[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006203233A - 電波吸収体 - Google Patents

電波吸収体 Download PDF

Info

Publication number
JP2006203233A
JP2006203233A JP2006056291A JP2006056291A JP2006203233A JP 2006203233 A JP2006203233 A JP 2006203233A JP 2006056291 A JP2006056291 A JP 2006056291A JP 2006056291 A JP2006056291 A JP 2006056291A JP 2006203233 A JP2006203233 A JP 2006203233A
Authority
JP
Japan
Prior art keywords
soft magnetic
wave absorber
particles
complex
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006056291A
Other languages
English (en)
Inventor
Morihiko Matsumoto
守彦 松本
Shigemori Miyata
恵守 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006056291A priority Critical patent/JP2006203233A/ja
Publication of JP2006203233A publication Critical patent/JP2006203233A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】金属軟磁性体粒子を有機高分子中に高密度に均一分散させ、高複素透磁率、高複素誘電率を得ると同時に、金属軟磁性体粒子表面の電気抵抗を大きくし、UHF帯域において整合する薄い電波吸収体を提供する。
【解決手段】有機基を有する分子からなる電気的絶縁層11を表面に形成した金属軟磁性体粒子12が、有機高分子13中に高密度に充填された軟磁性複合体を、反射体で裏打ちして構成される。
【選択図】図1

Description

本発明は、例えばUHF帯において20dB以上の反射減衰量を有する電波吸収体で、厚さを従来のものより薄くすることが可能な電波吸収体に関する。
現在、UHF帯で実現されている電波吸収体は、立方晶フェライトの焼結体やその粉砕粒子を樹脂中に分散した複合体である。
これら焼結体や複合体の厚さは6〜8mmと厚く、重いためその適用箇所は電波暗室などに限られていた。またカルボニル鉄粒子を有機高分子中に分散した複合体は、厚さが2mm程度と上記の立方晶フェライト系に比べ薄いが、この厚さで適用できる周波数範囲が4GHz以上の高周波数域に限られていた。ところで、平面波が自由空間から導電体に裏打ちされた物体へ垂直入射した時の反射減衰量Гは下記の[数1]により表現できる。
[数1]


また、[数1]中の伝搬定数γは以下の通り表わされる。
[数2]

つまり、物体の複素透磁率と複素誘電率との比を1に近づけるのが望ましい。さらに、吸収体を薄く設計するためには物体内における電波の減衰を大きくする必要がある。これには物体の伝搬定数の実数部(減衰定数)を大きくすること、すなわち所望の周波数において、物体の複素透磁率、複素誘電率を大きくする必要がある。
現状ではUHF帯用の電波吸収体に立方晶フェライトが用いられている。この物質の複素透磁率は、図7に示すように、スネーク(Snoek)の限界に従い、周波数の増加とともに減少する(強磁性体の物理、近角聡信、掌華房、1991)。また複素誘電率は周波数に依存せず一定値を示す。
従って、この系を吸収体に用いたときの整合厚さは6〜8mmとほぼ一定である。
一方、カルボニル鉄など金属軟磁性体の複素透磁率のUHF帯における周波数存在性は、図7に示すように、スネーク(Snoek)の限界には従わず、主に表皮効果に基づく挙動を示す。したがって、サイズの小さい粒子(3〜4μm)を用いることで、立方晶フェライトよりも複素透磁率の限界線を高周波数側に伸ばすことができ、吸収体の整合厚さも2mm程度となっている。
カルボニル鉄は金属であるため、粒子の集合体がバルク内まで磁化させるには、粒子を有機高分子中へ分散させ、粒子間を流れる渦電流を防ぐ構造にするのが普通である。完全球形粒子が有機高分子中に均一分散した軟磁性複合体の複素透磁率を検討してみる。
図8に示すような磁性粒子1,2間に有機高分子相が介在する構造を単位構造とする時、図中の点線で囲まれた円筒形の領域の磁気抵抗Rmは[数3]で近似的に表現される。
[数3]

ここでRは粒子の半径、dは粒子間平均距離、μA は粒子自身の複素透磁率、μB は有機高分子の複素透磁率である。(式中のμをεにすれば磁気抵抗の逆数Rm-1は電気容量Cになる。)この式から磁気抵抗を小さくする(複素透磁率を大きくする)には、粒子間平均距離dを小さくすること、すなわち粒子充填率を大きくすることと、粒子や有機高分子の複素透磁率を大きくすることが有効であるといえる。電気容量を大きくする(複素誘電率を大きくする)のも同様で、粒子充填率を大きくすることと、粒子や有機高分子の複素誘電率を大きくすることが有効である。軟磁性複合体の複素透磁率μは以下の[数4]で表わせる。
[数4]

[数4]中の1/RmをCにすれば複合体の複素誘電率εについての式となる。ところで、現状のカルボニル鉄系吸収体は粒子の充填率が小さいため、その軟磁性複合体の複素透磁率、複素誘電率は小さく、1GHzの値が比透磁率値で約5.5以下、比誘電率値で約22以下である。よって吸収体として整合する周波数は4GHz以上の高周波数に限られている。そこでカルボニル鉄粒子の充填率を増大させようとすると、有機高分子中における粒子の均一分散がすすまず、強度ある複合体の成形はむずかしい。また仮に成形できても、金属粒子同士の接触により大きく誘電性を生じてしまう。これにより物体の複素誘電率、特に虚数部が必要以上に大きくなり、上述したとおり物体のインピーダンス値と自由空間のそれとの間に大きなずれを生じ、いずれの厚さにおいても入射電波はほとんど反射し、吸収体の設計は不可能になる。
図9にカルボニル鉄粒子を57.5vol%充填させた複合体(粒子に表面処理をしていない系としては最高の充填率)のさまざまな厚さにおける吸収体の反射減衰量を周波数の関数で表わす。いずれの厚さにおいても吸収ピークが認められない。そこでこの系の複素透磁率値(実験値)を[数1]に入力し、2GHzにおいて2mmで整合する吸収体の複素誘電率値の範囲を図10に示す。これによると、反射減衰量を例えば20dB以上にするには比誘電率虚数部の値を少なくとも7程度以下にする必要がある。この系の2GHzにおける比透電率虚数部の実験値は20で(図3参照)20dB以上の反射減衰量を得ることはできないことがわかる。
本発明はこのような現状に鑑みてなされたものであり、その目的はカルボニル鉄などの金属軟磁性体粒子表面に有機基を含む電気的に絶縁性の分子からなる層を設けることで、この粒子を有機高分子中に高密度に均一分散させ、高複素透磁率、高複素誘電率を得ると同時に、金属軟磁性体粒子表面の電気抵抗を大きくし、UHF帯域において整合する従来よりも薄い電波吸収体を提供することにある。
上記目的を達成するために本発明の電波吸収体は、有機基を有する分子からなる電気的絶縁層を表面に形成した金属軟磁性体粒子が、有機高分子中に高密度に充填された軟磁性複合体を、反射体で裏打ちして構成することを特徴とするものである。
また本発明の電波吸収体は、有機基を有する分子からなる電気的絶縁層を表面に形成した金属軟磁性体粒子が、有機高分子中に粒子の体積分率で55vol%以上充填された軟磁性複合体を、反射体で裏打ちして構成することを特徴とするものである。
また本発明の電波吸収体は、前記金属軟磁性体粒子がカルボニル鉄粒子であることを特徴とするものである。
また本発明の電波吸収体は、前記有機基を有する分子がカップリング剤の分子であることを特徴とするものである。また本発明の電波吸収体は、前記カップリング剤がシラン系カップリング剤であることを特徴とするものである。
本発明によれば、カルボニル鉄などの金属軟磁性体粒子表面にカップリング剤分子など有機基を有する分子からなる電気的絶縁層を形成することで、この粒子を有機高分子中に高密度に充填し、高複素透磁率、高複素誘電率の軟磁性複合体を実現でき、同時にカップリング剤分子等の被覆による金属軟磁性体粒子の表面絶縁化により、高充填しても電気抵抗が大きく、特性インピーダンスが整合したUHF帯域で薄型の電波吸収体を実現できる。
以下図面を参照して本発明の実施の形態例を詳細に説明する。図1は本発明の電波吸収体中の軟磁性複合体の内部構造を摸式的に示す。すなわち、本発明の電波吸収体は、カップリング剤の分子等の有機基を有する分子からなる電気的絶縁層11を表面に形成した金属軟磁性体粒子12が、有機高分子13中に高密度に充填された軟磁性複合体を、反射体で裏打ちして構成される。ここで金属軟磁性体粒子12として、鉄、ニッケル、コバルトなどの磁性を有する金属単体やこれらの元素を少なくとも一種含む合金が適用可能である。また、金属軟磁性体粒子12の粒径については、金属軟磁性体粒子12自身の透磁率が立方晶フェライトのそれを上回るような条件を選べば現状の電波吸収体を上回る特性が期待できる。
ここで、図2のモデル図に示すように、金属軟磁性体粒子12の透磁率値が表皮効果だけで決まると仮定し、半径Rの球形粒子12が表面から表皮深さδまで磁化された時に、球形粒子12中で磁化された体積Vは以下の[数5]で表わされる。



[数5]


なお、表皮深さδは粒子の比抵抗ρ、透磁率μならびに周波数fから下式で表わされる(強磁性体の物理、近角聡信、掌華房、1991)。
[数6]

[数7]

1GHzにおける立方晶フェライトの比透磁率値は約6である(磁性体ハンドブック、朝倉書店、1993)。この値を金属軟磁性体、たとえば鉄(比抵抗1×10-7Ωm、比透磁率500;磁性体ハンドブック、朝倉書店、1993)が上回るための条件は、上述の[数5]〜[数7]から粒子半径R<30μmと算出される。本実施形態例で用いる金属軟磁性体粒子はカルボニル鉄粒子で、この種類の鉄粒子は通常、半径5μm以下である。したがって算出された条件を十分満足する。
さて本発明の吸収体で用いる軟磁性複合体の特徴は、金属軟磁性体粒子12の表面へ例えばカップリング剤の分子からなる電気的絶縁層11を形成したことにある。これにより金属軟磁性体粒子12を高充填しても導電性は小さく、誘電率虚数部が必要以上に大きくならない軟磁性複合体を実現できる。またカップリング剤の分子を用いた場合、軟磁性体粒子12表面へは無機系の疎水基が、一方有機高分子13へは有機系の親水基がそれぞれ配位した構造となるため、金属粒子と有機高分子との親和性を高めることができる。これにより、金属粒子12と有機高分子13との濡れ性は向上し、大量の粒子を充填できる。よって比複素誘電率は従来よりも大きく、充填率59.0vol%の系で体積1GHzの比透磁率値が約9、比誘電率値が約45であった。(従来は[従来の技術]で言及したとおり1GHzの値が比透磁率値で約5.5以下、比誘電率値で約22以下)なお電気的絶縁層に用いるカップリング剤は、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、リン酸エステル系カップリング剤などが好適に用いられる。
図3は例えばシラン系カップリング剤で表面処理したカルボニル鉄粒子を、シリコーン中へ分散して得た軟磁性複合体(充填率57.5vol%)の複素誘電率である。比較として、表面処理していない系もあわせて示す。特に誘電率虚数部に関して、カップリング剤で処理した本発明の系は未処理の系と比較して値が小さく、図10で示した複素誘電率の条件範囲を満たすことになる。
図4はカップリング剤により表面処理していないカルボニル鉄粒子を充填した軟磁性複合体(厚さ2mm)からなる電波吸収体の反射減衰量である。
成形可能な最大の充填量は57.5vol%であった。充填量55.0vol%では20dB以上の反射減衰量を示すが、さらに充填量を増加すると複素透磁率、複素誘電率が向上し、ピークは低周波数へシフトするが、導電性も増加するため特性インピーダンスに不整合が生じ、体積分率56.0vol%ではすでにピーク強度が20dB以下になる。したがって、表面処理を施さない通常の系ではUHF帯である3GHz以下で整合する吸収体は実現できない。
一方、カップリング剤により表面処理した本発明の電波吸収体は金属軟磁性体粒子12と有機高分子13との親和性が向上し59.0vol%まで充填することができる。
図5はカップリング剤により表面処理したカルボニル鉄粒子を充填した複合体(厚さ2mm)からなる電波吸収体の反射減衰量である。充填量を増加しても20dB以上の吸収強度を維持し、充填量55.4vol%では2.8GHz、充填量57.8vol%では2.2GHz、充填量59vol%では1.8GHzまで吸収ピークを低周波数側へシフトする。すなわち、本発明のカップリング剤による処理効果は体積分率約55.0vol%以上の高充填系で効果を発揮する。
図6は本実施形態例で最大充填量(59.0vol%)の軟磁性複合体からなる電波吸収体の、さまざまな厚さにおける反射減衰量である。厚さ1.5mmで2.1GHz、厚さ2.0mmで1.8GHz、厚さ2.5mmで1.5GHz、厚さ3.0mmで1.1GHzにそれぞれ20dB以上の吸収ピークを有する。これらの整合厚さは立方晶フェライト系の6〜8mmと比較して十分薄い。

本発明の一実施形態例に係る電波吸収体中の軟磁性複合体の内部構造を摸式的に示す説明図である。 本発明の電波吸収体に用いる粒子径の適用条件を算出する際に用いるモデルの一例を示す説明図である。 本発明の電波吸収体中の充填粒子がカップリング剤により処理された軟磁性複合体と処理がなされていない軟磁性複合体との複素誘電率を比較した例を示す特性図である。 充填粒子がカップリング剤により処理されていない軟磁性複合体からなる電波吸収体のさまざまな充填量における反射減衰量を示す特性図である。 本発明の充填粒子がカップリング剤により処理された軟磁性複合体からなる電波吸収体のさまざまな充填量における反射減衰量の一例を示す特性図である。 本発明の電波吸収体(複合体の粒子充填量59.0vol%)のさまざまな厚さにおける反射減衰量の一例を示す特性図である。 スネーク(Snoek)の限界、ならびにカルボニル鉄粒子が有機高分子中に分散した材料の複素透磁率の周波数特性を示す特性図である。 軟磁性粒子が有機高分子中に分散した複合体の磁気抵抗を算出する際に用いるモデル図である。 充填粒子がカップリング剤により処理されていない軟磁性複合体(粒子充填量57.5vol%)のさまざまな厚さにおける吸収体の反射減衰量を示す特性図である。 図9の軟磁性複合体が2GHzにおいて吸収体が整合するための複素誘電率の範囲を示す特性図である。
符号の説明
1 磁性粒子
2 磁性粒子
11 電気的絶縁層
12 金属軟磁性体粒子
13 有機高分子























Claims (3)

  1. カップリング剤の分子からなる電気的絶縁層を表面に形成した金属軟磁性体粒子が、有機高分子中に粒子の体積分率で55vol%以上充填された軟磁性複合体を、反射体で裏打ちして構成され、
    前記軟磁性複合体は、複素誘電率の虚数部値が7以下となる程度に、前記カップリング剤によって前記金属軟磁性体粒子にカップリング処理を施した後に有機高分子中に充填して生成されることを特徴とする電波吸収体。
  2. 前記吸収体の厚さが1.5mm〜3.0mmであることを特徴とする請求項1記載の電波吸収体。
  3. UHF帯域で20dB以上の反射減衰量を有することを特徴とする請求項1又は2記載の電波吸収体。

JP2006056291A 2006-03-02 2006-03-02 電波吸収体 Pending JP2006203233A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056291A JP2006203233A (ja) 2006-03-02 2006-03-02 電波吸収体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056291A JP2006203233A (ja) 2006-03-02 2006-03-02 電波吸収体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9198521A Division JPH1145804A (ja) 1997-07-24 1997-07-24 電波吸収体

Publications (1)

Publication Number Publication Date
JP2006203233A true JP2006203233A (ja) 2006-08-03

Family

ID=36960874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056291A Pending JP2006203233A (ja) 2006-03-02 2006-03-02 電波吸収体

Country Status (1)

Country Link
JP (1) JP2006203233A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627946A (zh) * 2012-03-20 2012-08-08 天津大学 SnO2包覆羰基铁粉复合材料及其制备方法和应用
JP2015050360A (ja) * 2013-09-03 2015-03-16 山陽特殊製鋼株式会社 磁性部材用絶縁被覆粉末

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627946A (zh) * 2012-03-20 2012-08-08 天津大学 SnO2包覆羰基铁粉复合材料及其制备方法和应用
JP2015050360A (ja) * 2013-09-03 2015-03-16 山陽特殊製鋼株式会社 磁性部材用絶縁被覆粉末

Similar Documents

Publication Publication Date Title
Jafarian et al. Promoting the microwave absorption characteristics in the X band using core-shell structures of Cu metal particles/PPy and hexaferrite/PPy
Idris et al. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies
Mandal et al. Electromagnetic wave trapping in NiFe2O4 nano-hollow spheres: An efficient microwave absorber
Ren et al. Hierarchical CoFe2O4@ PPy hollow nanocubes with enhanced microwave absorption
Velhal et al. Electromagnetic shielding, magnetic and microwave absorbing properties of Polypyrrole/Ba0. 6Sr0. 4Fe12O19 composite synthesized via in-situ polymerization technique
Saeed et al. Fe2O3/Fe3O4/PANI/MWCNT nanocomposite with the optimum amount and uniform orientation of Fe2O3/Fe3O4 NPs in polyaniline for high microwave absorbing performance
Peymanfar et al. Preparation and characterization of MWCNT/Zn 0.25 Co 0.75 Fe 2 O 4 nanocomposite and investigation of its microwave absorption properties at X-band frequency using silicone rubber polymeric matrix
Dorraji et al. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: optimization using response surface methodology
Dosoudil et al. Electromagnetic wave absorption performances of metal alloy/spinel ferrite/polymer composites
Kim et al. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber
Alam et al. Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0. 5Co0. 5TiFe10O19/MWCNTs nanocomposites
Yeswanth et al. Recent developments in RAM based MWCNT composite materials: a short review
US7336215B2 (en) Electromagnetic radiation absorber based on magnetic microwires
Ismail et al. Comparative study of single-and double-layer BaFe12O19-Graphite nanocomposites for electromagnetic wave absorber applications
Bora et al. Polyvinylbutyral–polyaniline nanocomposite for high microwave absorption efficiency
Li et al. Microwave absorption properties of γ-Fe 2 O 3/(SiO 2) x–SO 3 H/polypyrrole core/shell/shell microspheres
Li et al. Effect of Particle Size and Concentration on Microwave‐Absorbing Properties of CuxCo2− xY (x= 0, 1) Hexaferrite Composites
Li et al. Electromagnetic and oxidation resistance properties of core‐shell structure flaked carbonyl iron powder@ SiO2 nanocomposite
Pan et al. Electromagnetic and microwave absorption properties of coatings based on spherical and flaky carbonyl iron
Akman et al. Effect of conducting polymer layer on microwave absorption properties of BaFe12O19 TiO2 composite
US10364511B1 (en) Magneto dielectric composite materials and microwave applications thereof
Fu et al. Three dimension Ni0. 5Zn0. 5Fe2O4/BaFe12O19@ carbon composite for light weight, strong absorption and broadband microwave absorbents
Wu et al. Study on fused deposition modeling forming and properties of Ni/PLA/TPU composite microwave absorbing material
Panwar et al. Design and experimental verification of a thin broadband nanocomposite multilayer microwave absorber using genetic algorithm based approach
Ge et al. Effects of particle size on electromagnetic properties of spherical carbonyl iron

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014