JP2006202552A - Lithium cell and its manufacturing method - Google Patents
Lithium cell and its manufacturing method Download PDFInfo
- Publication number
- JP2006202552A JP2006202552A JP2005011234A JP2005011234A JP2006202552A JP 2006202552 A JP2006202552 A JP 2006202552A JP 2005011234 A JP2005011234 A JP 2005011234A JP 2005011234 A JP2005011234 A JP 2005011234A JP 2006202552 A JP2006202552 A JP 2006202552A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- active material
- electrode active
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム電池およびその製造方法に関するものである。 The present invention relates to a lithium battery and a method for manufacturing the same.
コイン型(ボタン型)リチウム電池は、高エネルギー密度、軽量であるといった特徴により、機器のバックアップ用の電源としての用途が増加している。従来のメモリーやクロックのバックアップ用リチウム二次電池は、公称電圧3V以上のものが主流であった。 Coin-type (button-type) lithium batteries are increasingly used as a power source for device backup due to their high energy density and light weight. Conventional lithium secondary batteries for memory and clock backups are mainly used with a nominal voltage of 3V or more.
しかし、省電力化のため携帯電話などの小型電子機器の動作電圧が低電圧化しており、メモリーやクロックのバックアップ用二次電池も低電圧領域で高容量のものが必要とされている。 However, in order to save power, the operating voltage of small electronic devices such as mobile phones has been lowered, and secondary batteries for memory and clock backup are also required to have a high capacity in a low voltage region.
低電圧領域(3V未満の領域)において、優れた充放電特性を示すチタン酸リチウムを正極活物質、ケイ素酸化物を負極活物質として用いたリチウム二次電池(例えば特許文献1参照)が知られている。
正極活物質にチタン酸リチウムを用いたリチウム電池は、放電電圧が1.5V付近で大きな容量をもち、容量が大きく優れている。しかし、製造時に1.8Vであった電池電圧は、放置しておくと次第に3Vまで上昇する。このように、従来のリチウム電池は、経時的に電圧が上昇する課題があった。 A lithium battery using lithium titanate as a positive electrode active material has a large capacity when the discharge voltage is around 1.5 V, and has a large capacity and is excellent. However, the battery voltage, which was 1.8 V at the time of manufacture, gradually increases to 3 V if left unattended. Thus, the conventional lithium battery has a problem that the voltage increases with time.
リチウムをドープしたチタン化合物は、低電圧領域における充放電容量が大きく、低電圧二次電池の正極活物質として適している。しかし、チタン化合物を正極活物質に用いた二次電池において、製造時に1.8V±0.1Vであった初期電圧が、室温で放置しておくと、初期電圧から次第に電圧が上昇し、120日以上日数が経過すると1V以上電圧が上昇するという問題点があった。この1.8V以上の領域の放電容量は、全放電容量の4%程度であり僅かであるが、上昇する電圧にばらつきがあるため、製品出荷時に放電処理を行い初期電圧を一定にする必要があった。 The titanium compound doped with lithium has a large charge / discharge capacity in a low voltage region, and is suitable as a positive electrode active material for a low voltage secondary battery. However, in a secondary battery using a titanium compound as a positive electrode active material, when the initial voltage of 1.8 V ± 0.1 V at the time of manufacture is left at room temperature, the voltage gradually increases from the initial voltage, and 120 There was a problem that the voltage increased by 1V or more when days passed. The discharge capacity in the region of 1.8 V or more is about 4% of the total discharge capacity, and is slight, but since there is a variation in the rising voltage, it is necessary to carry out a discharge process at the time of product shipment to make the initial voltage constant. there were.
1.8V以上の容量は全容量の4%以下と少なく、かつ10Ωの抵抗で5秒放電するだけで電位が1.8Vまで下がることより、電気二重層が形成されてると考えられる。電圧上昇のメカニズムとしては、正極活物質のチタン化合物と電解液間に、経時的に電気二重層が生じるためであると考えられる。 The capacity of 1.8V or more is as small as 4% or less of the total capacity, and the electric potential is lowered to 1.8V just by discharging with a resistance of 10Ω for 5 seconds. Thus, it is considered that an electric double layer is formed. The voltage increase mechanism is considered to be because an electric double layer is formed over time between the titanium compound of the positive electrode active material and the electrolytic solution.
電解液を考えると、溶質はLiClO4で溶媒のプロピレンカーボネート(PC)及びエチレンカーボネート(EC)であることから、溶媒の誘電率はかなり高く、電解質はリチウムイオン及び過塩素酸イオンに電離している。リチウムイオンのイオン半径は小さく、PCが3個配位していると考えられる。ここで導電剤のグラファイトと活物質チタン酸リチウムを考えると、グラファイトへのリチウムのインターカレーションは容易に生ずると推測できる。その駆動力はその後に生ずる表面積の大きい表面活性な活物質チタン酸リチウムへのドーピングによるものと考えられる。リチウムイオンのケミカルポテンシャルを考えると、溶媒中の配位された状態とスピネル構造のチタン酸リチウムにドープした状態とで、固体中にあるリチウムのほうがポテンシャル的には低いのではないかと推測する。チタン酸リチウムのスピネル構造へのリチウムイオンの挿入及び放出の過程で、構造の変化がほとんど無いという知見からも、リチウムイオンの挿入(ドープ)は容易に生ずるものと考えられる。 Considering the electrolyte, since the solute is LiClO 4 and the solvents propylene carbonate (PC) and ethylene carbonate (EC), the dielectric constant of the solvent is quite high, and the electrolyte is ionized into lithium ions and perchlorate ions. Yes. The ion radius of lithium ions is small, and it is thought that three PCs are coordinated. Here, when considering graphite as the conductive agent and the active material lithium titanate, it can be estimated that lithium intercalation into graphite easily occurs. The driving force is considered to be due to the subsequent doping of the surface active active material lithium titanate having a large surface area. Considering the chemical potential of lithium ions, it is presumed that the lithium in the solid is lower in potential between the coordinated state in the solvent and the state doped with spinel lithium titanate. From the knowledge that there is almost no change in the structure during the insertion and release of lithium ions into the spinel structure of lithium titanate, the insertion (doping) of lithium ions is considered to occur easily.
挿入されたリチウムイオンはプラスにチャージされていることから、チタン酸リチウムの表面は正電荷に帯電される、このカウンターイオンとしてClO4 −がチタン酸リチウムの表面に電荷を打ち消すべく集まってくる。こうして正極活物質の表面にヘルムホルツ型電気二重層が生成されると考えられる。正極活物質の正電荷に帯電している部分に陰イオンが吸着され、その吸着量が経時的に増加するため、電圧も経時的に上昇するものと考えられる。電気二重層の誘電率はほぼ一定と考えると、固体の活性部位が満たされて平衡状態に達するまでリチウムイオンの挿入が起こり、リチウムイオンの増加に伴いチタン酸リチウムの表面に陰イオンが吸着され電気二重層を形成し、経時的な電圧上昇を生じると考えられる。このため電気二重層分の電位だけ徐々に電池電圧は上昇していくと考えられる。 Since the inserted lithium ions are positively charged, the surface of the lithium titanate is charged with a positive charge. ClO 4 − collects on the surface of the lithium titanate as counter ions to cancel the charge. Thus, it is considered that a Helmholtz electric double layer is generated on the surface of the positive electrode active material. It is considered that the anion is adsorbed on the positively charged portion of the positive electrode active material and the amount of adsorption increases with time, so that the voltage also increases with time. Assuming that the dielectric constant of the electric double layer is almost constant, lithium ion insertion occurs until the solid active site is filled and equilibrium is reached, and as the lithium ion increases, anions are adsorbed on the surface of lithium titanate. It is considered that an electric double layer is formed, causing a voltage increase with time. For this reason, it is considered that the battery voltage gradually increases by the potential of the electric double layer.
前述のとおり、電圧上昇による充放電容量の増加は極僅かであり、二次電池の充放電容量の増加に寄与しない。一方で、二次電池の電圧にバラ付きを生じることとなり、放電処理を行い初期電圧を一定にする必要があり煩雑であった。 As described above, the increase in charge / discharge capacity due to voltage increase is negligible and does not contribute to the increase in charge / discharge capacity of the secondary battery. On the other hand, the voltage of the secondary battery varies, and it is necessary to perform the discharge process to make the initial voltage constant, which is complicated.
本発明は、上記問題を解決し充放電特性に優れた二次電池の提供を目的とする。 An object of the present invention is to provide a secondary battery that solves the above problems and has excellent charge / discharge characteristics.
本発明者らは、正極活物質にチタン酸リチウムを用いたリチウム電池において前記チタン酸リチウムのBET比表面積が3m2/g以下であるものを用いると、電池を放置しておいても、電圧が3V未満になることを見出した。 When the lithium titanate having a BET specific surface area of 3 m 2 / g or less in a lithium battery using lithium titanate as a positive electrode active material is used, the present inventors Was found to be less than 3V.
推定ではあるが、非水電解質の電解液は、例えば溶質に過塩素酸リチウム、溶媒にプロピレンカーボネート(PC)、エチレンカーボネート(EC)など電気二重層を形成しやすい誘電率の高い溶媒が用いられる。正極、負極、電解液を電池容器内に入れると、電解液中の溶質が正極と負極の電位差により正極活物質の表面に吸着され、電気二重層を形成する。その吸着量は経時的に増加し、電圧も経時的に上昇するものと考えられる。電解液中の溶質の吸着量は正極活物質のBET比表面積に依存する。BET比表面積が大きいほど吸着量が多い、すなわち経時的な電圧上昇も大きいと推定した。電圧上昇による電気二重層の容量は極僅かであり、リチウム電池の容量増加にほとんど寄与しない。しかし、メモリーなどの耐電圧を超えるため、電池組立後に放電処理を行い、電圧を下げる必要があり煩雑であった。 Albeit at estimating electrolytic solution of the nonaqueous electrolyte, lithium perchlorate, solvent propylene carbonate (PC), a highly ethylene carbonate (EC) tends to form an electric double layer, such as dielectric constant solvent used for, for example, a solute . When the positive electrode, the negative electrode, and the electrolytic solution are placed in the battery container, the solute in the electrolytic solution is adsorbed on the surface of the positive electrode active material due to the potential difference between the positive electrode and the negative electrode to form an electric double layer. It is thought that the amount of adsorption increases with time, and the voltage also increases with time. The amount of solute adsorbed in the electrolyte depends on the BET specific surface area of the positive electrode active material. It was estimated that the greater the BET specific surface area, the greater the amount of adsorption, that is, the greater the voltage rise over time. The capacity of the electric double layer due to the voltage rise is very small and hardly contributes to the increase in capacity of the lithium battery. However, since it exceeds the withstand voltage of a memory or the like, it is necessary to perform a discharge process after assembling the battery to lower the voltage, which is complicated.
BET比表面積が3m2/g以下のチタン酸リチウムは次のように作成する。出発原料に水酸化リチウムまたは炭酸リチウムと、二酸化チタンを混合し、これを700〜1000℃で焼成する。焼成温度は700℃以下では未反応の二酸化チタンがあり、電池容量が小さく好ましくない。また1000℃以上では最適な結晶構造のものが得られないため電池容量が小さくなる。また焼成温度を高温にするほど、出発原料の溶融によりBET比表面積が小さくなる。このため出発原料の二酸化チタンのBET比表面積は焼成温度にもよるが10m2/g以下が好ましい。 A lithium titanate having a BET specific surface area of 3 m 2 / g or less is prepared as follows. Lithium hydroxide or lithium carbonate and titanium dioxide are mixed in the starting material and calcined at 700 to 1000 ° C. When the firing temperature is 700 ° C. or less, there is unreacted titanium dioxide, which is not preferable because the battery capacity is small. Moreover, since the optimal crystal structure cannot be obtained at 1000 ° C. or higher, the battery capacity is reduced. Further, the higher the firing temperature, the smaller the BET specific surface area due to melting of the starting material. Therefore, the BET specific surface area of the starting titanium dioxide is preferably 10 m 2 / g or less, depending on the firing temperature.
本発明のBET比表面積が3m2/g以下のチタン酸リチウムを用いることにより経時的な電圧上昇を防止し、充放電特性に優れたリチウム電池の提供を可能とする。 By using lithium titanate having a BET specific surface area of 3 m 2 / g or less according to the present invention, it is possible to prevent a voltage increase with time and to provide a lithium battery excellent in charge / discharge characteristics.
本発明は正極活物質にBET比表面積が3m2/g以下のチタン酸リチウムを用いることを特徴とする。チタン酸リチウムの組成はLixTiyOz(0≦x≦4、1≦y≦5、2≦z≦12)で表され、Li2TiO3、Li4Ti5O12、アナターゼ形TiO2、ルチル形TiO2など、1種または複数の混合物であっても良い。負極活物質は特に限定されず、従来から知られているグラファイト、ケイ素、ケイ素酸化物、リチウム−アルミ合金などを用いることができる。 The present invention is characterized in that lithium titanate having a BET specific surface area of 3 m 2 / g or less is used as the positive electrode active material. The composition of lithium titanate is represented by LixTiyOz (0 ≦ x ≦ 4, 1 ≦ y ≦ 5, 2 ≦ z ≦ 12), Li 2 TiO 3 , Li 4 Ti 5 O 12 , anatase TiO 2 , rutile TiO such as 2, it may be one or more of the mixtures. The negative electrode active material is not particularly limited, and conventionally known graphite, silicon, silicon oxide, lithium-aluminum alloy, and the like can be used.
電解液は、縺|ブチロラクトン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルフォーメイト、1,2−ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジメチルフォルムアミド等の有機溶媒の単独又は混合溶媒に、電解質としてLiClO4,LiPF6,LiBF4,LiCF3SO3,Li(CF3SO2)2N等のリチウムイオン解離性塩を溶解した非水(有機)電解液、ポリエチレンオキシドやポリフォスファゼン架橋体等の高分子に前記リチウム塩、有機溶媒を固溶させた高分子固体電解質を含んだものなど、リチウムイオン導電性の非水電解質であれば良い。特に、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状アルキルカーボネートとジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状アルキルカーボネートの混合溶媒にLiPF6,LiClO4,LiBF4又はLiCF3SO3等の塩を溶解した有機電解液を用いた場合に、充放電特性が優れ、サイクル寿命の長い電池が得られるので、特に好ましい。 The electrolyte is an organic solvent such as 縺 | butyrolactone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, dimethylformamide, etc. A non-aqueous (organic) electrolytic solution in which a lithium ion dissociable salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N or the like is dissolved in a single or mixed solvent as an electrolyte Any lithium ion conductive non-aqueous electrolyte may be used, such as a polymer solid electrolyte in which a lithium salt or an organic solvent is dissolved in a polymer such as ethylene oxide or a crosslinked polyphosphazene. In particular, a mixed solvent of a cyclic alkyl carbonate such as propylene carbonate, ethylene carbonate or butylene carbonate and a chain alkyl carbonate such as dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate, such as LiPF 6 , LiClO 4 , LiBF 4 or LiCF 3 SO 3 The use of an organic electrolytic solution in which a salt is dissolved is particularly preferable because a battery having excellent charge / discharge characteristics and a long cycle life can be obtained.
本発明に係わるリチウム二次電池の断面図を図1に示す。正極活物質からなる正極101、正極ケース102、負極活物質からなる負極103、負極ケース104、金属リチウム105、正極と負極を分離するセパレータ106、ガスケット107、電解液108である。まず、正極101を正極ケース102に、負極103を負極ケース104に、それぞれ導電性接着剤で貼り付ける。次に、正極上にセパレータ106を載置し、電解液108を注入する。金属リチウム105を負極103に貼り付け、負極ケース104と正極ケース102をガスケット107を介して組み立て、正極ケースをかしめ封止を行う。電池の大きさは外径6.8mm、厚さ2.1mmである。 A cross-sectional view of a lithium secondary battery according to the present invention is shown in FIG. A positive electrode 101 made of a positive electrode active material, a positive electrode case 102, a negative electrode 103 made of a negative electrode active material, a negative electrode case 104, metallic lithium 105, a separator 106 separating the positive electrode and the negative electrode, a gasket 107, and an electrolytic solution 108. First, the positive electrode 101 is attached to the positive electrode case 102 and the negative electrode 103 is attached to the negative electrode case 104 with a conductive adhesive. Next, the separator 106 is mounted on the positive electrode, and the electrolytic solution 108 is injected. Metal lithium 105 is attached to the negative electrode 103, the negative electrode case 104 and the positive electrode case 102 are assembled via the gasket 107, and the positive electrode case is caulked and sealed. The battery has an outer diameter of 6.8 mm and a thickness of 2.1 mm.
正極活物質としてチタン酸リチウム(Li4Ti5O12、BET比表面積3.0m2/g)、負極活物質としてSiOを用いた場合を記す。正極活物質であるチタン酸リチウムに導電剤としてグラファイトを、結着剤としてポリアクリル酸を重量比 チタン酸リチウム:グラファイト:ポリアクリル酸=85:10:5の割合で混合して正極合剤とした。次にこの正極合剤37.3mgを2ton/cm2で直径6.3mm厚さ0.57mmのペレット状に加圧成形し、正極とした。このようにして得られた正極を導電性接着剤を用いて正極ケースに接着し一体化した。その後真空乾燥機で真空、120℃で8時間乾燥した。 The case where lithium titanate (Li 4 Ti 5 O 12, BET specific surface area 3.0 m 2 / g) is used as the positive electrode active material and SiO is used as the negative electrode active material is described. Lithium titanate, which is a positive electrode active material, is mixed with graphite as a conductive agent and polyacrylic acid as a binder, and mixed at a ratio of lithium titanate: graphite: polyacrylic acid = 85: 10: 5. did. Next, 37.3 mg of this positive electrode mixture was pressure-molded into a pellet shape having a diameter of 6.3 mm and a thickness of 0.57 mm at 2 ton / cm 2 to obtain a positive electrode. The positive electrode obtained in this manner was bonded and integrated with the positive electrode case using a conductive adhesive. Thereafter, it was dried in a vacuum dryer at 120 ° C. for 8 hours.
負極は、次のようにして作製した。市販のSiOを粉砕したものを負極活物質として用いた。これに導電剤としてグラファイトを、結着剤としてポリアクリル酸をそれぞれ重量比45:40:15の割合で混合して負極合剤とした。負極合剤9.3mgを2ton/cm2で直径4mm、厚さ0.33mmのペレットに加圧成形したものを負極ペレットとした。この様にして得られた負極ペレットを、導電性樹脂接着剤を用いて負極ケースに接着し一体化した。真空乾燥機で真空120℃8時間乾燥した。乾燥した負極上に金属リチウムを直径4.0mm、厚さ0.48mmに打ち抜いたものを圧着し、リチウムと負極ペレットを積層し、負極とした。厚さ0.25mmのガラス繊維からなる不織布を乾燥後φ4.8mmに打ち抜きセパレータとした。ガスケットはPP製のものを用いた。電解液は、プロピレンカーボネイト(PC):エチレンカーボネイト(EC):1,2−ジメトキシエタン(DME)混合溶媒に、過塩素酸リチウムを1mol/L溶解したものを電池缶内に入れリチウム電池を作製した。 The negative electrode was produced as follows. A commercially available SiO powder was used as the negative electrode active material. This was mixed with graphite as a conductive agent and polyacrylic acid as a binder at a weight ratio of 45:40:15 to obtain a negative electrode mixture. A negative electrode pellet was obtained by press-forming 9.3 mg of the negative electrode mixture into a pellet having a diameter of 4 mm and a thickness of 0.33 mm at 2 ton / cm 2 . The negative electrode pellet obtained in this way was bonded and integrated with the negative electrode case using a conductive resin adhesive. It dried in vacuum 120 degreeC 8 hours with the vacuum dryer. A metal lithium punched out to a diameter of 4.0 mm and a thickness of 0.48 mm was pressed onto the dried negative electrode, and lithium and a negative electrode pellet were laminated to form a negative electrode. A non-woven fabric made of glass fibers having a thickness of 0.25 mm was dried and punched out to a diameter of 4.8 mm to form a separator. A gasket made of PP was used. The electrolyte is a lithium battery, in which 1 mol / L of lithium perchlorate is dissolved in a mixed solvent of propylene carbonate (PC): ethylene carbonate (EC): 1,2-dimethoxyethane (DME) in a battery can. did.
正極活物質としてBET比表面積0.9m2/gのLi4Ti5O12を用い実施例1と同様にして電池を作製した。 A battery was fabricated in the same manner as in Example 1 using Li 4 Ti 5 O 12 having a BET specific surface area of 0.9 m 2 / g as the positive electrode active material.
正極活物質としてBET比表面積4.2m2/gのLi4Ti5O12を用い実施例1と同様にして電池を作製した。 A battery was fabricated in the same manner as in Example 1 using Li 4 Ti 5 O 12 having a BET specific surface area of 4.2 m 2 / g as the positive electrode active material.
正極活物質としてBET比表面積3.2m2/gのLi4Ti5O12を用い実施例1と同様にして電池を作製した。 A battery was fabricated in the same manner as in Example 1 using Li 4 Ti 5 O 12 having a BET specific surface area of 3.2 m 2 / g as the positive electrode active material.
これからもわかるように正極活物質のBET比表面積が小さくなるほど電池の経時的な電圧上昇が小さくなっている。経時的な電圧上昇の影響を小さくするためには、正極活物質のBET比表面積が3m2/g以下のものが適していることが分かった。 As can be seen from this, as the BET specific surface area of the positive electrode active material decreases, the voltage increase with time of the battery decreases. It was found that a positive electrode active material having a BET specific surface area of 3 m 2 / g or less is suitable for reducing the influence of voltage increase over time.
しかし正極活物質のBET比表面積が0.9m2/gである実施例2は、放電容量が3.5mAhであり、正極活物質のBET比表面積が3.0m2/gである実施例1の放電容量4.7mAhに比べ、1.2mAh低い結果となった。BET比表面積1m2/g以上のものは放電容量が大きく好ましい。 However, Example 2 in which the positive electrode active material has a BET specific surface area of 0.9 m 2 / g has a discharge capacity of 3.5 mAh, and the positive electrode active material has a BET specific surface area of 3.0 m 2 / g. The result was 1.2 mAh lower than 4.7 mAh. Those having a BET specific surface area of 1 m 2 / g or more are preferred because of their large discharge capacity.
なお、平均粒径0.5μm〜3μmであるチタン酸リチウムは経時的な電圧上昇が少なく、かつ充放電特性に優れているため適している。 Note that lithium titanate having an average particle diameter of 0.5 μm to 3 μm is suitable because the voltage rise with time is small and charge / discharge characteristics are excellent.
101 正極
102 正極ケース
103 負極
104 負極ケース
105 金属リチウム
106 セパレータ
107 ガスケット
108 電解液
101 Positive electrode 102 Positive electrode case 103 Negative electrode 104 Negative electrode case 105 Metallic lithium 106 Separator 107 Gasket 108 Electrolyte
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005011234A JP2006202552A (en) | 2005-01-19 | 2005-01-19 | Lithium cell and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005011234A JP2006202552A (en) | 2005-01-19 | 2005-01-19 | Lithium cell and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006202552A true JP2006202552A (en) | 2006-08-03 |
Family
ID=36960372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005011234A Withdrawn JP2006202552A (en) | 2005-01-19 | 2005-01-19 | Lithium cell and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006202552A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009110936A (en) * | 2007-10-10 | 2009-05-21 | Panasonic Corp | Lithium ion secondary battery |
WO2010107340A1 (en) * | 2009-03-06 | 2010-09-23 | Общество С Ограниченной Ответственностью "Элионт" | Anode material for electrochemical cells and a method for producing same |
US8318347B2 (en) | 2007-10-10 | 2012-11-27 | Panasonic Corporation | Lithium ion secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10162828A (en) * | 1996-11-29 | 1998-06-19 | Seiko Instr Inc | Nonaqueous electrolyte battery, and manufacture thereof |
JPH11260412A (en) * | 1998-03-09 | 1999-09-24 | Toshiba Battery Co Ltd | Nonaqueous solvent secondary battery |
JP2001192208A (en) * | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | Lithium-titanium multiple oxide, its manufacturing method and its use |
JP2002100354A (en) * | 2000-09-21 | 2002-04-05 | Toshiba Battery Co Ltd | Non aqueous electrolyte secondary battery |
JP2002211925A (en) * | 2000-11-20 | 2002-07-31 | Ishihara Sangyo Kaisha Ltd | Lithium titanate and manufacturing method thereof and lithium cell formed by using the same |
JP2002274849A (en) * | 2001-03-16 | 2002-09-25 | Titan Kogyo Kk | Lithium titanate, production method therefor and its use |
-
2005
- 2005-01-19 JP JP2005011234A patent/JP2006202552A/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10162828A (en) * | 1996-11-29 | 1998-06-19 | Seiko Instr Inc | Nonaqueous electrolyte battery, and manufacture thereof |
JPH11260412A (en) * | 1998-03-09 | 1999-09-24 | Toshiba Battery Co Ltd | Nonaqueous solvent secondary battery |
JP2001192208A (en) * | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | Lithium-titanium multiple oxide, its manufacturing method and its use |
JP2002100354A (en) * | 2000-09-21 | 2002-04-05 | Toshiba Battery Co Ltd | Non aqueous electrolyte secondary battery |
JP2002211925A (en) * | 2000-11-20 | 2002-07-31 | Ishihara Sangyo Kaisha Ltd | Lithium titanate and manufacturing method thereof and lithium cell formed by using the same |
JP2002274849A (en) * | 2001-03-16 | 2002-09-25 | Titan Kogyo Kk | Lithium titanate, production method therefor and its use |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009110936A (en) * | 2007-10-10 | 2009-05-21 | Panasonic Corp | Lithium ion secondary battery |
JP4695170B2 (en) * | 2007-10-10 | 2011-06-08 | パナソニック株式会社 | Lithium ion secondary battery |
US8318347B2 (en) | 2007-10-10 | 2012-11-27 | Panasonic Corporation | Lithium ion secondary battery |
WO2010107340A1 (en) * | 2009-03-06 | 2010-09-23 | Общество С Ограниченной Ответственностью "Элионт" | Anode material for electrochemical cells and a method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9985262B2 (en) | Battery | |
TWI269472B (en) | Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same | |
JP5515211B2 (en) | Method for producing positive electrode active material | |
JP4656097B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
TWI506838B (en) | Nonaqueous electrolyte storage battery and manufacturing method thereof | |
JP5972513B2 (en) | Cathode and lithium battery using the same | |
JP6587235B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2016143543A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2009193745A (en) | Method for manufacturing positive electrode active material | |
CN104795519B (en) | Nonaqueous electrolyte secondary battery | |
JP2007220630A (en) | Positive electrode active material and battery | |
JP2010061864A (en) | Positive electrode active material, positive electrode using the same and nonaqueous electrolyte secondary battery | |
CN115799601A (en) | Lithium ion battery | |
KR20090088625A (en) | Anode active material, manufacturing method thereof, and anode and lithium battery using same | |
JP2015159103A (en) | Nonaqueous electrolyte secondary battery | |
JP2005209411A (en) | Nonaqueous electrolyte secondary battery | |
JP2003229172A (en) | Nonaqueous electrolyte battery | |
KR102228322B1 (en) | Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery | |
KR101066446B1 (en) | battery | |
JP2007242318A (en) | Positive active material, its manufacturing method, and nonaqueous electrolyte secondary battery | |
JP2007242284A (en) | Positive active material, its manufacturing method, and nonaqueous electrolyte secondary battery | |
JP5028886B2 (en) | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery | |
KR20170084894A (en) | Negative electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same | |
JP2008071623A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method | |
JP2006202552A (en) | Lithium cell and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071116 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071203 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091105 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091113 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101207 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20110125 |