[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006278709A - Solar battery module - Google Patents

Solar battery module Download PDF

Info

Publication number
JP2006278709A
JP2006278709A JP2005095403A JP2005095403A JP2006278709A JP 2006278709 A JP2006278709 A JP 2006278709A JP 2005095403 A JP2005095403 A JP 2005095403A JP 2005095403 A JP2005095403 A JP 2005095403A JP 2006278709 A JP2006278709 A JP 2006278709A
Authority
JP
Japan
Prior art keywords
solar cell
sealing material
side sealing
cell module
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005095403A
Other languages
Japanese (ja)
Inventor
Koji Nishi
浩二 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005095403A priority Critical patent/JP2006278709A/en
Publication of JP2006278709A publication Critical patent/JP2006278709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery module capable of improving the dissipation efficiency of heat generated in a solar battery cells, while maintaining electrical insulation. <P>SOLUTION: In the solar battery module, a solar battery element 5 sandwiched by a light-receiving surface side sealing material 2 and a rear-surface side sealing material 5 is arranged between a translucent light-receiving surface member 1 and a rear-surface sheet 6. The sealing material 5 has a large number of through-holes 8 formed thereon, a thermoconductive paste 9 consisting of insulating particles having a thermoconductive rate larger than that of the rear surface side sealing member, and an adhesive resin is filled into the through holes 8. The thermoconductive paste 9 contacts the rear-surface sheet 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は太陽電池モジュールに関し、特に放熱性を向上させた太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more particularly to a solar cell module with improved heat dissipation.

太陽電池素子は単結晶シリコン基板や多結晶シリコン基板を用いて作製することが多い。このため太陽電池素子は物理的衝撃に弱く、また野外に太陽電池を取り付けた場合に、雨などからこれを保護する必要がある。また、太陽電池素子1枚では発生する電気出力が小さいため、複数の太陽電池素子を直並列に接続して、実用的な電気出力が取り出せるようにする必要がある。このため複数の太陽電池素子を接続して透光性受光面部材とエチレンビニルアセテート共重合体(EVA)などを主成分とする封止材で封入して太陽電池モジュールを作製することが通常行われている。 Solar cell elements are often manufactured using a single crystal silicon substrate or a polycrystalline silicon substrate. For this reason, the solar cell element is vulnerable to physical impact, and when the solar cell is installed outdoors, it is necessary to protect it from rain. Moreover, since the electrical output generated by one solar cell element is small, it is necessary to connect a plurality of solar cell elements in series and parallel so that a practical electrical output can be taken out. For this reason, a solar cell module is usually manufactured by connecting a plurality of solar cell elements and encapsulating with a sealing material mainly composed of a translucent light-receiving surface member and ethylene vinyl acetate copolymer (EVA). It has been broken.

屋外に設置された太陽電池モジュールでは、その発電時には外気温20℃でも太陽電池モジュールの温度は太陽電池素子の動作に伴って生じる熱などによって40〜50℃程度まで上昇する。このように太陽電池モジュールの温度が上昇すると太陽電池素子の温度特性から発電効率が低下する。   In a solar cell module installed outdoors, the temperature of the solar cell module rises to about 40 to 50 ° C. due to heat generated by the operation of the solar cell element even at an outside air temperature of 20 ° C. during power generation. As described above, when the temperature of the solar cell module increases, the power generation efficiency decreases due to the temperature characteristics of the solar cell element.

さらに、発電中の太陽電池モジュールの複数の太陽電池素子のなかのある1つの太陽電池素子が何かの影になって発電が不十分になった場合、この太陽電池素子は抵抗となる。このときこの太陽電池素子の両電極にはその抵抗値と流れる電流の積の電位差が発生する。すなわち、太陽電池素子に逆方向のバイアス電圧がかかることとなり、この素子は発熱するようになる。このような状況をホットスポットと呼んでいる。このホットスポットの現象が発生して太陽電池素子の温度が上昇し続けると、最悪の場合にはこの太陽電池素子は破壊し、以後この太陽電池モジュールから所定の電気出力を得られなくなる。   Furthermore, when one solar cell element in the plurality of solar cell elements of the solar cell module that is generating power is in the shadow of the solar cell module and power generation becomes insufficient, this solar cell element becomes a resistance. At this time, a potential difference of the product of the resistance value and the flowing current is generated between both electrodes of the solar cell element. That is, a reverse bias voltage is applied to the solar cell element, and this element generates heat. Such a situation is called a hot spot. If the hot spot phenomenon occurs and the temperature of the solar cell element continues to rise, in the worst case, the solar cell element is destroyed, and thereafter, a predetermined electric output cannot be obtained from the solar cell module.

図4は従来の太陽電池モジュールの構成図を示す図である。21は透光性受光面部材、22は受光面側封止材、23は接続タブ、24は太陽電池素子、25は裏面側封止材、26は裏面シートである。透光性受光面部材21は、厚さ3〜5mm程度の白板強化ガラス等が多く使用される。太陽電池素子24は、厚み0.2mm程度の単結晶シリコンや多結晶シリコン基板などから成り、概略の大きさは、例えば多結晶シリコン太陽電池でおよそ150mm角である。太陽電池モジュール作製時にはこの太陽電池素子の電極と銅箔などの接続タブ23にて太陽電池素子を直並列に接続したものを用いる。封止材22、25は上述のようにエチレンビニルアセテート共重合体(EVA)のほかポリビニルブチラール(PVB)などを主成分とするものが多く用いられる。裏面シート26は水分を透過しないようにアルミ箔を挟持した耐候性を有するフッ素系樹脂などが用いられる。   FIG. 4 is a diagram showing the configuration of a conventional solar cell module. 21 is a translucent light receiving surface member, 22 is a light receiving surface side sealing material, 23 is a connection tab, 24 is a solar cell element, 25 is a back surface side sealing material, and 26 is a back sheet. The translucent light receiving surface member 21 is often made of white plate tempered glass having a thickness of about 3 to 5 mm. The solar cell element 24 is made of single crystal silicon, a polycrystalline silicon substrate, or the like having a thickness of about 0.2 mm, and the approximate size is, for example, about 150 mm square for a polycrystalline silicon solar cell. At the time of manufacturing the solar cell module, a solar cell element connected in series and parallel with the connection tab 23 such as an electrode of the solar cell element and copper foil is used. As described above, many of the sealing materials 22 and 25 mainly include polyvinyl butyral (PVB) in addition to ethylene vinyl acetate copolymer (EVA). The back sheet 26 is made of a weather-resistant fluorine-based resin that sandwiches an aluminum foil so as not to transmit moisture.

上述のような太陽電池モジュールの温度上昇やホットスポットが発生したときに太陽電池モジュールを冷却するために、太陽電池モジュールの裏面側に表面が凹凸状の熱放射率の高いフィルムを設けることや太陽電池モジュールの周囲に配設されるモジュール枠に通風口を設けることが考案されている。(特許文献1参照)
また、太陽電池素子と裏面側封止材との間に熱伝導率の大きなシート材を配設した太陽電池モジュールが考案されている。(特許文献2参照)
特開平6−181333号公報 特開2004−311455号公報
In order to cool the solar cell module when the temperature rise or hot spot of the solar cell module as described above occurs, the solar cell module is provided with a film with a high heat emissivity on the back surface side of the solar cell module or the sun. It has been devised to provide a ventilation opening in a module frame disposed around the battery module. (See Patent Document 1)
Further, a solar cell module has been devised in which a sheet material having a high thermal conductivity is disposed between the solar cell element and the back surface side sealing material. (See Patent Document 2)
JP-A-6-181333 JP 2004-31455 A

ところが、上述のように太陽電池モジュールの裏面シート26に表面が凹凸状の熱放射率の高いフィルムを設ける方法では、EVAなどの裏面側封止材25の熱伝導が悪いために、太陽電池モジュール内部に熱がこもり、その温度が上昇しやすくなって放熱効果は不十分である。   However, as described above, in the method of providing the back surface sheet 26 of the solar cell module with a film having a concavo-convex surface and a high thermal emissivity, the thermal conductivity of the back side sealing material 25 such as EVA is poor. Heat is trapped inside, the temperature tends to rise, and the heat dissipation effect is insufficient.

また、太陽電池モジュールの周囲に配設されるモジュール枠に通風口を設けるものでは、太陽電池モジュールの強度に影響が出ることが考えられ、さらに無風状態ではその効果が不十分になることが考えられる。   In addition, in the case where the ventilation holes are provided in the module frame disposed around the solar cell module, it is considered that the strength of the solar cell module is affected, and further, the effect is insufficient in the no-wind state. It is done.

また、上述のように熱伝導率の大きなシート材を太陽電池素子24と裏面側封止材22との間に配設する方法ではEVAなどの裏面側封止材25の熱伝導が悪いために、太陽電池モジュール内部に熱がこもり、その温度が上昇しやすくなって放熱効果は不十分になることが考えられる。   Further, as described above, in the method in which the sheet material having a large thermal conductivity is disposed between the solar cell element 24 and the back surface side sealing material 22, the heat conduction of the back surface side sealing material 25 such as EVA is poor. It is conceivable that heat is trapped inside the solar cell module, the temperature tends to rise, and the heat dissipation effect becomes insufficient.

本発明はこのような問題に鑑みなされたものであり、その目的は太陽電池モジュール内部の熱伝導性を向上させ、光発電時の太陽電池モジュールの温度上昇を抑えることによってその発電効率の低下を防ぐと共に、ホットスポットが発生したときの太陽電池素子の温度上昇を抑制して太陽電池素子の破壊を防ぐことにある。   The present invention has been made in view of such problems, and its purpose is to improve the thermal conductivity inside the solar cell module and to reduce the power generation efficiency by suppressing the temperature rise of the solar cell module during photovoltaic power generation. While preventing, it is in preventing the destruction of a solar cell element by suppressing the temperature rise of the solar cell element when a hot spot generate | occur | produces.

上記目的を達成するために、透光性受光面部材と裏面シートとの間に、受光面側封止材と裏面側封止材で挟持した太陽電池素子を配設した太陽電池モジュールにおいて、
前記裏面側封止材に複数の貫通穴を形成するとともに、前記貫通穴内に、前記裏面側封止材より熱伝導率の大きな絶縁性粒子および前記裏面側封止材と同じ組成の接着樹脂とから構成される熱伝導性ペーストを充填して、前記裏面シートと接触させたことを特徴とする。
In order to achieve the above object, in a solar cell module in which a solar cell element sandwiched between a light receiving surface side sealing material and a back surface side sealing material is disposed between a light transmitting light receiving surface member and a back sheet,
A plurality of through holes are formed in the back side sealing material, and in the through holes, insulating particles having a thermal conductivity larger than that of the back side sealing material and an adhesive resin having the same composition as the back side sealing material It is characterized by being filled with a heat conductive paste composed of the above and being brought into contact with the back sheet.

上記太陽電池モジュールでは、前記裏面シートがセラミックおよびまたは金属シートを含んでいることが望ましい。   In the said solar cell module, it is desirable that the said back surface sheet contains the ceramic and / or metal sheet.

上記太陽電池モジュールでは、前記熱伝導率の大きな粒子がアルミナまたはジルコニアであることが望ましい。   In the solar cell module, the particles having a large thermal conductivity are preferably alumina or zirconia.

請求項1に係る太陽電池モジュールによれば、透光性受光面部材と裏面シートとの間に受光面側封止材と裏面側封止材で挟持した太陽電池素子を配設した太陽電池モジュールにおいて、前記裏面側封止材に貫通穴を形成し、前記貫通穴内に電気的に絶縁性を有し、かつ前記裏面側封止材より熱伝導率の大きな粒子と前記裏面側封止材と同じ組成の接着樹脂で構成された粒子充填率が高い熱伝導性ペーストを充填し、前記熱伝導性ペーストが前記裏面シートと接触していることで、太陽電池素子で発生した熱を速やかに太陽電池モジュール裏面シートに伝えて裏面シートから放熱させることが可能となる。   According to the solar cell module according to claim 1, the solar cell module in which the solar cell element sandwiched between the light-receiving surface side sealing material and the back surface side sealing material is disposed between the translucent light-receiving surface member and the back surface sheet. And forming a through hole in the back side sealing material, electrically insulating in the through hole, and having larger thermal conductivity than the back side sealing material, and the back side sealing material The heat conductive paste having a high particle filling rate composed of the adhesive resin having the same composition is filled, and the heat conductive paste is in contact with the back sheet, so that the heat generated in the solar cell element can be quickly transferred to the sun. It is possible to transmit to the battery module back sheet and dissipate heat from the back sheet.

請求項2に係る発明では、裏面シートがセラミックおよび/または金属シートを配設すると太陽電池素子で発生した熱は熱伝導性ペーストで裏面シートに伝達され樹脂シートより熱伝導性が高い材料の為、速やかに外気に放熱させることができる。   In the invention according to claim 2, when the back sheet is provided with a ceramic and / or metal sheet, the heat generated in the solar cell element is transferred to the back sheet with a heat conductive paste, and thus has a higher thermal conductivity than the resin sheet. , Can quickly dissipate heat to the outside air.

請求項3に係る発明では、熱伝導性ペーストに含まれる粒子はアルミナまたはジルコニアなどの熱伝導率の大きな粒子であると、放熱速度が速く、また絶縁性に優れるため信頼性試験時の耐電圧にも良好な結果をなる。   In the invention according to claim 3, if the particles contained in the heat conductive paste are particles having a high thermal conductivity such as alumina or zirconia, the heat dissipation rate is fast and the insulation is excellent, so that the withstand voltage during the reliability test is high. Even good results.

また、ホットスポットなどで局部的な発熱があった場合でも熱の拡散が速くなって太陽電池素子の破壊を防ぐことができる。さらに、太陽電池モジュールの受光面側は光の吸収などで裏面側に比べて温度上昇が起こり易いが、本発明では裏面側から放熱させることによって受光面側に何ら影響を及ぼすことなく、効率よく均一に太陽電池モジュールの温度上昇を抑えることができる。   Further, even when local heat is generated due to a hot spot or the like, the diffusion of heat is accelerated and the solar cell element can be prevented from being destroyed. Furthermore, the light receiving surface side of the solar cell module tends to increase in temperature compared to the back surface side due to light absorption, etc., but in the present invention, heat radiation from the back surface side does not have any effect on the light receiving surface side, and it is efficient. The temperature rise of the solar cell module can be suppressed uniformly.

以下、本発明の太陽電池モジュールを添付図面に基づいて詳細に説明する。   Hereinafter, the solar cell module of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係る太陽電池モジュールの構造を示す図である。図1において、1は透光性受光面部材、2は受光面側封止材、3は太陽電池素子、4は接続タブ、5は多数の貫通穴に熱伝導性ペーストが充填された裏面側封止材、6は裏面シートを示す。   FIG. 1 is a view showing the structure of a solar cell module according to the present invention. In FIG. 1, 1 is a translucent light receiving surface member, 2 is a light receiving surface side sealing material, 3 is a solar cell element, 4 is a connection tab, and 5 is a back surface side in which a large number of through holes are filled with a heat conductive paste. Sealing material 6 is a back sheet.

透光性受光面部材1としては、ガラスやポリカーボネート樹脂などからなる透明な基板が用いられる。ガラス板については、白板ガラス、強化ガラス、倍強化ガラス、熱線反射ガラスなどが用いられるが、一般的には厚さ3mm〜5mm程度の白板強化ガラスが使用され、集光性を高める為、表または裏面にエンボス加工を行ったものもある。他方、ポリカーボネート樹脂などの合成樹脂からなる基板を用いた場合には、厚みが5mm程度のものが多く使用される。   As the translucent light receiving surface member 1, a transparent substrate made of glass or polycarbonate resin is used. As for the glass plate, white plate glass, tempered glass, double tempered glass, heat ray reflective glass, etc. are used, but generally white plate tempered glass with a thickness of about 3 mm to 5 mm is used to increase the light collecting property. There is also an embossed back surface. On the other hand, when a substrate made of a synthetic resin such as polycarbonate resin is used, a substrate having a thickness of about 5 mm is often used.

受光面側封止材2は、耐候性、耐熱性、耐水性、耐光性に優れた透明なエチレンビニルアセテート共重合体(EVA)のほかポリビニルブチラール(PVB)やオレフィンなどを主成分とするものが用いられる。   The light-receiving surface side sealing material 2 is mainly composed of polyvinyl butyral (PVB) or olefin as well as a transparent ethylene vinyl acetate copolymer (EVA) excellent in weather resistance, heat resistance, water resistance and light resistance. Is used.

太陽電池素子3は、例えば厚み0.3〜0.4mm程度、大きさ150mm角程度の単結晶シリコンや多結晶シリコンで作られている。この太陽電池素子3の内部にはボロンなどのP型不純物を多く含んだP層とリンなどのN型不純物を多く含んだN層が接しているPN接合(不図示)が形成されている。また、太陽電池素子3の受光面側表面及び裏面側表面には、電極(不図示)が銀ペーストをスクリーンプリント法などにより形成され、その電極の表面は、その保護と接続配線6を取り付けやすくするために、そのほぼ全面にわたりハンダコートされる。   The solar cell element 3 is made of, for example, single crystal silicon or polycrystalline silicon having a thickness of about 0.3 to 0.4 mm and a size of about 150 mm square. Inside the solar cell element 3 is formed a PN junction (not shown) in which a P layer containing a large amount of P-type impurities such as boron and an N layer containing a large amount of N-type impurities such as phosphorus are in contact. Further, electrodes (not shown) are formed on the light receiving surface side surface and the back surface side surface of the solar cell element 3 by screen printing or the like, and the surface of the electrode is easy to attach the protection and connection wiring 6 to. In order to do so, it is solder coated over almost the entire surface.

太陽電池モジュールを作製するときには、この太陽電池素子3の電極にハンダメッキなど施した幅1〜7mm程度の銅箔等の接続タブ4をハンダ付けなどで接続することにより、複数の太陽電池素子3を直列または並列に接続して、太陽電池モジュールから所定の電気出力が発生するように接続する。   When a solar cell module is manufactured, a plurality of solar cell elements 3 are connected by connecting, by soldering or the like, connection tabs 4 such as copper foil having a width of about 1 to 7 mm, which are subjected to solder plating or the like, on the electrodes of the solar cell element 3. Are connected in series or in parallel so that a predetermined electrical output is generated from the solar cell module.

図2は本発明に係る裏面側封止材5の斜視図であり、さらに図3は本発明に係る多数の貫通穴に熱伝導性ペーストが充填された裏面側封止材5の拡大断面図である。   FIG. 2 is a perspective view of the back surface side sealing material 5 according to the present invention, and FIG. 3 is an enlarged cross-sectional view of the back surface side sealing material 5 in which a large number of through holes are filled with a thermal conductive paste. It is.

図2、図3において、7は裏面側封止材シート、8は貫通穴、9は熱伝導性ペースト、10は熱伝導率の大きな絶縁性粒子、11は接着樹脂を示す。   2 and 3, 7 is a back side sealing material sheet, 8 is a through hole, 9 is a heat conductive paste, 10 is an insulating particle having a large heat conductivity, and 11 is an adhesive resin.

本発明に係る裏面側封止材シート7は、エチレンビニルアセテート共重合体(EVA)やポリビニルブチラール(PVB)やオレフィンなどを主成分としている。この中では、太陽電池モジュールのコストや長期的な安定性を考慮してEVAが好適である。しかし、例えばEVAの熱伝導率は0.2W/mKと低いため、本発明に係る裏面側封止材シート7では、これに多数の貫通穴8を形成し、この貫通穴8内に、電気的に絶縁性を有し、かつ裏面側封止材シート7の材料より熱伝導率の大きな特性をもつ絶縁性粒子10と裏面側封止材7と同じ組成の接着樹脂で構成された熱伝導性ペースト9を充填する。これにより、裏面側封止材5が完成する。そしてこの熱伝導性ペースト9が裏面シート6と接触する様に配設される。   The back surface side sealing material sheet 7 which concerns on this invention has ethylene vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), an olefin, etc. as a main component. Among these, EVA is suitable in consideration of the cost of the solar cell module and long-term stability. However, for example, the thermal conductivity of EVA is as low as 0.2 W / mK. Therefore, in the back surface side sealing material sheet 7 according to the present invention, a large number of through holes 8 are formed in the back side sealing material sheet 7. Thermal conductivity composed of insulating particles 10 having insulating properties and thermal conductivity larger than that of the material of the back side sealing material sheet 7 and an adhesive resin having the same composition as the back side sealing material 7 The functional paste 9 is filled. Thereby, the back surface side sealing material 5 is completed. And this heat conductive paste 9 is arrange | positioned so that the back surface sheet 6 may be contacted.

このような裏面側封止材シート7は、金属のピンによるパンチング等で貫通穴を形成している。穴の直径は1mmから5mm程度で、その個数は2500〜10000個/m2程度開けられている。穴の直径が1mm以下だと熱伝導性ペーストが穴の中に入りづらく、5mm以上だと太陽電池素子3との密着性が弱くなる。またその個数は2500個/m2より少ないと太陽電池素子3の熱の熱伝導性ペースト9への伝導距離が長くなり放熱効果が弱くなり、また10000個/m2より多いと太陽電池素子3と裏面側封止材5の密着性が弱くなり長期使用での放熱効果が弱くなるため好ましくない。またこの多数の貫通穴8への熱伝導ペースト9の充填は、スキージ仕様のプリンターで圧入され、その後50〜80℃程度の乾燥炉で30分程度乾燥され、貫通穴8に固定される。 Such a back surface side sealing material sheet 7 has a through hole formed by punching with a metal pin or the like. The diameter of the hole is about 1 mm to 5 mm, and the number thereof is about 2500 to 10000 / m 2 . If the diameter of the hole is 1 mm or less, the heat conductive paste is difficult to enter the hole, and if it is 5 mm or more, the adhesion to the solar cell element 3 is weak. If the number is less than 2500 / m 2 , the conduction distance of the heat of the solar cell element 3 to the heat conductive paste 9 becomes long and the heat dissipation effect becomes weak, and if it is more than 10,000 / m 2 , the solar cell element 3. And the back surface side sealing material 5 become weak, and the heat dissipation effect in long-term use becomes weak. Further, the heat conductive paste 9 is filled into the large number of through holes 8 by press-fitting with a squeegee specification printer, and then dried in a drying furnace at about 50 to 80 ° C. for about 30 minutes, and fixed to the through holes 8.

熱伝導率の大きな絶縁性粒子10は、直径0.01mm~0.1mm程度のアルミナやジルコニア等のセラミックや熱伝導性が良く軽量なアルミニウムやステンレスなどの金属などの粒子が使用可能であるが、その熱導電率や太陽電池モジュールの絶縁性や耐電圧性能などを考慮するとアルミナ(熱伝導率21W/mK)やジルコニア(熱伝導率2.5W/mK)などが最適である。   As the insulating particles 10 having a high thermal conductivity, particles such as ceramics such as alumina and zirconia having a diameter of about 0.01 mm to 0.1 mm, and metals such as aluminum and stainless steel having good thermal conductivity and light weight can be used. In view of the thermal conductivity, the insulation property of the solar cell module and the withstand voltage performance, alumina (thermal conductivity 21 W / mK), zirconia (thermal conductivity 2.5 W / mK) and the like are optimal.

またこの熱伝導性ペースト9は、熱伝導率の大きな粒子の絶縁性粒子10を接着樹脂11に、重量比でEVA1に対して0.01〜3程度混合撹拌して、プリンターで圧入しやすいように、溶剤により300〜1000ポイズ程度に調整される。   In addition, the thermal conductive paste 9 is mixed and stirred with the insulating resin 10 having a large thermal conductivity in the adhesive resin 11 by about 0.01 to 3 with respect to EVA1 in a weight ratio so that it can be easily press-fitted with a printer. In addition, it is adjusted to about 300 to 1000 poise depending on the solvent.

このような多数の貫通穴8を形成し、ここに熱伝導率の大きな絶縁性粒子10と裏面側封止材シート7と同じ組成の接着樹脂11で構成された熱伝導性ペースト9を充填したことで裏面側充填材5と太陽電池素子の密着力を広い面積で落とすこと無しに十分強い密着力を確保できる。密着力が高いと熱伝導性ペーストと太陽電池素子の長期使用での密着のずれが無くなる。また熱伝導性ペースト9は成型品のシート体と異なりそれ自身で形を保持する必要が無い為、樹脂分を減らし熱伝導率の大きな粒子の充填率を高めることができ、粒子同士の接触率が高くなることでより熱伝導性が良い熱伝導媒体となる。   A large number of such through-holes 8 were formed, and filled therein with a thermally conductive paste 9 composed of insulating particles 10 having a large thermal conductivity and an adhesive resin 11 having the same composition as the back surface side sealing material sheet 7. Thus, it is possible to secure a sufficiently strong adhesion without dropping the adhesion between the back surface side filler 5 and the solar cell element over a wide area. If the adhesion is high, there will be no deviation in adhesion after long-term use of the thermal conductive paste and the solar cell element. In addition, unlike the molded product sheet, the heat conductive paste 9 does not need to maintain its own shape. Therefore, the resin content can be reduced and the filling rate of particles having high heat conductivity can be increased, and the contact rate between particles can be increased. As a result, the thermal conductivity becomes better.

また本発明に係る裏面シート6には、湿度を通さないようにアルミ箔を挟持した耐候性を有する薄いフッ素系樹脂などが用いられるが、更に放熱性を高めるために、裏面シート6をセラミックおよびまたは金属シートを用いる。セラミックは熱伝導性が良く耐湿性が良い高純度アルミナ、高純度ジルコニアが適している。金属は熱伝導性が良く軽量なアルミニウム板やステンレス材が最適である。また、金属とセラミックとの複合体でも放熱の効果は高い。セラミックや金属シートを使用したときの厚みは一例では20μm〜100μmで放熱性は良好である。さらに裏面シート6の外側の面には、放熱性を向上させるために機械加工などでその表面を荒らして、0.05〜0.1mm程度の凹凸を形成しても良い。   In addition, the back sheet 6 according to the present invention uses a thin fluorine-based resin having weather resistance in which an aluminum foil is sandwiched so as not to pass moisture. In order to further improve heat dissipation, the back sheet 6 is made of ceramic and Alternatively, a metal sheet is used. High-purity alumina and high-purity zirconia that have good thermal conductivity and good moisture resistance are suitable for the ceramic. As the metal, a light aluminum plate or a stainless steel material having a good thermal conductivity is optimal. Moreover, the effect of heat dissipation is high even in a composite of metal and ceramic. The thickness when using a ceramic or metal sheet is 20 μm to 100 μm, for example, and the heat dissipation is good. Furthermore, in order to improve heat dissipation, the surface of the outer surface of the back sheet 6 may be roughened by machining or the like to form irregularities of about 0.05 to 0.1 mm.

本発明に係る太陽電池モジュールの作製は次のように行われる。
透光性受光面部材1、受光面側封止材2、太陽電池素子3、多数の貫通穴に熱伝導性ペーストが充填された裏面側封止材5、裏面シート6を図1のように順次積層して重畳し、ラミネーターと呼ばれる装置にセットし、50〜150Pa程度の減圧下で100から200℃程度の温度で15〜60分間程度、加熱しながら押圧して気泡を追い出しながら加圧することにより受光面側封止材2と裏面側封止材5と熱伝導性ペースト9を架橋させて一体化することにより太陽電池パネルを作製する。
The solar cell module according to the present invention is manufactured as follows.
As shown in FIG. 1, the translucent light-receiving surface member 1, the light-receiving surface side sealing material 2, the solar cell element 3, the back surface side sealing material 5 in which a large number of through holes are filled with a heat conductive paste, and the back sheet 6 are formed. Sequentially stack and superimpose, set in a device called a laminator, pressurize while heating and pressing for 15 to 60 minutes at a temperature of about 100 to 200 ° C. under reduced pressure of about 50 to 150 Pa and pressurizing while expelling bubbles Thus, the light receiving surface side sealing material 2, the back surface side sealing material 5 and the heat conductive paste 9 are cross-linked and integrated to produce a solar cell panel.

次に、この一体化した太陽電池パネルの4辺にモジュール枠(図示せず)を取り付ける。このモジュール枠は太陽電池モジュールに必要な強度やコストを考慮して通常アルミニウムを押し出し成形して作られ、その表面にアルマイト処理やクリヤ塗装が施される。   Next, a module frame (not shown) is attached to the four sides of the integrated solar cell panel. This module frame is usually made by extruding aluminum in consideration of the strength and cost required for the solar cell module, and alumite treatment or clear coating is applied to the surface.

さらに、この太陽電池パネルの裏面側に太陽電池素子を外部回路に接続するための端子ボックス(不図示)を接着剤で取り付けて太陽電池モジュールが完成する。   Furthermore, a solar cell module is completed by attaching a terminal box (not shown) for connecting the solar cell element to an external circuit on the back side of the solar cell panel with an adhesive.

このように透光性受光面部材1と裏面シート6との間に受光面側封止材2と裏面側封止材5で挟持した太陽電池素子を配設した太陽電池モジュールにおいて、裏面側封止材に多数の貫通穴を形成し、貫通穴内に電気的に絶縁性を有し、かつ裏面側封止材より熱伝導率の大きな絶縁性粒子10と裏面側封止材シート7と同じ組成の接着樹脂11で構成された熱伝導性ペースト9を充填し、熱伝導性ペースト9が裏面シート6と接触していることで、太陽電池素子3の発生した電流により生じる熱などを速やかに太陽電池モジュールの裏面側に伝えることができ、これによって太陽電池素子3の温度の上昇を抑え、太陽電池モジュールの発電効率の低下を防ぐことが可能となる。   Thus, in the solar cell module in which the solar cell element sandwiched between the light-receiving surface side sealing material 2 and the back surface-side sealing material 5 is disposed between the translucent light-receiving surface member 1 and the back surface sheet 6, A large number of through holes are formed in the stopper, and the same composition as that of the insulating particles 10 and the back side sealing material sheet 7 which are electrically insulating in the through holes and have a higher thermal conductivity than the back side sealing material The heat conductive paste 9 composed of the adhesive resin 11 is filled, and the heat conductive paste 9 is in contact with the back sheet 6, so that heat generated by the current generated by the solar cell element 3 can be quickly removed from the sun. This can be transmitted to the back side of the battery module, thereby suppressing an increase in temperature of the solar cell element 3 and preventing a decrease in power generation efficiency of the solar cell module.

さらに裏面シート6がセラミックおよび/または金属シートを用いることにより熱伝導率を向上させ、さらにアルミナまたはジルコニアの粒子を含ませた熱伝導ペースト9を用いることにより、EVA等の持つ接着性や充填性を失うことなく、その熱伝導率を向上させることが可能となり、裏面に速やかに伝えることができる。   Further, the back sheet 6 uses a ceramic and / or metal sheet to improve the thermal conductivity, and further uses the heat conductive paste 9 containing alumina or zirconia particles, so that the adhesiveness or filling property of EVA or the like can be obtained. It is possible to improve the thermal conductivity without losing the value, and it can be promptly transmitted to the back surface.

なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば太陽電池素子は単結晶や多結晶シリコンなどの結晶系太陽電池に限定されるものではなく、薄膜系太陽電池などでも適用可能である。   In addition, this invention is not limited to the said embodiment, Many corrections and changes can be added within the scope of the present invention. For example, the solar cell element is not limited to a crystalline solar cell such as a single crystal or polycrystalline silicon, and can be applied to a thin film solar cell.

本発明に係る太陽電池モジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the solar cell module which concerns on this invention. 本発明に係る裏面側封止材の斜視図である。It is a perspective view of the back surface side sealing material which concerns on this invention. 本発明の多数の貫通穴に熱伝導性ペーストが充填された裏面側充填材の拡大断面図である。It is an expanded sectional view of the back side filling material with which the heat conductive paste was filled in many through-holes of this invention. 従来の太陽電池モジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional solar cell module.

符号の説明Explanation of symbols

1;透光性受光面部材
2;受光面側封止材
3;太陽電池素子
4;接続タブ
5;多数の貫通穴に熱伝導性ペーストが充填された裏面側封止材
6;裏面シート
7;裏面側封止材シート
8;貫通穴
9;熱伝導性ペースト
10;絶縁性粒子
11;接着樹脂
21;透光性受光面部材
22;受光面側封止材
23;接続タブ
24;太陽電池素子
25;裏面側封止材
26;裏面シート
DESCRIPTION OF SYMBOLS 1; Translucent light-receiving surface member 2; Light-receiving surface side sealing material 3; Solar cell element 4; Connection tab 5; Back surface side sealing material 6 with which many through holes were filled with heat conductive paste; A back surface side sealing material sheet 8; a through hole 9; a thermal conductive paste 10; an insulating particle 11; an adhesive resin 21; a translucent light receiving surface member 22; a light receiving surface side sealing material 23; Element 25; Back side sealing material 26; Back side sheet

Claims (3)

透光性受光面部材と裏面シートとの間に、受光面側封止材と裏面側封止材で挟持した太陽電池素子を配設した太陽電池モジュールにおいて、
前記裏面側封止材に複数の貫通穴を形成するとともに、前記貫通穴内に、前記裏面側封止材より熱伝導率の大きな絶縁性粒子および前記裏面側封止材と同じ組成の接着樹脂とから構成される熱伝導性ペーストを充填して、前記裏面シートと接触させたことを特徴とする太陽電池モジュール。
In the solar cell module in which the solar cell element sandwiched between the light-receiving surface side sealing material and the back surface-side sealing material is disposed between the translucent light-receiving surface member and the back surface sheet,
A plurality of through holes are formed in the back side sealing material, and in the through holes, insulating particles having a thermal conductivity larger than that of the back side sealing material and an adhesive resin having the same composition as the back side sealing material A solar cell module, which is filled with a heat conductive paste comprising:
前記裏面シートが、セラミックおよびまたは金属シートを含むことを特徴とする請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the back sheet includes a ceramic and / or metal sheet. 前記熱伝導率の大きな絶縁性粒子がアルミナまたはジルコニアであることを特徴とする請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the insulating particles having a high thermal conductivity are alumina or zirconia.
JP2005095403A 2005-03-29 2005-03-29 Solar battery module Pending JP2006278709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095403A JP2006278709A (en) 2005-03-29 2005-03-29 Solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095403A JP2006278709A (en) 2005-03-29 2005-03-29 Solar battery module

Publications (1)

Publication Number Publication Date
JP2006278709A true JP2006278709A (en) 2006-10-12

Family

ID=37213154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095403A Pending JP2006278709A (en) 2005-03-29 2005-03-29 Solar battery module

Country Status (1)

Country Link
JP (1) JP2006278709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140754A1 (en) * 2009-06-05 2010-12-09 (주)솔라원 Photovoltaic module comprising an eva layer with heat-dissipating properties
WO2011038657A1 (en) * 2009-09-30 2011-04-07 Byd Company Limited Solar cell, conductive paste and method of preparing the same
EP2659520A4 (en) * 2010-12-28 2016-09-07 Youl Chon Chemical Co Ltd Back sheet for solar cells and method for preparing the same
CN111785800A (en) * 2020-06-08 2020-10-16 泰州隆基乐叶光伏科技有限公司 Conductive back plate and production method thereof, photovoltaic module and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140754A1 (en) * 2009-06-05 2010-12-09 (주)솔라원 Photovoltaic module comprising an eva layer with heat-dissipating properties
KR101004029B1 (en) * 2009-06-05 2010-12-31 (주)솔라원 Photo Voltaic module with heat radiating EVA layer
WO2011038657A1 (en) * 2009-09-30 2011-04-07 Byd Company Limited Solar cell, conductive paste and method of preparing the same
EP2659520A4 (en) * 2010-12-28 2016-09-07 Youl Chon Chemical Co Ltd Back sheet for solar cells and method for preparing the same
CN111785800A (en) * 2020-06-08 2020-10-16 泰州隆基乐叶光伏科技有限公司 Conductive back plate and production method thereof, photovoltaic module and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4989549B2 (en) Solar cell and solar cell module
KR101215694B1 (en) Solar Cell Module And Manufacturing Method Thereof
TWI438915B (en) Solar cell module
US20090050190A1 (en) Solar cell and solar cell module
JP4153785B2 (en) Solar cell module
JP2008205137A (en) Solar cell and solar cell module
JP2006278710A (en) Solar battery module and manufacturing method thereof
TW201349529A (en) Back contact solar cell module
JP2008288333A (en) Solar battery module and its manufacturing method
JP2008010857A (en) Solar cell module
JP2008205045A (en) Manufacturing method of solar cell module
US20160013343A1 (en) Integrated photovoltaic and thermal module (pvt)
JP2005191125A (en) Connection tab for connecting solar battery element and solar battery module, and method of manufacturing solar battery module
JP3602721B2 (en) Solar cell module
JP2004327630A (en) Solar cell module
JP2007201291A (en) Solar battery module and method of reproducing same
JP2004311455A (en) Solar cell module
JP2006278709A (en) Solar battery module
JP2004281797A (en) Solar cell module
JP2007123792A (en) Solar battery module
JP2005167158A (en) Solar battery cell and solar battery module
JP2008085227A (en) Solar battery module
JP2009081217A (en) Solar battery module
JP2008160049A (en) Solar cell module and manufacturing method thereof
JP2011054660A (en) Solar-cell string and solar-cell module using the same