[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006286789A - Solar battery module - Google Patents

Solar battery module Download PDF

Info

Publication number
JP2006286789A
JP2006286789A JP2005102694A JP2005102694A JP2006286789A JP 2006286789 A JP2006286789 A JP 2006286789A JP 2005102694 A JP2005102694 A JP 2005102694A JP 2005102694 A JP2005102694 A JP 2005102694A JP 2006286789 A JP2006286789 A JP 2006286789A
Authority
JP
Japan
Prior art keywords
solar cell
solar
solar battery
light
reflective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102694A
Other languages
Japanese (ja)
Other versions
JP4656982B2 (en
Inventor
Hiroyuki Oda
裕幸 織田
Shingo Okamoto
真吾 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005102694A priority Critical patent/JP4656982B2/en
Publication of JP2006286789A publication Critical patent/JP2006286789A/en
Application granted granted Critical
Publication of JP4656982B2 publication Critical patent/JP4656982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-sided light incident solar battery module capable of improving output by increasing an incident light amount into solar battery cells. <P>SOLUTION: The double-sided light incident solar battery module 10 is configured in such a way that a plurality of double-sided light incident solar battery cells 1 are arranged so as to be spaced between an optical transmissive front surface member 4 an optical transmissive rear surface member 5 and the cells 1 are sealed with a filling material. In this module 10, reflection layers 9A, 9B and 9C for reflecting a light are each, closer the rear surface side than the solar battery cells 1, provided from a region not opposing the solar battery cells 1 to a position opposing the external edge of the solar battery cells 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の両面光入射型太陽電池セルを備えた太陽電池モジュールに関するものである。   The present invention relates to a solar battery module including a plurality of double-sided light incident solar cells.

複数の太陽電池を備えた太陽電池モジュールには、光を透過しないフィルム等で裏面を被って太陽電池セルの表面側からのみの入射光を発電に利用する単面光入射型と、裏面に透明なフィルムやガラス等を使用して太陽電池セルの表面及び裏面の両面からの入射光を何れも発電に利用する両面光入射型とがある。   Solar cell modules with multiple solar cells have a single-sided light-incident type that uses the incident light only from the front side of the solar battery cell for power generation, covered with a film that does not transmit light, etc., and transparent on the back surface There is a double-sided light incident type in which incident light from both the front and back surfaces of a solar battery cell is used for power generation using a simple film or glass.

両型の太陽電池モジュールを同一条件で設置して、その起電力特性を調べると、単面光入射型の太陽電池モジュールに比べて、両面光入射型の太陽電池モジュールは5%〜10%程度の出力向上の結果が得られる。   When both types of solar cell modules are installed under the same conditions and their electromotive force characteristics are examined, the double-sided light incident type solar cell module is about 5% to 10% compared to the single-sided light incident type solar cell module. Results in improved output.

従来の両面光入射型の太陽電池モジュールは、複数の隣合う太陽電池セル同士が所定の間隔を存し、銅箔等の導電性を有する材料から成る接続部材により互いに電気的に接続された状態で、EVA(エチレンビニルアセテート)等の充填材の層内に埋設されている。   A conventional double-sided light incident type solar cell module is a state in which a plurality of adjacent solar cells are electrically connected to each other by a connection member made of a conductive material such as copper foil, with a predetermined interval between them. And embedded in a layer of filler such as EVA (ethylene vinyl acetate).

充填材の表面側には、例えば、光透過性の強化ガラス板により構成された表面部材が設けられ、裏面側には光透過性のフィルム、或いは、光透過性の強化ガラス板により構成された裏面部材が設けられている。   For example, a surface member made of a light-transmitting tempered glass plate is provided on the front surface side of the filler, and a light-transmitting film or a light-transmitting tempered glass plate is formed on the back surface side. A back member is provided.

ところで、従来の両面光入射型の太陽電池モジュールでは、太陽電池セルが存在する領域に入射された光は、その太陽電池セルに入射されて発電に寄与できるが、太陽電池セルが存在しない太陽電池セル間の領域に入射された光は太陽電池セルに入射することなく、そのまま、殆どが裏面部材を通過していく。従って、従来の両面光入射型の太陽電池モジュールでは、隣合う太陽電池セル間の領域に入射される光を有効に利用できないという問題が生じていた。   By the way, in the conventional double-sided light incident type solar cell module, the light incident on the region where the solar cell is present can be incident on the solar cell and contribute to power generation, but the solar cell does not have the solar cell. Most of the light incident on the region between the cells passes through the back member without entering the solar cell. Therefore, the conventional double-sided light incident type solar cell module has a problem that the light incident on the region between the adjacent solar cells cannot be effectively used.

そこで、出願人は、隣合う太陽電池セルの間の領域に対応して、光を反射する反射部材を選択的に設けた太陽電池モジュールを開示している。これにより、隣り合う太陽電池セル間に入射した光を、この光反射部材で反射させ、太陽電池セル内に入射させることが可能となる。これにより、隣り合う太陽電池セル間に入射した光を発電に寄与させて、発電効率の向上を図ることができるようになる(例えば、特許文献1参照)。
特開平11−298029号公報
Therefore, the applicant has disclosed a solar cell module in which a reflective member that selectively reflects light is selectively provided corresponding to a region between adjacent solar cells. Thereby, the light incident between the adjacent solar cells can be reflected by the light reflecting member and can enter the solar cells. Thereby, the light which entered between the adjacent photovoltaic cells can be contributed to electric power generation, and it becomes possible to aim at the improvement of electric power generation efficiency (for example, refer patent document 1).
Japanese Patent Laid-Open No. 11-298029

しかしながら、係る構造(隣合う太陽電池セルの間の領域に対応して、光を反射する反射部材を設ける構造)では、高い位置合わせの精度が必要であり、僅かに位置ずれした場合であっても光反射部材を有効に利用できないという問題がある。また、表面部材に斜めから浅い角度で入っている光は、反射部材に当たらず、そのまま殆どが裏面部材を通過してしまう。このため、強度の強い表面部材側からの光を有効に利用できず、充分な出力を得ることができなかった。   However, in such a structure (a structure in which a reflecting member that reflects light is provided corresponding to a region between adjacent solar cells), high alignment accuracy is required, and the position is slightly shifted. However, there is a problem that the light reflecting member cannot be effectively used. In addition, light entering the front surface member from an oblique angle to a shallow angle does not strike the reflecting member, and almost passes through the back surface member as it is. For this reason, the light from the strong surface member side cannot be used effectively, and sufficient output cannot be obtained.

本発明は、係る従来技術を解決するために成されたものであり、太陽電池セルへの光の入射量を増大させて、出力の向上を図ることができる太陽電池モジュールを提供することを目的とする。   The present invention has been made to solve the related art, and an object of the present invention is to provide a solar cell module capable of improving the output by increasing the amount of light incident on the solar cell. And

本発明の太陽電池モジュールは、光透過性の表面部材と光透過性の裏面部材間に、複数の両面光入射型太陽電池セルを相互に離間して配置し、充填材にて封止して成るものであって、太陽電池セルより裏面側であって、太陽電池セルと対向しない領域から当該太陽電池セルの外縁部に対向する位置に渡り、光を反射する反射層を設けたことを特徴とする。   In the solar cell module of the present invention, a plurality of double-sided light-incident solar cells are arranged apart from each other between a light-transmitting front member and a light-transmitting back member, and sealed with a filler. A reflective layer that reflects light is provided across the position facing the outer edge of the solar cell from a region that does not oppose the solar cell from the back side of the solar cell. And

請求項2の発明の太陽電池モジュールは、上記発明において太陽電池セルと反射層間の距離をD、空気の屈折率をN0、充填材及び表面部材の屈折率をN1とした場合、太陽電池セルの外縁部に対向する部分の反射層の寸法Lは、L=D×tanθ1但し、θ1=sin-1(N0/N1)であることを特徴とする。 The solar battery module of the invention of claim 2 is the solar battery module according to the above invention, where D is the distance between the solar battery cell and the reflective layer, N0 is the refractive index of air, and N1 is the refractive index of the filler and surface member. The dimension L of the reflective layer at the portion facing the outer edge is L = D × tan θ1, where θ1 = sin −1 (N0 / N1).

請求項3の発明の太陽電池モジュールは、上記各発明において反射層は、隣接する太陽電池セル間に対応して裏面部材の太陽電池セル側の面上に設けられていることを特徴とする。   A solar cell module according to a third aspect of the present invention is characterized in that, in each of the above-described inventions, the reflective layer is provided on the surface of the back surface member on the solar cell side corresponding to the adjacent solar cells.

請求項4の発明の太陽電池モジュールは、上記各発明において反射層は、最も外側に位置する太陽電池セルの外側においては、当該太陽電池セルより外側に対応する部分が裏面部材の太陽電池セルとは反対側の面上に設けられ、当該太陽電池セルの外縁部に対向する部分は裏面部材の太陽電池セル側の面上に設けられていることを特徴とする。   According to a fourth aspect of the present invention, there is provided a solar cell module according to the above-mentioned invention, wherein the reflective layer is formed on the outer side of the outermost solar cell, and the portion corresponding to the outer side of the solar cell is a back surface solar cell. Is provided on the opposite surface, and the portion facing the outer edge of the solar cell is provided on the solar cell side surface of the back member.

本発明によれば、光透過性の表面部材と光透過性の裏面部材間に、複数の両面光入射型太陽電池セルを相互に離間して配置し、充填材にて封止して成る太陽電池モジュールにおいて、太陽電池セルより裏面側であって、太陽電池セルと対向しない領域から当該太陽電池セルの外縁部に対向する位置に渡り、光を反射する反射層を設けたので、裏面部材側からの光の遮断を抑えつつ、太陽電池セル間や太陽電池セルの外側に斜めから入射する光も当該反射層で反射させて、太陽電池セル内に入射させることができるようになり、表面部材側からの光を有効に利用でき、充分な出力が得られる。   According to the present invention, a solar cell in which a plurality of double-sided light incident solar cells are arranged apart from each other between a light-transmitting front surface member and a light-transmitting back surface member and sealed with a filler. In the battery module, since the reflective layer that reflects light is provided across the position facing the outer edge portion of the solar battery cell from the area that does not face the solar battery cell from the back surface side, the back member side Light that is incident obliquely between solar cells or outside the solar cells can be reflected by the reflective layer and can enter the solar cells while suppressing blocking of light from the surface member. Light from the side can be used effectively and sufficient output can be obtained.

特に、請求項2の発明の如く太陽電池セルと反射層間の距離をD、空気の屈折率をN0、充填材及び表面部材の屈折率をN1とした場合、太陽電池セルの外縁部に対向する部分の反射層の寸法Lは、L=D×tanθ1但し、θ1=sin-1(N0/N1)であるので、当該式に基づき反射層の太陽電池セルの外縁部に対向する部分の寸法Lを決定することで、太陽電池セル間に浅い角度で入射する光を確実に当該反射層で反射させ、太陽電池セルに入射させることができるようになる。従って、より充分な出力が得られる。 In particular, when the distance between the solar battery cell and the reflective layer is D, the refractive index of air is N0, and the refractive index of the filler and the surface member is N1 as in the invention of claim 2, it faces the outer edge of the solar battery cell. The dimension L of the reflective layer of the part is L = D × tan θ1, where θ1 = sin −1 (N0 / N1). This makes it possible to reliably reflect light incident at a shallow angle between the solar cells on the reflective layer and enter the solar cells. Therefore, more sufficient output can be obtained.

また、請求項3の発明の如く反射層は、隣接する太陽電池セル間に対応して裏面部材の太陽電池セル側の面上に設けることで、太陽電池セルの外縁部に対向する部分の寸法を必要最小限に抑えることができるようになる。   Further, as in the invention of claim 3, the reflective layer is provided on the solar cell side surface of the back surface member so as to correspond between the adjacent solar cells, so that the size of the portion facing the outer edge of the solar cell is measured. Can be minimized.

これにより、表面部材側からの入射光を反射層にて確実に捕らえて、有効に利用すると共に、当該反射層により、裏面部材側からの光の入射を妨げる不都合も極力回避できるようになる。従って、より充分な出力を得られるようになる。また、最も光の反射する太陽電池セル間に関しては、請求項2の如くL=D×tanθ1だけ位置合わせの許容誤差を持たせることが可能となる。   Thereby, incident light from the front surface member side can be reliably captured by the reflection layer and used effectively, and the inconvenience of preventing light incidence from the back surface member side can be avoided as much as possible. Therefore, a more sufficient output can be obtained. In addition, regarding the solar cells between which light is most reflected, it is possible to provide an alignment tolerance by L = D × tan θ1 as in claim 2.

更に、請求項4の発明の如く反射層は、最も外側に位置する太陽電池セルの外側においては、当該太陽電池セルより外側に対応する部分が裏面部材の太陽電池セルとは反対側の面上に設けられ、当該太陽電池セルの外縁部に対向する部分は裏面部材の太陽電池セル側の面上に設けるので、太陽電池セルの外縁部に対向する部分においては上記各発明と同様に浅い角度で入射する光も反射でき、太陽電池セルより外側となる部分では、太陽電池セルから離れて入射する光も太陽電池セル方向に反射させることが可能となる。   Further, according to the fourth aspect of the invention, the reflective layer is formed on the outer surface of the outermost solar battery cell where the portion corresponding to the outer side of the solar battery cell is on the surface of the back member opposite to the solar battery cell. Since the portion facing the outer edge portion of the solar battery cell is provided on the surface of the back surface member on the solar cell side, the portion facing the outer edge portion of the solar battery cell has a shallow angle as in the above inventions. The incident light can be reflected, and in the portion outside the solar battery cell, the light incident from the solar battery cell can be reflected in the solar battery cell direction.

これにより、太陽電池セルへの光の入射量が増大し、更に、発電効率が上昇して、太陽電池モジュールの出力アップを図ることができるようになるものである。   As a result, the amount of light incident on the solar cell is increased, and the power generation efficiency is further increased, so that the output of the solar cell module can be increased.

以下、図面に基づき本発明の実施形態を詳述する。図1は本発明を適用した一実施例の太陽電池モジュール10の断面図、図2は図1の部分拡大図、図3は図1の太陽電池モジュールの分解図をそれぞれ示している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 is a cross-sectional view of a solar cell module 10 according to an embodiment to which the present invention is applied, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. 3 is an exploded view of the solar cell module of FIG.

図において1は、両面光入射型の太陽電池セルである。本実施例では、複数の両面光入射型の太陽電池セル1が相互に離間して配置されており、隣合う太陽電池セル1、1同士は、例えば銅箔から成る接続部材2にて電気的に接続されている。そして、当該接続部材2にて太陽電池セル1を電気的に直列接続することで、高出力が得られる。   In the figure, reference numeral 1 denotes a double-sided light incident type solar battery cell. In the present embodiment, a plurality of double-sided light incident type solar cells 1 are arranged apart from each other, and the adjacent solar cells 1, 1 are electrically connected by a connecting member 2 made of, for example, copper foil. It is connected to the. And the high output is obtained by electrically connecting the photovoltaic cells 1 in series with the connection member 2.

当該太陽電池モジュール10にて発電された電気出力は、表面部材4と裏面部材5との間の間隙から図示しない電力引出線により後述する充填材を介して取り出され、端子ボックス内の端子と接続されて、図示しない電気ケーブルにより外部に取り出される。   The electrical output generated by the solar cell module 10 is taken out from the gap between the front surface member 4 and the back surface member 5 through a filler, which will be described later, by a power lead line (not shown) and connected to the terminals in the terminal box. Then, it is taken out by an electric cable (not shown).

また、前記接続部材2にて接続された状態の複数の太陽電池セル1は、前述した充填材の層内に封止されている。尚、本実施例では、充填材として熱可塑性の樹脂であるEVA(エチレンビニルアセテート)を使用し、以下、これをEVA層3と称するものとする。   Moreover, the several photovoltaic cell 1 of the state connected by the said connection member 2 is sealed in the layer of the filler mentioned above. In this embodiment, EVA (ethylene vinyl acetate), which is a thermoplastic resin, is used as the filler, and this is hereinafter referred to as EVA layer 3.

また、EVA層3の一面側(表面側)には、表面部材4が設けられ、他面側(裏面側)には、裏面部材5が設けられている。表面部材4及び裏面部材5は共に光透過性の材料、例えば、白板強化ガラスから成る。そして、当該表面部材4と裏面部材5間のEVA層3内に複数の太陽電池セルが封止され、これらの外周縁を枠体7にて保持することで一体化され、太陽電池モジュール10が構成される。   Further, a front surface member 4 is provided on one surface side (front surface side) of the EVA layer 3, and a back surface member 5 is provided on the other surface side (back surface side). Both the front member 4 and the back member 5 are made of a light-transmitting material, for example, white plate tempered glass. Then, a plurality of solar cells are sealed in the EVA layer 3 between the front surface member 4 and the back surface member 5, and these solar cells 10 are integrated by holding these outer peripheral edges with the frame body 7. Composed.

ここで、太陽電池セル1より裏面側であって、太陽電池セル1と対向しない領域から当該太陽電池セル1の外縁部に対向する位置に渡り、光を反射する反射層9が設けられている。本実施例では、当該反射層9が、上述した裏面部材5の太陽電池セル1側の面上に設けられており、当該裏面部材5にそれぞれ印刷(白色印刷)を施すことにより形成される。反射層9は、太陽電池セル1、1間に対応する部分(以下、反射層9Aと称する)では、裏面部材5の内面(太陽電池セル1側の面上)に印刷を施し、最も外側に位置する太陽電池セル1の外側においては、太陽電池セル1より外側となる部分(以下、反射層9Cと称する)では、裏面部材5の外面(太陽電池セル1とは反対側の面上)、太陽電池セル1の外縁部に対向する部分(以下、反射層9Bと称する)では、裏面部材5の内面に印刷を施すことにより形成される。   Here, a reflective layer 9 that reflects light is provided on the back surface side of the solar battery cell 1 and from a region that does not face the solar battery cell 1 to a position that faces the outer edge of the solar battery cell 1. . In this embodiment, the reflective layer 9 is provided on the surface of the back surface member 5 on the solar battery cell 1 side, and is formed by printing (white printing) on the back surface member 5. The reflective layer 9 is printed on the inner surface of the back member 5 (on the surface on the solar cell 1 side) at the portion corresponding to the solar cells 1 and 1 (hereinafter referred to as the reflective layer 9A), and on the outermost side. On the outside of the solar battery cell 1 positioned, the outer surface of the back surface member 5 (on the surface opposite to the solar battery cell 1) in the portion outside the solar battery cell 1 (hereinafter referred to as the reflective layer 9C), In the part (henceforth the reflection layer 9B) which opposes the outer edge part of the photovoltaic cell 1, it forms by printing on the inner surface of the back surface member 5. FIG.

当該太陽電池セル1の外縁部に対向する反射層9A、9Bについて図2及び図4を用いて説明する。図4は、表面部材4側から太陽電池モジュール10内に入射する光の経路を示した図である。太陽電池セル1の外縁部に対向する反射層9A、9Bの寸法Lを決定するにあたって、所定の式に基づいて寸法を算出するものとする。先ず、空気の屈折率をN0(実際はN0=1.0)、表面部材4及びEVA層3の屈折率をN1(本実施例では、表面部材4とEVA層3は共に屈折率N1=1.5のものを使用している)とすると、図4に示す如く表面部材4に角度θ0で入射した光は、表面部材4で屈折してその角度はθ1となる。当該関係を式にて表すと、N0×sinθ0=N1×sinθ1となり、当該式のθ1が太陽電池セル1間及び太陽電池セル1の外側に入射する光の角度となる。   The reflective layers 9A and 9B facing the outer edge of the solar battery cell 1 will be described with reference to FIGS. FIG. 4 is a diagram showing a path of light that enters the solar cell module 10 from the surface member 4 side. In determining the dimension L of the reflective layers 9A and 9B facing the outer edge of the solar battery cell 1, the dimensions are calculated based on a predetermined formula. First, the refractive index of air is N0 (actually N0 = 1.0), and the refractive indexes of the surface member 4 and the EVA layer 3 are N1 (in this embodiment, both the surface member 4 and the EVA layer 3 have a refractive index N1 = 1. 5), the light incident on the surface member 4 at an angle θ0 is refracted by the surface member 4 and the angle becomes θ1 as shown in FIG. When this relationship is expressed by an equation, N0 × sin θ0 = N1 × sin θ1, and θ1 in the equation is an angle of light incident between the solar cells 1 and outside the solar cells 1.

ここで、表面部材4に入射する光で最も浅い角度のものは、表面部材4と平行となる角度90°に最も近い角度の光である。即ち、90°では、表面部材4と平行となる光は入射しないので、90°より小さい角度の光のみが入射することとなる。従って、θ0=90°をカバーできれば、最も浅い角度で入射する光に対応できる。   Here, the light incident on the surface member 4 having the shallowest angle is light having an angle closest to an angle of 90 ° parallel to the surface member 4. That is, at 90 °, light parallel to the surface member 4 does not enter, so only light having an angle smaller than 90 ° enters. Therefore, if θ0 = 90 ° can be covered, the light incident at the shallowest angle can be handled.

そこで、上記式にθ0=90°を代入すると、sinθ0=1であるから、θ1=sin-1(N0/N1)となる。そして、太陽電池セル1と反射層9A間の距離をDとすれば、外縁部に対向する部分の寸法Lは、L=D×tanθ1で表される。 Therefore, if θ0 = 90 ° is substituted into the above equation, since sinθ0 = 1, θ1 = sin −1 (N0 / N1). If the distance between the solar battery cell 1 and the reflective layer 9A is D, the dimension L of the portion facing the outer edge is expressed by L = D × tan θ1.

このように、上記式に基づいて、太陽電池セル1の外縁部に対向する部分の寸法Lを決定することで、使用する表面部材4やEVA層3の屈折率、及び、太陽電池セル1と反射層9A間の距離Dに応じて、最適な寸法Lを決定することができるので、太陽電池セル1の外縁部に対向する部分の寸法を必要最小限に抑えて、且つ、最も浅い角度で太陽電池セル1、1間に入射する光を反射層9Aにて反射させて、太陽電池セル1に入射させることができるようになる。   Thus, by determining the dimension L of the portion facing the outer edge portion of the solar battery cell 1 based on the above formula, the refractive index of the surface member 4 and the EVA layer 3 to be used, and the solar battery cell 1 and Since the optimum dimension L can be determined according to the distance D between the reflective layers 9A, the dimension of the portion facing the outer edge of the solar battery cell 1 is minimized and at the shallowest angle. Light incident between the solar cells 1, 1 can be reflected by the reflective layer 9 </ b> A so as to be incident on the solar cells 1.

また、前述の如く裏面部材5の内面に反射層9A、9Bを設けることで、外面(太陽電池セル1とは反対側の面)に反射層を設けるよりも小さい寸法で、太陽電池セル1、1間に浅い角度で入射する光を捕らえることができる。   Further, by providing the reflective layers 9A and 9B on the inner surface of the back member 5 as described above, the solar cell 1 has a smaller size than the reflective layer provided on the outer surface (the surface opposite to the solar cell 1). Light incident at a shallow angle between 1 can be captured.

即ち、裏面部材5の外面(太陽電池セル1とは反対側の面)に反射層9A、9Bを設けた場合、太陽電池セル1と反射層9A間の距離Dが長くなるので、太陽電池セル1、1間に浅い角度で入射する光を確実に捕らえるためには、反射層9A、9Bの太陽電池セル1の外縁部に対向する部分の寸法Lがより大きくなってしまう。このように、太陽電池セル1と対向する反射層9A、9Bの寸法Lが大きくなると、散乱光(屋根などに反射して来た光)や当該太陽電池モジュール10を垂直に設置した場合においては、裏面部材5側からの入射光が裏面部材5側から太陽電池セル1に入射するのを著しく阻害してしまう。   That is, when the reflective layers 9A and 9B are provided on the outer surface of the back member 5 (the surface opposite to the solar battery cell 1), the distance D between the solar battery cell 1 and the reflective layer 9A becomes longer. In order to reliably capture light incident at a shallow angle between 1 and 1, the dimension L of the portion of the reflective layers 9A and 9B facing the outer edge of the solar battery cell 1 becomes larger. Thus, when the dimension L of the reflective layers 9A and 9B facing the solar battery cell 1 is increased, the scattered light (light reflected on the roof or the like) or the solar battery module 10 is installed vertically. The incident light from the back member 5 side is significantly inhibited from entering the solar battery cell 1 from the back member 5 side.

これにより、当該反射層9A、9Bにより裏面部材5からの光の入射が遮断されてしまい、太陽電池セル10への光の入射量が少なくなり、出力の低下を招く恐れがある。   Thereby, the light incident from the back surface member 5 is blocked by the reflective layers 9A and 9B, and the amount of light incident on the solar battery cell 10 is reduced, which may cause a decrease in output.

そこで、裏面部材5の内面に反射層9A、9Bを設けることで、外面に反射層9A、9Bを設けるよりも小さい寸法で、太陽電池セル1、1間に浅い角度で入射する光を捕らえて、反射させ、太陽電池セル1に入射させることが可能となる。   Therefore, by providing the reflective layers 9A and 9B on the inner surface of the back member 5, the light incident between the solar cells 1 and 1 at a shallow angle can be captured with a smaller size than the reflective layers 9A and 9B on the outer surface. It can be reflected and incident on the solar cell 1.

これらにより、裏面部材5からの光の入射を極力妨げることなく、表面部材4から太陽電池セル1、1間への入射光も起電力発生に寄与させることができるようになり、太陽電池セル1への光の入射量が増大し、発電効率が上昇して、太陽電池モジュール10の出力アップを図ることができるようになる。   Thus, incident light from the front surface member 4 to the solar cells 1 and 1 can also contribute to the generation of electromotive force without hindering the incidence of light from the back surface member 5 as much as possible. The amount of light incident on the solar cell module 10 is increased, the power generation efficiency is increased, and the output of the solar cell module 10 can be increased.

一方、最も外側の太陽電池セル1の外側において、当該太陽電池セル1より外側では、裏面部材5の外面(太陽電池セル1とは反対側の面)に反射層9Cを形成している。これにより、太陽電池セル1から離れて入射する光も太陽電池セル1方向により反射させることが可能となる。   On the other hand, on the outer side of the outermost solar cell 1, the reflective layer 9 </ b> C is formed on the outer surface of the back member 5 (surface opposite to the solar cell 1) outside the solar cell 1. Thereby, it is possible to reflect the light incident from the solar battery cell 1 in the direction of the solar battery cell 1.

以上のように、反射層9を設けることで、裏面部材5からの光は一部遮られるが、より強度の強い表面部材4側からの光を太陽電池セル1の裏面部材5側から入射させることが可能となり、出力アップを図ることができる。また、前記式に基づき、太陽電池セル1と対向する反射層9A、9Bの寸法Lを決定することで、裏面部材5側からの光の遮断も最小限に抑えることが可能となる。   As described above, by providing the reflective layer 9, a part of the light from the back surface member 5 is blocked, but light from the stronger surface member 4 side is incident from the back surface member 5 side of the solar battery cell 1. It is possible to increase the output. Further, by determining the dimension L of the reflective layers 9A and 9B facing the solar battery cell 1 based on the above formula, it is possible to minimize light blocking from the back member 5 side.

総じて、太陽電池セル1への光の入射量が増大し、発電効率が上昇して、太陽電池モジュール10の出力アップを図ることができるようになる。   In general, the amount of light incident on the solar cell 1 is increased, the power generation efficiency is increased, and the output of the solar cell module 10 can be increased.

他方、図5は、両面光入射型の太陽電池セル1の一例を示す断面図である。図5において、11は単結晶シリコン、多結晶シリコン等の結晶系半導体から成るn型の結晶系シリコン基板である。結晶系シリコン基板11の一方の主面(表面)上には、i型の非晶質シリコン層12、p型の非晶質シリコン層13がこの順に積層され、更にその上に、例えば透光性導電膜(TCO)14及びAgから成る櫛形状の集電極15が形成されている。結晶系シリコン基板11の他方の主面(裏面)状には、i型の非晶質シリコン層16、n型の非晶質シリコン層17がこの順に積層され、更にその上に、例えば透光性導電膜(TCO)18及びAgから成る櫛形状の集電極19が形成されている。   On the other hand, FIG. 5 is a sectional view showing an example of the double-sided light incident type solar battery cell 1. In FIG. 5, reference numeral 11 denotes an n-type crystalline silicon substrate made of a crystalline semiconductor such as single crystal silicon or polycrystalline silicon. On one main surface (front surface) of the crystalline silicon substrate 11, an i-type amorphous silicon layer 12 and a p-type amorphous silicon layer 13 are laminated in this order. A comb-shaped collector electrode 15 made of conductive conductive film (TCO) 14 and Ag is formed. On the other main surface (back surface) of the crystalline silicon substrate 11, an i-type amorphous silicon layer 16 and an n-type amorphous silicon layer 17 are laminated in this order. A comb-shaped collector electrode 19 made of conductive conductive film (TCO) 18 and Ag is formed.

このような太陽電池モジュール10を製造する場合、図3に示すように、表面部材3と、EVA層3となるEVAシート3aと、接続部材2にて接続された複数の両面光入射型の太陽電池セル1と、EVA層3となるEVAシート3bと、前述した反射層9A、9B、9Cを印刷した裏面部材5と各太陽電池セル1とを位置合わせして積載し、これらを加熱圧着処理する。これにより、EVAシート3a、3bがゲル状化した後、所定のEVA層3が構成されて、一体化される。そして、これらの外周縁を前記枠体7で保持することで、太陽電池モジュール10が製造される。このとき、裏面部材5と各太陽電池セル1とが僅かに位置ずれしたとしても、前述の如く太陽電池セルの外縁部に対向する部分を持たせる、即ち、寸法Lだけ位置合わせの許容誤差を持たせることで、出力が著しく低下する不都合を回避することができる。   When manufacturing such a solar cell module 10, as shown in FIG. 3, the surface member 3, the EVA sheet 3 a to be the EVA layer 3, and a plurality of double-sided light incident type solar cells connected by the connection member 2. The battery cell 1, the EVA sheet 3b to be the EVA layer 3, the back surface member 5 printed with the reflection layers 9A, 9B, and 9C and the solar cells 1 are aligned and stacked, and these are thermocompression-bonded. To do. Thereby, after EVA sheet | seat 3a, 3b is gelatinized, the predetermined EVA layer 3 is comprised and integrated. And the solar cell module 10 is manufactured by hold | maintaining these outer periphery with the said frame 7. FIG. At this time, even if the back surface member 5 and each solar battery cell 1 are slightly misaligned, a portion facing the outer edge of the solar battery cell is provided as described above, that is, an alignment tolerance of the dimension L is provided. By providing it, it is possible to avoid the disadvantage that the output is remarkably lowered.

尚、本実施例では、表面部材4及び裏面部材5として白板強化ガラスを用いるものとしたが、裏面部材に光透過性のフィルムを使用しても良い。また、反射層9Cは裏面部材5の内面(太陽電池セル1側の面)に印刷するものとしても本発明は有効である。   In this embodiment, white plate tempered glass is used as the front member 4 and the back member 5, but a light transmissive film may be used for the back member. Further, the present invention is effective even when the reflective layer 9C is printed on the inner surface of the back member 5 (surface on the solar battery cell 1 side).

また、上述の如く加熱圧着処理により一体化された表面部材4、裏面部材5、EVA層3の外周縁を枠体7にて保持するものとしたが、枠体を取り付けない太陽電池モジュールに本発明を適用しても差し支えない。枠体を取り付けない場合においては、更に、太陽電池モジュール10に横面から入射しようとする光も前記反射層9Cにて捕らえて、反射させ、太陽電池セル1に入射させることが可能となるので、同様に、太陽電池セル1への入射量が増大し、発電効率が上昇して、太陽電池モジュール10の出力アップを図ることができるようになる。   Further, as described above, the outer peripheral edges of the front surface member 4, the back surface member 5, and the EVA layer 3 integrated by the thermocompression bonding process are held by the frame body 7. The invention may be applied. In the case where the frame is not attached, it is possible to capture light reflected on the solar cell module 10 from the lateral surface by the reflective layer 9C, reflect it, and enter the solar cell 1. Similarly, the amount of incident light on the solar cells 1 increases, the power generation efficiency increases, and the output of the solar cell module 10 can be increased.

更に、反射層9を裏面部材5に印刷することにより設けるものとしたが、本発明の反射層9は裏面部材5に印刷するものに限定されない。例えば、当該反射層を一枚のシートにて構成するものとしても構わない。   Furthermore, although the reflective layer 9 is provided by printing on the back member 5, the reflective layer 9 of the present invention is not limited to the one printed on the back member 5. For example, the reflective layer may be configured by a single sheet.

本発明の一実施例の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of one Example of this invention. 図1の太陽電池モジュールの部分拡大図である。It is the elements on larger scale of the solar cell module of FIG. 図1の太陽電池モジュールの分解図である。It is an exploded view of the solar cell module of FIG. 表面部材側から入射する太陽光の経路を示す模式図である。It is a schematic diagram which shows the path | route of the sunlight which injects from the surface member side. 図1の太陽電池モジュールの太陽電池セルの構成図である。It is a block diagram of the photovoltaic cell of the solar cell module of FIG.

符号の説明Explanation of symbols

1 太陽電池セル
2 接続部材
3 EVA層
3a、3b EVAシート
4 表面部材
5 裏面部材
7 枠体
9 反射層
10 太陽電池モジュール
11 結晶系シリコン基板
12、16 i型の非晶質シリコン層
13 p型の非晶質シリコン層
14 透光性導電膜
15、19 集電極
17 n型の非晶質シリコン層
18 透光性導電膜
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Connection member 3 EVA layer 3a, 3b EVA sheet | seat 4 Front surface member 5 Back surface member 7 Frame body 9 Reflective layer 10 Solar cell module 11 Crystalline silicon substrate 12, 16 i-type amorphous silicon layer 13 p-type Amorphous silicon layer 14 translucent conductive film 15, 19 collector electrode 17 n-type amorphous silicon layer 18 translucent conductive film

Claims (4)

光透過性の表面部材と光透過性の裏面部材間に、複数の両面光入射型太陽電池セルを相互に離間して配置し、充填材にて封止して成る太陽電池モジュールにおいて、
前記太陽電池セルより裏面側であって、前記太陽電池セルと対向しない領域から当該太陽電池セルの外縁部に対向する位置に渡り、光を反射する反射層を設けたことを特徴とする太陽電池モジュール。
In a solar cell module formed by arranging a plurality of double-sided light incident solar cells spaced apart from each other between a light-transmitting front surface member and a light-transmitting back surface member, and sealing with a filler,
A solar cell comprising a reflective layer that reflects light from a region opposite to the solar cell to a position facing the outer edge of the solar cell from a region not facing the solar cell. module.
前記太陽電池セルと前記反射層間の距離をD、空気の屈折率をN0、前記充填材及び表面部材の屈折率をN1とした場合、前記太陽電池セルの外縁部に対向する部分の前記反射層の寸法Lは、
L=D×tanθ1 但し、θ1=sin-1(N0/N1)
であることを特徴とする請求項1の太陽電池モジュール。
When the distance between the solar cell and the reflective layer is D, the refractive index of air is N0, and the refractive index of the filler and the surface member is N1, the portion of the reflective layer facing the outer edge of the solar cell The dimension L of
L = D × tan θ1 where θ1 = sin −1 (N0 / N1)
The solar cell module according to claim 1, wherein:
前記反射層は、隣接する前記太陽電池セル間に対応して前記裏面部材の太陽電池セル側の面上に設けられていることを特徴とする請求項1又は請求項2の太陽電池モジュール。   The solar cell module according to claim 1, wherein the reflective layer is provided on a surface on the solar cell side of the back surface member so as to correspond between the adjacent solar cells. 前記反射層は、最も外側に位置する前記太陽電池セルの外側においては、当該太陽電池セルより外側に対応する部分が前記裏面部材の太陽電池セルとは反対側の面上に設けられ、当該太陽電池セルの外縁部に対向する部分は前記裏面部材の太陽電池セル側の面上に設けられていることを特徴とする請求項1、請求項2又は請求項3の太陽電池モジュール。   In the outer side of the outermost solar cell located on the outermost side, the reflective layer has a portion corresponding to the outer side of the solar cell provided on the surface of the back member opposite to the solar cell, 4. The solar cell module according to claim 1, wherein the portion facing the outer edge of the battery cell is provided on a surface of the back member on the solar cell side.
JP2005102694A 2005-03-31 2005-03-31 Solar cell module Active JP4656982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102694A JP4656982B2 (en) 2005-03-31 2005-03-31 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102694A JP4656982B2 (en) 2005-03-31 2005-03-31 Solar cell module

Publications (2)

Publication Number Publication Date
JP2006286789A true JP2006286789A (en) 2006-10-19
JP4656982B2 JP4656982B2 (en) 2011-03-23

Family

ID=37408389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102694A Active JP4656982B2 (en) 2005-03-31 2005-03-31 Solar cell module

Country Status (1)

Country Link
JP (1) JP4656982B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041526A1 (en) * 2007-09-26 2009-04-02 Hitachi Chemical Company, Ltd. Conductor-connecting member, method for producing the same, connection structure, and solar cell module
WO2014020708A1 (en) 2012-07-31 2014-02-06 三洋電機株式会社 Solar cell module
JP2017501582A (en) * 2013-12-27 2017-01-12 ビーワイディー カンパニー リミテッドByd Company Limited Photovoltaic module
JP2018137465A (en) * 2012-10-25 2018-08-30 サンパワー コーポレイション Two-side light reception solar cell module with rear reflector
CN109148630A (en) * 2018-09-21 2019-01-04 苏州腾晖光伏技术有限公司 A kind of two-sided double glass photovoltaic modulies
US12107179B2 (en) * 2020-04-07 2024-10-01 Csi Cellls Co., Ltd. Photovoltaic assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298029A (en) * 1998-04-14 1999-10-29 Sanyo Electric Co Ltd Solar cell module and multilayer glass module
JPH11307791A (en) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd Solar cell module
JPH11307795A (en) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd Solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298029A (en) * 1998-04-14 1999-10-29 Sanyo Electric Co Ltd Solar cell module and multilayer glass module
JPH11307791A (en) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd Solar cell module
JPH11307795A (en) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd Solar cell module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041526A1 (en) * 2007-09-26 2009-04-02 Hitachi Chemical Company, Ltd. Conductor-connecting member, method for producing the same, connection structure, and solar cell module
JP5029695B2 (en) * 2007-09-26 2012-09-19 日立化成工業株式会社 Conductor connecting member, method for manufacturing the same, connection structure, and solar cell module
WO2014020708A1 (en) 2012-07-31 2014-02-06 三洋電機株式会社 Solar cell module
US9502588B2 (en) 2012-07-31 2016-11-22 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JP2018137465A (en) * 2012-10-25 2018-08-30 サンパワー コーポレイション Two-side light reception solar cell module with rear reflector
CN110246902A (en) * 2012-10-25 2019-09-17 太阳能公司 Double-sided solar battery component with back reflector
JP2021002675A (en) * 2012-10-25 2021-01-07 サンパワー コーポレイション Double-sided light receiving type solar cell module having rear surface reflector
JP7040854B2 (en) 2012-10-25 2022-03-23 サンパワー コーポレイション Double-sided light-receiving solar cell module with back-side reflector
US11757049B2 (en) 2012-10-25 2023-09-12 Maxeon Solar Pte. Ltd. Bifacial solar cell module with backside reflector
JP2017501582A (en) * 2013-12-27 2017-01-12 ビーワイディー カンパニー リミテッドByd Company Limited Photovoltaic module
CN109148630A (en) * 2018-09-21 2019-01-04 苏州腾晖光伏技术有限公司 A kind of two-sided double glass photovoltaic modulies
US12107179B2 (en) * 2020-04-07 2024-10-01 Csi Cellls Co., Ltd. Photovoltaic assembly

Also Published As

Publication number Publication date
JP4656982B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP3738129B2 (en) Solar cell module
CN111615752B (en) Solar cell module
CN108475706B (en) Solar cell module
WO2012176516A1 (en) Solar battery module
JP2010287688A (en) Solar cell module
JP2001148500A (en) Solar cell module
JP6986357B2 (en) Solar cell module
JPWO2010092693A1 (en) Solar cell module
JP5999571B2 (en) Solar cell module
JP2013098496A (en) Solar battery module and manufacturing method thereof
TWI545790B (en) Photoelectric conversion device
JP2006073707A (en) Solar cell module
JPWO2020054130A1 (en) Solar cell module
JP2011029273A (en) Solar cell module
JP4656982B2 (en) Solar cell module
KR20160116745A (en) Junction box and solar cell module including the same
JP5147754B2 (en) Solar cell module
WO2016047054A1 (en) Solar cell module
JP7179779B2 (en) Connecting member set for solar cells, and solar cell string and solar cell module using the same
KR101685350B1 (en) Solar cell module
KR102110528B1 (en) Ribbon and solar cell module including the same
KR101979271B1 (en) Solar cell module
JP2012038777A (en) Solar battery module and manufacturing method of solar battery module
WO2014050078A1 (en) Solar cell module
CN108780822B (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4656982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3