed of vinyl pyrrolidone and either an acrylate ester monomer and / or a methacrylate ester monomer. A porous membrane is also a particularly preferred embodiment.
アクリル酸エステル系単量体および/またはメタクリル酸エステル系単量体からなるポリフッ化ビニリデン系樹脂に対し相溶性のある単量体とビニルピロリドンの共重合体を用いることでポリフッ化ビニリデン系樹脂中にビニルピロリドンを固定化し、分散させる事ができる。共重合により固定化することでポリビニルピロリドンを製膜時により膜中に導入しやすくなり、分散性を向上させることで製膜安定性、低ファウリング性を向上する事ができる。尚、この共重合体はランダム共重合体、ブロック共重合体、交互共重合体、グラフト共重合体などどのような形でもよく、本目的を逸脱しない範囲において共重合成分として上記以外の単量体を含有していてもよい。特に限定しないが例えばエチレン、プロピレン、イソブチレン、塩化ビニル、アクリロニトリル、酢酸ビニル、ビニルアルコール等ビニル重合可能な単量体が好適に含有される。 In a polyvinylidene fluoride resin by using a copolymer of vinyl pyrrolidone and a monomer compatible with a polyvinylidene fluoride resin comprising an acrylic ester monomer and / or a methacrylate ester monomer Vinyl pyrrolidone can be fixed to and dispersed in. By fixing by copolymerization, polyvinylpyrrolidone can be easily introduced into the film during film formation, and by improving dispersibility, film formation stability and low fouling can be improved. The copolymer may be in any form such as a random copolymer, a block copolymer, an alternating copolymer, and a graft copolymer. The body may be contained. Although not particularly limited, for example, monomers capable of vinyl polymerization such as ethylene, propylene, isobutylene, vinyl chloride, acrylonitrile, vinyl acetate and vinyl alcohol are preferably contained.
ポリフッ化ビニリデン系樹脂と、アクリル酸エステル系単量体および/またはメタクリル酸エステル系単量体とビニルピロリドンを主成分とする共重合体の重量平均分子量は多孔質膜への加工性、耐久性を考慮すると、5千〜200万、さらには1万〜100万の範囲内であることが好ましい。 The weight-average molecular weight of polyvinylidene fluoride resin, acrylate monomer and / or methacrylic acid ester monomer and vinylpyrrolidone copolymer as main components is processability and durability to porous film Is preferably in the range of 5,000 to 2,000,000, more preferably 10,000 to 1,000,000.
さらに、本発明の多孔質膜は、純水透過係数1×10−9m3/m2・Pa・s以上であることが好ましい。この純水透過係数が1×10−9m3/m2・Pa・sに満たない時は膜の透過性が悪い事から高い圧力で運転する必要があり、運転コストが大きくなる場合がある。
さらに、本発明の多孔質膜は、平均粒径約0.10μm以下の微粒子の阻止率が90%以上であることが好ましい。阻止率が90%に満たないときは、菌体や汚泥などによる目詰まりが起こったり、濾過差圧の上昇が起こり、寿命が短くなる場合がある。
Furthermore, the porous membrane of the present invention preferably has a pure water permeability coefficient of 1 × 10 −9 m 3 / m 2 · Pa · s or more. When this pure water permeability coefficient is less than 1 × 10 −9 m 3 / m 2 · Pa · s, it is necessary to operate at a high pressure because of the poor permeability of the membrane, which may increase the operating cost. .
Furthermore, the porous membrane of the present invention preferably has a rejection rate of fine particles having an average particle size of about 0.10 μm or less of 90% or more. When the rejection rate is less than 90%, clogging due to bacterial cells or sludge may occur, or the filtration differential pressure may increase, resulting in a shortened life.
ここで、純水透過係数Fluxは、飲料水を透析膜(東レ(株)製 フィルトライザー B2−1.5H)でろ過したものを原水とし、温度25℃、ヘッド圧1mの条件下で直径4cmの多孔質膜でろ過し、 Here, the pure water permeability coefficient Flux is a raw water obtained by filtering drinking water through a dialysis membrane (manufactured by Toray Industries, Ltd., Filtizer B2-1.5H), and has a diameter of 25 ° C. under a head pressure of 1 m. Filtered through a 4 cm porous membrane,
によって求めた。評価に際し、多孔質膜はエタノールに15分浸漬後水中に2時間以上浸漬置換し評価に用いた。なお、純水透過係数は、ポンプ等で加圧や吸引して得た値を換算して求めても良い。水温についても、評価液体の粘性で換算しても良い。 Sought by. In the evaluation, the porous membrane was immersed in ethanol for 15 minutes and then immersed in water for 2 hours or more and used for evaluation. The pure water permeability coefficient may be obtained by converting a value obtained by applying pressure or suction with a pump or the like. The water temperature may also be converted by the viscosity of the evaluation liquid.
微粒子阻止率は、攪拌式セル(アドバンテック(株)製VHP−43K)に膜(直径4.3cm)をセットし、評価圧力9.8kPa、攪拌速度600rpmにて、逆浸透膜(東レ(株)製SUL−G10)による濾過水に平均粒径0.10μm以下のポリスチレンラテックス微粒子(セラディン(株)製 公称粒径0.083μm)を25ppmの濃度になるように分散させてなる評価原液をろ過し、評価原液と透過液の波長220nmの紫外線の吸光度から、 The fine particle rejection rate was set on a stirring cell (VHP-43K manufactured by Advantech Co., Ltd.) with a membrane (diameter 4.3 cm), an evaluation pressure of 9.8 kPa, a stirring speed of 600 rpm, and a reverse osmosis membrane (Toray Industries, Inc.) An evaluation stock solution in which polystyrene latex fine particles having an average particle size of 0.10 μm or less (Celadin Co., Ltd. nominal particle size: 0.083 μm) are dispersed in filtered water by SUL-G10 manufactured to a concentration of 25 ppm is filtered. From the absorbance of ultraviolet light having a wavelength of 220 nm of the evaluation stock solution and the permeate,
によって求めた。吸光度測定は分光光度計(U−3200)(日立製作所製)を用いた。 Sought by. A spectrophotometer (U-3200) (manufactured by Hitachi, Ltd.) was used for the absorbance measurement.
本発明の多孔質膜の形状は、中空糸膜でも平膜でも良く、その用途によって選択される。 The shape of the porous membrane of the present invention may be a hollow fiber membrane or a flat membrane, and is selected according to its use.
平膜の場合は、厚みが10μm〜1mm、さらには30μm〜500μmの範囲内であることが好ましい。膜単独でも良いが、多孔質基材との複合膜でもよい。複合膜の場合、多孔質基材表面にポリマー層が被覆されているだけでも良いが、多孔質基材とポリマー層が重なりあう層があっても良い。また、多孔質基材とポリマー層が完全に重なっていてもよい。多孔質基材を用いた場合はこの面状支持材を含む厚みが上述の範囲内にあることが好ましい。多孔質基材としてはポリエステル繊維、ナイロン繊維、ポリウレタン繊維、アクリル繊維、レーヨン繊維、綿、絹など有機繊維からなる織物、編物、不織布等の多孔質基材や、ガラス繊維、金属繊維など無機繊維からなる織物、編物等の多孔質基材を用いる事ができる。この中で伸縮性、コストの点から特に有機繊維からなる多孔質基材が好ましい。また、表面の孔径は、用途によって自由に選択できるが、0.005μm(5nm)〜1.0μm、さらには0.008μm(8nm)〜0.5μmの範囲にあることが好ましい。平膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔のあいた均質構造であっても良い。 In the case of a flat membrane, the thickness is preferably in the range of 10 μm to 1 mm, more preferably 30 μm to 500 μm. The membrane may be a single membrane or a composite membrane with a porous substrate. In the case of the composite film, the surface of the porous substrate may be simply coated with the polymer layer, but there may be a layer in which the porous substrate and the polymer layer overlap each other. Further, the porous substrate and the polymer layer may completely overlap. When a porous substrate is used, it is preferable that the thickness including the planar support material be within the above-described range. Porous substrates include polyester fibers, nylon fibers, polyurethane fibers, acrylic fibers, rayon fibers, woven fabrics made of organic fibers such as cotton and silk, knitted fabrics, non-woven fabrics, etc., and inorganic fibers such as glass fibers and metal fibers. Porous base materials such as woven fabrics and knitted fabrics can be used. Among these, a porous substrate made of organic fibers is particularly preferable from the viewpoint of stretchability and cost. The surface pore diameter can be freely selected depending on the application, but is preferably in the range of 0.005 μm (5 nm) to 1.0 μm, more preferably 0.008 μm (8 nm) to 0.5 μm. The internal structure of the flat film is arbitrary, and so-called macro voids may exist, or a homogeneous structure having holes of the same size in the film thickness direction may be used.
中空糸膜の場合、内径が100μm〜10mm、さらには150μm〜8mm、外径が120μm〜15mm、さらには200μm〜12mm、膜厚が20μm〜3mm、さらには50μm〜1mmの範囲になるように設計することが好ましい。また、中空糸膜の内外表面の孔径は、用途によって自由に選択できるが、0.005μm(5nm)〜1.0μm、さらには0.008μm(8nm)〜0.5μmの範囲になるように設計することが好ましい。中空糸膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔を有する均質構造であっても良い。また片側あるいは内外表面側はスキン構造で、もう片側表面および/あるいは内部構造がスポンジ構造や球晶構造などであってもよい。 In the case of a hollow fiber membrane, the inner diameter is 100 μm to 10 mm, further 150 μm to 8 mm, the outer diameter is 120 μm to 15 mm, further 200 μm to 12 mm, and the film thickness is 20 μm to 3 mm, further 50 μm to 1 mm. It is preferable to do. The pore diameter of the inner and outer surfaces of the hollow fiber membrane can be freely selected depending on the application, but is designed to be in the range of 0.005 μm (5 nm) to 1.0 μm, and further 0.008 μm (8 nm) to 0.5 μm. It is preferable to do. The internal structure of the hollow fiber membrane is arbitrary, and so-called macrovoids may exist or a homogeneous structure having pores of the same size in the film thickness direction may be used. Further, one side or the inner and outer surface sides may have a skin structure, and the other side surface and / or the inner structure may have a sponge structure or a spherulite structure.
中空糸の場合も膜単独でも良いが、多孔質基材との複合膜でもよい。複合膜の場合支持材表面にポリマー層が被覆されているだけでも良いが、多孔質基材とポリマー層が重なりあう層があっても良い。また、多孔質基材とポリマー層が完全に重なっていてもよい。多孔質基材としては上記有機繊維からなる織物、編物、不織布等の筒状の多孔質基材や、ガラス繊維、金属繊維など無機繊維からなる織物、編物等の筒状の多孔質基材を用いる事ができる。この中で伸縮性、コストの点から特に有機繊維からなる多孔質基材が好ましい。 In the case of hollow fibers, the membrane may be a single membrane or a composite membrane with a porous substrate. In the case of a composite membrane, the surface of the support material may be simply coated with the polymer layer, but there may be a layer in which the porous substrate and the polymer layer overlap. Further, the porous substrate and the polymer layer may completely overlap. As the porous substrate, a cylindrical porous substrate such as a woven fabric, a knitted fabric or a non-woven fabric made of the above organic fibers, or a cylindrical porous substrate such as a woven fabric or a knitted fabric made of inorganic fibers such as glass fibers or metal fibers. Can be used. Among these, a porous substrate made of organic fibers is particularly preferable from the viewpoint of stretchability and cost.
上述の本発明の多孔質膜は、例えば、製膜溶液中に該樹脂を溶解し、次の3つの方法のいずれか1つあるいは2つ以上の組み合わせにより相分離させ製造する事ができる。 The above-described porous membrane of the present invention can be produced, for example, by dissolving the resin in a membrane-forming solution and phase-separating it by any one or a combination of two or more of the following three methods.
(1)該樹脂をポリフッ化ビニリデン系樹脂の良溶媒に溶解した樹脂溶液を、樹脂の融点よりかなり低い温度で口金から押出したり支持材上にキャストしたりして成形した後、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により非対称多孔構造を形成させる湿式溶液法。 (1) A resin solution in which the resin is dissolved in a good solvent of polyvinylidene fluoride resin is molded by being extruded from a die at a temperature considerably lower than the melting point of the resin or cast on a support material. A wet solution method in which an asymmetric porous structure is formed by contact with a liquid containing a non-solvent of the resin by non-solvent-induced phase separation.
(2)該樹脂に無機微粒子と有機液状体を溶融混練し、ポリフッ化ビニリデン系樹脂の融点以上の温度で口金から押し出したりプレス機でプレスしたりして成形した後、冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する溶融抽出法。 (2) The resin is melt-kneaded with inorganic fine particles and an organic liquid, extruded from a die at a temperature equal to or higher than the melting point of the polyvinylidene fluoride resin, or pressed with a press, and then solidified by cooling, and then organically A melt extraction method that forms a porous structure by extracting liquid and inorganic fine particles.
(3)該樹脂をポリフッ化ビニリデン系樹脂を室温では溶解しにくい溶媒に高温溶解してポリフッ化ビニリデン系樹脂溶液を製造し、そのポリフッ化ビニリデン系樹脂溶液を口金から吐出した後、冷却して相分離および固化せしめる熱誘起相分離法。 (3) The resin is dissolved at a high temperature in a solvent in which the polyvinylidene fluoride resin is difficult to dissolve at room temperature to produce a polyvinylidene fluoride resin solution. After the polyvinylidene fluoride resin solution is discharged from the base, it is cooled. Thermally induced phase separation method that causes phase separation and solidification.
上述のように製造される本発明の多孔質膜は、平膜形状の場合にはたとえばプレートアンドフレーム型の膜モジュールに構成され、また、中空糸形状の場合には、中空糸膜を複数本束ねて円筒状の容器に納め、両端または方端をポリウレタンやエポキシ樹脂等で固定した膜モジュールに構成され、その膜モジュールを複数枚もしくは複数本配した固液分離装置として使用される。固液分離装置は、活性汚泥槽などの固液混合液が収容されている処理槽中に浸漬配置され、ポンプにより処理原液側に加圧手段もしくは透過液側に吸引手段を設け、濾過を行う。もちろん、ポンプを設けず水位差による濾過としてもよい。固液分離装置は、膜の洗浄効果を得るために、膜の下方に曝気装置を配置する等、膜面に対して固液混合液を平行に流す手段を備えていてもよい。この多孔質膜は、浄水処理、排水処理、飲料水製造、工業用水製造、などで利用でき、河川水、湖沼水、地下水、海水、下水、排水、活性汚泥、食品プロセス水などを被処理水とし、被処理水中の懸濁物除去に使用することができる。 The porous membrane of the present invention produced as described above is configured as, for example, a plate-and-frame type membrane module in the case of a flat membrane shape, and a plurality of hollow fiber membranes in the case of a hollow fiber shape. The membrane module is bundled and stored in a cylindrical container, and both ends or ends thereof are fixed with polyurethane, epoxy resin, or the like. The membrane module is used as a solid-liquid separation device in which a plurality or a plurality of the membrane modules are arranged. The solid-liquid separation device is immersed in a processing tank containing a solid-liquid mixed liquid such as an activated sludge tank, and a pump is provided with pressure means on the processing stock solution side or suction means on the permeate side to perform filtration. . Of course, it is good also as filtration by a water level difference without providing a pump. In order to obtain the membrane cleaning effect, the solid-liquid separation device may be provided with means for flowing the solid-liquid mixed solution in parallel with the membrane surface, such as disposing an aeration device below the membrane. This porous membrane can be used for water purification, wastewater treatment, drinking water production, industrial water production, etc., and can treat river water, lake water, groundwater, seawater, sewage, drainage, activated sludge, food process water, etc. And can be used for removing suspended matters in the water to be treated.
実施例における多孔質膜の純水透過係数と阻止率は、上記の方法にて測定した。 The pure water permeability coefficient and the blocking rate of the porous membrane in the examples were measured by the above methods.
膜の汚泥に対する耐ファウリング性は、以下の汚泥基礎濾過実験によって得た不可逆ファウリング比により比較した。 The fouling resistance of the membrane to sludge was compared based on the irreversible fouling ratio obtained by the following sludge basic filtration experiment.
<不可逆ファウリング比測定方法>
・実験材料
[純水透過抵抗測定用蒸留水]
和光純薬(株)製蒸留水を透析膜(東レ(株)製 フィルトライザー B2−1.5H)でろ過したものを用いた。
<Measurement method of irreversible fouling ratio>
・ Experimental material [Distilled water for measuring pure water permeation resistance]
Wako Pure Chemical Industries, Ltd. distilled water was filtered through a dialysis membrane (Toray Industries, Ltd., Filtizer B2-1.5H).
[汚泥濾過抵抗測定用汚泥]
農業集落排水処理場より採取した汚泥をデキストリン培地(デキストリン12g/L、ポリペプトン24g/L、硫安7.2g/L、リン酸1カリウム2.4g/L、塩化ナトリウム0.9g/L、硫酸マグネシウム7水和物0.3g/L、塩化カルシウム2水和物0.4g/L)をBOD容積負荷1g−BOD/L・日、水滞留時間1日で約1年間馴養した汚泥溶液(MLSS 15.17 g/L)をMLSS 1 g/Lになるように逆浸透膜透過水で希釈して用いた。希釈汚泥について濾紙濾過試験を行なったところ19.9℃における希釈汚泥50mLの孔径1μmろ紙(東洋濾紙(株)No.5C)の5分間の透過量は21.9mLであった。粘度計(リオン(株)製VT−3E,ローターNo.4使用)により測定した希釈汚泥の粘度は1.2mPa・s(19.9℃)であった。
[Sludge for sludge filtration resistance measurement]
Sludge collected from an agricultural settlement wastewater treatment plant was treated with dextrin medium (dextrin 12g / L, polypeptone 24g / L, ammonium sulfate 7.2g / L, potassium phosphate 2.4g / L, sodium chloride 0.9g / L, magnesium sulfate. A sludge solution (MLSS 15) acclimatized with 0.3 g / L of heptahydrate and 0.4 g / L of calcium chloride dihydrate with a BOD volumetric load of 1 g-BOD / L · day and a water retention time of about 1 day. .17 g / L) was diluted with reverse osmosis membrane permeate so as to be MLSS 1 g / L. When a filter paper filtration test was performed on the diluted sludge, the permeation amount for 5 minutes of 1 μm pore size filter paper (Toyo Filter Paper No. 5C) with 50 mL of diluted sludge at 19.9 ° C. was 21.9 mL. The viscosity of the diluted sludge measured with a viscometer (VT-3E manufactured by Rion Co., Ltd., using rotor No. 4) was 1.2 mPa · s (19.9 ° C.).
・実験方法
汚泥基礎濾過実験装置は図1のように窒素ガスによりリザーバータンクを加圧し、攪拌式セル(ミリポア(株)製Amicon 8010、有効膜面積4.1cm2)から透過する単位時間ごとの透過水を電子天秤により監視する構成である。(Chia−Chi Ho, A.L. Zydney, Journal of Colloid and Interface Science, 2002. 232 P389)。電子天秤はコンピューターと接続し、重量の経時変化から後に膜透過抵抗を計算する。膜表面は攪拌式セル付属のマグネチックスターラーの回転により膜面流束を与え、攪拌式セルの攪拌速度は常に600rpmに調節し、評価温度は25℃、評価圧力は20kPaとした。評価フローを図2に示す。評価は以下の順に行った。尚、水温については評価液体の粘性で換算して膜抵抗を算出しても良い。
・ Experimental method The sludge basic filtration experiment device pressurizes the reservoir tank with nitrogen gas as shown in FIG. 1, and per unit time permeating from a stirring cell (Amicon 8010 manufactured by Millipore, Inc., effective membrane area 4.1 cm 2 ). It is the structure which monitors permeated water with an electronic balance. (Chia-Chi Ho, AL Zydney, Journal of Colloid and Interface Science, 2002.232 P389). The electronic balance is connected to a computer, and the membrane permeation resistance is calculated later from the change in weight over time. The membrane surface was given a membrane surface flux by the rotation of a magnetic stirrer attached to the stirring cell, the stirring speed of the stirring cell was always adjusted to 600 rpm, the evaluation temperature was 25 ° C., and the evaluation pressure was 20 kPa. An evaluation flow is shown in FIG. Evaluation was performed in the following order. Note that the membrane resistance may be calculated by converting the water temperature by the viscosity of the evaluation liquid.
1.多孔質膜をエタノールに15分浸漬後水中に2時間以上浸漬置換
2.純水透過抵抗(R1)測定
3.汚泥濾過抵抗(R2)測定
4.膜洗浄
5.純水透過抵抗(R3)測定。
1. 1. The porous membrane is immersed in ethanol for 15 minutes and then immersed in water for 2 hours or more. 2. Pure water permeation resistance (R1) measurement 3. Sludge filtration resistance (R2) measurement 4. Membrane cleaning Measurement of pure water permeation resistance (R3).
ここで各膜抵抗Rは Where each membrane resistance R is
より求めた。 I asked more.
ここで各膜の汚泥濾過に伴うファウリングは(R2−R1)、不可逆ファウリングは(R3−R1)、物理洗浄回復(R2−R3)と関係づけられる(図3)。ここで物理洗浄でも回復しなかった不可逆ファウリングが膜のファウリングしやすさを表す。実際はファウリング、不可逆ファウリング、物理洗浄回復量は膜の純水透過抵抗R1の大小により影響を受けるので膜同士の比較には各膜のR1で規格化した不可逆ファウリング比(R3−R1)/R1を用いた。 Here, fouling associated with sludge filtration of each membrane is (R2-R1), irreversible fouling is (R3-R1), and physical cleaning recovery (R2-R3) is related (FIG. 3). Here, irreversible fouling that has not been recovered by physical cleaning represents the ease of fouling of the film. Actually, fouling, irreversible fouling, and physical cleaning recovery amount are affected by the magnitude of the pure water permeation resistance R1 of the membrane, so the irreversible fouling ratio (R3-R1) normalized by R1 of each membrane is used for comparison between membranes / R1 was used.
まず膜をエタノール浸漬、水置換後、純水透過抵抗を5分間測定した。このとき最後の20秒間の透過水量から算出される純水透過抵抗(5分値)をR1とした。 First, the membrane was immersed in ethanol and replaced with water, and then the pure water permeation resistance was measured for 5 minutes. At this time, the pure water permeation resistance (5-minute value) calculated from the permeated water amount for the last 20 seconds was defined as R1.
純水透過抵抗測定後、リザーバータンクをとり外し、評価後の膜を攪拌評価セルにセットした状態でセルを汚泥希釈液(14.44g)で満たし、汚泥希釈液を一定量(7.5g)ろ過した。一定量ろ過し、汚泥濾過中の最後の20秒間の透過水量から算出される汚泥濾過抵抗をR2とした。 After measuring the pure water permeation resistance, remove the reservoir tank, fill the cell with the sludge diluent (14.44 g) with the evaluated membrane set in the stirring evaluation cell, and add a fixed amount (7.5 g) of sludge diluent. Filtered. A certain amount of filtration was performed, and the sludge filtration resistance calculated from the amount of permeated water for the last 20 seconds during sludge filtration was defined as R2.
汚泥濾過停止後、膜を評価セルにセットしたままセル内の残存汚泥溶液を取り出した。そして評価セル内を蒸留水で満たし、評価セルごとMS1ミニシェーカー(IKA(株)製)を使い、1000回/分の速度で1分間振動させ、洗浄した。 After the sludge filtration was stopped, the residual sludge solution in the cell was taken out with the membrane set in the evaluation cell. Then, the inside of the evaluation cell was filled with distilled water, and the entire evaluation cell was vibrated for 1 minute at a speed of 1000 times / minute using an MS1 mini shaker (manufactured by IKA) and washed.
次に洗浄液を取り出し、リザーバータンクをとり付け、再び純水透過抵抗を5分間測定し、最後の20秒間の透過水量から算出される純水透過抵抗をR3とした。 Next, the cleaning liquid was taken out, a reservoir tank was attached, the pure water permeation resistance was measured again for 5 minutes, and the pure water permeation resistance calculated from the permeated water amount for the last 20 seconds was defined as R3.
<分子量測定>
GPC測定装置(東ソー(株)製HLC−8220−GPC)により、ポリマーの検出時間を測定し、分子量の異なるポリスチレンにより得られた検量線から分子量を算出した。
<Molecular weight measurement>
The detection time of the polymer was measured with a GPC measuring apparatus (HLC-8220-GPC manufactured by Tosoh Corporation), and the molecular weight was calculated from a calibration curve obtained from polystyrenes having different molecular weights.
<共重合比測定>
共重合体の1H−NMRスペクトルの解析によりモル比を算出した。1H−NMRスペクトルは重水素溶媒に共重合体を溶解し、NMR測定装置(日本電子(株)製JNM−EX−270、積算回数32回)により得た。
<Copolymerization ratio measurement>
The molar ratio was calculated by analyzing the 1 H-NMR spectrum of the copolymer. The 1 H-NMR spectrum was obtained by dissolving the copolymer in a deuterium solvent and using an NMR measurement apparatus (JNM-EX-270 manufactured by JEOL Ltd., 32 times of integration).
<実施例1>
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量35.8万)とポリメタクリル酸メチルとポリビニルピロリドンのグラフト共重合体(PMMA−g−PVP、重合平均分子量19.5万、共重合モル比46:54)、N,N−ジメチルアセトアミド(DMAc、和光純薬(株)製)、ポリビニルアルコール(PVA500和光純薬(株)製、平均重合度500、ケン化度86〜90%)をそれぞれ用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。表1に製膜溶液の仕込み組成を示す。
<Example 1>
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 358,000) and polymethylmethacrylate-polyvinylpyrrolidone graft copolymer (PMMA-g-PVP, polymerization average molecular weight 195,000, copolymerization molar ratio 46: 54), N, N-dimethylacetamide (DMAc, manufactured by Wako Pure Chemical Industries, Ltd.), polyvinyl alcohol (PVA500 manufactured by Wako Pure Chemical Industries, Ltd., average polymerization degree 500, saponification degree 86-90%), These were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. Table 1 shows the charged composition of the film forming solution.
PVDF :9.0重量%
PMMA−g−PVP :2.0重量%
PVA500 :3.0重量%
水 :3.0重量%
DMAc :83.0重量%。
PVDF: 9.0% by weight
PMMA-g-PVP: 2.0% by weight
PVA500: 3.0% by weight
Water: 3.0% by weight
DMAc: 83.0% by weight.
次に、上記製膜原液を40℃に冷却し、密度が0.48g/cm3、厚みが220μmのポリエステル繊維製不織布に塗布し、直ちに25℃の水凝固浴中に5分間浸漬して、多孔質樹脂層が形成された多孔質基材を得た。 Next, the film-forming stock solution is cooled to 40 ° C., applied to a nonwoven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm, and immediately immersed in a water coagulation bath at 25 ° C. for 5 minutes. A porous substrate on which a porous resin layer was formed was obtained.
この多孔質基材を、95℃の熱水に2分間浸漬してDMAc,PVA500を洗い出し、分離膜を得た。 This porous substrate was immersed in hot water at 95 ° C. for 2 minutes to wash out DMAc and PVA500, thereby obtaining a separation membrane.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、純水透過係数は27×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は1.2であった。汚泥基礎濾過実験結果を表2に示す。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 98%. Moreover, the pure water permeability coefficient was 27 * 10 < -9 > m < 3 > / m < 2 > * s * Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 1.2. Table 2 shows the results of the sludge basic filtration experiment.
<実施例2>
PVDF、ポリアクリル酸エチルとポリビニルピロリドンのランダム共重合体(PEA−co−PVP、重合平均分子量6.6万、共重合モル比52:48)、ポリブロピレングリコール(PPG3000、和光純薬(株)製、平均分子量3000、ジオール型)、モノパルミチン酸ポリオキシエチレン(N=20)ソルビタン(Tween40) を用い、ジメチルスルホキシド(DMSO、和光純薬(株)製)これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Example 2>
PVDF, random copolymer of polyethyl acrylate and polyvinyl pyrrolidone (PEA-co-PVP, polymerization average molecular weight 66,000, copolymer molar ratio 52:48), polypropylene glycol (PPG3000, Wako Pure Chemical Industries, Ltd.) ), Average molecular weight 3000, diol type), polyoxyethylene monopalmitate (N = 20) sorbitan (Tween 40), dimethyl sulfoxide (DMSO, manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was sufficiently stirred and dissolved at a temperature to obtain a film-forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :10.0重量%
PEA−co−PVP :3.0重量%
PPG3000 :2.0重量%
Tween40 :3.0
水 :3.0重量%
DMSO :79.0重量%。
PVDF: 10.0% by weight
PEA-co-PVP: 3.0% by weight
PPG3000: 2.0% by weight
Tween 40: 3.0
Water: 3.0% by weight
DMSO: 79.0% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、97%であった。また、透水量は37×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は1.3であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 97%. Further, the water permeability was 37 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 1.3.
<実施例3>
PVDF、ポリメタクリル酸メチル(PMMA、重量平均分子量140万)、ポリビニルピロリドン(PVP K−90、和光純薬(株)製、平均分子量360000、)、モノパルミチン酸ポリオキシエチレン(N=20)ソルビタン(Tween40)、N,N−ジメチルホルムアミド(DMF、三菱レーヨン(株)製) を用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Example 3>
PVDF, polymethyl methacrylate (PMMA, weight average molecular weight 1,400,000), polyvinylpyrrolidone (PVP K-90, manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 360000), polyoxyethylene (N = 20) sorbitan monopalmitate (Tween 40) and N, N-dimethylformamide (DMF, manufactured by Mitsubishi Rayon Co., Ltd.) were used, and these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :9.5重量%
PMMA :3.0重量%
PVP K−90 :4.0重量%
水 :2.0重量%
DMF :81.5重量%。
PVDF: 9.5% by weight
PMMA: 3.0% by weight
PVP K-90: 4.0% by weight
Water: 2.0% by weight
DMF: 81.5% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は30×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は1.5であった。
<実施例4>
PVDF、ポリメタクリル酸メチルとポリビニルピロリドンのランダム共重合体(PMMA−co−PVP、重量平均分子量4.2万、共重合モル比55:45)、ポリエチレングリコール(PEG400、和光純薬(株)製、平均分子量400)、PVA500、DMAcを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 98%. Moreover, the water permeation amount was 30 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 1.5.
<Example 4>
PVDF, random copolymer of polymethyl methacrylate and polyvinylpyrrolidone (PMMA-co-PVP, weight average molecular weight 42,000, copolymerization molar ratio 55:45), polyethylene glycol (PEG400, manufactured by Wako Pure Chemical Industries, Ltd.) , Average molecular weight 400), PVA500, and DMAc, and these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film-forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :11.7重量%
PMMA−co−PVP :1.3重量%
PEG400 :2.0重量%
PVA500 :3.0重量%
水 :3.0重量%
DMAc :79.0重量%。
PVDF: 11.7% by weight
PMMA-co-PVP: 1.3% by weight
PEG400: 2.0% by weight
PVA500: 3.0% by weight
Water: 3.0% by weight
DMAc: 79.0% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、97%であった。また、透水量は51×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は1.3であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 97%. Moreover, the water permeability was 51 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 1.3.
<実施例5>
PVDF、PMMA−co−PVP、ポリエチレングリコール(PEG20000和光純薬(株)製、平均分子量20000)、PVA500、DMFを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Example 5>
PVDF, PMMA-co-PVP, polyethylene glycol (PEG 20000 manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 20000), PVA500, DMF were sufficiently mixed and dissolved under the following composition at a temperature of 90 ° C. A film-forming stock solution was obtained. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :9.1重量%
PMMA−co−PVP :3.9重量%
PEG20000 :5.0重量%
水 :3.0重量%
DMF :79.0重量%。
PVDF: 9.1% by weight
PMMA-co-PVP: 3.9% by weight
PEG 20000: 5.0% by weight
Water: 3.0% by weight
DMF: 79.0% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は24×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は1.0であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 98%. Moreover, the water permeability was 24 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio by the sludge basic filtration experiment was 1.0.
<比較例1>
PVDF、PEG20000、DMAcを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Comparative Example 1>
Using PVDF, PEG 20000, and DMAc, these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :13.0重量%
PEG20000 :5.0重量%
水 :3.0重量%
DMAc :79.0重量%。
PVDF: 13.0% by weight
PEG 20000: 5.0% by weight
Water: 3.0% by weight
DMAc: 79.0% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は63×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は1.9であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 98%. Moreover, the water permeability was 63 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 1.9.
<比較例2>
PVDF、PMMA、PEG400、Tween40、DMFを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Comparative example 2>
PVDF, PMMA, PEG400, Tween40, and DMF were used, and these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :11.7重量%
PMMA :1.3重量%
PEG400 :2.0重量%
Tween40 :3.0重量%
水 :2.5重量%
DMF :79.5重量%。
PVDF: 11.7% by weight
PMMA: 1.3% by weight
PEG400: 2.0% by weight
Tween 40: 3.0% by weight
Water: 2.5% by weight
DMF: 79.5% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は66×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は2.2であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 98%. Moreover, the water permeability was 66 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 2.2.
<比較例3>
PVDF、PMMA、PEG20000、DMAcを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Comparative Example 3>
Using PVDF, PMMA, PEG 20000, and DMAc, these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :9.1重量%
PMMA :3.9重量%
PEG20000 :5.0重量%
水 :3.0重量%
DMAc :79.0重量%。
PVDF: 9.1% by weight
PMMA: 3.9% by weight
PEG 20000: 5.0% by weight
Water: 3.0% by weight
DMAc: 79.0% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、96%であった。また、透水量は34×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は2.0であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 96%. Further, the water permeability was 34 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 2.0.
<比較例4>
PVDF、PVP K−90、PVA500、DMAcを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Comparative example 4>
Using PVDF, PVP K-90, PVA500 and DMAc, these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :11.7重量%
PVP K−90 :1.3重量%
PVA500 :5.0重量%
水 :3.0重量%
DMAc :79.0重量%。
PVDF: 11.7% by weight
PVP K-90: 1.3% by weight
PVA500: 5.0% by weight
Water: 3.0% by weight
DMAc: 79.0% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、96%であった。また、透水量は66×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は2.0であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 96%. Moreover, the water permeability was 66 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 2.0.
<比較例5>
PVDF、PVP K−90、PPG3000、DMFを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Comparative Example 5>
Using PVDF, PVP K-90, PPG3000, and DMF, these were sufficiently stirred and mixed and dissolved at a temperature of 90 ° C. with the following composition to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :11.7重量%
PVP K−90 :1.3重量%
PPG3000 :6.0重量%
水 :2.0重量%
DMF :79.0重量%。
PVDF: 11.7% by weight
PVP K-90: 1.3% by weight
PPG3000: 6.0% by weight
Water: 2.0% by weight
DMF: 79.0% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、97%であった。また、透水量は44×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は2.1であった。 Next, the rejection of fine particles having an average particle size of 0.083 μm was measured for the separation membrane, and it was 97%. Moreover, the water permeability was 44 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 2.1.
<比較例6>
PVDF、ポリアクリル酸エチル(PEA、シグマアルドリッチ(株)製、平均分子量95000)、モノステアリン酸ポリオキシエチレン(N=20)ソルビタン(Tween60)、DMSOを用い、これらを下記組成で90℃の温度下に十分に攪拌し混合溶解し、製膜原液を得た。これを実施例1と同様に製膜し、分離膜を得た。
<Comparative Example 6>
PVDF, polyethyl acrylate (PEA, manufactured by Sigma-Aldrich Co., Ltd., average molecular weight 95000), polyoxyethylene monostearate (N = 20) sorbitan (Tween 60), DMSO were used, and these were heated to 90 ° C. with the following composition. The mixture was sufficiently stirred and mixed and dissolved to obtain a stock solution. This was formed in the same manner as in Example 1 to obtain a separation membrane.
PVDF :9.0重量%
PEA :3.0重量%
Tween60 :6.0重量%
水 :3.5重量%
DMSO :78.5重量%。
PVDF: 9.0% by weight
PEA: 3.0% by weight
Tween 60: 6.0% by weight
Water: 3.5% by weight
DMSO: 78.5% by weight.
次に、上記分離膜について、平均粒径0.083μmの微粒子の阻止率を測定したところ、98%であった。また、透水量は71×10−9m3/m2・s・Paであった。汚泥基礎濾過実験による不可逆ファウリング比は3.3であった。 Next, when the separation rate of fine particles having an average particle diameter of 0.083 μm was measured for the separation membrane, it was 98%. Moreover, the water permeability was 71 × 10 −9 m 3 / m 2 · s · Pa. The irreversible fouling ratio in the sludge basic filtration experiment was 3.3.
イ・・・圧力調整器
ロ・・・バルブ
ハ・・・圧力計
二・・・供給水用リザーバー
ホ・・・マグネチックスターラー
ヘ・・・膜濾過ユニット
ト・・・電子天秤
B ... Pressure regulator B ... Valve C ... Pressure gauge II ... Reservoir for water supply E ... Magnetic stirrer F ... Membrane filtration unit G ... Electronic balance
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005020872A JP4626319B2 (en) | 2005-01-28 | 2005-01-28 | Porous membrane, method for producing the same, and solid-liquid separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005020872A JP4626319B2 (en) | 2005-01-28 | 2005-01-28 | Porous membrane, method for producing the same, and solid-liquid separator |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006205067A true JP2006205067A (en) | 2006-08-10 |
JP2006205067A5 JP2006205067A5 (en) | 2008-03-06 |
JP4626319B2 JP4626319B2 (en) | 2011-02-09 |
Family
ID=36962450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005020872A Active JP4626319B2 (en) | 2005-01-28 | 2005-01-28 | Porous membrane, method for producing the same, and solid-liquid separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4626319B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008229612A (en) * | 2007-02-22 | 2008-10-02 | Toray Ind Inc | Porous membrane for cell suspension filtering |
EP2108107A2 (en) | 2006-11-21 | 2009-10-14 | Arkema Inc. | Caustic resistant membrane |
JPWO2011010690A1 (en) * | 2009-07-22 | 2013-01-07 | 三菱レイヨン株式会社 | Method for producing porous membrane |
WO2014054658A1 (en) * | 2012-10-02 | 2014-04-10 | Jnc株式会社 | Microporous membrane and manufacturing process therefor |
WO2014142311A1 (en) | 2013-03-15 | 2014-09-18 | 三菱レイヨン株式会社 | Resin composition, membrane-forming stock solution, porous membrane, and hollow fiber membrane, water treatment device, electrolyte support, and separator using porous membrane |
JP5664818B1 (en) * | 2013-09-20 | 2015-02-04 | ダイキン工業株式会社 | Polymer porous membrane and method for producing polymer porous membrane |
JP2015160185A (en) * | 2014-02-28 | 2015-09-07 | Jnc株式会社 | membrane bioreactor |
EP2937134A4 (en) * | 2012-12-20 | 2016-01-13 | Mitsubishi Rayon Co | Polymer composition and porous membrane |
EP2349523A4 (en) * | 2008-10-28 | 2016-10-26 | Arkema Inc | Water flux polymer membranes |
WO2016190416A1 (en) * | 2015-05-27 | 2016-12-01 | 三菱レイヨン株式会社 | Porous film |
US9550153B2 (en) | 2013-01-24 | 2017-01-24 | Toyobo Co., Ltd. | Porous polymer flat-sheet membrane |
JP2018104541A (en) * | 2016-12-26 | 2018-07-05 | 三菱ケミカル株式会社 | Porous membrane, and production method of porous membrane |
JP2018103097A (en) * | 2016-12-26 | 2018-07-05 | 三菱ケミカル株式会社 | Porous film, and method for producing porous film |
WO2018181579A1 (en) * | 2017-03-31 | 2018-10-04 | Jnc株式会社 | Microporous film |
WO2018181365A1 (en) | 2017-03-27 | 2018-10-04 | 三菱ケミカル株式会社 | Porous membrane, membrane module, water treatment device, and method for manufacturing porous membrane |
WO2020008820A1 (en) * | 2018-07-05 | 2020-01-09 | 帝人株式会社 | Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition |
WO2020066521A1 (en) * | 2018-09-28 | 2020-04-02 | 東レ株式会社 | Composite semipermeable membrane and method for manufacturing same |
CN111107925A (en) * | 2017-09-25 | 2020-05-05 | 三菱化学株式会社 | Hollow fiber membrane |
JP6967683B1 (en) * | 2021-04-19 | 2021-11-17 | 岩井ファルマテック株式会社 | Membrane filtration system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60216804A (en) * | 1984-04-13 | 1985-10-30 | Teijin Ltd | Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof |
JPS61161103A (en) * | 1985-01-10 | 1986-07-21 | Terumo Corp | Hydrophilic porous membrane and its preparation |
JPH03123629A (en) * | 1989-10-04 | 1991-05-27 | Terumo Corp | Water purifier and manufacture thereof |
JP2004202438A (en) * | 2002-12-26 | 2004-07-22 | Toray Ind Inc | Porous membrane |
-
2005
- 2005-01-28 JP JP2005020872A patent/JP4626319B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60216804A (en) * | 1984-04-13 | 1985-10-30 | Teijin Ltd | Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof |
JPS61161103A (en) * | 1985-01-10 | 1986-07-21 | Terumo Corp | Hydrophilic porous membrane and its preparation |
JPH03123629A (en) * | 1989-10-04 | 1991-05-27 | Terumo Corp | Water purifier and manufacture thereof |
JP2004202438A (en) * | 2002-12-26 | 2004-07-22 | Toray Ind Inc | Porous membrane |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2108107A2 (en) | 2006-11-21 | 2009-10-14 | Arkema Inc. | Caustic resistant membrane |
JP2010526885A (en) * | 2006-11-21 | 2010-08-05 | アーケマ・インコーポレイテッド | Caustic resistant film |
CN105860375B (en) * | 2006-11-21 | 2021-07-09 | 阿科玛股份有限公司 | Caustic resistant film |
CN105860375A (en) * | 2006-11-21 | 2016-08-17 | 阿科玛股份有限公司 | Caustic resistant membrane |
US9327247B2 (en) | 2006-11-21 | 2016-05-03 | Arkema Inc. | Caustic resistant membrane |
EP2108107A4 (en) * | 2006-11-21 | 2017-04-05 | Arkema Inc. | Caustic resistant membrane |
JP2008229612A (en) * | 2007-02-22 | 2008-10-02 | Toray Ind Inc | Porous membrane for cell suspension filtering |
US9707524B2 (en) | 2008-10-28 | 2017-07-18 | Arkema Inc. | Water flux polymer membranes |
EP2349523A4 (en) * | 2008-10-28 | 2016-10-26 | Arkema Inc | Water flux polymer membranes |
JP5569393B2 (en) * | 2009-07-22 | 2014-08-13 | 三菱レイヨン株式会社 | Method for producing porous membrane |
JPWO2011010690A1 (en) * | 2009-07-22 | 2013-01-07 | 三菱レイヨン株式会社 | Method for producing porous membrane |
JP5729521B2 (en) * | 2012-10-02 | 2015-06-03 | Jnc株式会社 | Microporous membrane and method for producing the same |
US9987597B2 (en) | 2012-10-02 | 2018-06-05 | Jnc Corporation | Microporous membrane and manufacturing process therefor |
JPWO2014054658A1 (en) * | 2012-10-02 | 2016-08-25 | Jnc株式会社 | Microporous membrane and method for producing the same |
WO2014054658A1 (en) * | 2012-10-02 | 2014-04-10 | Jnc株式会社 | Microporous membrane and manufacturing process therefor |
US9844759B2 (en) | 2012-12-20 | 2017-12-19 | Mitsubishi Chemical Corporation | Polymer composition and porous membrane |
EP2937134A4 (en) * | 2012-12-20 | 2016-01-13 | Mitsubishi Rayon Co | Polymer composition and porous membrane |
KR20180086513A (en) * | 2012-12-20 | 2018-07-31 | 미쯔비시 케미컬 주식회사 | Polymer composition and porous membrane |
KR102069080B1 (en) | 2012-12-20 | 2020-01-22 | 미쯔비시 케미컬 주식회사 | Polymer composition and porous membrane |
US9550153B2 (en) | 2013-01-24 | 2017-01-24 | Toyobo Co., Ltd. | Porous polymer flat-sheet membrane |
EP2974786A4 (en) * | 2013-03-15 | 2016-04-20 | Mitsubishi Rayon Co | Resin composition, membrane-forming stock solution, porous membrane, and hollow fiber membrane, water treatment device, electrolyte support, and separator using porous membrane |
CN105209162A (en) * | 2013-03-15 | 2015-12-30 | 三菱丽阳株式会社 | Resin composition, membrane-forming stock solution, porous membrane, and hollow fiber membrane, water treatment device, electrolyte support, and separator using porous membrane |
CN105209162B (en) * | 2013-03-15 | 2017-08-22 | 三菱化学株式会社 | Resin combination, film stoste, multiple aperture plasma membrane, use the hollow-fibre membrane of the multiple aperture plasma membrane, water treatment facilities, electrolyte carrier and spacer |
US10583403B2 (en) | 2013-03-15 | 2020-03-10 | Mitsubishi Chemical Corporation | Resin composition, membrane-forming stock solution, porous membrane, and hollow fiber membrane, water treatment device, electrolyte support, and separator using porous membrane |
WO2014142311A1 (en) | 2013-03-15 | 2014-09-18 | 三菱レイヨン株式会社 | Resin composition, membrane-forming stock solution, porous membrane, and hollow fiber membrane, water treatment device, electrolyte support, and separator using porous membrane |
JP2015083299A (en) * | 2013-09-20 | 2015-04-30 | ダイキン工業株式会社 | Porous polymer membrane and method of producing porous polymer membrane |
WO2015041119A1 (en) * | 2013-09-20 | 2015-03-26 | ダイキン工業株式会社 | Polymer porous membrane and method for manufacturing polymer porous membrane |
JP5664818B1 (en) * | 2013-09-20 | 2015-02-04 | ダイキン工業株式会社 | Polymer porous membrane and method for producing polymer porous membrane |
JP2015160185A (en) * | 2014-02-28 | 2015-09-07 | Jnc株式会社 | membrane bioreactor |
JPWO2016190416A1 (en) * | 2015-05-27 | 2017-06-08 | 三菱ケミカル株式会社 | Porous membrane |
US11033864B2 (en) | 2015-05-27 | 2021-06-15 | Mitsubishi Chemical Corporation | Porous membrane |
WO2016190416A1 (en) * | 2015-05-27 | 2016-12-01 | 三菱レイヨン株式会社 | Porous film |
JP2018103097A (en) * | 2016-12-26 | 2018-07-05 | 三菱ケミカル株式会社 | Porous film, and method for producing porous film |
JP2018104541A (en) * | 2016-12-26 | 2018-07-05 | 三菱ケミカル株式会社 | Porous membrane, and production method of porous membrane |
US11071954B2 (en) | 2017-03-27 | 2021-07-27 | Mitsubishi Chemical Corporation | Porous membrane, membrane module, water treatment device, and method for manufacturing porous membrane |
WO2018181365A1 (en) | 2017-03-27 | 2018-10-04 | 三菱ケミカル株式会社 | Porous membrane, membrane module, water treatment device, and method for manufacturing porous membrane |
KR20190129049A (en) | 2017-03-27 | 2019-11-19 | 미쯔비시 케미컬 주식회사 | Porous Membrane, Membrane Module, Water Treatment Apparatus, and Method of Manufacturing Porous Membrane |
WO2018181579A1 (en) * | 2017-03-31 | 2018-10-04 | Jnc株式会社 | Microporous film |
JP7099467B2 (en) | 2017-09-25 | 2022-07-12 | 三菱ケミカル株式会社 | Hollow fiber membrane |
CN111107925A (en) * | 2017-09-25 | 2020-05-05 | 三菱化学株式会社 | Hollow fiber membrane |
JPWO2019059397A1 (en) * | 2017-09-25 | 2020-11-05 | 三菱ケミカル株式会社 | Hollow fiber membrane |
EP3689444A4 (en) * | 2017-09-25 | 2020-11-11 | Mitsubishi Chemical Corporation | Hollow fiber membrane |
WO2020008820A1 (en) * | 2018-07-05 | 2020-01-09 | 帝人株式会社 | Hydrophilic composite membrane, hydrophilic porous membrane, and hydrophilic resin composition |
WO2020066521A1 (en) * | 2018-09-28 | 2020-04-02 | 東レ株式会社 | Composite semipermeable membrane and method for manufacturing same |
JP6967683B1 (en) * | 2021-04-19 | 2021-11-17 | 岩井ファルマテック株式会社 | Membrane filtration system |
Also Published As
Publication number | Publication date |
---|---|
JP4626319B2 (en) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4626319B2 (en) | Porous membrane, method for producing the same, and solid-liquid separator | |
Ping Chu et al. | Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics | |
KR101306406B1 (en) | Polymer separation membrane and process for producing the same | |
Yu et al. | Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment | |
CA2746593C (en) | Highly durable porous pvdf film, method of producing the same, and washing method and filtering method using the same | |
JP5066810B2 (en) | Polymer separation membrane and production method thereof | |
KR102526940B1 (en) | Porous membrane, membrane module, water treatment device, and method for producing porous membrane | |
JP2004230280A (en) | Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane | |
JP2010094670A (en) | Polyvinylidene fluoride-based multiple membrane and method for producing the same | |
JP5228474B2 (en) | Porous membrane for cell suspension filtration | |
JP4600172B2 (en) | Porous membrane, solid-liquid separator, and solid-liquid separation method using them | |
JP2011036848A (en) | Separation membrane made of polyvinylidene fluoride resin and method for manufacturing the same | |
JP6667217B2 (en) | Fouling inhibitor, porous filtration membrane for water treatment, and method for producing the same | |
WO2020100763A1 (en) | Filtration method in which porous membrane is used | |
WO1998058728A1 (en) | Polyacrylonitrile-base hollow-fiber filtration membrane | |
WO2022249839A1 (en) | Separation membrane and method for producing same | |
JP2008036559A (en) | Method of oxidization processing fluororesin-based polymer separation membrane | |
JP2012106235A (en) | Porous membrane, resin solution and method for manufacturing porous membrane | |
JP2006231274A (en) | Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method | |
JP2010075851A (en) | Porous film and method for manufacturing the same | |
JP4380380B2 (en) | Method for producing liquid separation membrane | |
Vroman | Mechanisms of hollow-fiber membrane fouling removal used in water treatment: critical backwash fluxes and membrane deformation for an enhanced backwash efficiency | |
JP2010110693A (en) | Method of manufacturing composite porous separation membrane | |
WO2024070989A1 (en) | Separation membrane, method for manufacturing same, filtration method, and membrane filtration device | |
JP2008229613A (en) | Wastewater treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080117 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101012 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101025 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4626319 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |