JP2006281409A - Surface coated cemented carbide cutting tool with hard coating layer exerting excellent wear resistance in high-speed cutting of high hardness steel - Google Patents
Surface coated cemented carbide cutting tool with hard coating layer exerting excellent wear resistance in high-speed cutting of high hardness steel Download PDFInfo
- Publication number
- JP2006281409A JP2006281409A JP2005107570A JP2005107570A JP2006281409A JP 2006281409 A JP2006281409 A JP 2006281409A JP 2005107570 A JP2005107570 A JP 2005107570A JP 2005107570 A JP2005107570 A JP 2005107570A JP 2006281409 A JP2006281409 A JP 2006281409A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- cutting
- cemented carbide
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、硬質被覆層がすぐれた耐熱塑性変形性を有し、さらに高温硬さおよび耐熱性と高温強度も具備し、したがって特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高熱発生を伴なう高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。 This invention has excellent heat-resistant plastic deformation properties with a hard coating layer, and also has high-temperature hardness, heat-resistance and high-temperature strength, and therefore high heat of high-hardness steel such as alloy tool steel and hardened material of bearing steel. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent wear resistance when used in high-speed machining involving generation.
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(X+Y) AlXZrY]N(ただし、原子比で、Xは0.45〜0.65、Yは0.05〜0.15を示す)、
を満足するTiとAlとZrの複合窒化物[以下、(Ti,Al,Zr)Nで示す]層からなる硬質被覆層を2〜6μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、かかる従来被覆超硬工具においては、硬質被覆層を構成する前記(Ti,Al,Zr)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度、さらにZrによって耐熱塑性変形性を具備することから、切削時に相対的に高い発熱を伴う合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の切削加工に用いた場合にも、すぐれた耐摩耗性を示すことも知られている。
In addition, as a coated carbide tool, a single-phase structure is formed on the surface of a cemented carbide substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. Have and
Formula: [Ti 1- (X + Y ) Al X Zr Y] N ( provided that an atomic ratio, X is 0.45 to 0.65, Y represents a 0.05 to 0.15),
Coated carbide tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and Zr satisfying the following conditions (hereinafter referred to as (Ti, Al, Zr) N) with an average layer thickness of 2 to 6 μm In such a conventional coated cemented carbide tool, the (Ti, Al, Zr) N layer constituting the hard coating layer has high temperature hardness and heat resistance by the component Al, and high temperature strength by the same Ti. Furthermore, since it has heat-resistant plastic deformation properties due to Zr, it also has excellent resistance when used for cutting hardened steel such as alloy tool steel and hardened material of bearing steel that generate relatively high heat during cutting. It is also known to show wear.
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層である(Ti,Al,Zr)N層の組成に対応した組成を有するTi−Al−Zr合金がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Zr)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを切削時に相対的に高い発熱を伴う合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の切削加工を通常の切削加工条件で行うのに用いる場合には、上記の通り切刃部は通常の正常摩耗形態を呈し、問題はなく、所定の耐摩耗性を発揮するが、特に前記高硬度鋼の切削加工を、一段と高い熱発生を伴なう高速切削加工条件で行うのに用いた場合には、硬質被覆層である(Ti,Al,Zr)N層に偏摩耗の原因となる熱塑性変形が発生し、この結果摩耗進行が著しく促進するようになることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In the coated carbide tool, when used to perform cutting of high hardness steel such as alloy tool steel and quenching material of bearing steel with relatively high heat generation at the time of cutting under normal cutting conditions, As described above, the cutting edge portion exhibits a normal normal wear form, and there is no problem and exhibits a predetermined wear resistance. In particular, the high-hardness steel is cut at a high speed with higher heat generation. When used under conditions, the hard coating layer (Ti, Al, Zr) N layer undergoes thermoplastic deformation that causes uneven wear, and as a result, the progress of wear is significantly accelerated. To reach the service life in a relatively short time The it is the status quo.
そこで、本発明者等は、上述のような観点から、特に上記の高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,Zr)N層に着目し、研究を行った結果、
(a)上記の従来硬質被覆層を構成する(Ti,Al,Zr)N層において、これに上記の高硬度鋼の高速切削加工に際して、熱塑性変形を十分満足に抑制することのできる高い耐熱塑性変形性を確保する目的で、さらに多くのZr成分を含有させると、構成成分であるTiおよびAl成分の少なくともいずれかの含有割合が低下することになるが、この場合、Ti成分が低下すれば高温強度が、またAl成分が低下すれば高温硬さと耐熱性が低下するようになるのは避けられず、したがって、Zr成分の含有割合は必然的に0.05〜0.15原子%程度の含有割合とならざるを得ないこと。
In view of the above, the present inventors have developed the above-mentioned conventional cemented carbide tool exhibiting excellent wear resistance in which the hard coating layer is excellent in high-speed cutting of the above-mentioned high-hardness steel. As a result of conducting research by paying attention to the (Ti, Al, Zr) N layer constituting the hard coating layer of the coated carbide tool,
(A) The (Ti, Al, Zr) N layer constituting the conventional hard coating layer has a high heat resistance plasticity that can sufficiently suppress the thermoplastic deformation during the high-speed cutting of the high hardness steel. If more Zr component is contained for the purpose of securing the deformability, the content ratio of at least one of Ti and Al components as constituent components will decrease, but in this case, if the Ti component decreases If the high-temperature strength and the Al component decrease, it is inevitable that the high-temperature hardness and heat resistance will decrease. Therefore, the content ratio of the Zr component is inevitably about 0.05 to 0.15 atomic%. It must be the content ratio.
(b)上記(a)の(Ti,Al,Zr)N層に比して、Zr含有割合をきわめて高く、一方Zr成分の含有割合を高めた分、Al含有割合を低くして、
組成式:[Ti1-(A+B)AlAZrB]N(ただし、原子比で、Aは0.01〜0.06、Bは0.35〜0.55を示す)を満足するものとし、もってAl成分の低含有によって高温硬さおよび耐熱性はきわめて不十分となるが、高Zr含有によって耐熱塑性変形性が一段と向上した(Ti,Al,Zr)N層(以下、薄層Aという)と、
上記薄層Aに比して、相対的にAl含有割合を相対的に高く、一方Zr含有割合を相対的に低くして、
組成式:[Ti1-(C+D)AlCZrD]N(ただし、原子比で、Cは0.20〜0.35、Dは0.20〜0.30を示す)を満足するものとし、もって前記薄層Aに比して、低Zr含有で相対的に耐熱塑性変形性は低いものとなるが、Al含有割合を相対的に高くした分高い高温硬さおよび耐熱性を有する(Ti,Al,Zr)N層(以下、薄層Bという)、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の薄層Aおよび薄層Bの交互積層構造の(Ti,Al,Zr)N層(この場合、前記薄層Aおよび薄層Bとも35原子%以上のTi成分を含有するので、高い高温強度を保持する)においては、上記の高Zr含有の薄層Aによるすぐれた耐熱塑性変形性と、上記の相対的に高いAl含有の薄層Bによる高温硬さおよび耐熱性を具備するようになること。
(B) Compared to the (Ti, Al, Zr) N layer of (a) above, the Zr content is extremely high, while the content ratio of the Zr component is increased, the Al content is reduced,
Formula: [Ti 1- (A + B ) Al A Zr B] N ( provided that an atomic ratio, A is 0.01 to 0.06, B represents a 0.35 to 0.55) shall satisfy Thus, the low content of Al component makes the high-temperature hardness and heat resistance extremely insufficient, but the high Zr content further improves the heat-resistant plastic deformation (Ti, Al, Zr) N layer (hereinafter referred to as thin layer A) )When,
Compared to the thin layer A, the Al content rate is relatively high, while the Zr content rate is relatively low,
Formula: [Ti 1- (C + D ) Al C Zr D] N ( provided that an atomic ratio, C is 0.20 to 0.35, D denotes the 0.20 to 0.30) shall satisfy Therefore, it has a low Zr content and a relatively low heat-resistant plastic deformability as compared with the thin layer A, but has a high high-temperature hardness and heat resistance due to the relatively high Al content (Ti , Al, Zr) N layer (hereinafter referred to as thin layer B),
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometer), and as a result, (Ti, Al, Zr) of the alternately laminated structure of thin layers A and B as a result. In the N layer (in this case, both the thin layer A and the thin layer B contain a Ti component of 35 atomic% or more, thus maintaining high high-temperature strength), excellent heat resistance due to the above-described high Zr-containing thin layer A It should have plastic deformability and high temperature hardness and heat resistance due to the relatively high Al-containing thin layer B.
(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Zr)N層は、高硬度鋼の高速切削加工で要求される、すぐれた耐熱塑性変形性および高温強度を有するが、前記薄層Aおよび薄層Bとも相対的にAl成分の含有割合が低いので、十分満足する高温硬さおよび耐熱性を具備するものではなく、 一方上記(a)の(Ti,Al,Zr)N層、すなわち、
組成式:[Ti1-(E+F)AlEZrF]N(ただし、原子比で、Eは0.45〜0.65、Fは0.05〜0.15を示す)を満足する単一相構造の(Ti,Al,Zr)N層は、高硬度鋼の高速切削加工で要求される十分な耐熱塑性変形性を具備するものではないが、Al成分の高含有によってすぐれた高温硬さおよび耐熱性を具備するので、これを上記の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Zr)N層の下部層として硬質被覆層を構成すると、この結果の硬質被覆層は、すぐれた耐熱塑性変形性と高温強度、さらにすぐれた高温硬さと耐熱性を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬工具は、上記の高熱発生を伴う高硬度鋼の高速切削加工でも、偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を長期に亘って発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, Zr) N layer having the alternately laminated structure of the thin layer A and the thin layer B of (b) is excellent in heat plastic deformation required for high-speed cutting of high hardness steel. However, since the content ratio of the Al component is relatively low in both the thin layer A and the thin layer B, it does not have sufficiently satisfying high temperature hardness and heat resistance, while the above (a) (Ti, Al, Zr) N layer, ie,
Composition formula: [Ti 1− (E + F) Al E Zr F ] N (wherein E is 0.45 to 0.65 and F is 0.05 to 0.15 in atomic ratio) The (Ti, Al, Zr) N layer of phase structure does not have sufficient heat-resistant plastic deformation required for high-speed cutting of high-hardness steel, but it has excellent high-temperature hardness due to the high content of Al component. If the hard coating layer is formed as a lower layer of the (Ti, Al, Zr) N layer having the alternate layered structure of the thin layer A and the thin layer B, the resulting hard coating is obtained. Since the layer has excellent heat plastic deformation and high temperature strength, and excellent high temperature hardness and heat resistance, the coated carbide tool formed by vapor-depositing this hard coating layer generates the above high heat generation. Even in high-speed cutting of high hardness steel, the thermoplastic deformation that causes uneven wear Raw without exerting over the superior wear resistance to long term.
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)いずれも(Ti,Al,Zr)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚が5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlAZrB]N(ただし、原子比で、Aは0.01〜0.06、Bは0.35〜0.50を示す)を満足する(Ti,Al,Zr)N層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCZrD]N(ただし、原子比で、Cは0.20〜0.35、Dは0.20〜0.30を示す)を満足する(Ti,Al,Zr)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlEZrF]N(ただし、原子比で、Eは0.45〜0.65、Fは0.05〜0.15を示す)を満足する(Ti,Al,Zr)N層、
からなる硬質被覆層を蒸着形成してなる、高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, Zr) N. The upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternate layered structure of thin layers A and thin layers B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Formula: [Ti 1- (A + B ) Al A Zr B] N ( provided that an atomic ratio, A is 0.01 to 0.06, B represents a from 0.35 to 0.50) satisfies (Ti , Al, Zr) N layer,
The thin layer B is
Composition formula: [Ti 1− (C + D) Al C Zr D ] N (wherein C is 0.20 to 0.35 and D is 0.20 to 0.30 in terms of atomic ratio) (Ti , Al, Zr) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [Ti 1− (E + F) Al E Zr F ] N (wherein E is 0.45 to 0.65 and F is 0.05 to 0.15 in atomic ratio) (Ti , Al, Zr) N layer,
It is characterized by a coated carbide tool that exhibits excellent wear resistance in high-speed cutting of high-hardness steel formed by vapor-depositing a hard coating layer made of
つぎに、この発明の被覆超硬工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および平均層厚
上記の通り、硬質被覆層を構成する(Ti,Al,Zr)N層におけるAl成分には高温硬さおよび耐熱性、同Ti成分には高温強度を向上させ、さらに同Zr成分には耐熱塑性変形性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さおよび耐熱性を維持するが、Alの含有割合を示すE値がTiとZrとの合量に占める割合(原子比、以下同じ)で0.45未満では、所望のすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示す同E値が同0.65を越えると、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.45〜0.65と定めた。
また、Zrの割合を示すF値がTiとAlの合量に占める割合で、0.05未満では、所定の耐熱塑性変形性向上効果を確保することができず、一方同F値が0.15を超えると、高温強度に明確な低下傾向が現れるようになることから、F値を0.05〜0.15と定めた。
さらに、その平均層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Composition formula and average layer thickness of the lower layer As described above, the Al component in the (Ti, Al, Zr) N layer constituting the hard coating layer has high temperature hardness and heat resistance, and the Ti component has high temperature strength. In addition, the Zr component has the effect of improving the heat plastic deformation, and the lower layer maintains a high high-temperature hardness and heat resistance by relatively increasing the Al component content ratio. If the E value indicating the content ratio of Ti is less than 0.45 in terms of the total amount of Ti and Zr (atomic ratio, the same shall apply hereinafter), the desired excellent high-temperature hardness and heat resistance cannot be ensured, The progress of wear is accelerated rapidly. On the other hand, if the E value indicating the Al ratio exceeds 0.65, the high temperature strength decreases rapidly, and as a result, chipping (small chipping) is likely to occur. Therefore, the E value was set to 0.45 to 0.65. .
Further, if the F value indicating the proportion of Zr is a proportion of the total amount of Ti and Al, and less than 0.05, a predetermined heat resistant plastic deformation improvement effect cannot be ensured, while the F value is 0. When it exceeds 15, since a clear decreasing tendency appears in the high-temperature strength, the F value is set to 0.05 to 0.15.
Furthermore, if the average layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while the average layer thickness is 6 μm. If it exceeds, chipping is likely to occur, so the average layer thickness was set to 2 to 6 μm.
(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,Zr)NにおけるZr成分には、上記の通り相対的にその含有割合を高くして、耐熱塑性変形性を向上させ、もって高熱発生を伴う高硬度鋼の高速切削加工で偏摩耗の原因となる熱塑性変形の発生を防止する作用があるが、その含有割合を示すB値がTiとAlの合量に占める割合で、0.35未満では前記作用に所望のすぐれた効果を確保することができず、一方同B値が0.55を越えると、隣接して相対的に高温硬さおよび耐熱性のすぐれた薄層Bが存在しても、上部層の高温硬さおよび耐熱性、さらに高温強度の低下は避けられず、摩耗が促進するようになったり、チッピングが発生し易くなったりすることから、B値を0.35〜0.55と定めた。
また、Alの割合を示すA値がTiとZrの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.06を超えると、高温強度が急激に低下するようになり、チッピング発生の原因となることから、A値を0.01〜0.06と定めた。
(B) Composition formula of upper layer thin layer A The Zr component in (Ti, Al, Zr) N of the upper layer thin layer A has a relatively high content ratio as described above, so that the heat resistant plastic deformation is achieved. Has the effect of preventing the occurrence of thermoplastic deformation that causes uneven wear in high-speed cutting of high-hardness steel with high heat generation, but the B value indicating the content ratio is the total amount of Ti and Al. If the ratio is less than 0.35, the desired excellent effect cannot be ensured for the above action. On the other hand, if the B value exceeds 0.55, the high temperature hardness and heat resistance are relatively adjacent to each other. Even if there is an excellent thin layer B, the high-temperature hardness and heat resistance of the upper layer, and further the reduction of the high-temperature strength are unavoidable, and wear is promoted and chipping is likely to occur. Therefore, the B value was determined to be 0.35 to 0.55.
Further, the A value indicating the proportion of Al is the proportion of the total amount of Ti and Zr, and if less than 0.01, the minimum high-temperature hardness and heat resistance cannot be ensured, causing wear promotion, On the other hand, if the A value exceeds 0.06, the high-temperature strength suddenly decreases and causes chipping. Therefore, the A value was set to 0.01 to 0.06.
(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記の薄層Aに比して、相対的にZr成分の含有割合を低くし、Al成分の含有割合を高く維持することで、相対的に高い高温硬さと耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性の不足を補強し、もって、前記薄層Aの有するすぐれた耐熱塑性変形性と、前記薄層Bによって高温硬さおよび耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.20未満では、所望の高温硬さおよび耐熱性を確保することができず、摩耗進行が促進するようになり、一方同C値が0.35を越えると、上部層全体の高温強度が低下するようになり、チッピング発生の原因となることから、C値を0.20〜0.35と定めた。
また、Zrの割合を示すD値がTiとAlの合量に占める割合で、0.20未満になると、上部層全体の耐熱塑性変形性低下が避けられず、一方同D値が0.30を超えると、高温強度が急激に低下するようになることから、D値を0.20〜0.30と定めた。
(C) Composition formula of upper layer thin layer B In the upper layer thin layer B, the content ratio of the Zr component is relatively lower and the content ratio of the Al component is higher than the thin layer A described above. By maintaining it, it has a relatively high high temperature hardness and heat resistance, reinforces the lack of high temperature hardness and heat resistance of the adjacent thin layer A, and thus has excellent heat plastic deformation properties that the thin layer A has. And the upper layer having high temperature hardness and heat resistance is formed by the thin layer B. When the C value indicating the Al content in the composition formula is less than 0.20, the desired high temperature hardness and The heat resistance cannot be ensured and the progress of wear is promoted. On the other hand, if the C value exceeds 0.35, the high temperature strength of the entire upper layer is lowered, which causes chipping. Therefore, the C value was set to 0.20 to 0.35.
Further, if the D value indicating the proportion of Zr is a proportion of the total amount of Ti and Al and is less than 0.20, the heat resistance plastic deformation of the entire upper layer is inevitably lowered, while the D value is 0.30. Since the high-temperature strength suddenly drops when the value exceeds D, the D value is set to 0.20 to 0.30.
(d)上部層の薄層Aと薄層Bの一層平均層厚
それぞれの一層平均層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた耐熱塑性変形性と所定の高温硬さおよび耐熱性を確保することができなくなり、またそれぞれの一層平均層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さおよび耐熱性不足、薄層Bであれば耐熱塑性変形性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの一層平均層厚を5〜20nmと定めた。
(D) Single layer average layer thickness of thin layer A and thin layer B of the upper layer If each layer average layer thickness is less than 5 nm, it is difficult to clearly form each thin layer with the above composition. The desired excellent heat-resistant plastic deformation property and predetermined high-temperature hardness and heat resistance cannot be ensured for the layer, and when the average layer thickness of each layer exceeds 20 nm, the disadvantage of each thin layer, that is, the thin layer If it is A, insufficient high-temperature hardness and heat resistance, and if it is a thin layer B, insufficient heat-resistant plastic deformation will appear locally in the layer, which may cause chipping or promote wear progress. Therefore, the average layer thickness of each layer was determined to be 5 to 20 nm.
(e)上部層の平均層厚
その平均層厚が0.5μm未満では、自身のもつすぐれた耐熱塑性変形性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が1.5μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜1.5μmと定めた。
(E) Average layer thickness of the upper layer If the average layer thickness is less than 0.5 μm, the excellent heat-resistant plastic deformability cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the average layer thickness exceeds 1.5 μm, chipping is likely to occur. Therefore, the average layer thickness was set to 0.5 to 1.5 μm.
この発明の被覆超硬工具は、硬質被覆層が(Ti,Al,Zr)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた耐熱塑性変形性と所定の高温硬さおよび耐熱性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さおよび耐熱性を有することから、特に高熱発生を伴なう合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速切削加工でも、硬質被覆層がすぐれた耐熱塑性変形性を発揮し、この結果切刃部に偏摩耗の原因となる熱塑性変形の発生なく、切刃部は正常摩耗形態をとり、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated carbide tool of the present invention, the hard coating layer is composed of a (Ti, Al, Zr) N layer, and it is excellent in that the upper layer of the hard coating layer has an alternately laminated structure of the thin layer A and the thin layer B. The alloy tool steel with high heat generation is especially suitable because it has heat plastic deformation, predetermined high temperature hardness and heat resistance, and the lower layer of the single phase structure has excellent high temperature hardness and heat resistance. Even in high-speed cutting of hardened steel such as hardened material for bearing steel, the hard coating layer exhibits excellent heat-resistant plastic deformation, and as a result, there is no occurrence of thermoplastic deformation that causes uneven wear on the cutting edge. The part takes a normal wear form and exhibits excellent wear resistance over a long period of time.
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。 Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B-1 to B-6 made of TiCN base cermet having the following chip shape were formed.
(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Zr合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−Zr合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−Zr合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった下部層形成用Ti−Al−Zr合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Zr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Zr合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Zr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Zr)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Zr合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−Zr合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−Zr合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−Zr合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and used as a cathode electrode (evaporation source) on one side with the target compositions shown in Tables 3 and 4, respectively. As the upper layer Ti-Al-Zr alloy for forming the thin layer A having the corresponding component composition and the cathode electrode (evaporation source) on the other side, the component compositions corresponding to the target compositions shown in Tables 3 and 4 are also used. A Ti-Al-Zr alloy for forming the thin layer B as an upper layer is disposed opposite to the rotary table, and a cathode is formed along the rotary table at a position shifted by 90 degrees from both the Ti-Al-Zr alloys. Electrode (evaporation source) To likewise respectively mounted Ti-Al-Zr alloy for the lower layer formed having a component composition corresponding to the target composition shown in Tables 3 and 4,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the lower layer forming Ti—Al—Zr alloy and the anode electrode to generate an arc discharge, whereby the surface of the carbide substrate is made to be the Ti—Al— Bombarded with Zr alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and An arc discharge is generated by flowing a current of 100 A between the layer-forming Ti—Al—Zr alloy and the anode electrode, so that the target composition and target layer thickness shown in Tables 3 and 4 are formed on the surface of the cemented carbide substrate. (Ti, Al, Zr) N layer having a single-phase structure is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the carbide substrate rotating while rotating on the rotary table. In the applied state, a predetermined current within a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-Zr alloy for forming the thin layer A to generate arc discharge, and the carbide A thin layer A having a predetermined layer thickness is formed on the surface of the substrate. After the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Ti-Al-Zr alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). You may) Formation of thin layer A by arc discharge between cathode electrode and anode electrode of Ti-Al-Zr alloy for forming A, and arc discharge between cathode electrode and anode electrode of Ti-Al-Zr alloy for forming thin layer B The formation of the thin layer B is repeated alternately, so that the thin layer A and the thin layer B having the target composition and the target layer thickness shown in Tables 3 and 4 along the layer thickness direction are alternately formed on the surface of the cemented carbide substrate. The upper layer composed of the laminated layers is vapor-deposited with the overall target layer thickness shown in Tables 3 and 4 as well. 1 to 16 were manufactured.
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−Zr合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Zr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Zr合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Zr合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Zr)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。 For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. A Ti—Al—Zr alloy having a component composition corresponding to the target composition shown in Table 5 was mounted as a cathode electrode (evaporation source) as a cathode electrode (evaporation source). The apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of 1 Pa or less, and a DC bias voltage of −1000 V was applied to the cemented carbide substrate, and the Ti—Al—Zr alloy and anode of the cathode electrode An electric current of 100 A is passed between the electrodes to generate an arc discharge, whereby the surface of the carbide substrate is bombarded with the Ti—Al—Zr alloy, and then nitrogen gas is introduced into the apparatus as a reactive gas. and a bias voltage applied to the cemented carbide substrate is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti—Al—Zr alloy. (Ti, Al, Zr) N layer having a single phase structure with a target composition and a target layer thickness shown in Table 5 on the surface of each of hard substrates A-1 to A-10 and B-1 to B-6 The conventional surface-coated carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated carbide tools were produced by vapor-depositing a hard coating layer made of
つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、
被削材:SKD11の焼入れ材(硬さ:HRC60)の丸棒、
切削速度:70m/min.、
切り込み:0.3mm、
送り:0.15mm/rev.、
切削時間:5分、
の条件(切削条件A)での合金工具鋼焼入れ材の乾式連続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:JIS・SKD61の焼入れ材(硬さ:HRC52)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:80m/min.、
切り込み:0.5mm、
送り:0.15mm/rev.、
切削時間:5分、
の条件(切削条件B)での合金工具鋼焼入れ材の乾式断続高速切削加工試験(通常の切削速度は40m/min.)、
被削材:JIS・SUJ2の焼入れ材(硬さ:HRC56)の丸棒、
切削速度:80m/min.、
切り込み:0.4mm、
送り:0.15mm/rev.、
切削時間:8分、
の条件(切削条件C)での軸受鋼焼入れ材の乾式連続高速切削加工試験(通常の切削速度は40m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, the coated carbide tips 1-16 of the present invention and the conventional coated carbide tip 1 in the state where each of the various coated carbide tips is screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: SKD11 hardened material (hardness: HRC60) round bar,
Cutting speed: 70 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes
Dry continuous high-speed cutting test (normal cutting speed is 30 m / min.) Of alloy tool steel hardened material under the conditions (cutting condition A)
Work material: JIS / SKD61 hardened material (hardness: HRC52), four longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 80 m / min. ,
Cutting depth: 0.5mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high-speed cutting test of alloy tool steel hardened material under the conditions (cutting condition B) (normal cutting speed is 40 m / min.),
Work material: JIS / SUJ2 hardened material (hardness: HRC56) round bar,
Cutting speed: 80 m / min. ,
Cutting depth: 0.4mm,
Feed: 0.15 mm / rev. ,
Cutting time: 8 minutes
The dry continuous high-speed cutting test (normal cutting speed is 40 m / min.) Of the hardened bearing steel under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Table 6.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 .mu.m Co powder, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Zr)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。 Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, a lower layer composed of a (Ti, Al, Zr) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 8, and also along the layer thickness direction. A coated carbide tool of the present invention is formed by vapor-depositing an upper layer composed of alternating layers of thin layers A and B having a target composition shown in FIG. The present invention surface-coated carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 were produced.
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. Then, a hard coating layer composed of a (Ti, Al, Zr) N layer having a single-phase structure having the target composition and target layer thickness shown in Table 9 is deposited under the same conditions as in Example 1. Thus, conventional surface-coated carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法を有するJIS・SKD61の焼入れ材(硬さ:HRC52)の板材、
切削速度:100m/min.、
溝深さ(切り込み):1mm、
テーブル送り:150mm/分、
の条件での合金工具鋼焼入れ材の乾式高速溝切削加工試験(通常の切削速度は50m/min.)、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法を有するJIS・SUJ2の焼入れ材(硬さ:HRC56)の板材、
切削速度:80m/min.、
溝深さ(切り込み):2mm、
テーブル送り:150mm/分、
の条件での軸受鋼焼入れ材の乾式高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法を有するJIS・SKD11の焼入れ材(硬さ:HRC60)の板材、
切削速度:50m/min.、
溝深さ(切り込み):4mm、
テーブル送り:30mm/分、
の条件での合金工具鋼焼入れ材の乾式高速溝切削加工試験(通常の切削速度は25m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8,9にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm hardened material of JIS SKD61 (hardness: HRC52),
Cutting speed: 100 m / min. ,
Groove depth (cut): 1mm,
Table feed: 150 mm / min,
About the dry high-speed grooving test (normal cutting speed is 50 m / min.) Of the alloy tool steel hardened material under the conditions of the present invention, the coated carbide end mills 4 to 6 and the conventional coated carbide end mills 4 to 6 of the present invention,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm, JIS / SUJ2 quenching material (hardness: HRC56) plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 150 mm / min,
For the dry high-speed grooving test (normal cutting speed is 40 m / min.) Of the hardened bearing steel under the following conditions, the present invention coated carbide end mills 7, 8 and the conventional coated carbide end mills 7, 8:
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm thick JIS / SKD11 quenching material (hardness: HRC60),
Cutting speed: 50 m / min. ,
Groove depth (cut): 4 mm
Table feed: 30 mm / min,
A dry high-speed grooving test (normal cutting speed is 25 m / min.) Of a hardened alloy tool steel under the above conditions was performed. The cutting groove length up to 0.1 mm, which is a guide for the service life, was measured. The measurement results are shown in Tables 8 and 9, respectively.
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Zr)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. A lower layer composed of a (Ti, Al, Zr) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 10 under the same conditions as in Example 1, and the same layer. By vapor-depositing an upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition shown in Table 10 and a single target layer thickness along the thickness direction, with the overall target layer thickness also shown in Table 10, The surface coated carbide drills (hereinafter referred to as the present invention coated carbide drills) 1 to 8 as the present invention coated carbide tools were produced, respectively.
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. A hard material comprising a (Ti, Al, Zr) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1 above, charged in the ion plating apparatus By depositing a coating layer, conventional surface-coated carbide drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法を有するJIS・SUJ2の焼入れ材(硬さ:HRC56)の板材、
切削速度:40m/min.、
送り:0.06mm/rev、
穴深さ:12mm、
の条件での軸受鋼焼入れ材の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法を有するJIS・SKD61の焼入れ材(硬さ:HRC55)の板材、
切削速度:40m/min.、
送り:0.07mm/rev、
穴深さ:24mm、
の条件での合金工具鋼焼入れ材の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法を有するJIS・SKD11の焼入れ材(硬さ:HRC58)の板材、
切削速度:25m/min.、
送り:0.05mm/rev、
穴深さ:40mm、
の条件での合金工具鋼焼入れ材の湿式高速穴あけ切削加工試験(通常の切削速度は10m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3 are as follows:
Work material—Plate: 100 mm × 250, thickness: 50 mm, JIS / SUJ2 quenching material (hardness: HRC56),
Cutting speed: 40 m / min. ,
Feed: 0.06mm / rev,
Hole depth: 12mm,
With respect to the wet high speed drilling test of the bearing steel hardened material under the conditions (normal cutting speed is 15 m / min.), The present invention coated carbide drills 4-6 and the conventional coated carbide drills 4-6,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm hardened material of JIS SKD61 (hardness: HRC55),
Cutting speed: 40 m / min. ,
Feed: 0.07mm / rev,
Hole depth: 24mm
Wet high-speed drilling test (normal cutting speed is 15 m / min.) Of the alloy tool steel hardened material under the following conditions, the present invention coated carbide drills 7 and 8 and the conventional coated carbide drills 7 and 8:
Work material—Plate: 100 mm × 250 mm, thickness: 50 mm, JIS / SKD11 quenching material (hardness: HRC58),
Cutting speed: 25 m / min. ,
Feed: 0.05mm / rev,
Hole depth: 40mm,
Wet high-speed drilling machining test (normal cutting speed is 10 m / min.) Of alloy tool steel hardened material under the above conditions, and cutting the tip in any wet high-speed drilling machining test (using water-soluble cutting oil) The number of drilling processes until the flank wear width of the blade surface reached 0.3 mm was measured. The measurement results are shown in Table 8, respectively.
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8の(Ti,Al,Zr)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の(Cr,Al)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 (Ti, Al, Zr) of the present coated carbide tips 1-16, the present coated carbide end mills 1-8, and the present coated carbide drills 1-8 as the present coated carbide tool obtained as a result. ) Upper thin layer A and thin layer B constituting the hard coating layer made of N, composition of the lower layer, conventional coated carbide tips 1 to 16 as a conventional coated carbide tool, conventional coated carbide end mill 1 to 8 and the composition of the hard coating layer made of (Cr, Al) N of the conventional coated carbide drills 1 to 8 were measured by energy dispersive X-ray analysis using a transmission electron microscope. The composition was substantially the same as the target composition.
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
表3〜11に示される結果から、本発明被覆超硬工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層と、単一相構造の下部層からなり、かつ前記薄層Aと薄層B、さらに下部層はそれぞれ組成の異なる(Ti,Al,Zr)Nで構成され、前記下部層がすぐれた高温硬さと耐熱性、さらに高温強度を有し、一方前記上部層がすぐれた耐熱塑性変形性と所定の高温硬さおよび耐熱性、さらに高温強度を有し、この結果硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、高熱発生を伴なう合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速切削加工でも、切刃部に偏摩耗の原因となる熱塑性変形の発生なく、正常摩耗形態をとり、すぐれた耐摩耗性を発揮するの対して、硬質被覆層が単一相構造の(Ti,Al,Zr)N層からなる従来被覆超硬工具は、特に硬質被覆層の耐熱塑性変形性不足が原因で切刃部に熱塑性変形が発生し、これによって摩耗形態が偏摩耗形態をとるようになることから、摩耗の進行が速くなり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 11, each of the coated carbide tools of the present invention has an upper layer in which the hard coating layer has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm. And the thin layer A, the thin layer B, and the lower layer are composed of (Ti, Al, Zr) N having different compositions, and the lower layer is excellent in high-temperature hardness. Heat resistance, and high temperature strength, while the upper layer has excellent heat plastic deformation, predetermined high temperature hardness and heat resistance, and high temperature strength, so that the hard coating layer has these excellent characteristics. Therefore, even in high-speed cutting of high hardness steel such as alloy tool steel and bearing steel quenching material with high heat generation, there is no occurrence of thermoplastic deformation causing uneven wear on the cutting edge, Normal wear form and excellent wear resistance On the other hand, the conventional coated carbide tool in which the hard coating layer is composed of a (Ti, Al, Zr) N layer having a single phase structure is particularly susceptible to thermoplastic deformation in the cutting edge due to the lack of heat-resistant plastic deformation of the hard coating layer. As a result, the wear form becomes an uneven wear form, so that it is clear that the wear progresses faster and reaches the service life in a relatively short time.
上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated carbide tool of the present invention is not only for cutting under normal cutting conditions such as various types of steel and cast iron, but particularly for high-hardness steel such as hardened material of alloy tool steel and bearing steel. It exhibits excellent wear resistance even during high-speed cutting with high heat generation, and exhibits excellent cutting performance over a long period of time. It can cope with energy saving and cost reduction sufficiently satisfactorily.
Claims (1)
(a)いずれもTiとAlとZrの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlAZrB]N(ただし、原子比で、Aは0.01〜0.06、Bは0.35〜0.55を示す)を満足するTiとAlとZrの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCZrD]N(ただし、原子比で、Cは0.20〜0.35、Dは0.20〜0.30を示す)を満足するTiとAlとZrの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlEZrF]N(ただし、原子比で、Eは0.45〜0.65、Fは0.05〜0.15を示す)を満足するTiとAlとZrの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。 On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and Zr, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. Have
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1− (A + B) Al A Zr B ] N (wherein A is 0.01 to 0.06 and B is 0.35 to 0.55 in atomic ratio) A composite nitride layer of Al and Zr;
The thin layer B is
Ti satisfying the composition formula: [Ti 1− (C + D) Al C Zr D ] N (wherein C is 0.20 to 0.35 and D is 0.20 to 0.30 in atomic ratio) A composite nitride layer of Al and Zr,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: [Ti 1− (E + F) Al E Zr F ] N (wherein E is 0.45 to 0.65 and F is 0.05 to 0.15 in atomic ratio) A composite nitride layer of Al and Zr;
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of high-hardness steel, formed by vapor-depositing a hard coating layer comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005107570A JP4645819B2 (en) | 2005-04-04 | 2005-04-04 | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005107570A JP4645819B2 (en) | 2005-04-04 | 2005-04-04 | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006281409A true JP2006281409A (en) | 2006-10-19 |
JP4645819B2 JP4645819B2 (en) | 2011-03-09 |
Family
ID=37403837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005107570A Expired - Fee Related JP4645819B2 (en) | 2005-04-04 | 2005-04-04 | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4645819B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007007742A (en) * | 2005-06-28 | 2007-01-18 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high-hardness steel |
WO2009112117A1 (en) * | 2008-03-12 | 2009-09-17 | Kennametal Inc. | Body coated with hard material |
WO2019171648A1 (en) * | 2018-03-07 | 2019-09-12 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool and method for producing same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209337A (en) * | 1995-01-31 | 1996-08-13 | Hitachi Tool Eng Ltd | Coated hard alloy |
JPH09104966A (en) * | 1995-08-03 | 1997-04-22 | Kobe Steel Ltd | Hard coating film, hard coating film-coated member and cutting tool |
JP2005022021A (en) * | 2003-07-01 | 2005-01-27 | Mitsubishi Materials Corp | Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent chipping resistance in heavy cutting |
-
2005
- 2005-04-04 JP JP2005107570A patent/JP4645819B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209337A (en) * | 1995-01-31 | 1996-08-13 | Hitachi Tool Eng Ltd | Coated hard alloy |
JPH09104966A (en) * | 1995-08-03 | 1997-04-22 | Kobe Steel Ltd | Hard coating film, hard coating film-coated member and cutting tool |
JP2005022021A (en) * | 2003-07-01 | 2005-01-27 | Mitsubishi Materials Corp | Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent chipping resistance in heavy cutting |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007007742A (en) * | 2005-06-28 | 2007-01-18 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high-hardness steel |
JP4697660B2 (en) * | 2005-06-28 | 2011-06-08 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel |
WO2009112117A1 (en) * | 2008-03-12 | 2009-09-17 | Kennametal Inc. | Body coated with hard material |
WO2019171648A1 (en) * | 2018-03-07 | 2019-09-12 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool and method for producing same |
US11298748B2 (en) | 2018-03-07 | 2022-04-12 | Sumitomo Electric Hardmetal Corp. | Surface coated cutting tool and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4645819B2 (en) | 2011-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4702520B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP5594575B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP2009061520A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting | |
JP4367032B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP5041222B2 (en) | Surface coated cutting tool | |
JP2007152456A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel | |
JP4645819B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP4645820B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP4535250B2 (en) | Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP4687965B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4244379B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting | |
JP4535249B2 (en) | Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting | |
JP4678582B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP2008049454A (en) | Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance | |
JP4697662B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4771198B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials | |
JP4756445B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP2004358610A (en) | Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting | |
JP4771199B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4697660B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP2006334740A (en) | Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material | |
JP5239950B2 (en) | Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work | |
JP2008260097A (en) | Surface-coated cutting tool | |
JP4645818B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4771200B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101123 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4645819 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |