JP2006283131A - High strength cold rolled steel sheet having excellent coating film adhesion, workability and hydrogen embrittlement resistance, and automobile steel component - Google Patents
High strength cold rolled steel sheet having excellent coating film adhesion, workability and hydrogen embrittlement resistance, and automobile steel component Download PDFInfo
- Publication number
- JP2006283131A JP2006283131A JP2005104851A JP2005104851A JP2006283131A JP 2006283131 A JP2006283131 A JP 2006283131A JP 2005104851 A JP2005104851 A JP 2005104851A JP 2005104851 A JP2005104851 A JP 2005104851A JP 2006283131 A JP2006283131 A JP 2006283131A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- less
- coating film
- ferrite
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、塗膜密着性、加工性及び耐水素脆化特性に優れた高強度冷延鋼板並びに自動車用鋼部品に関するものであり、殊に、優れた塗膜密着性を有すると共に、引張強度が780MPa以上で優れた加工性と耐水素脆化特性を発揮する自動車用鋼部品の製造に最適な冷延鋼板(残留オーステナイト含有鋼板)と、該鋼板を用いて得られる高強度かつ耐水素脆化特性に優れた自動車用鋼部品に関するものである。 The present invention relates to a high-strength cold-rolled steel sheet and an automotive steel part excellent in coating film adhesion, workability and hydrogen embrittlement resistance, and particularly has excellent coating film adhesion and tensile strength. Is a cold-rolled steel sheet (residual austenite-containing steel sheet) optimal for the production of automotive steel parts that exhibit excellent workability and hydrogen embrittlement resistance at 780 MPa or higher, and high strength and hydrogen embrittlement resistance obtained using the steel sheet The present invention relates to a steel part for automobiles having excellent crystallization characteristics.
自動車の燃費向上や軽量化を背景に鋼材の高強度化が求められており、冷延鋼板の分野でもハイテン化(高硬度化)が進んでいる。一方、冷延鋼板は部品製造時にプレス成形が施されるため、伸び等の延性を十分確保することが前提となる。高強度化を図るには合金元素の添加が有効であるが、該合金元素量の増加に伴い、延性は低下する傾向にある。 Higher strength of steel materials is demanded against the background of improving fuel economy and weight reduction of automobiles, and high tempering (hardening) is also progressing in the field of cold-rolled steel sheets. On the other hand, since cold-rolled steel sheets are press-formed at the time of component production, it is assumed that sufficient ductility such as elongation is secured. Addition of an alloy element is effective for increasing the strength, but the ductility tends to decrease as the amount of the alloy element increases.
しかし上記合金元素の中でも、Siは延性低下の比較的小さい元素であり、延性を確保しつつ高強度化を図るのに有効な元素である。ところがSi含有量が増加すると、化成処理性が劣化して塗装後の塗膜密着性が低下する。そのため化成処理性が重視される場合にはSi含有量の低減を余儀なくされていた。またSi含有量が増加すると、鋼板表面に生成するSi含有粒界酸化物を原因とするクラックが発生し易くなり、これが塗膜密着性を劣化させる要因となっていた。 However, among the above alloy elements, Si is an element having a relatively small ductility reduction, and is an element effective for achieving high strength while ensuring ductility. However, when the Si content is increased, the chemical conversion processability is deteriorated and the coating film adhesion after coating is lowered. For this reason, when the chemical conversion treatment is important, the Si content has to be reduced. Moreover, when Si content increased, it became easy to generate | occur | produce the crack resulting from the Si containing grain-boundary oxide produced | generated on the steel plate surface, and this became a factor which deteriorates coating-film adhesiveness.
これまで機械的特性と化成処理性を両立させる技術としては、クラッド材を鋼板表面に被覆し、鋼板表面に低Si濃度層を設けることで化成処理性を高め、内部の高Si濃度層で機械的特性を確保する技術がある(例えば特許文献1)。しかしクラッド構造としなければならないため、製造工程が複雑になりコストアップにつながるという問題点がある。 Until now, as a technology to achieve both mechanical properties and chemical conversion treatment, the steel sheet surface is coated with a clad material, and a low Si concentration layer is provided on the steel sheet surface to improve chemical conversion treatment. There is a technique for ensuring the target characteristics (for example, Patent Document 1). However, since the clad structure is required, there is a problem that the manufacturing process is complicated and the cost is increased.
また、化成処理性を阻害するSiが表面に濃化しないよう特殊な合金元素を添加する従来技術もある(例えば特許文献2や特許文献3)。この方法では、NiやCuを添加することで鋼板表層へのSi濃化を抑制し、化成処理性を確保している。しかし該方法では、高価なNiやCuを使用するためコストアップを招くという問題がある。 In addition, there is a conventional technique in which a special alloy element is added so that Si that inhibits chemical conversion treatment does not concentrate on the surface (for example, Patent Document 2 and Patent Document 3). In this method, by adding Ni or Cu, concentration of Si on the steel sheet surface layer is suppressed, and chemical conversion processability is ensured. However, this method has a problem that the cost is increased because expensive Ni or Cu is used.
またこれらの方法で用いられている鋼材は、C含有量が0.005%以下と低濃度であり、再結晶温度を規定して集合組織を制御することによって、深絞り性の向上を図ったいわゆるIF鋼板に関するものであるが、この様にC量の非常に少ないIF鋼板で、本発明が意図する様な高強度を達成することは難しい。 Moreover, the steel materials used in these methods have a low C content of 0.005% or less, and the redrawing temperature is regulated to control the texture to improve the deep drawability. Although it relates to a so-called IF steel sheet, it is difficult to achieve a high strength as intended by the present invention with an IF steel sheet having a very small amount of C.
特許文献4では、NbCを析出させ、これをりん酸亜鉛結晶の核生成サイトとして活用することで化成処理性を確保している。しかしこの技術も、0.02%以下の低C濃度域で集合組織を制御することで深絞り性を確保した技術であり、上記IF鋼に比べると若干C濃度は高いものの、強度不足は否めない。 In Patent Document 4, NbC is precipitated, and this is used as a nucleation site for zinc phosphate crystals to ensure chemical conversion treatment. However, this technique is also a technique that secures deep drawability by controlling the texture in a low C concentration range of 0.02% or less. Although the C concentration is slightly higher than the IF steel, the strength is insufficient. Absent.
特許文献5では、表層のSiO2/Mn2SiO4比率を規定することで化成処理性を確保した残留オーステナイト含有鋼板が提案されている。この技術では、表層酸化物を制御したりSi/Feの元素比率を制御するため、連続焼鈍後の表面を酸洗またはブラシ処理してSi酸化物を除去するか、またはAc1変態点以上の温度で露点を−30℃以上に調整し、Si酸化物の生成量を抑える必要がある。 Patent Document 5 proposes a retained austenite-containing steel sheet that secures chemical conversion treatment by regulating the SiO 2 / Mn 2 SiO 4 ratio of the surface layer. In this technique, in order to control the surface layer oxide or to control the element ratio of Si / Fe, the surface after continuous annealing is pickled or brushed to remove the Si oxide, or more than the Ac 1 transformation point. It is necessary to adjust the dew point to −30 ° C. or higher with temperature to suppress the amount of Si oxide produced.
しかし上記酸洗やブラシ処理を行うと、工程数の増大により製造コストの上昇を招く。また露点制御は、連続焼鈍炉内で行われるが、文献に示された実施例を見る限り、該露点を制御したとしても最表層におけるSiO2/Mn2SiO4比率は1.0程度であり、化成処理皮膜結晶の生成を阻害するSiO2がMn2SiO4と同程度生じていることから、化成処理性が十分に改善されているとは言い難い。 However, when the pickling or brush treatment is performed, the manufacturing cost increases due to an increase in the number of steps. Although the dew point control is performed in a continuous annealing furnace, as long as the examples shown in the literature are seen, even if the dew point is controlled, the SiO 2 / Mn 2 SiO 4 ratio in the outermost layer is about 1.0. Further, since SiO 2 that inhibits the formation of the chemical conversion coating crystal is generated to the same extent as Mn 2 SiO 4 , it is difficult to say that the chemical conversion treatment performance is sufficiently improved.
特許文献6では、XPSで鋼板表面を観察し、酸化物を構成するSiとMnの比(Si/Mn)を1以下に抑えて化成処理性を高める技術が提案されている。 Patent Document 6 proposes a technique for observing the surface of a steel sheet by XPS and suppressing the ratio of Si to Mn (Si / Mn) constituting the oxide to 1 or less to improve chemical conversion property.
Si/Mn比が1以下である鋼として、例えばSi量がほぼゼロの軟鋼やSi量が0.1%以下の鋼板が化成処理性に優れていることは一般に知られている。しかし上述の通り、強度と延性を共に高めるにはSiをある程度含有させる必要があり、Si量を低減してSi/Mn比を1以下にするには限界がある。また適量のSi量を確保しつつMn量を制御してSi/Mn比を1以下にした場合でも、良好な化成処理性を発揮する鋼板が安定して得られるとは限らない。 As steel having a Si / Mn ratio of 1 or less, it is generally known that, for example, mild steel with almost no Si content or steel sheet with an Si content of 0.1% or less has excellent chemical conversion properties. However, as described above, in order to increase both strength and ductility, it is necessary to contain Si to some extent, and there is a limit in reducing the Si amount and making the Si / Mn ratio 1 or less. Even when the Si / Mn ratio is controlled to 1 or less by controlling the amount of Mn while securing an appropriate amount of Si, a steel sheet exhibiting good chemical conversion properties is not always stably obtained.
ところで強度と延性の両特性を同時に高め得る鋼板として、組織中に残留オーステナイトを生成させ、加工変形中に残留オーステナイトが誘起変態(歪み誘起変態:TRIP)することで延性が向上する残留オーステナイト鋼板が知られており、この残留オーステナイトを室温で安定的に存在させる一般的な方法として、Siを約1〜2%含有させる方法と、Siの代わりにAlを約1〜2%含有させる方法がある。 By the way, as a steel sheet capable of simultaneously improving both strength and ductility, a retained austenite steel sheet in which ductility is improved by generating retained austenite in the structure and inducing a transformation (strain-induced transformation: TRIP) of retained austenite during work deformation. There are known general methods for stably presenting the retained austenite at room temperature, including a method of containing about 1-2% of Si and a method of containing about 1-2% of Al instead of Si. .
上記Siを積極的に含有させる方法では、強度と延性を同時に高めることができるが、鋼板表面にSi系酸化皮膜が生成し易いため化成処理性に劣る。一方、Alを積極的に含有させる方法では、化成処理性の比較的良好な鋼板が得られるが、強度や延性は前記Si含有鋼に劣る。また、Alは強化能を有する元素でないため、強度を高めるにはC、Mnなどの強化元素を多量に添加する必要があり、溶接性等が劣化する原因となる。 In the method of positively containing Si, the strength and ductility can be increased at the same time, but since the Si-based oxide film is easily generated on the steel sheet surface, the chemical conversion treatment property is inferior. On the other hand, in the method of positively containing Al, a steel sheet having relatively good chemical conversion treatment properties can be obtained, but the strength and ductility are inferior to those of the Si-containing steel. Further, since Al is not an element having strengthening ability, it is necessary to add a large amount of strengthening elements such as C and Mn in order to increase the strength, which causes deterioration of weldability and the like.
また機械的特性を向上させる観点から、SiとAlをどちらも積極的に添加した残留オーステナイト含有鋼板が提案されている(例えば特許文献7)。しかし該鋼板も、多量に添加されたSiに起因して鋼板表面にSi系酸化皮膜が生成し易く、化成処理性に劣るものと考えられる。また、一般に残留オーステナイト鋼板の欠点とされる耐水素脆化特性が併せて改善されたものでもない。
本発明は上記事情に鑑みてなされたものであって、その目的は、優れた塗膜密着性を有すると共に、引張強度が780MPa以上で優れた加工性と耐水素脆化特性を発揮する冷延鋼板、および該鋼板を用いて得られる自動車用鋼部品を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is cold rolling that has excellent coating film adhesion and exhibits excellent workability and hydrogen embrittlement resistance when the tensile strength is 780 MPa or more. It is providing the steel plate for motor vehicles obtained using a steel plate and this steel plate.
本発明に係る高強度冷延鋼板とは、質量%で(化学成分について以下同じ)、C:0.06〜0.6%、Si:0.1〜2%、Al:0.01〜3%、Si+Al:1〜4%、Mn:1〜6%、Si/Mn≦0.40を満たし、
金属組織が、占積率で(金属組織について以下同じ)、
ベイニティックフェライトとポリゴナルフェライトの合計量:75%以上、
ベイニティックフェライト:40%以上、
ポリゴナルフェライト:1〜50%、
残留オーステナイト:3%以上を含有する鋼板であって、
引張強度が780MPa以上であると共に、
(I)鋼板表面(平面視する場合をいう)において、MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm2以上存在し、かつSiを主体とする酸化物の鋼板表面被覆率が10%以下であるところに特徴を有する(以下「本発明鋼板1」ということがある)。
The high-strength cold-rolled steel sheet according to the present invention is expressed by mass% (the same applies to chemical components below), C: 0.06-0.6%, Si: 0.1-2%, Al: 0.01-3. %, Si + Al: 1-4%, Mn: 1-6%, satisfying Si / Mn ≦ 0.40,
The metal structure is the space factor (the same applies to the metal structure below)
Total amount of bainitic ferrite and polygonal ferrite: 75% or more,
Bainitic ferrite: 40% or more,
Polygonal ferrite: 1-50%
Residual austenite: a steel sheet containing 3% or more,
While the tensile strength is 780 MPa or more,
(I) 10 Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less with an atomic ratio (Mn / Si) of Mn and Si of 0.5 or more on the surface of the steel sheet (when viewed in plan) / 100 μm 2 or more, and the feature is that the steel sheet surface coverage of the oxide mainly composed of Si is 10% or less (hereinafter sometimes referred to as “the steel sheet 1 of the present invention”).
尚、上記Siを主体とする酸化物とは、酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占めるものをいう。また当該酸化物は、分析の結果、非晶質であると考えられる。 The oxide mainly composed of Si refers to an element other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio. Further, the oxide is considered to be amorphous as a result of analysis.
Siを主体とする酸化物の鋼板表面被覆率は、後述する実施例で示す通り、抽出レプリカ法で処理したサンプルをTEM(transmission electron microscope)で観察し、EDX(Energy Dispersive X-ray)分析でSi、O(酸素)、Mn、Feのマッピングおよび定量分析を行い、このデータを用いて画像解析法により求めた。尚、抽出レプリカのTEM観察が煩雑であれば、AES(auger electron spectroscopy)を用いて倍率:2000〜5000倍でSi、O、MnおよびFeについて表面マッピングを行い、そのデータを画像解析してもよい。 As shown in the examples to be described later, the surface coverage of the oxide mainly composed of Si is obtained by observing a sample processed by the extraction replica method with a transmission electron microscope (TEM) and analyzing with an EDX (Energy Dispersive X-ray) analysis. Mapping and quantitative analysis of Si, O (oxygen), Mn, and Fe were performed, and the data was obtained by an image analysis method. If TEM observation of the extracted replica is complicated, surface mapping is performed on Si, O, Mn, and Fe at a magnification of 2000 to 5000 using AES (auger electron spectroscopy), and the data is subjected to image analysis. Good.
上記課題を解決し得た本発明の別の鋼板は、C:0.06〜0.6%、Si:0.1〜2%、Al:0.01〜3%、Si+Al:1〜4%、Mn:1〜6%を満たし、
金属組織が、
ベイニティックフェライトとポリゴナルフェライトの合計量:75%以上、
ベイニティックフェライト:40%以上、
ポリゴナルフェライト:1〜50%、
残留オーステナイト:3%以上を含有する鋼板であって、
引張強度が780MPa以上であると共に、
(II)SEM(scanning electron microscope)を用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在しないところに特徴を有している(以下「本発明鋼板2」ということがある)。
Another steel plate of the present invention that can solve the above problems is C: 0.06 to 0.6%, Si: 0.1 to 2%, Al: 0.01 to 3%, Si + Al: 1 to 4% , Mn: satisfying 1 to 6%,
The metal structure is
Total amount of bainitic ferrite and polygonal ferrite: 75% or more,
Bainitic ferrite: 40% or more,
Polygonal ferrite: 1-50%
Residual austenite: a steel sheet containing 3% or more,
While the tensile strength is 780 MPa or more,
(II) When a cross section near the surface of the steel sheet is observed with a scanning electron microscope (SEM) at a magnification of 2000, there is a feature that there are no cracks with a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view. (Hereinafter sometimes referred to as “the present steel plate 2”).
上記課題を解決し得た本発明の更に別の鋼板は、C:0.06〜0.6%、Si:0.1〜2%、Al:0.01〜3%、Si+Al:1〜4%、Mn:1〜6%、Si/Mn≦0.40を満たし、
金属組織が、
ベイニティックフェライトとポリゴナルフェライトの合計量:75%以上、
ベイニティックフェライト:40%以上、
ポリゴナルフェライト:1〜50%、
残留オーステナイト:3%以上を含有する鋼板であって、
引張強度が780MPa以上であると共に、上記要件(I)および(II)を満たすところに特徴を有している(以下「本発明鋼板3」ということがある)。
Still another steel sheet of the present invention that can solve the above problems is C: 0.06 to 0.6%, Si: 0.1 to 2%, Al: 0.01 to 3%, Si + Al: 1 to 4 %, Mn: 1 to 6%, satisfying Si / Mn ≦ 0.40,
The metal structure is
Total amount of bainitic ferrite and polygonal ferrite: 75% or more,
Bainitic ferrite: 40% or more,
Polygonal ferrite: 1-50%
Residual austenite: a steel sheet containing 3% or more,
In addition to having a tensile strength of 780 MPa or more, the tensile strength is characterized by satisfying the above requirements (I) and (II) (hereinafter sometimes referred to as “the present steel plate 3”).
また本発明は、上記いずれかの鋼板を用いて得られる自動車用鋼部品も含むものである。 The present invention also includes steel parts for automobiles obtained using any of the above steel sheets.
本発明によれば、優れた塗膜密着性を発揮すると共に、引張強度が780MPa以上で優れた加工性と耐水素脆化特性を発揮する自動車用鋼部品の製造に最適な鋼板を、クラッドを構成したり高価な元素を添加することなく効率良く実現できる。また該鋼板を用いて得られる自動車用鋼部品は、780MPa以上の高強度域において優れた耐水素脆化特性を発揮する。 According to the present invention, a steel plate optimal for the production of automotive steel parts exhibiting excellent paint film adhesion and exhibiting excellent workability and hydrogen embrittlement resistance at a tensile strength of 780 MPa or more is provided with a cladding. It can be efficiently realized without constituting or adding an expensive element. Moreover, the steel part for motor vehicles obtained using this steel plate exhibits the excellent hydrogen embrittlement resistance in the high strength region of 780 MPa or more.
上述の鋼板を得るべく様々な検討を実施したところ、特に、優れた塗膜密着性を確保するには、下記要件(I)および/または(II)を満足させればよいことを見出し本発明に想到した。更にこれらの要件を満足させると共に、780MPa以上の引張強度において優れた加工性と耐水素脆化特性を確保するための成分組成、金属組織や製造条件についても検討を行った。 As a result of various investigations to obtain the above-described steel sheet, it has been found that the following requirements (I) and / or (II) may be satisfied particularly in order to ensure excellent coating film adhesion. I came up with it. Furthermore, while satisfying these requirements, the component composition, metal structure, and manufacturing conditions for ensuring excellent workability and hydrogen embrittlement resistance at a tensile strength of 780 MPa or more were also examined.
(I)鋼板表面(平面視する場合をいう)において、
(i)MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物を10個/100μm2以上存在させ、かつ
(ii)Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占める酸化物)の鋼板表面被覆率を10%以下とする。
(I) On the steel plate surface (when viewed in plan)
(I) 10/100 μm 2 or more of Mn—Si composite oxide having a major axis of 0.01 μm or more and 5 μm or less with an atomic ratio (Mn / Si) of Mn to Si of 0.5 or more, and (ii) Si The steel sheet surface coverage of an oxide mainly composed of (an element other than oxygen constituting the oxide, in which Si occupies more than 67% by atomic ratio) is 10% or less.
(II)SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、
任意の10視野において、幅3μm以下で深さ5μm以上のクラックが存在しないようにする。
(II) When observing a cross section near the surface of the steel sheet at 2000 times using SEM,
In any 10 fields of view, cracks having a width of 3 μm or less and a depth of 5 μm or more should not be present.
以下、まず上記要件(I),(II)を規定した理由について詳述する。 The reason why the requirements (I) and (II) are specified will be described in detail below.
<鋼板表面におけるMnとSiの原子比(Mn/Si)が0.5以上である長径0.01〜5μmのMn−Si複合酸化物:10個/100μm2以上>
本発明者らは、塗膜密着性に優れた高強度鋼板を得るべく以前から研究を進めており、Siを比較的多く含む鋼板の化成処理性向上技術について、既に提案している(特願2003−106152号)。この技術は、焼鈍雰囲気を制御することで、化成処理性に悪影響を及ぼす非晶質のSi酸化物を細かく分散させることにより化成処理性の向上を図ったものである。しかしSi濃度の比較的低い領域では、主な酸化物として、非晶質のSi酸化物ではなくMn−Si複合酸化物が生成する。この複合酸化物も、非晶質のSi酸化物と同様に塗膜密着性を低下させると考えられる。そこで、該Mn−Si複合酸化物を化成処理性の向上に積極的に活用することはできないかと考え、その線に沿って研究を進めてきた。
<Mn-Si composite oxide having a major axis of 0.01 to 5 μm with an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more on the steel sheet surface: 10/100 μm 2 or more>
The present inventors have been researching for a long time to obtain a high-strength steel sheet excellent in coating film adhesion, and have already proposed a technology for improving the chemical conversion property of a steel sheet containing a relatively large amount of Si (Japanese Patent Application). 2003-106152). This technique aims to improve chemical conversion treatment by finely dispersing amorphous Si oxide that adversely affects chemical conversion treatment by controlling the annealing atmosphere. However, in the region where the Si concentration is relatively low, not the amorphous Si oxide but the Mn—Si composite oxide is generated as the main oxide. This composite oxide is also considered to reduce the adhesion of the coating film similarly to the amorphous Si oxide. Therefore, the Mn—Si composite oxide is considered to be actively used for improving chemical conversion treatment, and research has been conducted along that line.
その結果、鋼板表層部に形成される鉄系酸化物基地中に、該Mn−Si複合酸化物を微細分散させて、後述する通り、りん酸亜鉛結晶の核生成サイトとして作用する「酸化物界面の電気化学的不均一場」を形成することで、化成処理性を高めることができた。本発明で規定するMn−Si複合酸化物が、りん酸亜鉛結晶の生成に有効である理由は明確ではないが、次の様に考えられる。 As a result, the Mn-Si composite oxide is finely dispersed in the iron-based oxide matrix formed on the surface layer portion of the steel sheet, and as described later, the “oxide interface that acts as a nucleation site for zinc phosphate crystals. The chemical conversion processability could be improved by forming an "electrochemical heterogeneous field". The reason why the Mn—Si composite oxide defined in the present invention is effective for the formation of zinc phosphate crystals is not clear, but is considered as follows.
化成処理工程において、りん酸亜鉛結晶は、例えば結晶粒界や予め表面調整処理時に鋼板表面に付着させたTiコロイド周辺などに形成される「電気化学的不均一場」に生成し易いことが知られている。そして本発明においても、Mn−Si複合酸化物の周辺に電気化学的な不均一場が形成されることで、化成処理時にりん酸亜鉛結晶が付着しやすくなり良好な化成処理性が発揮されるものと考えられる。 In the chemical conversion treatment process, it is known that zinc phosphate crystals are likely to be generated in the “electrochemical inhomogeneous field” formed around the grain boundaries and around the Ti colloid previously deposited on the steel plate surface during the surface conditioning treatment. It has been. Also in the present invention, an electrochemical heterogeneous field is formed around the Mn-Si composite oxide, so that zinc phosphate crystals are easily attached during chemical conversion treatment, and good chemical conversion treatment performance is exhibited. It is considered a thing.
化成処理後のりん酸亜鉛結晶は、塗膜密着性の観点から数μm以下であることが好ましいとされている。よって上述の電気化学的不均一場も、数μmオーダーまたはそれ以下であることが望ましいと考えられる。そこでMnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物を100μm2に10個以上存在させて(平均して10μm2に1個以上存在させて)、該複合酸化物粒子の平均粒子間隔が数μmとなるようにし、上記サイズの電気化学的不均一場が形成されやすい状態とした。 It is said that the zinc phosphate crystal after the chemical conversion treatment is preferably several μm or less from the viewpoint of coating film adhesion. Therefore, it is considered that the above-mentioned electrochemical non-uniform field is desirably on the order of several μm or less. Therefore, ten or more Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less having an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more are present in 100 μm 2 (on average 10 μm 2) . One or more particles were present), and the average particle spacing of the composite oxide particles was set to several μm so that an electrochemical heterogeneous field having the above size was easily formed.
尚、存在する全てのMn−Si複合酸化物において、電気化学的不均一場が有効に形成されるとは限らないので、好ましくは100μm2あたり50個以上、より好ましくは100個以上、さらに好ましくは150個以上の上記Mn−Si複合酸化物を存在させるのがよい。該Mn−Si複合酸化物としては、例えばMn2SiO4が挙げられ、鋼中Al含有量が高い場合には、Alを含むMn−Si−Al複合酸化物の形態をとる場合もある。 In all of the Mn—Si composite oxides present, the electrochemical heterogeneous field is not necessarily formed effectively, and is preferably 50 or more, more preferably 100 or more, even more preferably 100 μm 2. It is preferable that 150 or more of the above Mn—Si composite oxide exist. Examples of the Mn—Si composite oxide include Mn 2 SiO 4. When the Al content in steel is high, the Mn—Si composite oxide may take the form of a Mn—Si—Al composite oxide containing Al.
<Siを主体とする酸化物の鋼板表面被覆率:10%以下>
りん酸亜鉛結晶の生成に有効なMn−Si複合酸化物を適量存在させても、化成処理を阻害するその他の物質が存在すれば、優れた化成処理性は発揮されず、結果として塗膜密着性に劣るものとなる。
<Stainless steel sheet surface coverage of oxide mainly composed of Si: 10% or less>
Even if an appropriate amount of Mn-Si composite oxide effective for the formation of zinc phosphate crystals is present, if there are other substances that inhibit the chemical conversion treatment, excellent chemical conversion treatment performance will not be exhibited, resulting in coating adhesion. It becomes inferior.
上述した様に、Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占める酸化物)が鋼板表面に存在すると、当該部位には、りん酸亜鉛結晶が生成せず化成処理性が著しく低下する。そこで、Siを主体とする酸化物の鋼板表面被覆率を10%以下とした。 As described above, when an oxide mainly composed of Si (an oxide other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio) is present on the surface of the steel sheet, the region contains phosphorus. Zinc acid crystals are not formed, and the chemical conversion treatment performance is significantly reduced. Therefore, the steel sheet surface coverage of the oxide mainly composed of Si is set to 10% or less.
尚、本発明者らは、上述の通りSiを主体とする酸化物を細かく分散させて化成処理性を高める技術を提案しているが、Mn−Si複合酸化物の前記作用を活用する本発明においては、Siを主体とする酸化物を極力存在させない方が好ましいことがわかった。よってSiを主体とする酸化物の鋼板表面被覆率は、5%以下に抑えることがより好ましく、最も好ましくは0%である。 The inventors of the present invention have proposed a technique for finely dispersing an oxide mainly composed of Si as described above to improve the chemical conversion treatment property. However, the present invention utilizes the above-described action of the Mn—Si composite oxide. In the above, it was found that it is preferable that an oxide mainly composed of Si is not present as much as possible. Therefore, the steel sheet surface coverage of the oxide mainly composed of Si is more preferably suppressed to 5% or less, and most preferably 0%.
<SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において、幅3μm以下で深さ5μm以上のクラックが存在しないこと>
鋼板表面に鋭利なクラックが存在すると、化成処理時に当該部位にりん酸亜鉛結晶が付着せず、その結果、当該部位の腐食が進行しやすくなり、塗膜密着性が低下すると考えられる。つまり塗膜密着性を高めるには、りん酸亜鉛結晶の付着しない鋭利なクラックを極力抑制することが重要となる。
<When observing a cross section near the steel sheet surface at 2000 times using SEM, there should be no cracks with a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view>
If sharp cracks are present on the surface of the steel plate, it is considered that zinc phosphate crystals do not adhere to the site during the chemical conversion treatment, and as a result, corrosion of the site is likely to proceed, resulting in a decrease in coating film adhesion. That is, in order to improve the adhesion of the coating film, it is important to suppress as much as possible sharp cracks to which zinc phosphate crystals do not adhere.
本発明者らは、既に、Siと酸素を含む線状化合物(幅300nm以下)の存在深さを10μm以下にすることで塗膜密着性を高める技術を提案している。該技術では、連続焼鈍後に酸洗を施さないことを前提としているが、鋼板にはむしろ連続焼鈍後に酸洗を施す場合の方が多く、その場合には、線状酸化物が除去されてクラックが生じる。 The present inventors have already proposed a technique for improving the adhesion of a coating film by setting the existing depth of a linear compound (width: 300 nm or less) containing Si and oxygen to 10 μm or less. In this technique, it is assumed that pickling is not performed after continuous annealing, but the steel sheet is more often subjected to pickling after continuous annealing, in which case, the linear oxide is removed and cracks occur. Occurs.
クラック深さと線状酸化物の定量的な関係は明確でないが、線状酸化物が、上記の通り酸溶解されるか、又は機械的に脱落してクラックが生じると考えられ、上記線状酸化物が除去されたあとも、酸等によりクラック部分の溶解が進むので、線状酸化物の存在深さよりも該酸化物の除去後に形成されるクラックの方が深いと考えられる。 Although the quantitative relationship between the crack depth and the linear oxide is not clear, it is considered that the linear oxide is dissolved in the acid as described above, or mechanically dropped to cause cracks, and the linear oxidation described above. It is considered that cracks formed after removal of the oxide are deeper than the existence depth of the linear oxide because dissolution of the crack portion proceeds by acid or the like even after the material is removed.
そこで本発明では、上記提案済の技術のように線状酸化物の存在深さを規定するよりも、クラックを制御する方が塗膜密着性をより確実に高めることができると考え、制御すべきクラック(図1)の形態について調べたところ、クラックの幅が、りん酸亜鉛結晶粒径と同程度かそれ以下であると、該クラックにりん酸亜鉛結晶が付着し難く、また、特に深さが5μm以上のクラックにはりん酸亜鉛結晶が付着し難いことから、幅3μm以下でかつ深さが5μm以上のクラックを抑制の対象とした。 Therefore, in the present invention, it is considered that controlling the cracks can more reliably improve the adhesion of the coating film than controlling the depth of existence of the linear oxide as in the proposed technique. When the shape of the power crack (FIG. 1) was examined, if the crack width was the same as or smaller than the zinc phosphate crystal grain size, it was difficult for the zinc phosphate crystal to adhere to the crack. Since it is difficult for zinc phosphate crystals to adhere to cracks with a thickness of 5 μm or more, cracks with a width of 3 μm or less and a depth of 5 μm or more were targeted for suppression.
そして上記クラックが、SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において存在しないことを要件とした。 And when the said crack observed the cross section near the steel plate surface by 2000 times using SEM, it made it a requirement that it did not exist in arbitrary 10 visual fields.
本発明では、上記Mn−Si複合酸化物を効率良く析出させると共に規定するクラックを抑制し、また高強度鋼板としての特性を備えるため化学成分を下記の通り規定した。 In the present invention, the chemical components are defined as follows in order to efficiently precipitate the Mn—Si composite oxide and to suppress the specified cracks and to provide the characteristics as a high-strength steel sheet.
<Si(質量%)/Mn(質量%)≦0.40>
上述の通り、Siを主体とする酸化物は、化成処理性に悪影響を及ぼすため、該酸化物を細かく分散させるよりも極力抑制する方が好ましい。そこで本発明者らは、鋼中Si含有量(質量%)と鋼中Mn含有量の比率(Si/Mn)を0.40以下とすることで、Siを主体とする酸化物を抑制し、化成処理性を高めることとした。Si/Mnは好ましくは0.3以下である。
<Si (mass%) / Mn (mass%) ≦ 0.40>
As described above, since an oxide mainly composed of Si adversely affects chemical conversion properties, it is preferable to suppress it as much as possible rather than finely dispersing the oxide. Therefore, the inventors suppress the oxide mainly composed of Si by setting the ratio of Si content (mass%) in steel and Mn content in steel (Si / Mn) to 0.40 or less, The chemical conversion processability was improved. Si / Mn is preferably 0.3 or less.
<C:0.06〜0.6%>
Cは強度確保に必要な元素であり、0.06%以上(好ましくは0.09%以上)含有させるのが好ましいが、過剰に存在すると溶接性が低下する。よってC含有量は0.6%以下に抑える。好ましくは0.30%以下、更に好ましくは0.20%以下である。
<C: 0.06 to 0.6%>
C is an element necessary for ensuring the strength, and is preferably contained in an amount of 0.06% or more (preferably 0.09% or more), but if it exists in excess, weldability is lowered. Therefore, C content is suppressed to 0.6% or less. Preferably it is 0.30% or less, More preferably, it is 0.20% or less.
<Si:0.1〜2%>
Siは、オーステナイトへのC濃縮を促進させ、室温でオーステナイトを残留させて優れた強度−延性バランスを確保するのに有効な元素である。この様な効果を十分に発揮させるには、Siを0.1%以上、好ましくは0.5%以上含有させる。一方、Si含有量が過剰になると、粒界にもSi酸化物が生成して酸洗後にクラックが発生し易く、また固溶強化作用が過大となって圧延負荷が増大するため、2%以下に抑える。好ましくは1.5%以下である。
<Si: 0.1 to 2%>
Si is an element effective to promote C concentration to austenite and to retain austenite at room temperature to ensure an excellent strength-ductility balance. In order to sufficiently exhibit such an effect, Si is contained in an amount of 0.1% or more, preferably 0.5% or more. On the other hand, if the Si content is excessive, Si oxides are also generated at the grain boundaries and cracks are likely to occur after pickling, and the solid solution strengthening action becomes excessive and the rolling load increases, so that it is 2% or less. Keep it down. Preferably it is 1.5% or less.
<Al:0.01〜3%>
Alは、脱酸作用を有する元素であり、Al脱酸を行う場合にAl含有量が0.01%未満だと溶鋼段階で十分な脱酸ができず、余剰の酸素が、MnO、SiO2等の酸化物系介在物として鋼中に多量に存在し、局部的な加工性の低下を引き起こす可能性がある。またAlは、Siと同様にオーステナイトへのC濃縮を促進させ、室温でオーステナイトを残留させて、優れた強度−延性バランスを確保するのに有効な元素であり、この様な効果を発揮させる観点からも0.01%以上のAlを含有させるのがよい。好ましくは0.2%以上である。一方、Al含有量が過剰になると、残留オーステナイト確保の効果が飽和するだけでなく、鋼の脆化やコストアップを招くので、3%以下(好ましくは2%以下)に抑える。
<Al: 0.01 to 3%>
Al is an element having a deoxidizing action. When Al deoxidation is performed, if the Al content is less than 0.01%, sufficient deoxidation cannot be performed at the molten steel stage, and excess oxygen is added to MnO, SiO 2. Such oxide inclusions are present in a large amount in steel and may cause local workability deterioration. In addition, Al is an element effective for promoting C concentration to austenite and retaining austenite at room temperature to ensure an excellent strength-ductility balance, similar to Si. Therefore, it is preferable to contain 0.01% or more of Al. Preferably it is 0.2% or more. On the other hand, when the Al content is excessive, not only the effect of securing retained austenite is saturated, but also the steel becomes brittle and the cost is increased, so it is suppressed to 3% or less (preferably 2% or less).
<Si+Al:1〜4%>
残留オーステナイトを十分に確保して優れた加工性を安定的に発揮させるには、SiとAlを合計で1%以上(好ましくは合計で1.2%以上)含有させるのがよい。しかしSiとAlが過剰に存在しても、鋼自体が脆化しやすくなるので合計で4%以下(好ましくは3%以下)に抑える。
<Si + Al: 1-4%>
In order to sufficiently secure the retained austenite and exhibit excellent workability stably, it is preferable to contain Si and Al in total of 1% or more (preferably 1.2% or more in total). However, even if Si and Al are present in excess, the steel itself is likely to become brittle, so the total is suppressed to 4% or less (preferably 3% or less).
<Mn:1〜6%>
Mnは強度確保に必要な元素であり、また残留オーステナイトを確保して加工性を高めるのにも有効な元素である。このような効果を発揮させるため1%以上、好ましくは1.3%以上含有させる。しかし過剰になると延性と溶接性が共に劣化するため、6%以下、好ましくは3%以下に抑える。
<Mn: 1 to 6%>
Mn is an element necessary for securing strength, and is also an element effective for securing retained austenite and improving workability. In order to exhibit such an effect, it is contained 1% or more, preferably 1.3% or more. However, if it is excessive, both ductility and weldability deteriorate, so it is limited to 6% or less, preferably 3% or less.
本発明で規定する含有元素は上記の通りであり、残部成分は実質的にFeであるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる元素として0.02%以下のS(硫黄)、0.01%以下のN(窒素)、0.01%以下のO(酸素)等の不可避不純物が含まれることが許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、更に他の元素としてCr、Mo、Ti、Nb、V、P、Bを積極的に含有させることも可能である。 The contained elements specified in the present invention are as described above, and the remaining component is substantially Fe, but 0.02% or less of S as an element brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. (Sulfur), 0.01% or less of N (nitrogen), 0.01% or less of O (oxygen) and other inevitable impurities are allowed to be included, as well as adversely affecting the function of the present invention. It is also possible to positively contain Cr, Mo, Ti, Nb, V, P, and B as other elements within a range that does not give the above.
即ちCr、Mo、Ti、Nb、V、P、Bは、鋼板の強度を高める観点から添加してもよく、それぞれCr:0.01%以上、Mo:0.01%以上、Ti:0.005%以上、Nb:0.005%以上、V:0.005%以上、P:0.0005%以上、B:0.0003%以上含有させてもよいが、過剰に添加すると延性の低下を招くため、Cr、Moはそれぞれ1%以下、Ti、Nb、Pはそれぞれ0.1%以下、Vは0.3%以下、Bは0.01%以下に抑えることが好ましい。 That is, Cr, Mo, Ti, Nb, V, P, and B may be added from the viewpoint of increasing the strength of the steel sheet, and Cr: 0.01% or more, Mo: 0.01% or more, Ti: 0.0. 005% or more, Nb: 0.005% or more, V: 0.005% or more, P: 0.0005% or more, B: 0.0003% or more may be contained. Therefore, it is preferable to suppress Cr and Mo to 1% or less, Ti, Nb, and P to 0.1% or less, V to 0.3% or less, and B to 0.01% or less, respectively.
本発明は、鋼板の母相組織がベイニティックフェライトとポリゴナルフェライトであり、かつ該組織中に残留オーステナイトが存在し、加工変形中に該残留オーステナイトが誘起変態(歪み誘起変態:TRIP)することで、優れた延性を示す所謂TRIP鋼板を対象とするものである。 In the present invention, the matrix structure of the steel sheet is bainitic ferrite and polygonal ferrite, and the retained austenite is present in the structure, and the retained austenite undergoes an induced transformation (strain-induced transformation: TRIP) during work deformation. Thus, it is intended for a so-called TRIP steel sheet exhibiting excellent ductility.
ベイニティックフェライトとポリゴナルフェライトの合計量は75%以上であり、好ましくは80%以上であるが、その上限は、後記する残留オーステナイト量とのバランスによって制御され、所望の高い加工性が得られる様、適切に調整することが推奨される。尚、本発明におけるベイニティックフェライトは、組織内に炭化物を有しない点でベイナイト組織とは異なる。また、転位密度が極めて小さいポリゴナルフェライトや、細かいサブグレイン等の下部組織を持った準ポリゴナルフェライト組織とも異なっている(日本鉄鋼協会 基礎研究会 発行「鋼のベイナイト写真集−1」参照)。上記母相組織のうち、ベイニティックフェライトは強度確保と耐水素脆化特性の向上に、またポリゴナルフェライトは延性確保に寄与する組織であり、適切なバランスに制御する必要がある。 The total amount of bainitic ferrite and polygonal ferrite is 75% or more, preferably 80% or more, but the upper limit is controlled by the balance with the amount of retained austenite described later, and desired high workability is obtained. It is recommended to make appropriate adjustments. The bainitic ferrite in the present invention is different from the bainite structure in that it does not have carbides in the structure. It is also different from polygonal ferrite with extremely low dislocation density and quasi-polygonal ferrite structure with a substructure such as fine subgrains (see “Stein Bainite Photobook-1” published by the Japan Iron and Steel Institute Basic Research Group). . Of the above matrix structure, bainitic ferrite contributes to ensuring strength and improving hydrogen embrittlement resistance, and polygonal ferrite contributes to securing ductility, and must be controlled to an appropriate balance.
よって、ベイニティックフェライトは40%以上、ポリゴナルフェライトは1〜50%とする。ベイニティックフェライトについては50%以上、またポリゴナルフェライトについては30%以下とすることがより好ましい。 Therefore, bainitic ferrite is 40% or more, and polygonal ferrite is 1 to 50%. More preferably, the bainitic ferrite is 50% or more, and the polygonal ferrite is 30% or less.
また上述の通り、本発明の鋼板は、優れた延性を発揮させるべく残留オーステナイトを3%以上、好ましくは5%以上含むものである。一方、残留オーステナイトが過多になると伸びフランジ性が劣化するので、上限を25%とするのが好ましい。該残留オーステナイトは、ベイニティックフェライト中にラス状に存在していることが耐水素脆化特性改善の観点から好ましい。ここで「ラス状である」とは、平均軸比(長軸/短軸)が2以上(好ましくは4以上であり、好ましい上限は30以下である)のものを意味する。 Further, as described above, the steel sheet of the present invention contains 3% or more, preferably 5% or more of retained austenite in order to exhibit excellent ductility. On the other hand, if the retained austenite is excessive, stretch flangeability deteriorates, so the upper limit is preferably set to 25%. The retained austenite is preferably present in lath form in bainitic ferrite from the viewpoint of improving hydrogen embrittlement resistance. Here, the term “lass” means that the average axial ratio (major axis / minor axis) is 2 or more (preferably 4 or more, and a preferred upper limit is 30 or less).
尚、本発明におけるベイニティックフェライトの占積率は、後述する実施例に示す通り、全組織(100%)からポリゴナルフェライトと残留オーステナイトの占める占積率を差し引いて求めたものであり、この様にして得られるベイニティックフェライトの占積率には、本発明の製造過程で不可避的に形成され得るベイナイトやマルテンサイトが、本発明の作用を損なわない範囲で含まれる場合もある。 The space factor of bainitic ferrite in the present invention is determined by subtracting the space factor occupied by polygonal ferrite and retained austenite from the entire structure (100%), as shown in the examples described later. The space factor of bainitic ferrite obtained in this way may include bainite and martensite that can be inevitably formed in the production process of the present invention within a range that does not impair the function of the present invention.
本発明の鋼板を得るための製法は特に限定されないが、化成処理性を高めるべく、上記要件(I)として規定する通り鋼板表面に析出する酸化物の形態を制御するには、成分組成を満足させる他、製造工程において、熱間圧延後に、液温が70〜90℃で5〜16質量%の塩酸に40秒間以上(好ましくは60秒間以上)浸漬し、かつ連続焼鈍時の露点を−40℃以下(好ましくは−45℃以下)に抑えることが有効である。尚、塩酸への浸漬時間は、塩酸浴が複数設置され、断続的に浸漬する場合には、浸漬時間の合計が40秒間以上であればよい。 The production method for obtaining the steel sheet of the present invention is not particularly limited, but in order to improve the chemical conversion processability, the component composition is satisfied in order to control the form of oxide deposited on the steel sheet surface as defined as the above requirement (I). In addition, in the manufacturing process, after hot rolling, the liquid temperature is 70 to 90 ° C. and immersed in 5 to 16% by mass of hydrochloric acid for 40 seconds or more (preferably 60 seconds or more), and the dew point during continuous annealing is −40 It is effective to suppress the temperature to below ℃ (preferably below -45 ℃). In addition, as for the immersion time in hydrochloric acid, when a plurality of hydrochloric acid baths are installed and intermittent immersion is performed, the total immersion time may be 40 seconds or more.
また上記要件(II)として規定する通り、クラックを発生させないようにするには、成分組成を満足させる他、製造工程において、熱間圧延の巻き取り温度を500℃以下(好ましくは480℃以下)とし、かつ熱間圧延後、液温が70〜90℃で5〜16質量%の塩酸に40秒間以上(好ましくは60秒間以上)浸漬し、かつ連続焼鈍時の露点を−40℃以下(好ましくは−45℃以下)とし、更に連続焼鈍時の冷却方法として、水を使用しないガス吹き付けによる冷却(GJ)か水冷ロール抜熱による冷却(RQ)を採用するか、ミスト冷却の場合には、鋼板温度が550℃以下(好ましくは450℃以下)である状態から、該ミスト冷却を行うようにすることが有効である。 Further, as specified in the above requirement (II), in order not to generate cracks, in addition to satisfying the component composition, in the manufacturing process, the hot rolling coiling temperature is 500 ° C. or lower (preferably 480 ° C. or lower). And after hot rolling, the liquid temperature is 70-90 ° C. and immersed in 5-16 mass% hydrochloric acid for 40 seconds or more (preferably 60 seconds or more), and the dew point during continuous annealing is −40 ° C. or less (preferably Is -45 ° C or lower), and further, as a cooling method at the time of continuous annealing, cooling by gas blowing without using water (GJ) or cooling by heat removal from a water-cooled roll (RQ) is adopted, or in the case of mist cooling, It is effective to perform the mist cooling from a state where the steel plate temperature is 550 ° C. or lower (preferably 450 ° C. or lower).
加えて母相組織として、ベイニティックフェライトを占積率で40%以上とポリゴナルフェライトとの混合組織を確保するには、連続焼鈍時の露点を上述条件に制御しつつ、熱処理を下記の条件で行うことが推奨される。即ち、
(A)850℃以上の温度で10〜200秒間加熱保持すること、
(B)3℃/s以上の平均冷却速度でパーライト変態を避けながら、ベイナイト変態温度域(約500〜350℃)まで冷却すること、および
(C)該温度域で10秒以上保持すること、が推奨される。
In addition, as a matrix structure, in order to secure a mixed structure of bainitic ferrite with a space factor of 40% or more and polygonal ferrite, heat treatment is performed as follows while controlling the dew point during continuous annealing to the above-mentioned conditions. It is recommended to do it under conditions. That is,
(A) heating and holding at a temperature of 850 ° C. or higher for 10 to 200 seconds;
(B) cooling to a bainite transformation temperature range (about 500 to 350 ° C.) while avoiding pearlite transformation at an average cooling rate of 3 ° C./s or more, and (C) holding for 10 seconds or more in the temperature range, Is recommended.
まず上記(A)の通り、850℃以上の温度で均熱することが、炭化物を完全に溶解して所望の残留オーステナイトを形成するのに有効であり、また、該均熱後の冷却工程で、転位密度の高いベイナイトを得る上でも有効である。上記温度での保持時間は、10〜200秒とするのがよい。これより短すぎると加熱による上記効果を十分享受することができず、一方、保持時間が長すぎると結晶粒が粗大化するからである。より好ましくは20〜150秒である。 First, as described in (A) above, soaking at a temperature of 850 ° C. or more is effective for completely dissolving the carbide to form the desired retained austenite, and in the cooling step after soaking. It is also effective in obtaining bainite having a high dislocation density. The holding time at the above temperature is preferably 10 to 200 seconds. This is because if it is too short, the above-mentioned effect due to heating cannot be fully enjoyed. On the other hand, if the holding time is too long, the crystal grains become coarse. More preferably, it is 20 to 150 seconds.
次いで上記(B)の通り、平均冷却速度を3℃/s以上、好ましくは5℃/s以上とし、パーライト変態を避けながら、ベイナイト変態温度域(約500〜350℃)まで冷却するのがよい。平均冷却速度を制御することで、ベイニティックフェライト中に多量の転位を導入でき、所望の強度を確保できる。強度を高める観点からは、平均冷却速度の上限は特に規定されず大きければ大きい程良いが、実操業を考慮して適切に制御することが推奨される。 Next, as in (B) above, the average cooling rate is 3 ° C./s or higher, preferably 5 ° C./s or higher, and cooling to the bainite transformation temperature range (about 500 to 350 ° C.) is avoided while avoiding pearlite transformation. . By controlling the average cooling rate, a large amount of dislocations can be introduced into the bainitic ferrite, and a desired strength can be ensured. From the viewpoint of increasing the strength, the upper limit of the average cooling rate is not particularly specified and should be as large as possible. However, it is recommended to appropriately control in consideration of actual operation.
上記冷却速度の制御は、ベイナイト変態温度域まで行うのがよい。該温度域よりも高温域で早期に制御を終了し、その後に、例えば緩やかな速度で冷却を行った場合には、転位を十分に導入させることができず、また残留オーステナイトが生成し難く、優れた加工性を確保することができないからである。一方、より低温域まで上記冷却速度で冷却した場合も残留オーステナイトが生成し難く、優れた加工性を確保することができないので好ましくない。 The cooling rate is preferably controlled up to the bainite transformation temperature range. If the control is terminated earlier in the higher temperature range than the temperature range, and then cooled, for example, at a moderate rate, dislocation cannot be sufficiently introduced, and residual austenite is difficult to generate, This is because excellent processability cannot be ensured. On the other hand, even when cooled to the lower temperature range at the above cooling rate, retained austenite is hardly generated, and excellent workability cannot be secured, which is not preferable.
冷却後は、上記(C)の通り上記温度域で10秒以上温度保持するのがよい。これにより、残留オーステナイトへのC濃縮を短時間で効率よく進めることができ、安定した多量の残留オーステナイトが得られ、結果として、該残留オーステナイトによるTRIP効果が十分に発揮されるからである。一方、上記保持時間が長すぎると、転位の回復が起こり、上記冷却で形成した転位が減少して、強度を確保できなくなるので好ましくない。 After cooling, the temperature is preferably maintained for 10 seconds or more in the temperature range as described in (C) above. Thereby, C concentration to the retained austenite can be efficiently advanced in a short time, and a large amount of stable retained austenite can be obtained. As a result, the TRIP effect by the retained austenite is sufficiently exhibited. On the other hand, if the holding time is too long, dislocation recovery occurs, dislocations formed by the cooling decrease, and the strength cannot be ensured.
その他の製造条件については特に限定されず、通常行われている通り、溶製後に連続鋳造或いは鋳型鋳造してスラブを得てから、熱間圧延(熱延)や更にその後に冷間圧延(冷延)を行えばよい。上記熱延工程では、巻き取り温度以外は通常の条件を採用すればよく、850℃以上で熱延を終了した後、平均冷却速度約30℃/sで冷却し、約400〜500℃の温度で巻取る等の条件を採用すればよい。また、冷延工程では、約30〜70%の冷延率の冷間圧延を施すことが推奨される。勿論、これに限定する趣旨では決してない。後述する実施例では連続焼鈍後に酸洗を行っているが、該酸洗の有無も問わない。また、焼鈍後の鋼材あるいは焼鈍後に酸洗した鋼材に、微量のNiフラッシュめっきを行えば、化成処理皮膜を微細にする効果があり有効である。 Other production conditions are not particularly limited, and as usual, after smelting, continuous casting or mold casting is performed to obtain a slab, and then hot rolling (hot rolling) and then cold rolling (cold rolling). It may be done. In the hot rolling step, normal conditions other than the coiling temperature may be adopted. After the hot rolling is finished at 850 ° C. or higher, the cooling is performed at an average cooling rate of about 30 ° C./s, and the temperature is about 400 to 500 ° C. It is sufficient to employ conditions such as winding with In the cold rolling process, it is recommended to perform cold rolling at a cold rolling rate of about 30 to 70%. Of course, this is not intended to be limited to this. In the examples described later, pickling is performed after continuous annealing, but the presence or absence of the pickling is not questioned. Further, if a small amount of Ni flash plating is performed on the steel material after annealing or the steel material pickled after annealing, there is an effect of making the chemical conversion treatment film fine and effective.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
表1に示す化学成分組成の鋼材を溶製し、鋳造して得られたスラブを用いて熱間圧延を行いその後酸洗を行った。製造条件を表2に示す。尚、酸洗は、温度が70〜90℃で濃度が10〜16質量%の塩酸水溶液を用いて行った。その後、冷間圧延を行い1.6mm厚の鋼板を得た。連続焼鈍における均熱後の冷却は、ミスト冷却、GJ、RQのいずれかまたは組み合わせて行い、上記冷却後に表2中に示す条件(温度・時間)で保持を行った。尚、ミスト冷却の場合は、保持後に、液温:50℃で濃度:5質量%の塩酸に5秒間浸漬(酸洗)した。露点はミスト冷却部を除く連続焼鈍炉の雰囲気露点である。 A steel material having the chemical composition shown in Table 1 was melted and cast using a slab obtained by casting, and then pickled. The manufacturing conditions are shown in Table 2. The pickling was performed using a hydrochloric acid aqueous solution having a temperature of 70 to 90 ° C. and a concentration of 10 to 16% by mass. Thereafter, cold rolling was performed to obtain a steel plate having a thickness of 1.6 mm. Cooling after soaking in continuous annealing was performed by any one or a combination of mist cooling, GJ, and RQ, and holding was performed under the conditions (temperature and time) shown in Table 2 after the cooling. In the case of mist cooling, after holding, it was immersed (pickled) for 5 seconds in hydrochloric acid having a liquid temperature of 50 ° C. and a concentration of 5% by mass. The dew point is the atmospheric dew point of the continuous annealing furnace excluding the mist cooling section.
得られた鋼板の金属組織を次の様にして調べた。即ち、鋼板をレペラー腐食し、SEMおよび光学顕微鏡(倍率1000倍)観察により組織を同定した後、ポリゴナルフェライトの面積率を算出した。残留オーステナイトの面積率はXRD(X線回折分析装置)で求めた。またベイニティックフェライトの面積率は、全組織(100%)から前記ポリゴナルフェライトおよび残留オーステナイトの占める面積率を差し引いて求めたものであり、不可避的に形成されるマルテンサイトやその他の組織を含む。 The metal structure of the obtained steel sheet was examined as follows. That is, after the steel plate was repeller-corroded and the structure was identified by observation with an SEM and an optical microscope (magnification 1000 times), the area ratio of polygonal ferrite was calculated. The area ratio of retained austenite was determined by XRD (X-ray diffraction analyzer). The area ratio of bainitic ferrite is obtained by subtracting the area ratio occupied by the polygonal ferrite and retained austenite from the total structure (100%), and inevitably formed martensite and other structures. Including.
また得られた鋼板を用いて、機械的特性および塗膜密着性を評価した。機械的特性は、JIS5号試験片を採取して測定し、引張強度(TS)、全伸び(El)および降伏点(YP)を求め、引張強度(TS)が780MPa以上で、かつ引張強度と伸びの積(TS×El)が19000(強度1180MPa以上の場合は17000、1370MPa以上の場合は15000)以上の場合を、加工性に優れていると評価した。 Moreover, the mechanical characteristics and coating-film adhesiveness were evaluated using the obtained steel plate. The mechanical properties were measured by taking a JIS No. 5 test piece, obtaining the tensile strength (TS), total elongation (El), and yield point (YP), the tensile strength (TS) being 780 MPa or more, and the tensile strength and When the product of elongation (TS × El) was 19000 (17000 when the strength was 1180 MPa or more, 15000 when the strength was 1370 MPa or more), it was evaluated that the workability was excellent.
耐水素脆化特性は、得られた各鋼板を15mm×65mmサイズの試験片とし、4点曲げにより780MPaの応力を負荷しながら(0.5mol硫酸+0.01mol−KSCN)溶液中にてポテンショスタットを用いて自然電位よりも卑な−80mVの電位を与えたときに割れが発生するまでの時間(割れ発生寿命)を測定することにより評価した。本実施例では、割れ発生寿命が1000秒を上回るものを「耐水素脆化特性に優れる」と評価した。 The resistance to hydrogen embrittlement was obtained by using each obtained steel sheet as a test piece of 15 mm × 65 mm size and applying a stress of 780 MPa by 4-point bending (0.5 mol sulfuric acid + 0.01 mol-KSCN) in a potentiostat in the solution. This was evaluated by measuring the time (cracking life) until cracking occurred when a potential of −80 mV, which is lower than the natural potential, was applied using the. In this example, the crack generation life exceeding 1000 seconds was evaluated as “excellent in hydrogen embrittlement resistance”.
塗膜密着性として、化成処理性とクラックの有無を調べた。化成処理性は、鋼板表面の酸化物の状態を下記の様にして調べ、かつ下記条件で化成処理を行って化成処理後の鋼板表面を1000倍でSEM観察し、10視野のりん酸亜鉛結晶の付着状態を調べた。そして10視野全てにおいてりん酸亜鉛結晶が均一に付着している場合を「○」、りん酸亜鉛結晶の付着していない部分が1視野でも存在する場合を「×」と評価した。その結果を表3に示す。
・化成処理液:日本パーカライジング社製 パルボンド L 3020
・化成処理工程:脱脂→ 水洗→ 表面調整→ 化成処理
As the coating film adhesion, chemical conversion property and presence of cracks were examined. For the chemical conversion treatment, the state of the oxide on the surface of the steel sheet was examined as follows, and the chemical conversion treatment was performed under the following conditions, and the steel sheet surface after the chemical conversion treatment was observed by SEM at 1000 times, and 10 phosphate crystals of zinc phosphate were observed. The adhesion state of was investigated. The case where the zinc phosphate crystals were uniformly attached in all 10 fields of view was evaluated as “◯”, and the case where the portion where no zinc phosphate crystals were adhered was present as “x”. The results are shown in Table 3.
・ Chemical conversion treatment liquid: Palbond L 3020 manufactured by Nihon Parkerizing Co., Ltd.
・ Chemical conversion treatment process: degreasing → water washing → surface adjustment → chemical conversion treatment
Mn−Si酸化物の個数は、鋼材表面の抽出レプリカ膜を作製し、これを15000倍でTEM観察し(日立製作所製H−800)、任意の20視野の平均個数(100μm2あたり)を調べた。 As for the number of Mn-Si oxides, an extraction replica film on the surface of a steel material was prepared, and this was observed by TEM at 15000 times (H-800, manufactured by Hitachi, Ltd.), and the average number of 20 arbitrary fields (per 100 μm 2 ) was examined. It was.
Siを主体とする酸化物の鋼板表面被覆率は、抽出レプリカ法で処理したサンプルをTEMで観察し、画像解析法で被覆率を求めた。尚、抽出レプリカ法は、下記(a)〜(d)の手順に添って行った。
(a)鋼材の表面にカーボンを蒸着させる。
(b)サンプル平面上に2〜3mm角の碁盤目状の切れ目を入れる。
(c)10%アセチルアセトン-90%メタノールエッチング液で
腐食させてカーボンを浮上させる。
(d)アルコール中に保存して観察に用いる。
As for the steel sheet surface coverage of the oxide mainly composed of Si, the sample treated by the extraction replica method was observed by TEM, and the coverage was determined by an image analysis method. The extraction replica method was performed according to the following procedures (a) to (d).
(A) Carbon is vapor-deposited on the surface of the steel material.
(B) A grid-like cut of 2 to 3 mm square is made on the sample plane.
(C) 10% acetylacetone-90% methanol etchant
Corrosion to raise the carbon.
(D) Store in alcohol and use for observation.
この様に処理したサンプルを用いてTEMにて、倍率15000倍で10視野分の写真(13cm×11cm)を撮影し、Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%を超えるもの)の面積を測定し、Siを主体とする酸化物の被覆率を求めた。 Using the sample processed in this manner, a TEM image of 10 fields of view (13 cm × 11 cm) was taken at a magnification of 15000 times, and an oxide mainly composed of Si (among elements other than oxygen constituting the oxide) The area of Si exceeding 67% by atomic ratio) was measured, and the coverage of the oxide mainly composed of Si was determined.
またクラックの有無は、SEM(日立製作所製 S−4500)を用いて2000倍で、鋼板断面の表面近傍における任意の10視野(1視野:13cm×11cm)を観察して調べた。これらの結果を表3に示す。 The presence or absence of cracks was examined using an SEM (S-4500, manufactured by Hitachi, Ltd.) at a magnification of 2000 and by observing any 10 visual fields (1 visual field: 13 cm × 11 cm) near the surface of the cross section of the steel sheet. These results are shown in Table 3.
表1〜3から以下の様に考察できる(尚、下記No.は実験No.を示す)。即ちNo.24、27は、本発明鋼板1としての規定要件を満たしているため化成処理性に優れており、塗膜密着性に優れている。該実施例において、クラックを抑制してより優れた塗膜密着性を確保するには、製造条件として特に巻取温度や連続焼鈍での冷却を推奨される条件とするのがよいことがわかる。 It can be considered as follows from Tables 1 to 3 (note that the following No. indicates the experiment No.). That is, no. Nos. 24 and 27 satisfy the prescribed requirements as the steel sheet 1 of the present invention, and therefore have excellent chemical conversion properties and excellent coating film adhesion. In this example, it can be seen that, in order to suppress cracks and ensure better coating film adhesion, it is particularly preferable to set the recommended conditions for the cooling at the coiling temperature and continuous annealing.
No.21、22は、本発明鋼板2として規定する要件を満たしているため、クラックが発生しておらず、塗膜密着性に優れた鋼板が得られている。該実施例において、化成処理性を確保して塗膜密着性をより高めるには、成分組成を制御して鋼板表面に析出する酸化物の形態を規定の通りにするのがよい。 No. Since Nos. 21 and 22 satisfy the requirements defined as the steel plate 2 of the present invention, cracks are not generated, and a steel plate having excellent coating film adhesion is obtained. In this example, in order to ensure the chemical conversion treatment and further improve the adhesion of the coating film, it is preferable to control the component composition so that the form of the oxide deposited on the steel sheet surface is as specified.
またNo.1〜16、23、25、26は、本発明鋼板3で規定する要件(即ち、本発明鋼板1および本発明鋼板2で規定する要件)を満足しているため、優れた化成処理性を確保でき、かつクラックの発生が抑制されて優れた塗膜密着性を発揮する。 No. 1 to 16, 23, 25, and 26 satisfy the requirements specified by the steel plate 3 of the present invention (that is, the requirements specified by the steel plate 1 of the present invention and the steel plate 2 of the present invention), thus ensuring excellent chemical conversion treatment properties. And the occurrence of cracks is suppressed and excellent coating film adhesion is exhibited.
これらに対し、No.17〜20,28,29は、本発明鋼板1〜3の要件をいずれも満たしておらず、塗膜密着性に優れていないか、強度-延性バランスに優れておらず、高強度でかつ優れた加工性を発揮するものが得られていない。 In contrast, no. Nos. 17 to 20, 28, and 29 do not satisfy any of the requirements of the steel sheets 1 to 3 of the present invention, and are not excellent in coating film adhesion, or are not excellent in the strength-ductility balance, and are high in strength and excellent. No product that exhibits excellent workability has been obtained.
No.17〜20は、本発明で規定する成分組成を満足しないため、機械的特性に劣るか塗膜密着性に劣る結果となった。即ち、No.17はSi量が少なく、No.20はSiとAlの合計量が少ないため、いずれも残留オーステナイトを十分に確保できず、強度−延性バランスに劣るものとなった。またNo.18は、Si量が過剰であり、Si/Mn比も上限を超えているため、規定する鋼板表面とならず、塗膜密着性に劣る結果となった。 No. Since 17-20 did not satisfy the component composition prescribed | regulated by this invention, the result was inferior to mechanical characteristics or inferior to coating-film adhesiveness. That is, no. No. 17 has a small amount of Si. No. 20 had a small total amount of Si and Al, so that all of them could not secure sufficient retained austenite, and the strength-ductility balance was inferior. No. In No. 18, since the Si amount was excessive and the Si / Mn ratio exceeded the upper limit, the surface of the steel sheet was not defined, and the coating film adhesion was inferior.
No.19はMn量が少ないため、残留オーステナイトを十分に確保できず、強度−延性バランスに劣っており、また規定するMn−Si複合酸化物を確保できず、化成処理性にも劣る結果となった。さらに、ベイニティックフェライト量が過少であるため、耐水素脆化特性にも劣っている。 No. No. 19 has a small amount of Mn, so it cannot secure sufficient retained austenite, is inferior in the strength-ductility balance, cannot secure the specified Mn-Si composite oxide, and is inferior in chemical conversion treatment. . Furthermore, since the amount of bainitic ferrite is too small, the hydrogen embrittlement resistance is inferior.
No.28、29は、推奨する条件で製造せず、本発明で規定する酸化物の形態でないため化成処理性に劣っており、またクラックも発生して塗膜密着性に劣っている。No.28は、酸洗時間が短いため濃化Si層の除去が不足し、またNo.29は露点が高いため焼鈍段階でSiの表面濃化が促進されて、いずれもSi主体の酸化物が多量に存在し、また粒界にもSi酸化物が生成して酸洗後にクラックが発生し、塗膜密着性に劣る結果となった。 No. Nos. 28 and 29 are not manufactured under the recommended conditions and are not in the form of oxides defined in the present invention, so that they are inferior in chemical conversion treatment, and cracks are also generated, resulting in poor coating film adhesion. No. No. 28 has a short pickling time, so that removal of the concentrated Si layer is insufficient. No. 29 has a high dew point, so that the surface concentration of Si is promoted in the annealing stage, and in each case, a large amount of Si-based oxides exist, and Si oxides are formed at the grain boundaries and cracks occur after pickling. As a result, the coating film adhesion was inferior.
参考までに、本実施例で得られた鋼板の抽出レプリカをTEM観察した顕微鏡写真、及び化成処理後の鋼板表面のSEM観察写真を示す。図2は、比較例であるNo.18の鋼板表面におけるTEM観察写真であるが、この図2から、鋼板表層領域がSiを主体とする酸化物層(白色部)で覆われていることがわかる。 For reference, a micrograph obtained by TEM observation of an extracted replica of the steel sheet obtained in this example and a SEM observation photograph of the steel sheet surface after chemical conversion treatment are shown. FIG. FIG. 2 shows that the surface area of the steel sheet is covered with an oxide layer (white part) mainly composed of Si.
また図3は、上記鋼板を化成処理した後の表面をSEMで観察した顕微鏡写真である。該図3から、No.18ではりん酸亜鉛結晶は小さいが隙間が大きいことがわかる。 FIG. 3 is a photomicrograph of the surface of the steel sheet after chemical conversion treatment observed with an SEM. From FIG. 18 shows that the zinc phosphate crystal is small but the gap is large.
これに対し図4は、本発明例であるNo.7の鋼板表面におけるTEM観察写真であるが、鋼板表層領域に上記No.18の様な層は形成されておらず、代わりに粒状物が微細に分散している。つまり、図4から、No.7の鋼板表層領域には、化成処理性を低下させるSi主体の酸化物はほとんどなく、化成処理性の向上に有効なMn−Si複合酸化物が多数存在していることを確認できる。 On the other hand, FIG. 7 is a TEM observation photograph on the steel plate surface. The layer like 18 is not formed, and the granular material is finely dispersed instead. That is, from FIG. It can be confirmed that in the steel plate surface region of No. 7, there is almost no Si-based oxide that lowers the chemical conversion processability, and there are many Mn—Si composite oxides that are effective in improving the chemical conversion processability.
図5は、上記鋼板を化成処理した後の表面をSEMで観察した顕微鏡写真であるが、該図5から、No.7ではりん酸亜鉛結晶が小さく隙間がないことがわかる。 FIG. 5 is a photomicrograph of the surface of the steel sheet after chemical conversion treatment, which was observed with an SEM. 7 shows that the zinc phosphate crystals are small and have no gaps.
上記実施例1の実験No.7の鋼板(1.6mm厚)にプレス加工を施して、自動車車体構成部品であるセンターピラーレインフォースを模してハットチャンネル形状の試験体に成形した。また比較材として1.8mm厚の鉄連(日本鉄鋼連盟)規格JSC590Yを用い、同形状の試験体を成形した。 Experiment No. 1 in Example 1 above. No. 7 steel plate (1.6 mm thick) was pressed and shaped into a hat-channel shaped test body imitating the center pillar reinforcement, which is a vehicle body component. Moreover, a 1.8 mm thick iron ream (Japan Iron and Steel Federation) standard JSC590Y was used as a comparative material, and a specimen having the same shape was molded.
そして試験体の両端を固定し、アムスラー型試験機にて中央部に荷重を加える三点曲げ試験を行ったところ、両者はほぼ同等の荷重−変位挙動を示した。この結果から、自動車車体部品の製造に本発明の鋼板を用いれば、従来鋼板を用いる場合よりも薄肉化が可能となり、自動車軽量化に有効であることが分かる。 When both ends of the test body were fixed and a three-point bending test was performed in which a load was applied to the central portion with an Amsler type tester, both showed almost the same load-displacement behavior. From this result, it can be seen that if the steel plate of the present invention is used for the production of automobile body parts, it is possible to reduce the thickness compared to the case where a conventional steel plate is used, and it is effective for reducing the weight of the vehicle.
Claims (4)
C :0.06〜0.6%、
Si:0.1〜2%、
Al:0.01〜3%、
Si+Al:1〜4%、
Mn:1〜6%、
Si/Mn≦0.40
を満たし、
金属組織が、占積率で(金属組織について以下同じ)、
ベイニティックフェライトとポリゴナルフェライトの合計量:75%以上、
ベイニティックフェライト:40%以上、
ポリゴナルフェライト:1〜50%、
残留オーステナイト:3%以上を含有する鋼板であって、
鋼板表面において、MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm2以上存在すると共に、Siを主体とする酸化物の鋼板表面被覆率が10%以下であり、
引張強度が780MPa以上であることを特徴とする塗膜密着性、加工性及び耐水素脆化特性に優れた高強度冷延鋼板。 % By mass (the same applies to chemical components)
C: 0.06 to 0.6%,
Si: 0.1 to 2%,
Al: 0.01 to 3%,
Si + Al: 1-4%
Mn: 1 to 6%
Si / Mn ≦ 0.40
The filling,
The metal structure is the space factor (the same applies to the metal structure below)
Total amount of bainitic ferrite and polygonal ferrite: 75% or more,
Bainitic ferrite: 40% or more,
Polygonal ferrite: 1-50%
Residual austenite: a steel sheet containing 3% or more,
In the steel sheet surface, with the atomic ratio of Mn and Si (Mn / Si) is 5μm or less of Mn-Si composite oxide major diameter 0.01μm or more and 0.5 or more is present 10/100 [mu] m 2 or more, mainly of Si The steel sheet surface coverage of the oxide is 10% or less,
A high-strength cold-rolled steel sheet excellent in coating film adhesion, workability, and hydrogen embrittlement resistance, characterized by having a tensile strength of 780 MPa or more.
Si:0.1〜2%、
Al:0.01〜3%、
Si+Al:1〜4%、
Mn:1〜6%
を満たし、金属組織が、
ベイニティックフェライトとポリゴナルフェライトの合計量:75%以上、
ベイニティックフェライト:40%以上、
ポリゴナルフェライト:1〜50%、
残留オーステナイト:3%以上を含有する鋼板であって、
SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在せず、
引張強度が780MPa以上であることを特徴とする塗膜密着性、加工性及び耐水素脆化特性に優れた高強度冷延鋼板。 C: 0.06 to 0.6%,
Si: 0.1 to 2%,
Al: 0.01 to 3%,
Si + Al: 1-4%
Mn: 1 to 6%
Meet the metal structure,
Total amount of bainitic ferrite and polygonal ferrite: 75% or more,
Bainitic ferrite: 40% or more,
Polygonal ferrite: 1-50%
Residual austenite: a steel sheet containing 3% or more,
When observing a cross section in the vicinity of the steel sheet surface at 2000 times using SEM, there are no cracks having a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view,
A high-strength cold-rolled steel sheet excellent in coating film adhesion, workability, and hydrogen embrittlement resistance, characterized by having a tensile strength of 780 MPa or more.
Si:0.1〜2%、
Al:0.01〜3%、
Si+Al:1〜4%、
Mn:1〜6%、
Si/Mn≦0.40
を満たし、金属組織が、
ベイニティックフェライトとポリゴナルフェライトの合計量:75%以上、
ベイニティックフェライト:40%以上、
ポリゴナルフェライト:1〜50%、
残留オーステナイト:3%以上を含有する鋼板であって、
(I)鋼板表面において、MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm2以上存在すると共に、Siを主体とする酸化物の鋼板表面被覆率が10%以下であり、かつ
(II)SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在せず、
引張強度が780MPa以上であることを特徴とする塗膜密着性、加工性及び耐水素脆化特性に優れた高強度冷延鋼板。 C: 0.06 to 0.6%,
Si: 0.1 to 2%,
Al: 0.01 to 3%,
Si + Al: 1-4%
Mn: 1 to 6%
Si / Mn ≦ 0.40
Meet the metal structure,
Total amount of bainitic ferrite and polygonal ferrite: 75% or more,
Bainitic ferrite: 40% or more,
Polygonal ferrite: 1-50%
Residual austenite: a steel sheet containing 3% or more,
In (I) the steel sheet surface, with the atomic ratio of Mn and Si (Mn / Si) is 5μm or less of Mn-Si composite oxide major diameter 0.01μm or more and 0.5 or more is present 10/100 [mu] m 2 or more, The steel plate surface coverage of the oxide mainly composed of Si is 10% or less, and (II) When the cross section near the steel plate surface is observed at 2000 times using SEM, the width is 3 μm or less in any 10 fields of view. There are no cracks with a depth of 5 μm or more,
A high-strength cold-rolled steel sheet excellent in coating film adhesion, workability, and hydrogen embrittlement resistance, characterized by having a tensile strength of 780 MPa or more.
An automotive steel part obtained by using the steel sheet according to any one of claims 1 to 3.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005104851A JP3889769B2 (en) | 2005-03-31 | 2005-03-31 | High-strength cold-rolled steel sheet and automotive steel parts with excellent coating film adhesion, workability, and hydrogen embrittlement resistance |
CN2006800048644A CN101120114B (en) | 2005-03-31 | 2006-03-23 | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile |
PCT/JP2006/305825 WO2006109489A1 (en) | 2005-03-31 | 2006-03-23 | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile |
US11/908,616 US8986468B2 (en) | 2005-03-31 | 2006-03-23 | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile |
KR1020097023435A KR100948998B1 (en) | 2005-03-31 | 2006-03-23 | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile |
EP13182531.7A EP2679699A3 (en) | 2005-03-31 | 2006-03-23 | High strength cold-rolled steel sheet and automobile components of steel having excellent properties in coating film adhesion, workability, and hydrogen embrittlement resistivity |
KR1020077022299A KR100955982B1 (en) | 2005-03-31 | 2006-03-23 | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile |
CN201210037964.4A CN102534359B (en) | 2005-03-31 | 2006-03-23 | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile |
EP13182532.5A EP2671961A1 (en) | 2005-03-31 | 2006-03-23 | High strength cold-rolled steel sheet and automobile components of steel having excellent properties in coating film adhesion, workability, and hydrogen embrittlement resistivity |
EP13182530.9A EP2671960B1 (en) | 2005-03-31 | 2006-03-23 | High strength cold-rolled steel sheet and automobile components of steel having excellent properties in coating film adhesion, workability, and hydrogen embrittlement resistivity |
EP06745379.5A EP1865085B1 (en) | 2005-03-31 | 2006-03-23 | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005104851A JP3889769B2 (en) | 2005-03-31 | 2005-03-31 | High-strength cold-rolled steel sheet and automotive steel parts with excellent coating film adhesion, workability, and hydrogen embrittlement resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006283131A true JP2006283131A (en) | 2006-10-19 |
JP3889769B2 JP3889769B2 (en) | 2007-03-07 |
Family
ID=37405337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005104851A Expired - Fee Related JP3889769B2 (en) | 2005-03-31 | 2005-03-31 | High-strength cold-rolled steel sheet and automotive steel parts with excellent coating film adhesion, workability, and hydrogen embrittlement resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3889769B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010137343A1 (en) * | 2009-05-29 | 2010-12-02 | 株式会社神戸製鋼所 | High strength steel sheet having excellent hydrogen embrittlement resistance |
WO2011065591A1 (en) | 2009-11-30 | 2011-06-03 | 新日本製鐵株式会社 | HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF |
WO2012043776A1 (en) * | 2010-09-29 | 2012-04-05 | Jfeスチール株式会社 | High-strength steel sheet and manufacturing method therefor |
JP2012072465A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072453A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072451A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072450A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072454A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072449A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012122086A (en) * | 2010-12-06 | 2012-06-28 | Kobe Steel Ltd | High strength cold-rolled steel sheet excellent in chemical convertibility |
KR101175413B1 (en) | 2009-10-29 | 2012-08-20 | 현대제철 주식회사 | Continuous casting method for rolled steel products |
JP2013019047A (en) * | 2011-06-13 | 2013-01-31 | Kobe Steel Ltd | High-strength steel sheet excellent in workability and low temperature brittleness resistance, and method for manufacturing the same |
WO2013024861A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社神戸製鋼所 | High strength steel plate with excellent warm and room-temperature formability and warm forming method thereof |
JP2013184218A (en) * | 2012-03-09 | 2013-09-19 | Kobe Steel Ltd | Method of manufacturing press-molded product, and press-molded product |
WO2013144373A1 (en) * | 2012-03-30 | 2013-10-03 | Voestalpine Stahl Gmbh | High strength cold rolled steel sheet and method of producing such steel sheet |
KR101364392B1 (en) | 2009-06-11 | 2014-02-17 | 신닛테츠스미킨 카부시키카이샤 | High strength steel pipe and method for producing same |
EP2821515A4 (en) * | 2012-02-28 | 2015-08-05 | Jfe Steel Corp | Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member |
KR20150124456A (en) * | 2010-09-30 | 2015-11-05 | 제이에프이 스틸 가부시키가이샤 | High strength steel sheet and method for manufacturing the same |
JP2020125535A (en) * | 2019-02-04 | 2020-08-20 | Jfeスチール株式会社 | Cold-rolled steel sheet and method for producing the same |
KR20210078910A (en) * | 2019-12-19 | 2021-06-29 | 주식회사 포스코 | Steel sheet having excellent bendability and method of manufacturing the same |
CN114072296A (en) * | 2019-07-08 | 2022-02-18 | 日本发条株式会社 | Stabilizer and method for manufacturing stabilizer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12116648B2 (en) | 2018-03-30 | 2024-10-15 | Jfe Steel Corporation | Cold-rolled steel sheet and method for manufacturing the same, and cold-rolled steel sheet for annealing |
-
2005
- 2005-03-31 JP JP2005104851A patent/JP3889769B2/en not_active Expired - Fee Related
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010275608A (en) * | 2009-05-29 | 2010-12-09 | Kobe Steel Ltd | High-strength steel sheet having excellent hydrogen embrittlement resistance |
WO2010137343A1 (en) * | 2009-05-29 | 2010-12-02 | 株式会社神戸製鋼所 | High strength steel sheet having excellent hydrogen embrittlement resistance |
US9464337B2 (en) | 2009-05-29 | 2016-10-11 | Kabushiki Kaisha Kobe Seiko Sho | High strength steel sheet having excellent hydrogen embrittlement resistance |
US8685182B2 (en) | 2009-06-11 | 2014-04-01 | Nippon Steel & Sumitomo Metal Corporation | High-strength steel pipe and producing method thereof |
KR101364392B1 (en) | 2009-06-11 | 2014-02-17 | 신닛테츠스미킨 카부시키카이샤 | High strength steel pipe and method for producing same |
KR101175413B1 (en) | 2009-10-29 | 2012-08-20 | 현대제철 주식회사 | Continuous casting method for rolled steel products |
US10023947B2 (en) | 2009-11-30 | 2018-07-17 | Nippon Steel & Sumitomo Metal Corporation | High strength steel plate with ultimate tensile strength of 900 MPa or more excellent in hydrogen embrittlement resistance and method of production of same |
WO2011065591A1 (en) | 2009-11-30 | 2011-06-03 | 新日本製鐵株式会社 | HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF |
JP2012072447A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
KR101538240B1 (en) * | 2010-09-29 | 2015-07-20 | 제이에프이 스틸 가부시키가이샤 | High strength steel sheet and method for manufacturing the same |
CN103124799A (en) * | 2010-09-29 | 2013-05-29 | 杰富意钢铁株式会社 | High-strength steel sheet and manufacturing method therefor |
WO2012043776A1 (en) * | 2010-09-29 | 2012-04-05 | Jfeスチール株式会社 | High-strength steel sheet and manufacturing method therefor |
EP2623618A4 (en) * | 2010-09-29 | 2017-09-20 | JFE Steel Corporation | High-strength steel sheet and manufacturing method therefor |
JP2012072454A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072450A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
US9598743B2 (en) | 2010-09-29 | 2017-03-21 | Jfe Steel Corporation | High strength steel sheet and method for manufacturing the same |
JP2012072449A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072453A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072451A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
JP2012072465A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | High-strength steel sheet and manufacturing method therefor |
KR101692179B1 (en) * | 2010-09-30 | 2017-01-02 | 제이에프이 스틸 가부시키가이샤 | High strength steel sheet and method for manufacturing the same |
US9534270B2 (en) | 2010-09-30 | 2017-01-03 | Jfe Steel Corporation | High strength steel sheet and method for manufacturing the same |
KR20150124456A (en) * | 2010-09-30 | 2015-11-05 | 제이에프이 스틸 가부시키가이샤 | High strength steel sheet and method for manufacturing the same |
JP2012122086A (en) * | 2010-12-06 | 2012-06-28 | Kobe Steel Ltd | High strength cold-rolled steel sheet excellent in chemical convertibility |
JP2013019047A (en) * | 2011-06-13 | 2013-01-31 | Kobe Steel Ltd | High-strength steel sheet excellent in workability and low temperature brittleness resistance, and method for manufacturing the same |
JP2013040382A (en) * | 2011-08-17 | 2013-02-28 | Kobe Steel Ltd | High-strength steel sheet having excellent formability at room temperature and at warm temperature, and method for warm-forming the same |
US9657381B2 (en) | 2011-08-17 | 2017-05-23 | Kobe Steel, Ltd. | High-strength steel sheet having excellent room-temperature formability and warm formability, and warm forming method thereof |
WO2013024861A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社神戸製鋼所 | High strength steel plate with excellent warm and room-temperature formability and warm forming method thereof |
US10174430B2 (en) | 2012-02-28 | 2019-01-08 | Jfe Steel Corporation | Si-containing high strength cold rolled steel sheet, method of producing the same, and automotive members |
EP2821515A4 (en) * | 2012-02-28 | 2015-08-05 | Jfe Steel Corp | Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member |
JP2013184218A (en) * | 2012-03-09 | 2013-09-19 | Kobe Steel Ltd | Method of manufacturing press-molded product, and press-molded product |
US10227683B2 (en) | 2012-03-30 | 2019-03-12 | Voestalpine Stahl Gmbh | High strength cold rolled steel sheet |
WO2013144373A1 (en) * | 2012-03-30 | 2013-10-03 | Voestalpine Stahl Gmbh | High strength cold rolled steel sheet and method of producing such steel sheet |
JP2020125535A (en) * | 2019-02-04 | 2020-08-20 | Jfeスチール株式会社 | Cold-rolled steel sheet and method for producing the same |
CN114072296A (en) * | 2019-07-08 | 2022-02-18 | 日本发条株式会社 | Stabilizer and method for manufacturing stabilizer |
CN114072296B (en) * | 2019-07-08 | 2023-10-31 | 日本发条株式会社 | Stabilizer and method for manufacturing stabilizer |
KR20210078910A (en) * | 2019-12-19 | 2021-06-29 | 주식회사 포스코 | Steel sheet having excellent bendability and method of manufacturing the same |
KR20210123268A (en) * | 2019-12-19 | 2021-10-13 | 주식회사 포스코 | Steel sheet having excellent bendability and method of manufacturing the same |
KR102348503B1 (en) * | 2019-12-19 | 2022-01-06 | 주식회사 포스코 | Steel sheet having excellent bendability and method of manufacturing the same |
KR102558356B1 (en) | 2019-12-19 | 2023-07-21 | 주식회사 포스코 | Steel sheet having excellent bendability and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3889769B2 (en) | 2007-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3889769B2 (en) | High-strength cold-rolled steel sheet and automotive steel parts with excellent coating film adhesion, workability, and hydrogen embrittlement resistance | |
KR100955982B1 (en) | High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile | |
JP3889768B2 (en) | High-strength cold-rolled steel sheets and automotive steel parts with excellent coating film adhesion and ductility | |
KR101335069B1 (en) | High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same | |
JP5709151B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
JP4894863B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP5765080B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof | |
JP5298114B2 (en) | High-strength cold-rolled steel sheet with excellent coating film adhesion and workability, and method for producing the same | |
EP2402470B1 (en) | High-strength hot-dip galvanized steel plate of excellent workability and manufacturing method therefor | |
JP3934604B2 (en) | High strength cold-rolled steel sheet with excellent coating adhesion | |
WO2014092025A1 (en) | High-strength steel plate and manufacturing method thereof | |
WO2011111330A1 (en) | High-strength steel sheet and method for producing same | |
CN112805395B (en) | Hot-rolled steel sheet and method for producing same | |
KR20180124075A (en) | High Strength Steel Sheet and Manufacturing Method Thereof | |
WO2017126678A1 (en) | High-strength steel sheet and manufacturing method therefor | |
WO2013047755A1 (en) | High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same | |
MX2012012954A (en) | High-strength steel sheet and method for producing same. | |
JP2009179852A (en) | High-strength hot-dip galvanized steel sheet superior in formability, and method of manufacturing the same | |
JP4698968B2 (en) | High-strength cold-rolled steel sheet with excellent coating film adhesion and workability | |
JP2011168879A (en) | High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and method for producing same | |
JP5141235B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP4501699B2 (en) | High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
JP4698971B2 (en) | High-strength cold-rolled steel sheet with excellent coating film adhesion and workability | |
JP2009144225A (en) | High-strength hot-dip galvanized steel sheet superior in formability and manufacturing method therefor | |
JP5594438B2 (en) | High tensile hot rolled galvanized steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3889769 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131208 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |