JP2006281191A - Organic compound adsorption removing agent - Google Patents
Organic compound adsorption removing agent Download PDFInfo
- Publication number
- JP2006281191A JP2006281191A JP2005208904A JP2005208904A JP2006281191A JP 2006281191 A JP2006281191 A JP 2006281191A JP 2005208904 A JP2005208904 A JP 2005208904A JP 2005208904 A JP2005208904 A JP 2005208904A JP 2006281191 A JP2006281191 A JP 2006281191A
- Authority
- JP
- Japan
- Prior art keywords
- organic compound
- silver
- removal performance
- iron
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、アルデヒド類、カルボン酸類、アミン類の吸着性能に優れた有機化合物吸着除去剤に関し、更に詳しくは、常温で長期に渡って吸着性能を維持できる有機化合物吸着除去剤に関する。 The present invention relates to an organic compound adsorption / removal agent excellent in adsorption performance for aldehydes, carboxylic acids, and amines, and more particularly to an organic compound adsorption / removal agent capable of maintaining adsorption performance for a long time at room temperature.
従来より、建物の室内や自動車の車内等におけるタバコ臭の除去を主目的として、空気清浄機や脱臭剤が広く用いられている。これらは、タバコ臭の主成分であるアセトアルデヒド、あるいは、シックハウスの原因物質であるホルムアルデヒド等の吸着除去等を目的とするものであり、多くの吸着剤の検討がなされている。その中でも、活性炭は各種有機物質を吸着する材料として古くから知られているが、低分子で高極性の有機物(例えば、アセトアルデヒド、ホルムアルデヒド等)は十分吸着することができず、上述の用途に用いる場合は、活性炭にアミン類やアスコルビン酸等を担持させて吸着能を高めたものが用いられている。 Conventionally, air purifiers and deodorizing agents have been widely used mainly for the purpose of removing tobacco odors in the interior of buildings and in automobiles. These are for the purpose of adsorbing and removing acetaldehyde, which is the main component of tobacco odor, or formaldehyde, which is a causative substance of sick house, and many adsorbents have been studied. Among them, activated carbon has long been known as a material that adsorbs various organic substances, but low molecular and high polarity organic substances (for example, acetaldehyde, formaldehyde, etc.) cannot be adsorbed sufficiently, and are used for the above-mentioned applications. In this case, activated carbon is used in which amines, ascorbic acid or the like is supported on activated carbon to enhance the adsorption ability.
このように、アミン類を担持させたものとしては、例えば、アニリンを用いたものや(例えば特許文献1参照)、エタノール系アミン等を用いたものが開示されている(例えば特許文献2参照)。
しかしながら、アミン類を担持させた吸着剤は、担持アミン類の状態が不安定であることから、熱的および経時的な化学変化による失活が起こりやすく、長期にわたって満足すべき除去性能を発現することが困難であるという問題がある。また、アスコルビン酸においても、吸湿すると空気中で容易に酸化分解され、失活してしまい性能劣化が起こるという問題がある。 However, since the adsorbent carrying amines is unstable in the state of the carried amines, it tends to be deactivated due to thermal and chemical changes over time, and exhibits satisfactory removal performance over a long period of time. There is a problem that it is difficult. In addition, ascorbic acid also has a problem that when it absorbs moisture, it is easily oxidized and decomposed in the air and deactivated, resulting in performance deterioration.
一方、アルデヒド類ガスを除去する方法として、酸化鉄等の金属酸化物を用いる方法が近年注目を集めている。前記金属酸化物として、例えば、酸化鉄を担持したアルミナがある(例えば非特許文献1参照)。 On the other hand, as a method for removing aldehyde gases, a method using a metal oxide such as iron oxide has recently attracted attention. Examples of the metal oxide include alumina supporting iron oxide (see, for example, Non-Patent Document 1).
しかしながら、かかる酸化鉄担持アルミナは、十分な除去活性を得るためには、高温条件が必要であり、一般生活における温湿度領域では、除去活性が低く、十分な除去性能が得られないという問題がある。
特開2000−79157号公報には、銀酸化物粒子とマンガン酸化物粒子からなるマンガン酸化物含有物、および、酸化鉄によるホルムアルデヒドの分解除去も開示されている(例えば特許文献3参照)。しかしながら、かかるマンガン酸化物含有物は、PRTR第一種指定化学物質であるマンガン酸化物が含有されており、環境汚染の懸念があるという問題がある。また、開示されている酸化鉄(Fe2O3)では、一般生活における温湿度領域では活性が低く、十分な除去性能を得られないという問題がある。
上述のとおり、一般生活における温湿度領域で、長期にわたってアルデヒド類、カルボン酸類、アミン類から選ばれる少なくとも一種以上のガス状有機化合物を含むガスを除去する有機化合物吸着除去剤において、環境汚染への影響が低く、かつ、その除去性能を維
持できる有機化合物吸着除去剤は見当たらないのが現状である。ここで言う、一般生活における温湿度領域とは、温度範囲でおおよそ−30〜50℃、湿度範囲でおおよそ20〜95RH%のことである。
As described above, an organic compound adsorption / removal agent that removes a gas containing at least one gaseous organic compound selected from aldehydes, carboxylic acids, and amines over a long period of time in a temperature and humidity range in general life. The effect is low and its removal performance is maintained.
At present, no organic compound adsorption / removal agent can be found. The temperature / humidity region in general life referred to here is approximately −30 to 50 ° C. in the temperature range and approximately 20 to 95 RH% in the humidity range.
本発明は従来技術の課題を背景になされたものであり、アルデヒド類、カルボン酸類、アミン類から選ばれる少なくとも一種以上のガス状有機化合物を含むガスの、一般生活における温湿度領域で長期にわたって満足すべき除去性能を発現することができ、かつ、環境汚染への影響が低い有機化合物吸着除去剤を提供することを目的とする。 The present invention has been made against the background of the problems of the prior art, and is satisfied over a long period of time in the temperature and humidity range of general life of a gas containing at least one gaseous organic compound selected from aldehydes, carboxylic acids, and amines. An object of the present invention is to provide an organic compound adsorption / removal agent that can exhibit the removal performance to be achieved and that has a low influence on environmental pollution.
本発明者らは上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに到った。すなわち本発明は、(1)アルデヒド類、カルボン酸類、アミン類から選ばれる少なくとも一種以上のガス状有機化合物を含むガスを除去する有機化合物吸着除去剤において、前記有機化合物吸着除去剤が少なくとも銀化合物粒子と鉄化合物粒子を含有し、該銀化合物粒子と鉄化合物粒子が混合比(重量比)1:99〜80:20であることを特徴とする有機化合物吸着除去剤であり、(2)前記鉄化合物粒子がBET比表面積100m2/g以上の鉄酸化物であることを特徴とする(1)に記載の有機化合物吸着除去剤であ
り、(3)前記銀化合物粒子が銀酸化物であることを特徴とする(1)、(2)のいずれかに記載の有機化合物吸着除去剤である。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention provides (1) an organic compound adsorption / removal agent that removes a gas containing at least one gaseous organic compound selected from aldehydes, carboxylic acids, and amines, wherein the organic compound adsorption / removal agent is at least a silver compound An organic compound adsorption / removal agent comprising particles and iron compound particles, wherein the silver compound particles and iron compound particles have a mixing ratio (weight ratio) of 1:99 to 80:20, (2) The iron compound particle is an iron oxide having a BET specific surface area of 100 m 2 / g or more. (3) The organic compound adsorption / removal agent according to (1), wherein the silver compound particle is a silver oxide. The organic compound adsorption / removal agent according to any one of (1) and (2).
本発明によるアルデヒド類、カルボン酸類、アミン類から選ばれる少なくとも一種以上のガス状有機化合物を含むガスを除去する有機化合物吸着除去剤は、一般生活における温湿度領域での高い除去性能、かつ、長期にわたって満足すべき除去性能を発現することが可能であり、また、環境汚染への影響が少ないという利点を有する。 The organic compound adsorption removing agent for removing a gas containing at least one gaseous organic compound selected from aldehydes, carboxylic acids, and amines according to the present invention has a high removal performance in a temperature and humidity range in general life, and a long-term It is possible to exhibit satisfactory removal performance over a wide range, and there is an advantage that there is little influence on environmental pollution.
以下、本発明を詳細に説明する。本発明は、アルデヒド類、カルボン酸類、アミン類から選ばれる少なくとも一種以上のガス状有機化合物を含むガスを除去する有機化合物吸着除去剤において、前記有機化合物吸着除去剤が少なくとも銀化合物粒子と鉄化合物粒子を含有することが好ましい。銀化合物粒子のみ、もしくは、鉄化合物粒子のみでは一般生活における温湿度領域において十分な除去性能は実現できない。しかしながら、銀化合物粒子と鉄化合物粒子が共存すると、その相乗効果により非常に高い除去性能を実現することができることを本発明者は見出したからである。相乗効果のメカニズムは明確ではないが、次の(1)〜(3)のように推測される。すなわち、最初に、(1)ガス状有機化合物が鉄化合物粒子と接触する、そこで、(2)鉄化合物の電子授受作用によりガス状有機化合物は活性化され分解されやすい化合物へと変化する、最後に、(3)銀化合物粒子によって、活性化され分解されやすい化合物に変化したガス状有機化合物が分解されると推測される。 Hereinafter, the present invention will be described in detail. The present invention relates to an organic compound adsorption / removal agent for removing a gas containing at least one gaseous organic compound selected from aldehydes, carboxylic acids, and amines, wherein the organic compound adsorption / removal agent includes at least silver compound particles and an iron compound. It is preferable to contain particles. With only silver compound particles or iron compound particles alone, sufficient removal performance cannot be realized in the temperature and humidity range in general life. However, the present inventors have found that when silver compound particles and iron compound particles coexist, a very high removal performance can be realized due to the synergistic effect thereof. The mechanism of the synergistic effect is not clear, but is presumed as the following (1) to (3). That is, first, (1) the gaseous organic compound comes into contact with the iron compound particles, and (2) the gaseous organic compound is activated and converted into a compound that is easily decomposed by the electron transfer action of the iron compound. (3) It is presumed that the gaseous organic compound changed into a compound that is activated and easily decomposed is decomposed by the silver compound particles.
銀化合物粒子と鉄化合物粒子の混合比(重量比)については、1:99〜80:20であることが好ましい。より好ましくは、5:95〜70:30である。銀化合物粒子と鉄化合物粒子の混合比が大き過ぎても、もしくは、小さ過ぎても、銀化合物粒子と鉄化合物粒子の混合による相乗効果は小さくなり、十分な除去性能が実現できなくなる。 The mixing ratio (weight ratio) between the silver compound particles and the iron compound particles is preferably 1:99 to 80:20. More preferably, it is 5: 95-70: 30. If the mixing ratio of the silver compound particles and the iron compound particles is too large or too small, the synergistic effect due to the mixing of the silver compound particles and the iron compound particles becomes small, and sufficient removal performance cannot be realized.
本発明における鉄化合物粒子はBET比表面積100m2/g以上の鉄酸化物であるこ
とが好ましい。BET比表面積が100m2/g以上であれば、低温での高い除去性能を
実現することができることを本発明者は見出したからである。より好ましくは150m2
/g以上である。BET比表面積の上限は特に限定するものではないが、500m2/g
以下であることが好ましい。この範囲を超えると、除去性能はほとんど変化しない一方で、製造が非常に困難になるという不都合が生じるからである。なお、鉄酸化物の種類については、特に定めないが、FeO、Fe3O4、Fe2O3等の酸化鉄、α−FeOOH、β−FeOOH、γ−FeOOH等のオキシ水酸化鉄、Fe(OH)3等の水酸化鉄、K2FeO4等の鉄酸塩化合物等、もしくは、それらの複合体が挙げられる。
The iron compound particles in the present invention are preferably iron oxides having a BET specific surface area of 100 m 2 / g or more. This is because the present inventor has found that if the BET specific surface area is 100 m 2 / g or more, high removal performance at a low temperature can be realized. More preferably 150m 2
/ G or more. The upper limit of the BET specific surface area is not particularly limited, but is 500 m 2 / g.
The following is preferable. If this range is exceeded, the removal performance is hardly changed, but the disadvantage is that manufacturing becomes very difficult. The type of iron oxide is not particularly defined, but iron oxide such as FeO, Fe 3 O 4 and Fe 2 O 3 , iron oxyhydroxide such as α-FeOOH, β-FeOOH and γ-FeOOH, Fe Examples thereof include iron hydroxides such as (OH) 3 , ferrate compounds such as K 2 FeO 4 , and complexes thereof.
本発明における銀化合物粒子は銀酸化物であることが好ましい。銀化合物が金属銀、硫化銀、塩化銀等の酸化物でない場合は、低温での高い除去性能を実現することができないが、銀化合物が銀酸化物であれば、低温での高い除去性能を実現することができることを本発明者は見出したからである。銀酸化物の種類については、特に定めないが、Ag2O
、AgO等の酸化物、もしくは、それらの複合体が挙げられる。
The silver compound particles in the present invention are preferably silver oxide. If the silver compound is not an oxide such as metallic silver, silver sulfide, or silver chloride, high removal performance at low temperatures cannot be realized. However, if the silver compound is silver oxide, high removal performance at low temperatures is not possible. This is because the present inventors have found that this can be realized. The type of silver oxide is not particularly defined, but Ag 2 O
, Oxides such as AgO, or composites thereof.
以下、実施例によって本発明の作用効果をより具体的に示す。下記実施例は本発明方法を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。 Hereinafter, the effects of the present invention will be described more specifically by way of examples. The following examples are not intended to limit the method of the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are included in the technical scope of the present invention.
(BET比表面積の測定方法)
有機化合物吸着除去剤を約100mg採取し、120℃で12時間真空乾燥の後、秤量した。自動比表面積装置ジェミニ2375(マイクロメリティックス社製)を使用し、液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で徐々に高めながら40点測定し、上記サンプルの吸着等温線を作製した。相対圧0.02〜0.15での結果をBETプロットし、重量当りのBET比表面積[m2/g]を求めた。
(Measurement method of BET specific surface area)
About 100 mg of the organic compound adsorption removing agent was sampled and vacuum-dried at 120 ° C. for 12 hours, and then weighed. Using an automatic specific surface area device Gemini 2375 (manufactured by Micromeritics), the adsorption amount of nitrogen gas at the boiling point of liquid nitrogen (-195.8 ° C.) is gradually increased in a range of relative pressure of 0.02 to 0.95. The sample was measured at 40 points while increasing the temperature to obtain an adsorption isotherm of the sample. The results at a relative pressure of 0.02 to 0.15 were BET-plotted to determine the BET specific surface area [m 2 / g] per weight.
(アセトアルデヒド除去性能の測定方法)
5Lのテドラーバッグ中にアセトアルデヒド100ppmを含む温度25℃、湿度50RH%の空気、および、有機化合物吸着除去剤30mgを封入した。中に入っている有機化合物吸着除去剤とアセトアルデヒドを含む空気が十分に接触、反応するように、テドラーバッグを適宜振った。なお、テドラーバッグ周囲の雰囲気温度は25℃とした。3時間後のテドラーバッグ内のアセトアルデヒドガス濃度をFID付きガスクロマトグラフにて測定し、反応前後のアセトアルデヒドの濃度変化からアセトアルデヒド除去量[mg]を求め、これを試料の重量で割ることにより、除去容量[mg/g]を算出した。
(Method for measuring acetaldehyde removal performance)
In a 5 L Tedlar bag, air containing 100 ppm of acetaldehyde at a temperature of 25 ° C. and a humidity of 50 RH% and an organic compound adsorption removing agent 30 mg were encapsulated. The Tedlar bag was shaken appropriately so that the organic compound adsorption / removal agent contained therein and the air containing acetaldehyde sufficiently contacted and reacted. The ambient temperature around the Tedlar bag was 25 ° C. The acetaldehyde gas concentration in the Tedlar bag after 3 hours was measured with a gas chromatograph with FID, and the acetaldehyde removal amount [mg] was determined from the concentration change of the acetaldehyde before and after the reaction, and this was divided by the weight of the sample. mg / g] was calculated.
(酢酸除去性能の測定方法)
5Lのテドラーバッグ中に酢酸ガス100ppmを含む25℃、50RH%の空気、有機化合物吸着除去剤30mgを封入した。中に入っている有機化合物吸着除去剤と酢酸を含む空気が十分に接触、反応するように、テドラーバッグを適宜振った。なお、テドラーバッグ周囲の雰囲気温度は25℃とした。3時間後のテドラーバッグ内の酢酸ガス濃度をFID付きガスクロマトグラフにて測定し、反応前後の酢酸の濃度変化から酢酸除去量[mg]を求め、これを試料の重量で割ることにより、除去容量[mg/g]を算出した。
(Measurement method of acetic acid removal performance)
In a 5 L Tedlar bag, 25 mg of air containing 100 ppm of acetic acid gas, 50 RH% air, and 30 mg of an organic compound adsorption removing agent were sealed. The Tedlar bag was shaken as appropriate so that the organic compound adsorption / removal agent contained therein and the air containing acetic acid were in sufficient contact and reaction. The ambient temperature around the Tedlar bag was 25 ° C. The acetic acid gas concentration in the Tedlar bag after 3 hours was measured with a gas chromatograph with FID, and the acetic acid removal amount [mg] was determined from the change in acetic acid concentration before and after the reaction. mg / g] was calculated.
(トリメチルアミン除去性能の測定方法)
5Lのテドラーバッグ中にトリメチルアミンガス100ppmを含む25℃、50RH%の空気、有機化合物吸着除去剤30mgを封入した。中に入っている有機化合物吸着除去剤とトリメチルアミンを含む空気が十分に接触、反応するように、テドラーバッグを適宜振った。なお、テドラーバッグ周囲の雰囲気温度は25℃とした。3時間後のテドラーバッグ内のトリメチルアミンガス濃度をFID付きガスクロマトグラフにて測定し、反応前後のトリメチルアミンガスの濃度変化からトリメチルアミン除去量[mg]を求め、これを試料の重量で割ることにより、除去容量[mg/g]を算出した。
(Method for measuring trimethylamine removal performance)
A 5 L Tedlar bag was filled with 25 mg of air containing 100 ppm of trimethylamine gas, 50 RH% air, and 30 mg of an organic compound adsorption removing agent. The Tedlar bag was shaken as appropriate so that the organic compound adsorption / removal agent contained therein and the air containing trimethylamine sufficiently contacted and reacted. The ambient temperature around the Tedlar bag was 25 ° C. The trimethylamine gas concentration in the Tedlar bag after 3 hours was measured with a gas chromatograph with FID, the trimethylamine removal amount [mg] was determined from the change in the trimethylamine gas concentration before and after the reaction, and this was divided by the weight of the sample to remove the volume. [Mg / g] was calculated.
(実施例1)
塩化第2鉄六水和物(ナカライテスク社製)13.5gを60mlの水に溶解させ、30%過酸化水素水(ナカライテスク社製)5.0g添加した後、15分間撹拌した。その後、炭酸アンモニウム(ナカライテスク社製)12.0gを含有する水溶液100mlをゆっくりと添加した。添加後、1時間撹拌した。得られた溶液を濾別し、イオン交換水で濾液が中性になるまで水洗した後、120℃、窒素気流下で一昼夜乾燥したところ、赤褐色の鉄化合物粒子が得られた。得られた鉄化合物粒子のBET比表面積は212m2/gであった。
酸化銀(I)(和光純薬工業製)と上記で得られた鉄化合物粒子を重量比が5:95になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
Example 1
13.5 g of ferric chloride hexahydrate (Nacalai Tesque) was dissolved in 60 ml of water, 5.0 g of 30% hydrogen peroxide (Nacalai Tesque) was added, and the mixture was stirred for 15 minutes. Thereafter, 100 ml of an aqueous solution containing 12.0 g of ammonium carbonate (manufactured by Nacalai Tesque) was slowly added. After the addition, the mixture was stirred for 1 hour. The obtained solution was filtered off, washed with ion exchange water until the filtrate became neutral, and then dried at 120 ° C. under a nitrogen stream for 24 hours to obtain reddish brown iron compound particles. The obtained iron compound particles had a BET specific surface area of 212 m 2 / g.
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained above were mixed in an agate mortar so that the weight ratio was 5:95 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(実施例2)
酸化銀(I)(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が10:90になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Example 2)
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 10:90 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(実施例3)
酸化銀(I)(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Example 3)
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(実施例4)
酸化銀(I)(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が50:50になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
Example 4
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 50:50 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(実施例5)
酸化銀(I)(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が70:30になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Example 5)
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 70:30 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例1)
実施例1で得られた鉄化合物粒子について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 1)
The iron compound particles obtained in Example 1 were measured for acetaldehyde removal performance, acetic acid removal performance, and trimethylamine removal performance.
(比較例2)
酸化銀(I)(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が0.1:99.9になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 2)
Silver oxide (I) (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 0.1: 99.9, and an organic compound adsorption remover was added. Obtained. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例3)
酸化銀(I)(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が90:10になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 3)
Silver (I) oxide (manufactured by Wako Pure Chemical Industries) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 90:10 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例4)
酸化銀(I)(和光純薬工業製)について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 4)
About silver (I) oxide (made by Wako Pure Chemical Industries), the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
実施例1〜5、比較例1〜4の有機化合物吸着除去剤に関して、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した結果を表1に示す。表1より明らかなように、本発明である実施例1〜5は、鉄化合物のみ(比較例1)、および、銀化合物のみ(比較例4)と比較して高除去性能であることが分かる。また、銀化合物が少なすぎる場合(比較例2)、および、銀化合物が多すぎる場合(比較例3)も本発明である実施例1〜5と比較して性能が低いことが分かる。 Table 1 shows the results of measuring the acetaldehyde removal performance, acetic acid removal performance, and trimethylamine removal performance for the organic compound adsorption / removal agents of Examples 1 to 5 and Comparative Examples 1 to 4. As is clear from Table 1, Examples 1 to 5 according to the present invention have higher removal performance than only the iron compound (Comparative Example 1) and the silver compound only (Comparative Example 4). . Moreover, when there are too few silver compounds (comparative example 2), and when there are too many silver compounds (comparative example 3), it turns out that performance is low compared with Examples 1-5 which are this invention.
(実施例6)
硫酸第2鉄n水和物(ナカライテスク社製)14.3gを100mlの水に溶解させ、炭酸水素ナトリウム(ナカライテスク社製)6.4gを含有する水溶液100mlをゆっくりと添加した。添加後、1時間撹拌した。得られた溶液を濾別し、イオン交換水で濾液が中性になるまで水洗した後、120℃、窒素気流下で一昼夜乾燥した後、空気下300℃条件で1時間焼成処理を施した。黒褐色の鉄化合物粒子が得られた。得られた鉄化合物粒子のBET比表面積は125m2/gであった。
酸化銀(I)(和光純薬工業製)と上記で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Example 6)
14.3 g of ferric sulfate n-hydrate (Nacalai Tesque) was dissolved in 100 ml of water, and 100 ml of an aqueous solution containing 6.4 g of sodium hydrogen carbonate (Nacalai Tesque) was slowly added. After the addition, the mixture was stirred for 1 hour. The obtained solution was separated by filtration, washed with ion exchange water until the filtrate became neutral, dried at 120 ° C. under a nitrogen stream for a whole day and night, and then subjected to a baking treatment under air at 300 ° C. for 1 hour. Black-brown iron compound particles were obtained. The obtained iron compound particles had a BET specific surface area of 125 m 2 / g.
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained above were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(実施例7)
硫酸第2鉄n水和物(ナカライテスク社製)14.3gを100mlの水に溶解させ、炭酸水素ナトリウム(ナカライテスク社製)6.4gを含有する水溶液100mlをゆっくりと添加した。添加後、1時間撹拌した。得られた溶液を濾別し、イオン交換水で濾液が中性になるまで水洗した後、80℃、窒素気流下で一昼夜乾燥した。黒褐色の鉄化合物粒子が得られた。得られた鉄化合物粒子のBET比表面積は378m2/gであった。
酸化銀(I)(和光純薬工業製)と上記で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Example 7)
14.3 g of ferric sulfate n-hydrate (Nacalai Tesque) was dissolved in 100 ml of water, and 100 ml of an aqueous solution containing 6.4 g of sodium hydrogen carbonate (Nacalai Tesque) was slowly added. After the addition, the mixture was stirred for 1 hour. The resulting solution was filtered off, washed with ion-exchanged water until the filtrate became neutral, and dried overnight at 80 ° C. under a nitrogen stream. Black-brown iron compound particles were obtained. The obtained iron compound particles had a BET specific surface area of 378 m 2 / g.
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained above were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例5)
硫酸第2鉄n水和物(ナカライテスク社製)14.3gを100mlの水に溶解させ、炭酸水素ナトリウム(ナカライテスク社製)6.4gを含有する水溶液100mlをゆっくりと添加した。添加後、1時間撹拌した。得られた溶液を濾別し、イオン交換水で濾液が中性になるまで水洗した後、120℃、窒素気流下で一昼夜乾燥した後、空気下500℃条件で3時間焼成処理を施した。黒褐色の鉄化合物粒子が得られた。得られた鉄化合物粒子のBET比表面積は72m2/gであった。
酸化銀(I)(和光純薬工業製)と上記で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 5)
14.3 g of ferric sulfate n-hydrate (Nacalai Tesque) was dissolved in 100 ml of water, and 100 ml of an aqueous solution containing 6.4 g of sodium hydrogen carbonate (Nacalai Tesque) was slowly added. After the addition, the mixture was stirred for 1 hour. The obtained solution was separated by filtration, washed with ion exchange water until the filtrate became neutral, dried at 120 ° C. under a nitrogen stream for a whole day and night, and then subjected to calcination treatment under air at 500 ° C. for 3 hours. Black-brown iron compound particles were obtained. The obtained iron compound particles had a BET specific surface area of 72 m 2 / g.
Silver (I) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained above were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例6)
酸化銀(I)(和光純薬工業製)とFe3O4(戸田工業製マグネタイト、BET比表面積16m2/g)を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物
吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 6)
Silver oxide (I) (manufactured by Wako Pure Chemical Industries) and Fe3O4 (magnetite manufactured by Toda Kogyo Co., Ltd., BET specific surface area of 16 m 2 / g) are mixed in an agate mortar so that the weight ratio is 30:70, and the organic compound adsorption remover Got. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例7)
酸化銀(I)(和光純薬工業製)とα−Fe2O3(戸田工業製ヘマタイト、BET比表面積7m2/g)を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物
吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 7)
Silver oxide (I) (manufactured by Wako Pure Chemical Industries) and α-Fe2O3 (Tomat Kogyo hematite, BET specific surface area 7 m 2 / g) are mixed in an agate mortar so that the weight ratio is 30:70, and adsorbed with organic compounds. A remover was obtained. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例8)
酸化銀(I)(和光純薬工業製)とα−FeOOH(戸田工業製ゲータイト、BET比表面積19m2/g)を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合
物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 8)
Silver oxide (I) (manufactured by Wako Pure Chemical Industries) and α-FeOOH (Toda Kogyo Goethite, BET specific surface area 19 m 2 / g) are mixed in an agate mortar so that the weight ratio is 30:70, and adsorbs organic compounds. A remover was obtained. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
実施例3、6、7、および、比較例5〜8の有機化合物吸着除去剤に関して、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した結果を表2に示す。表2より明らかなように、本発明である実施例3、6、7は、鉄化合物粒子のBET比表面積が100m2/g以上であり、高除去性能であることが分かる。一方で、鉄化合
物粒子のBET比表面積が100m2/gより小さい場合(比較例5)、および、市販さ
れている各種酸化鉄の場合(比較例6〜8)は性能が低いことが分かる。
Table 2 shows the results of measuring the acetaldehyde removal performance, acetic acid removal performance, and trimethylamine removal performance of the organic compound adsorption / removal agents of Examples 3, 6, 7 and Comparative Examples 5-8. As is apparent from Table 2, Examples 3, 6, and 7 according to the present invention show that the iron compound particles have a BET specific surface area of 100 m 2 / g or more and high removal performance. On the other hand, it can be seen that the performance is low when the BET specific surface area of the iron compound particles is smaller than 100 m 2 / g (Comparative Example 5) and various commercially available iron oxides (Comparative Examples 6 to 8).
(実施例8)
酸化銀(II)(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Example 8)
Silver (II) oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例9)
銀粉末(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 9)
Silver powder (manufactured by Wako Pure Chemical Industries) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例10)
塩化銀(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 10)
Silver chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
(比較例11)
硫化銀(和光純薬工業製)と実施例1で得られた鉄化合物粒子を重量比が30:70になるようにメノウ乳鉢で混合し、有機化合物吸着除去剤を得た。得られた有機化合物除去剤について、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した。
(Comparative Example 11)
Silver sulfide (manufactured by Wako Pure Chemical Industries, Ltd.) and the iron compound particles obtained in Example 1 were mixed in an agate mortar so that the weight ratio was 30:70 to obtain an organic compound adsorption remover. About the obtained organic compound removal agent, the acetaldehyde removal performance, the acetic acid removal performance, and the trimethylamine removal performance were measured.
実施例3、8、および、比較例9〜11の有機化合物吸着除去剤に関して、アセトアルデヒド除去性能、酢酸除去性能、トリメチルアミン除去性能を測定した結果を表3に示す。表3より明らかなように、本発明である実施例3、8は、鉄化合物粒子として銀酸化物を使用しているため、銀酸化物以外の場合(比較例9〜11)と比較して、高除去性能であることが分かる。 Table 3 shows the results of measurement of acetaldehyde removal performance, acetic acid removal performance, and trimethylamine removal performance for the organic compound adsorption / removal agents of Examples 3 and 8 and Comparative Examples 9 to 11. As is apparent from Table 3, Examples 3 and 8 according to the present invention use silver oxide as iron compound particles, and therefore, in comparison with cases other than silver oxide (Comparative Examples 9 to 11). It can be seen that the removal performance is high.
本発明の有機化合物吸着除去剤によれば、アルデヒド類、カルボン酸類、アミン類の吸着性能を長期間、常温で維持することができ、一般家庭用品等幅広い用途分野に利用することができ、産業界に寄与すること大である。 According to the organic compound adsorption remover of the present invention, the adsorption performance of aldehydes, carboxylic acids, and amines can be maintained at room temperature for a long time, and can be used in a wide range of application fields such as general household goods. It is great to contribute to the world.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005208904A JP2006281191A (en) | 2005-03-11 | 2005-07-19 | Organic compound adsorption removing agent |
PCT/JP2006/304563 WO2006095801A1 (en) | 2005-03-11 | 2006-03-09 | Organic compound adsorption/removing agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005068994 | 2005-03-11 | ||
JP2005208904A JP2006281191A (en) | 2005-03-11 | 2005-07-19 | Organic compound adsorption removing agent |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006281191A true JP2006281191A (en) | 2006-10-19 |
Family
ID=37403642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005208904A Withdrawn JP2006281191A (en) | 2005-03-11 | 2005-07-19 | Organic compound adsorption removing agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006281191A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5588852A (en) * | 1978-12-27 | 1980-07-04 | Agency Of Ind Science & Technol | Catalyst for catalytic combustion of hydrogen |
JPS62191044A (en) * | 1986-02-17 | 1987-08-21 | Takanobu Egashira | Method for decomposing ethylene oxide gas |
JPH0474536A (en) * | 1990-07-16 | 1992-03-09 | Idemitsu Kosan Co Ltd | Catalyst for decomposing nitrogen oxide |
JPH04200638A (en) * | 1990-11-30 | 1992-07-21 | Hitachi Ltd | Catalyst for oxidization or decomposition of gas containing odorous component and its application product |
JP2002306581A (en) * | 2001-04-11 | 2002-10-22 | Nissan Motor Co Ltd | Deodorant and method of preparation for the same |
JP2004082114A (en) * | 2002-08-06 | 2004-03-18 | Sk Kaken Co Ltd | Photocatalyst composite powder |
-
2005
- 2005-07-19 JP JP2005208904A patent/JP2006281191A/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5588852A (en) * | 1978-12-27 | 1980-07-04 | Agency Of Ind Science & Technol | Catalyst for catalytic combustion of hydrogen |
JPS62191044A (en) * | 1986-02-17 | 1987-08-21 | Takanobu Egashira | Method for decomposing ethylene oxide gas |
JPH0474536A (en) * | 1990-07-16 | 1992-03-09 | Idemitsu Kosan Co Ltd | Catalyst for decomposing nitrogen oxide |
JPH04200638A (en) * | 1990-11-30 | 1992-07-21 | Hitachi Ltd | Catalyst for oxidization or decomposition of gas containing odorous component and its application product |
JP2002306581A (en) * | 2001-04-11 | 2002-10-22 | Nissan Motor Co Ltd | Deodorant and method of preparation for the same |
JP2004082114A (en) * | 2002-08-06 | 2004-03-18 | Sk Kaken Co Ltd | Photocatalyst composite powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03296434A (en) | Composite adsorbent and its manufacture | |
KR101762718B1 (en) | Porous copper-manganese filter media and the preparation of the same | |
WO2004052536A1 (en) | Composite catalyst for removing carbon monoxide and method for removing carbon monoxide using the same | |
EP1578457B1 (en) | Carbon nanoball for deodorization | |
Pham et al. | An initial evaluation on the adsorption of SO2 and NO2 over porous Fe3O4 nanoparticles synthesized by facile scalable method | |
JP2006281191A (en) | Organic compound adsorption removing agent | |
JP5017779B2 (en) | Organic compound adsorption remover and method for producing the same | |
JP2007021412A (en) | Adsorbing and removing agent for organic compound | |
WO2006095801A1 (en) | Organic compound adsorption/removing agent | |
JPH0523588A (en) | Composite adsorbent | |
US5603928A (en) | Air purification agent and process for production of same | |
JP2647756B2 (en) | Method for producing composition having air cleaning power | |
JP2002079099A (en) | Gas removing material | |
JP2007209527A (en) | Method for oxidizing and removing aldehyde gas | |
JP2009279522A (en) | Oxide catalyst and method for preparing oxide catalyst, as well as deodorant and deodorizing filter | |
Shen et al. | Removal of elemental mercury by KI-impregnated clay | |
JP4923571B2 (en) | Aldehyde gas scavenger | |
JP4760599B2 (en) | Aldehyde gas removal filter | |
JP2017094309A (en) | Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method | |
EP3331632B1 (en) | Filter media for respiratory protection comprising iron-doped manganese oxide | |
JPH04219136A (en) | Composition having air purifying power and production thereof | |
JP2005177534A (en) | Hematite for adsorption removal material, adsorption removal material and adsorption removal method for harmful substance | |
JP2017148764A (en) | Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas | |
JP2663230B2 (en) | Air-purified product and method for producing the same | |
JP2007175598A (en) | Aldehydes gas removing agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110712 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20110913 |