JP2006292516A - Battery voltage detection controller - Google Patents
Battery voltage detection controller Download PDFInfo
- Publication number
- JP2006292516A JP2006292516A JP2005112506A JP2005112506A JP2006292516A JP 2006292516 A JP2006292516 A JP 2006292516A JP 2005112506 A JP2005112506 A JP 2005112506A JP 2005112506 A JP2005112506 A JP 2005112506A JP 2006292516 A JP2006292516 A JP 2006292516A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- circuit
- overcharge
- cell group
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Measurement Of Current Or Voltage (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、組電池の過充放電検出回路及び電池電圧検出回路に関する。 The present invention relates to an overcharge / discharge detection circuit and a battery voltage detection circuit for an assembled battery.
近来、ハイブリッド自動車や電気自動車においては走行用のモータを電力で駆動する必要があるため、使用する二次電池を高電圧(300V程度)としなければならず、低い電圧のセル単体を多数個直列接続して組電池を構成している。特に、用途によっては非常に高いポテンシャルを示すリチウム電池や電気2重層コンデンサを用いた車両開発が昨今推し進められている。
しかし、リチウム電池は過充電や過放電に弱く、定められた充電電圧範囲内で使用しないと材料が分解して著しく容量が低下したり、異常に発熱するなどして使用できなくなるおそれがある。そのため、リチウム電池を使用するときは、セルの上限電圧及び下限電圧を明確に規定して、セルの端子電圧が上限及び下限電圧の範囲内となるように充放電制御したり、あるいは、電圧範囲を制限する保護回路とセットで使用するのが一般的である。
例えば、特許文献1では、セルの上限電圧及び下限電圧を設定して過充放電の状態を監視するとともに、過充放電検出回路の故障も検出する過充放電検出と、セルグループの電圧検出とをそれぞれ別系統の検出回路で行い制御用プロセッサに入力している組電池の制御システムを開示している。
Recently, in a hybrid vehicle and an electric vehicle, it is necessary to drive a motor for driving with electric power. Therefore, a secondary battery to be used has to be set to a high voltage (about 300V), and a large number of low voltage cells are connected in series. Connected to form an assembled battery. In particular, vehicle development using a lithium battery or an electric double layer capacitor, which has a very high potential depending on applications, has been promoted recently.
However, lithium batteries are vulnerable to overcharge and overdischarge, and if they are not used within a predetermined charging voltage range, the material may decompose and the capacity may be significantly reduced, or the battery may be abnormally heated and become unusable. Therefore, when using a lithium battery, the upper limit voltage and lower limit voltage of the cell are clearly specified, and charge / discharge control is performed so that the terminal voltage of the cell is within the upper limit and lower limit voltage range, or the voltage range Generally, it is used in combination with a protection circuit that limits
For example, in
また、ハイブリッド自動車や電気自動車においては、高電圧系は感電などの危険防止のためシャーシから絶縁されている。一方、組電池の充放電を制御するプロセッサは、シャーシを基準電位としているため、高電圧系の組電池の電圧はシャーシを基準電位としているプロセッサ等とは絶縁された状態で計測される必要がある。
例えば、特許文献1の発明では、過充放電検出において検出信号をフォトカプラにより絶縁・伝達する手法をとっている。
また、特許文献2には、組電池のセルグループの電圧検出をフライングキャパシタ式として高電圧系とプロセッサ等との絶縁を確保し、さらに、キャパシタを複数個備えた構成とすることで、電圧検出の速度を向上させた組電池の電圧検出装置が開示されている。
特許文献3の発明では、組電池のセルブロックの電圧検出をフライングキャパシタ式とするとともに、キャパシタに並列にリセット回路を設けることで、絶縁的にセルグループの電圧検出を行い、さらに、フライングキャパシタ回路への入力回路であるマルチプレクサ回路の断線故障やオフ故障を検出できるようにしている。
For example, the invention of
Further,
In the invention of Patent Document 3, the voltage detection of the cell block of the assembled battery is a flying capacitor type, and a reset circuit is provided in parallel with the capacitor to detect the voltage of the cell group in an insulating manner. It is possible to detect a disconnection failure or an off failure of a multiplexer circuit that is an input circuit to the circuit.
上記従来例で説明したように、ハイブリッド自動車や電気自動車の組電池のセルグループの電圧検出にフライングキャパシタ式の回路構成をとれば、組電池の電圧検出を後段のシャーシを基準電位とした回路と絶縁的に行うことができる。
しかしながら、特許文献1のように組電池の電圧検出と、組電池の過充放電検出を別系統とし、2系統の検出回路を用いれば、配線や素子の増加と回路の複雑化を伴う。
また、特許文献3の場合は、電圧検出回路にリセット回路を設けて、キャパシタ蓄電時のセルグループの消費電力低減とセルグループ電圧検出用マルチプレクサ回路の断線故障やオフ故障の検出が可能な構成としているが、リセット回路自体がオフ故障した場合、セルグループ電圧検出用マルチプレクサ回路のオフ故障の検出ができないという問題がある。
As described in the above-described conventional example, if a flying capacitor type circuit configuration is used for voltage detection of a cell group of a battery pack of a hybrid vehicle or an electric vehicle, the voltage detection of the battery pack is performed using a chassis at the rear stage as a reference potential. It can be done in an insulating manner.
However, if the voltage detection of the assembled battery and the overcharge / discharge detection of the assembled battery are performed as separate systems as in
In the case of Patent Document 3, a reset circuit is provided in the voltage detection circuit so that the power consumption of the cell group can be reduced when the capacitor is charged and the disconnection failure or the off failure of the cell group voltage detection multiplexer circuit can be detected. However, when the reset circuit itself has an off failure, there is a problem that the off failure of the cell group voltage detecting multiplexer circuit cannot be detected.
本発明は、上記問題点に鑑みなされたもので、組電池のセルグループの電圧検出と、セルの過充放電検出と、組電池の電圧検出回路と過充放電検出回路の故障及び異常検出との3つの機能を、例えば、一式のフライングキャパシタ回路で検出する構成とし、簡素な回路構成で高機能な組電池の電池電圧検出制御装置を提供することを目的としている。 The present invention has been made in view of the above-mentioned problems, and includes voltage detection of a cell group of an assembled battery, overcharge / discharge detection of the cell, and failure and abnormality detection of the voltage detection circuit and overcharge / discharge detection circuit of the assembled battery. The three functions are detected by, for example, a set of flying capacitor circuits, and an object of the present invention is to provide a battery voltage detection control device for a highly functional assembled battery with a simple circuit configuration.
上記目的を達成するために、請求項1の電池電圧検出制御装置は、複数個直列接続して組電池を構成する充放電可能な単体セルごとに設けられ、該単体セルの過充放電判定信号を出力する過充放電判定手段と該単体セルを複数個直列接続してグループ化したセルグループの電圧を出力するセルグループ電圧出力手段とを備える電池情報出力回路と、電圧検出回路と、該電圧検出回路の検出電圧を計測する電圧計測回路と、を具備する電池電圧検出制御装置であって、前記電圧検出回路は、前記過充放電判定信号と前記セルグループ電圧とを検出することを特徴としたものである。
In order to achieve the above object, the battery voltage detection control device according to
請求項1の電池電圧検出制御装置によれば、セルグループの電圧とセルの過充放電判定信号との両方を一式の電圧検出回路と電圧計測回路とで検出する構成としたので、簡素な回路構成となっている。
According to the battery voltage detection control apparatus of
請求項2の発明は、請求項1に記載の電池電圧検出制御装置において、前記電圧検出回路は、フライングキャパシタ回路と、入力サンプリングスイッチ回路と、出力サンプリングスイッチ回路と、極性切替えスイッチ回路とから構成されていることを特徴としている。 According to a second aspect of the present invention, in the battery voltage detection control device according to the first aspect, the voltage detection circuit includes a flying capacitor circuit, an input sampling switch circuit, an output sampling switch circuit, and a polarity switching switch circuit. It is characterized by being.
請求項2の電池電圧検出制御装置によれば、組電池の高圧系と、シャーシを基準電圧とする後段の電圧検出回路とをフライングキャパシタ回路により電気的に切り離して、セルグループ電圧と、セルの過充放電判定信号とを絶縁的に計測することができる。
According to the battery voltage detection control device of
請求項3の発明は、請求項2に記載の電池電圧検出制御装置において、前記フライングキャパシタ回路は、キャパシタが複数個直列に接続されて構成されていることを特徴とする。 According to a third aspect of the present invention, in the battery voltage detection control apparatus according to the second aspect, the flying capacitor circuit includes a plurality of capacitors connected in series.
請求項3の電池電圧検出制御装置によれば、電圧検出回路を構成するフライングキャパシタ回路のキャパシタを複数設けることにより、電圧検出回路の性能を向上させたものとなっている。
例えば、図7に示すようにフライングキャパシタ回路を直列接続された容量の等しい2個のキャパシタで構成した場合は、キャパシタに蓄電、読み出されるキャパシタ1個当たりの検出電圧は、キャパシタを1個で構成した場合と比較すると半分となるので、寄生容量の影響を低減してより正確な電圧検出を行うことができる。
また、図8に示すように組電池を構成する各セルグループに対して、セルグループ1個に1個のキャパシタを並列に設けたときは、セルグループ電圧と、セルの過充放電判定信号とをより速く検出することが可能となる。
According to the battery voltage detection control apparatus of the third aspect, the performance of the voltage detection circuit is improved by providing a plurality of capacitors of the flying capacitor circuit constituting the voltage detection circuit.
For example, as shown in FIG. 7, when the flying capacitor circuit is composed of two capacitors having the same capacitance connected in series, the detected voltage per capacitor stored and read in the capacitor is composed of one capacitor. Compared to the case, the voltage is halved, so that the influence of the parasitic capacitance can be reduced and more accurate voltage detection can be performed.
Further, when one capacitor is provided in parallel for each cell group constituting the assembled battery as shown in FIG. 8, the cell group voltage, the cell overcharge / discharge determination signal, Can be detected more quickly.
請求項4の発明は、請求項1に記載の電池電圧検出制御装置において、前記過充放電判定回路が出力する前記過充放電判定信号の電圧は、前記セルグループ電圧の取り得る電圧範囲外の値に設定されていることを特徴とする。 According to a fourth aspect of the present invention, in the battery voltage detection control device according to the first aspect, the voltage of the overcharge / discharge determination signal output by the overcharge / discharge determination circuit is outside a voltage range that the cell group voltage can take. It is set to a value.
セルグループ電圧は、一定の電圧の範囲内で動作するように管理されている。従って、過充放電判定信号の電圧をセルグループ電圧の動作電圧の範囲外に設定することで、過充放電判定信号の電圧をフライングキャパシタ回路で蓄電、読み出した後のキャパシタの残留蓄電電圧は、少なくともセルグループ電圧の動作電圧の範囲外にあるはずである。つまり通常セルグループの電圧より低い電圧に設定することにより、過充放電判定信号の電圧検出の後のキャパシタの残留蓄電電圧は、必ずセルグループの電圧より低い状態にある。すなわち、フライングキャパシタ回路のキャパシタは、セルグループ電圧の検出に対しては、キャパシタの蓄電電圧を短絡してリセットするに等しい効果がある。 The cell group voltage is managed so as to operate within a certain voltage range. Therefore, by setting the voltage of the overcharge / discharge determination signal outside the range of the operating voltage of the cell group voltage, the voltage of the overcharge / discharge determination signal is stored in the flying capacitor circuit, and the residual storage voltage of the capacitor after being read is It should be at least outside the operating voltage range of the cell group voltage. That is, by setting the voltage lower than the voltage of the normal cell group, the remaining stored voltage of the capacitor after the voltage detection of the overcharge / discharge determination signal is always lower than the voltage of the cell group. That is, the capacitor of the flying capacitor circuit has an effect equivalent to resetting by short-circuiting the storage voltage of the capacitor for detecting the cell group voltage.
請求項5の発明は、請求項2〜4に記載の電池電圧検出制御装置において、前記過充放電判定信号の電圧と前記セルグループ電圧とを検出するために、順次前記フライングキャパシタ回路に接続される前記過充放電判定信号の出力と前記セルグループの出力の接続の順番の組み合わせは、順次変更されることを特徴とする。 According to a fifth aspect of the present invention, in the battery voltage detection control device according to any one of the second to fourth aspects, the overcharge / discharge determination signal voltage and the cell group voltage are sequentially connected to the flying capacitor circuit. The combination of the order of connection of the output of the overcharge / discharge determination signal and the output of the cell group is sequentially changed.
過充放電判定信号の電圧検出の後にセルグループ電圧を読み込むときは、各セルグループを連続して電圧検出するのに比較するとキャパシタに残留する電圧が低いので、該当するセルグループのキャパシタ蓄電時の負担が大きい。従って、過充放電判定信号の電圧検出とセルグループ電圧検出の組み合わせを固定して同じサイクルでキャパシタへの読み込みを繰り返すことは、特定のセルグループの放電量を増加させることとなる。
請求項5の発明では、過充放電判定信号の電圧検出とセルグループ電圧検出の組み合わせを各サイクルで順次変更したり、あるいは、同じ組み合わせでも、各サイクルで特定のセルグループにのみ電圧読み込み時の放電の負担が集中しないように、各サイクルで計測をスタートするセルグループを順番に変えていくこととしている。
When the cell group voltage is read after the voltage detection of the overcharge / discharge determination signal, the voltage remaining in the capacitor is lower than the voltage detection for each cell group continuously. The burden is heavy. Accordingly, fixing the combination of the voltage detection of the overcharge / discharge determination signal and the cell group voltage detection and repeating the reading into the capacitor in the same cycle increases the discharge amount of the specific cell group.
In the invention of claim 5, the combination of the voltage detection of the overcharge / discharge determination signal and the cell group voltage detection is sequentially changed in each cycle, or even when the same combination is used, only when a voltage is read into a specific cell group in each cycle. The cell groups that start measurement in each cycle are changed in order so that the discharge burden is not concentrated.
以上説明したように本発明によれば、組電池のセルの過充放電判定と、セルグループの電圧検出と、過充放電判定回路及びセルグループ電圧検出回路の故障検出とを1つの電圧検出回路で行えるようにしたので簡素な回路構成で高機能な電池電圧検出制御装置を実現している。 As described above, according to the present invention, the overcharge / discharge determination of the cells of the assembled battery, the voltage detection of the cell group, and the failure detection of the overcharge / discharge determination circuit and the cell group voltage detection circuit are performed as one voltage detection circuit. Therefore, a highly functional battery voltage detection control device is realized with a simple circuit configuration.
以下に、本発明による組電池の電池電圧検出制御装置の実施形態について実施例1及び実施例2に基づいて説明する。
(実施例1)
図1は、本発明の電池電圧検出制御装置の1実施例の概略を示す回路図であり、1は電池情報出力回路(CMUi)、2は電圧検出回路、3は電圧計測回路、4はADコンバータ、5はマイクロコンピユータ(CPU)、6はメモリである。電池情報出力回路(CMUi)1の出力は、電圧検出回路2に接続され、電圧検出回路2の出力は、電圧計測回路3に接続されている。
なお、電圧検出回路2と電圧計測回路3とADコンバータ4とCPU5とメモリ6で組電池コントローラ(BCU)70を構成しており、電池情報出力回路(CMUi)1と組電池コントローラ(BCU)70を接続したものが本発明の電池電圧検出制御装置である。
10は電池電圧検出制御装置が制御する組電池である。
Hereinafter, an embodiment of a battery voltage detection control device for a battery pack according to the present invention will be described based on Example 1 and Example 2.
Example 1
FIG. 1 is a circuit diagram showing an outline of one embodiment of a battery voltage detection control apparatus of the present invention, where 1 is a battery information output circuit (CMUi), 2 is a voltage detection circuit, 3 is a voltage measurement circuit, and 4 is an AD The converter 5 is a micro computer (CPU), and 6 is a memory. The output of the battery information output circuit (CMUi) 1 is connected to the
The
電池情報出力回路(CMUi)1の回路図は図2に示されている。電池情報出力回路1は、セルグループを構成する各単体セル(図2の実施例では1つのセルグループはn個の単体セルCi1〜Cinで構成されている)にそれぞれ接続されている過充放電判定回路(ULi1〜ULin)11と、フォトカプラ13と、論理和演算手段としての反転OR回路14と、論理積演算手段としての反転AND回路15と、反転OR回路14と反転AND回路15の出力に基づいて、電圧検出回路2への過充放電判定アナログ信号を生成、出力する定電流回路12と、セルグループの電圧を電圧検出回路2へ出力する抵抗R1及びR2と、から構成されている。フォトカプラ13をオン/オフ制御するスイッチ回路7はBCU70に設けられている。
過充放電判定回路(ULin)11の回路構成は、図3に示すように、単体セルの電圧(VCij)を分圧する分圧回路16と、抵抗Rc及び電圧発生源DUからなる定電圧回路18と、コンパレータ19とから構成されている。
A circuit diagram of the battery information output circuit (CMUi) 1 is shown in FIG. The battery
As shown in FIG. 3, the overcharge / discharge determination circuit (ULin) 11 includes a voltage dividing
次に、電圧検出回路2の回路図は、図1に示されているように、電流制限抵抗21(R10〜Rnn)と、入力サンプリングスイッチ22(SSR10〜SSRnn)と、極性切替えスイッチ23(SSR00〜SSR03)と、キャパシタ24(C)と、出力サンプリングスイッチ25(SSR21〜SSR22)とから構成されている。
Next, as shown in FIG. 1, the circuit diagram of the
(基本動作)実施例1の基本動作について、図1〜図3に基づいて説明する。
まず、過充放電判定回路(ULi1〜ULin)11は、フォトカプラ13のオン/オフに従ってセル電圧の使用可能範囲から設定された上限値及び下限値をしきい値として判定信号を反転OR回路14及び反転AND回路15に出力する。
すなわち、過充放電判定回路(ULi1〜ULin)11は、図3の分圧回路16の抵抗Ra、Rb、Rxの値を選ぶことにより、フォトカプラ13がのオンのときは、セル電圧の使用可能範囲の下限値をしきい値として、セル電圧(VCij)の方が小さいときにはロウレベル、セル電圧(VCij)の方が大きいときにはハイレベルとなる判定信号を出力する。
また、フォトカプラ13がオフのときは、セル電圧の使用可能範囲の上限値をしきい値として、セル電圧(VCij)の方が小さいときにはロウレベル、セル電圧(VCij)の方が大きいときにはハイレベルとなる判定信号を出力する。
(Basic Operation) The basic operation of the first embodiment will be described with reference to FIGS.
First, the overcharge / discharge determination circuit (ULi1 to ULin) 11 inverts a determination signal using an upper limit value and a lower limit value set from the usable range of the cell voltage as threshold values according to on / off of the
That is, the overcharge / discharge determination circuit (ULi1 to ULin) 11 uses the cell voltage when the
Further, when the
図2に示すように、反転OR回路14及び反転AND回路15は、過充放電判定回路(ULi1〜ULin)11から入力したセル電圧(VCij)の判定信号に基づいて、セルグループ(CGi)の充電状況を表すロウレベルまたはハイインピーダンス(Z)の信号を出力する(反転OR回路14の出力:OOi出力、反転AND回路15の出力:OAi出力)。出力された二つの信号(OOi出力及びOAi出力)は出力インターフェイスとしての定電流回路12に入力され、アナログ値に変換され、合成され、OCDS信号として出力される。このとき、OCDS出力信号は、セルグループ(CGi)の充電状況あるいは過充放電判定回路11の状況により、ハイレベル、ミドルレベル、ロウレベルの3通りのアナログ電圧値のいずれかをOCDS出力端子OCDSiに出力する。
As shown in FIG. 2, the inverting OR
このとき、反転OR回路14の出力(OOi出力)及び反転AND回路15の出力(OAi出力)とOCDS出力信号(定電流回路12の出力)との関係を示す説明図が図4である。
図4は、横軸に時間をとり、縦軸には、過充放電判定回路(ULin)のしきい値、反転OR回路14の出力(OOi出力)、反転AND回路15の出力(OAi出力)、OCDS出力信号(定電流回路12の出力)の電圧レベルをそれぞれ対比するように表示したものである。
例えば、期間T1では、しきい値は下限値に設定されており(スイッチ回路7はオンの状態でフォトカプラ13がオン)、OOi出力及びOAi出力がともにロウレベル(L)であるとするとOCDS出力はハイレベル(H)となる。
期間T2では、しきい値は上限値に設定されており(スイッチ回路7はオフの状態でフォトカプラ13がオフ)、OOi出力及びOAi出力がともにハイインピーダンス(Z)であるとするとOCDS出力はロウレベル(L)となることを表している。
さらに、期間T3では、しきい値は上限値に設定されているがOOi出力がロウレベル(L)となっており、OAi出力がハイインピーダンス(Z)となっている。このときはOCDS出力はミドルレベル(M)となる。なお、OCDS出力信号のミドルレベル(M)は本発明では、回路の故障あるいは異常を表している。
At this time, FIG. 4 is an explanatory diagram showing the relationship between the output of the inverting OR circuit 14 (OOi output), the output of the inverting AND circuit 15 (OAi output), and the OCDS output signal (output of the constant current circuit 12).
In FIG. 4, the horizontal axis represents time, and the vertical axis represents the threshold of the overcharge / discharge determination circuit (ULin), the output of the inverting OR circuit 14 (OOi output), and the output of the inverting AND circuit 15 (OAi output). The voltage levels of the OCDS output signal (the output of the constant current circuit 12) are displayed so as to be compared with each other.
For example, in the period T1, the threshold value is set to the lower limit value (the switch circuit 7 is on and the
In the period T2, the threshold value is set to the upper limit value (the switch circuit 7 is in the off state and the
Further, in the period T3, the threshold value is set to the upper limit value, but the OOi output is low level (L), and the OAi output is high impedance (Z). At this time, the OCDS output becomes the middle level (M). In the present invention, the middle level (M) of the OCDS output signal represents a circuit failure or abnormality.
電池情報出力回路(CMUi)1のセルグループ(CGi)電圧出力は、図2に図示されているように電池情報出力回路(CMUi)1の出力端子VSiとOCDSiとの間、及び出力端子OCDSiとVSi+1との間に分割されてアナログ電圧値として出力されている。 The cell group (CGi) voltage output of the battery information output circuit (CMUi) 1 is between the output terminals VSi and OCDSi of the battery information output circuit (CMUi) 1 as shown in FIG. It is divided between VSi + 1 and output as an analog voltage value.
なお、セルの過充放電判定信号であるOCDS出力信号の電圧は、セルグループ(CGi)が取りうる出力電圧の範囲外になるように設定されている。具体的には、セルグループの通常の電圧の50%以下に設定しておけば(この電圧値をセルグループが取りうる電圧の最低値以下とする)、セルグループ(CGi)が取りうる出力電圧の範囲の電圧が検出された場合には、何らかの異常が発生していると判定することができる。 Note that the voltage of the OCDS output signal, which is a cell overcharge / discharge determination signal, is set to be outside the range of output voltages that can be taken by the cell group (CGi). Specifically, if the voltage is set to 50% or less of the normal voltage of the cell group (this voltage value is set to be equal to or lower than the minimum voltage that the cell group can take), the output voltage that the cell group (CGi) can take. When a voltage in the range is detected, it can be determined that some abnormality has occurred.
次に、電池情報出力回路(CMUi)1から出力されるセルの過充放電判定信号と、セルグループ電圧出力とを検出する電圧検出回路2の動作について図1にもとづいて説明する。
入力サンプリングスイッチ22、極性切替えスイッチ23、出力サンプリングスイッチ25は、オフ状態(スイッチが開いた状態)を基準としている。ここで、セルグループCG1の電池情報検出を行うものとすると、まず、入力サンプリングスイッチSSR10、SSR11及び極性切替えスイッチSSR00、SSR03をオンとすれば、電池情報出力回路であるCMU1から入力端子VS1、OCDS1を経由して送られてくる電池情報(この場合は過充放電判定信号)を表す電圧がキャパシタ24に蓄電される。
次に、入力サンプリングスイッチSSR10、SSR11及び極性切替えスイッチSSR00、SSR03をオフとし、出力サンプリングスイッチSSR21及びSSR22をオンとすればキャパシタ24に蓄電された電圧が、電圧計測回路3に読み出され差動増幅器で計測される。
次に、セルグループCG2の電池情報検出は、入力サンプリングスイッチSSR12、SSR13及び極性切替えスイッチSSR00、SSR03をオンとしてキャパシタ24を蓄電して電圧検出を行うという具合に順次繰り返していく。
Next, the operation of the
The
Next, when the input sampling switches SSR10 and SSR11 and the polarity changeover switches SSR00 and SSR03 are turned off and the output sampling switches SSR21 and SSR22 are turned on, the voltage stored in the
Next, the battery information detection of the cell group CG2 is sequentially repeated in such a manner that the input sampling switches SSR12 and SSR13 and the polarity changeover switches SSR00 and SSR03 are turned on to store the
電池情報出力回路(CMUi)1が出力する、もう一つ電池情報であるセルグループ電圧検出は次のようになる。
例えば、セルグループCG1の電池電圧検出であれば、まず、入力サンプリングスイッチSSR10、SSR11及び極性切替えスイッチSSR00、SSR03をオンとしてキャパシタ24を蓄電する。次に、入力サンプリングスイッチSSR10、SSR11及び極性切替えスイッチSSR00、SSR03をオフとし、出力サンプリングスイッチSSR21及びSSR22をオンとしてキャパシタ24に蓄電された電圧を電圧計測回路3の差動増幅器に読み出し計測する。計測された電圧は図1の抵抗R1の両端の電圧であり、電圧値はADコンバータ4を介してCPU5に送られ記憶される。
次に、出力サンプリングスイッチSSR21及びSSR22をオフとした状態で入力サンプリングスイッチSSR11、SSR12及び極性切替えスイッチSSR01、SSR02をオンとし、キャパシタ24に蓄電する。この状態で入力サンプリングスイッチSSR11、SSR12及び極性切替えスイッチSSR01、SSR02をオフとし、出力サンプリングスイッチSSR21及びSSR22をオンとし、キャパシタ24に蓄電された電圧を電圧計測回路3の差動増幅器に読み出し計測する。計測された電圧は図1の抵抗R2の両端の電圧を示すものである。従って、先に計測した抵抗R1の両端の電圧と今回計測した抵抗R2の両端の電圧とを加えれば、その電圧値はセルグループCG1の電池電圧である。
The cell group voltage detection, which is another battery information output from the battery information output circuit (CMUi) 1, is as follows.
For example, in the case of battery voltage detection of the cell group CG1, first, the input sampling switches SSR10 and SSR11 and the polarity changeover switches SSR00 and SSR03 are turned on to store the
Next, the input sampling switches SSR11 and SSR12 and the polarity changeover switches SSR01 and SSR02 are turned on while the output sampling switches SSR21 and SSR22 are turned off, and the
(過充放電検出及びセルグループ電圧検出の組み合わせ)
各セルグループ(CG1〜CGm)のセル過充放電検出を順次行い、セル過充放電検出が一巡した後、セルグループ電圧検出を順次行い、1サイクルの検出動作を終了する。これは、過充放電検出時の信号の電圧レベルとセルグループ電圧検出時の電圧レベルとは異なった電圧範囲に設定されているため、フライングキャパシタを蓄電し、蓄電された電圧を電圧計測回路に読み出し、電圧を計測する本発明では、同じ電圧範囲の検出動作を繰り返す方が効率的であり、キャパシタ蓄電によるセルグループの負担も少ないためである。
(Combination of overcharge / discharge detection and cell group voltage detection)
The cell overcharge / discharge detection of each cell group (CG1 to CGm) is sequentially performed, and after the cell overcharge / discharge detection is completed, the cell group voltage detection is sequentially performed to complete one cycle of the detection operation. This is because the voltage level of the signal at the time of overcharge / discharge detection and the voltage level at the time of cell group voltage detection are set to different voltage ranges, so that the flying capacitor is stored and the stored voltage is stored in the voltage measurement circuit. This is because in the present invention in which reading and voltage are measured, it is more efficient to repeat the detection operation in the same voltage range, and the burden on the cell group due to capacitor storage is small.
(過充放電検出及び過充放電検出回路の異常検出)
上述したように、セルの過充放電検出動作において、BCU70の入力端子OCDSiには、各セルグループの過充放電判定信号(OCDS信号)としてのデータがアナログ電圧値として出力される。このデータをもとに電池情報出力回路(CMUi)1の異常検出を行うことができる。
図5は、OCDS信号で判定できる具体的な故障場所や故障内容を表にしたものである。
表に示されているように、OCDS信号の検出電圧のレベルがミドルレベル(M)にあるとき何らかの異常が発生していることが推定され、さらに、OOi出力及びOAi出力の情報と組み合わせることで故障場所や故障内容をさらに絞り込むことができる。
(Overcharge detection and overcharge detection circuit error detection)
As described above, in the cell overcharge / discharge detection operation, data as an overcharge / discharge determination signal (OCDS signal) of each cell group is output to the input terminal OCDSi of the
FIG. 5 is a table showing specific failure locations and failure details that can be determined by the OCDS signal.
As shown in the table, when the detection voltage level of the OCDS signal is at the middle level (M), it is estimated that some abnormality has occurred, and further, by combining with the information of the OOi output and the OAi output, It is possible to further narrow down the failure location and failure details.
(セルグループ電圧検出回路の異常検出)
過充放電検出を行った直後にセルグループ電圧検出を行うことにより、セルグループ電圧検出回路の異常検出を行うことができる。過充放電検出時のOCDS信号の電圧レベルは、セルグループが取りうる電圧値より低く設定されているので、キャパシタに蓄電し、計測回路に読み込み、計測した電圧値が異常に低い(セルグループが取りうる電圧値の範囲外)場合は、入力サンプリングスイッチ22や極性切替えスイッチ23のオフ故障、あるいは断線故障等の異常状態にあると推定される。
(Abnormality detection of cell group voltage detection circuit)
Abnormality detection of the cell group voltage detection circuit can be performed by performing cell group voltage detection immediately after performing overcharge / discharge detection. Since the voltage level of the OCDS signal at the time of overcharge / discharge detection is set lower than the voltage value that can be taken by the cell group, the voltage value stored in the capacitor is read into the measurement circuit, and the measured voltage value is abnormally low. If it is outside the range of voltage values that can be taken), it is estimated that the
(実施例1の変形例)
上記の過充放電判定信号の電圧検出とセルグループ電圧検出の検出順番の組み合わせは、過充放電判定信号の電圧検出を順次行った後、セルグループ電圧検出を引き続き順次行い、それぞれ各1回の電圧検出を行って1サイクルの電圧検出動作としている。
これに対し、本変形例では、1サイクルの電圧検出の回数をセルグループ数を越える回数に設定するもので、例えば、セルグループ数を10個(CG1〜CG10)とすると過充放電判定信号の電圧検出をCG1からCG10まで順に行い、さらに、CG1の電圧検出を行ってから、セルグループ電圧検出に移行するもので、このとき、セルグループ電圧検出はCG2から開始される。このようにすれば、電圧検出のサイクルを重ねるごとに過充放電判定信号の電圧検出からセルグループ電圧検出に移行するセルグループがずれていくので、特定のセルグループにキャパシタ蓄電による負担が集中することがさけられる。
(Modification of Example 1)
The combination of the voltage detection of the overcharge / discharge determination signal and the detection order of the cell group voltage detection is performed by sequentially detecting the voltage of the overcharge / discharge determination signal and then sequentially performing the cell group voltage detection. Voltage detection is performed to perform a one-cycle voltage detection operation.
In contrast, in this modification, the number of voltage detections in one cycle is set to exceed the number of cell groups. For example, when the number of cell groups is 10 (CG1 to CG10), the overcharge / discharge determination signal The voltage detection is performed sequentially from CG1 to CG10, and further, the voltage detection of CG1 is performed, and then the process proceeds to cell group voltage detection. At this time, the cell group voltage detection is started from CG2. In this way, each time the voltage detection cycle is repeated, the cell group that shifts from the voltage detection of the overcharge / discharge determination signal to the cell group voltage detection shifts, so that the burden of capacitor storage is concentrated on a specific cell group. You can avoid it.
(実施例2)
本発明の他の実施例を図6をもとに説明する。
この実施例は、図1に示す実施例1の電池電圧制御装置において、電池情報出力回路(CMUi)1の出力信号の電圧検出を行う電圧検出回路2のキャパシタ24への入力部の配線と極性切替えスイッチ23の構成を変更してセルグループ電圧検出の効率化を図ったものである。
この回路の特徴は、実施例1ではセルグループ電圧検出は、セルグループの電圧を2分割して(例えば、セルグループCG1の電圧検出であれば、入力端子VS1−OCDS1間と入力端子OCDS1−VS2間の電圧)検出し、2つの電圧を加算してセルグループの電圧を算出している。
これに対し、実施例2ではセルグループCG1の電圧検出であれば、入力サンプリングスイッチSSR10、SSR12と極性切替えスイッチSSR00、SSR03をオンとし、キャパシタ24にセルグループCG1の電圧を蓄電する1回の操作で電圧検出が可能な構成となっている(図6参照)。
それ以外の過充放電判定信号の電圧検出や電池情報出力回路の異常検出に関する構成と動作は、実施例1と同様である。
(Example 2)
Another embodiment of the present invention will be described with reference to FIG.
In this embodiment, in the battery voltage control apparatus of
The characteristic of this circuit is that in the first embodiment, the cell group voltage detection is performed by dividing the voltage of the cell group into two (for example, if voltage detection of the cell group CG1 is performed, between the input terminals VS1 and OCDS1 and the input terminals OCDS1 and VS2). The voltage of the cell group is calculated by adding the two voltages.
On the other hand, in the second embodiment, if the voltage of the cell group CG1 is detected, the input sampling switches SSR10 and SSR12 and the polarity changeover switches SSR00 and SSR03 are turned on, and the
Other configurations and operations relating to voltage detection of the overcharge / discharge determination signal and abnormality detection of the battery information output circuit are the same as those in the first embodiment.
(実施例3)
実施例3を図7に示す。実施例3は、図1に示す実施例1の回路において、電圧検出回路2のキャパシタ24を2つの直列接続されたキャパシタC3、C3’で構成したもので、キャパシタ1個で電圧検出を行っている実施例1に比較すると、キャパシタ1個あたりの蓄電電圧は1/2の電圧ですむこととなる。従って、キャパシタから差動増幅器31に到る回路の寄生容量の影響を低減することができる。
過充放電判定信号の電圧検出やセルグループ電圧検出、電池情報出力回路の異常検出に関する動作は、実施例1と同様である。
(Example 3)
Example 3 is shown in FIG. Example 3 is a circuit of Example 1 shown in FIG. 1 in which the
The operations relating to voltage detection of the overcharge / discharge determination signal, cell group voltage detection, and abnormality detection of the battery information output circuit are the same as in the first embodiment.
(実施例4)
実施例4は、図8に示すように、各セルグループに対して1個のキャパシタを接続する構成としたもので、すなわち、セルグループCG1にはキャパシタC1が、セルグループCG2にはキャパシタC2が、セルグループCGmにはキャパシタCmが入力サンプリングスイッチを介して接続されている。また、キャパシタC1〜Cmの出力側は出力サンプリングスイッチが各キャパシタに対して設けられ、極性切替えスイッチ25を介して差動増幅器に接続されている。
この検出回路の特徴は、実施例1〜3のようにキャパシタが1個あるいは2個の構成の場合はセルグループ電圧検出に際してのキャパシタへの蓄電によるセルグループ電圧の読み込みは時間順次に行う必要があるが、実施例4の場合は全てのセルグループ電圧の読み込みを同時に行う並列処理が可能となるので電圧検出時間を短縮することができることにある。なお、本実施例では、過充放電判定信号の電圧検出でも同様に並列処理が可能である。
その他の過充放電判定信号の電圧検出やセルグループ電圧検出、電池情報出力回路の異常検出に関する構成や動作は、実施例1の場合と同様である。
Example 4
As shown in FIG. 8, the fourth embodiment has a configuration in which one capacitor is connected to each cell group. That is, the capacitor C1 is included in the cell group CG1, and the capacitor C2 is included in the cell group CG2. The capacitor Cm is connected to the cell group CGm via an input sampling switch. On the output side of the capacitors C1 to Cm, an output sampling switch is provided for each capacitor, and is connected to a differential amplifier via a
The feature of this detection circuit is that when the number of capacitors is one or two as in the first to third embodiments, it is necessary to read the cell group voltage by power storage in the capacitor when detecting the cell group voltage in time sequence. However, in the case of the fourth embodiment, since parallel processing in which all cell group voltages are read simultaneously becomes possible, the voltage detection time can be shortened. In the present embodiment, parallel processing can be performed in the same manner even when the voltage of the overcharge / discharge determination signal is detected.
Other configurations and operations relating to voltage detection of the overcharge / discharge determination signal, cell group voltage detection, and abnormality detection of the battery information output circuit are the same as those in the first embodiment.
1:電池情報出力回路(CMUi) 16:分圧回路
2:電圧検出回路 17:スイッチングトランジスタ
3:電圧計測回路 18:定電圧回路
4:ADコンバータ 19:コンパレータ
5:マイクロコンピュータ(CPU) 21:電流制限抵抗
6:メモリ 22:入力サンプリングスイッチ
7:スイッチ回路 23:極性切替えスイッチ
10:組電池 24:フライングキャパシタ
11:過充放電判定回路 25:出力サンプリングスイッチ
12:定電流回路 31:差動増幅器
13:フォトカプラ 32:基準電源
14:反転OR回路 70:組電池コントローラ(BCU)
15:反転AND回路
1: Battery information output circuit (CMUi) 16: Voltage dividing circuit 2: Voltage detection circuit 17: Switching transistor 3: Voltage measurement circuit 18: Constant voltage circuit 4: AD converter 19: Comparator 5: Microcomputer (CPU) 21: Current Limiting resistor 6: Memory 22: Input sampling switch 7: Switch circuit 23: Polarity changeover switch 10: Battery assembly 24: Flying capacitor 11: Overcharge / discharge determination circuit 25: Output sampling switch 12: Constant current circuit 31: Differential amplifier 13 : Photocoupler 32: Reference power supply 14: Inverting OR circuit 70: Battery controller (BCU)
15: Inversion AND circuit
Claims (5)
前記電圧検出回路は、前記過充放電判定信号の電圧と前記セルグループ電圧とを検出することを特徴とする電池電圧検出制御装置。 A plurality of single cells connected in series with an overcharge / discharge determination means for outputting an overcharge / discharge determination signal of the single cell, provided for each single cell that can be charged / discharged to constitute an assembled battery by connecting in series. Battery voltage detection comprising: a battery information output circuit comprising a cell group voltage output means for outputting a grouped cell group voltage; a voltage detection circuit; and a voltage measurement circuit for measuring a detection voltage of the voltage detection circuit. In the control device,
The battery voltage detection control device, wherein the voltage detection circuit detects a voltage of the overcharge / discharge determination signal and the cell group voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005112506A JP4270154B2 (en) | 2005-04-08 | 2005-04-08 | Battery voltage detection controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005112506A JP4270154B2 (en) | 2005-04-08 | 2005-04-08 | Battery voltage detection controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006292516A true JP2006292516A (en) | 2006-10-26 |
JP4270154B2 JP4270154B2 (en) | 2009-05-27 |
Family
ID=37413243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005112506A Expired - Fee Related JP4270154B2 (en) | 2005-04-08 | 2005-04-08 | Battery voltage detection controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4270154B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009109252A (en) * | 2007-10-29 | 2009-05-21 | Denso Corp | State monitoring device of battery pack |
JP2009183025A (en) * | 2008-01-29 | 2009-08-13 | Hitachi Ltd | Battery system for vehicle, on-vehicle battery module, and cell controller |
JP2010226811A (en) * | 2009-03-20 | 2010-10-07 | Denso Corp | Management device for battery pack |
US7902830B2 (en) | 2006-05-04 | 2011-03-08 | Enerdel, Inc. | System to measure series-connected cell voltages using a flying capacitor |
KR101172222B1 (en) | 2008-06-25 | 2012-08-07 | 도요타지도샤가부시키가이샤 | Method of diagnosing a malfunction in an abnormal voltage detecting apparatus, secondary battery system, and hybrid vehicle |
JP2013122452A (en) * | 2007-09-28 | 2013-06-20 | Hitachi Ltd | Integrated circuit for controlling battery system and battery cells |
CN107221719A (en) * | 2017-06-26 | 2017-09-29 | 苏州英诺威新能源有限公司 | A kind of battery voltage acquisition system, acquisition control system and collection control method |
US9837837B2 (en) | 2012-11-19 | 2017-12-05 | Byd Company Limited | Protective device and protective system for battery assembly which detects discontinuities through voltage monitoring |
CN109870660A (en) * | 2019-03-25 | 2019-06-11 | 广西电网有限责任公司钦州供电局 | A kind of the open circuit detection system and method for battery pack |
CN113419183A (en) * | 2021-07-20 | 2021-09-21 | 无锡市晶源微电子有限公司 | Switching power supply system and charging detection device for multiple lithium batteries |
WO2021200446A1 (en) * | 2020-03-30 | 2021-10-07 | 三洋電機株式会社 | Power supply device |
-
2005
- 2005-04-08 JP JP2005112506A patent/JP4270154B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7902830B2 (en) | 2006-05-04 | 2011-03-08 | Enerdel, Inc. | System to measure series-connected cell voltages using a flying capacitor |
JP2013122452A (en) * | 2007-09-28 | 2013-06-20 | Hitachi Ltd | Integrated circuit for controlling battery system and battery cells |
US9130379B2 (en) | 2007-09-28 | 2015-09-08 | Hitachi, Ltd. | Integrated circuit for controlling battery cell and vehicle power supply system |
JP2009109252A (en) * | 2007-10-29 | 2009-05-21 | Denso Corp | State monitoring device of battery pack |
US9333874B2 (en) | 2008-01-29 | 2016-05-10 | Hitachi, Ltd. | Battery system for vehicle, on-vehicle battery module, and cell controller |
JP2009183025A (en) * | 2008-01-29 | 2009-08-13 | Hitachi Ltd | Battery system for vehicle, on-vehicle battery module, and cell controller |
EP3179262A1 (en) * | 2008-01-29 | 2017-06-14 | Hitachi, Ltd. | Battery system for vehicle, on-vehicle battery module, and cell controller |
US8649935B2 (en) | 2008-01-29 | 2014-02-11 | Hitachi, Ltd. | Battery system for vehicle, on-vehicle battery module, and cell controller |
US9008902B2 (en) | 2008-01-29 | 2015-04-14 | Hitachi, Ltd. | Battery system for vehicle, on-vehicle battery module, and cell controller |
CN102673417B (en) * | 2008-01-29 | 2015-05-20 | 株式会社日立制作所 | Battery system and integrated circuit |
EP2085784A3 (en) * | 2008-01-29 | 2015-10-28 | Hitachi Ltd. | Battery system for vehicle, on-vehicle battery module, and cell controller |
KR101172222B1 (en) | 2008-06-25 | 2012-08-07 | 도요타지도샤가부시키가이샤 | Method of diagnosing a malfunction in an abnormal voltage detecting apparatus, secondary battery system, and hybrid vehicle |
JP2013078261A (en) * | 2009-03-20 | 2013-04-25 | Denso Corp | Management device of battery pack |
JP2010226811A (en) * | 2009-03-20 | 2010-10-07 | Denso Corp | Management device for battery pack |
US9837837B2 (en) | 2012-11-19 | 2017-12-05 | Byd Company Limited | Protective device and protective system for battery assembly which detects discontinuities through voltage monitoring |
CN107221719A (en) * | 2017-06-26 | 2017-09-29 | 苏州英诺威新能源有限公司 | A kind of battery voltage acquisition system, acquisition control system and collection control method |
CN109870660A (en) * | 2019-03-25 | 2019-06-11 | 广西电网有限责任公司钦州供电局 | A kind of the open circuit detection system and method for battery pack |
CN109870660B (en) * | 2019-03-25 | 2024-03-01 | 广西电网有限责任公司钦州供电局 | Open circuit detection system and method for battery pack |
WO2021200446A1 (en) * | 2020-03-30 | 2021-10-07 | 三洋電機株式会社 | Power supply device |
CN113419183A (en) * | 2021-07-20 | 2021-09-21 | 无锡市晶源微电子有限公司 | Switching power supply system and charging detection device for multiple lithium batteries |
CN113419183B (en) * | 2021-07-20 | 2022-05-17 | 无锡市晶源微电子有限公司 | Switching power supply system and charging detection device for multiple lithium batteries |
Also Published As
Publication number | Publication date |
---|---|
JP4270154B2 (en) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4186916B2 (en) | Battery pack management device | |
US8860421B2 (en) | Cell voltage measuring apparatus and method of battery pack having multiplexers to output voltage signal of each cell | |
JP2004364446A (en) | Charge/discharge control device of backup battery | |
EP2365351B1 (en) | Battery cell voltage measuring apparatus and method | |
US8618806B2 (en) | Circuits and methods for cell number detection | |
JP2007174894A (en) | Battery management system, battery management method, battery system, and automobile | |
JP2015518141A (en) | Battery insulation resistance measuring apparatus and method | |
EP3624250B1 (en) | Battery pack | |
JP2021509251A (en) | Battery management device and method | |
US8829854B2 (en) | Secondary battery | |
JP4270154B2 (en) | Battery voltage detection controller | |
JP6041040B2 (en) | Storage battery, storage battery control method, control device, and control method | |
US20200021119A1 (en) | Battery balancing apparatus and battery balancing method | |
EP1146345A1 (en) | Multiplex voltage measurement apparatus | |
JP2020521963A (en) | Voltage measuring device and method | |
EP3624251B1 (en) | Battery pack | |
JP2020521416A (en) | battery pack | |
JP2022522342A (en) | Battery diagnostic device, battery diagnostic method and energy storage system | |
EP3654440B1 (en) | Battery pack | |
JP2006064639A (en) | Cell voltage monitoring device | |
CN113874738B (en) | Leakage detection device, leakage detection method, and electric vehicle | |
US8643991B2 (en) | System for monitoring over voltage protection of battery pack and method thereof | |
CN115136016A (en) | Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle | |
JP2006185685A (en) | Disconnection detecting device and disconnection detecting method | |
CN111357167B (en) | Battery management apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4270154 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |