[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006270751A - Apparatus for recording moving image and program for recording and processing image - Google Patents

Apparatus for recording moving image and program for recording and processing image Download PDF

Info

Publication number
JP2006270751A
JP2006270751A JP2005088327A JP2005088327A JP2006270751A JP 2006270751 A JP2006270751 A JP 2006270751A JP 2005088327 A JP2005088327 A JP 2005088327A JP 2005088327 A JP2005088327 A JP 2005088327A JP 2006270751 A JP2006270751 A JP 2006270751A
Authority
JP
Japan
Prior art keywords
camera shake
amount
moving image
detected
motion vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005088327A
Other languages
Japanese (ja)
Other versions
JP4446288B2 (en
Inventor
Hiroshi Shimizu
博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2005088327A priority Critical patent/JP4446288B2/en
Publication of JP2006270751A publication Critical patent/JP2006270751A/en
Application granted granted Critical
Publication of JP4446288B2 publication Critical patent/JP4446288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Television Signal Processing For Recording (AREA)
  • Studio Devices (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for recording a moving image capable of performing moving image recording by taking blurring and the battery remaining amount into consideration. <P>SOLUTION: A control unit 13 sets up an operation clock of an image coder 15 to a low speed, and narrows a search range for a motion vector in order to reduce of power consumption, and performs moving image recording by suppressing battery consumption at the sacrifice of the quality of an image, when the battery remaining amount of a power source portion 12 is small. If a big blurring occurs for which motion compensation can be made when the battery remaining amount of the power source 12 is at a predetermined level, the control unit 13 sets up the operation clock of the image coder 15 to a high speed, and widens the search range for the motion vector and performs moving image recording by giving priority to the quality of the image at the sacrifice of battery life. If a bigger blurring occurs for which motion compensation can not be made, the control unit 13 sets up the operation clock of the image coder 15 to the low speed, and narrows the search range for the motion vector in order to reduce of power consumption, and performs moving image recording by suppressing battery consumption at the sacrifice of the quality of the image. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばデジタルカメラやデジタルビデオカメラに用いて好適な動画記録装置および動画記録処理プログラムに関する。   The present invention relates to a moving image recording apparatus and a moving image recording processing program suitable for use in, for example, a digital camera or a digital video camera.

動画撮影機能を備えるデジタルカメラや、デジタルビデオカメラでは、動き補償フレーム間予測符号化技術を用いてリアルタイムに圧縮符号化して動画記録する。フレーム間予測符号化技術では、動き補償を行うことで圧縮率を高めることに成功する一方、そのための動きベクトル検出はCPUに負荷を掛け、これが消費電力の増加を招き、電池寿命を短くする一因となっている。とりわけ撮像画像に手ぶれが生じていると、撮像画像全体に平行移動や回転が生じる為、動きベクトル探索の演算量が増大する為、電池消耗が顕著になる。   In a digital camera or a digital video camera having a moving image shooting function, a moving image is compressed and encoded in real time using a motion compensation interframe predictive coding technique and recorded. In the inter-frame predictive coding technique, the compression rate is successfully increased by performing motion compensation. On the other hand, motion vector detection for that purpose places a load on the CPU, which increases power consumption and shortens battery life. It is a cause. In particular, when camera shake occurs in the captured image, parallel movement and rotation occur in the entire captured image, and the amount of calculation for motion vector search increases, resulting in significant battery consumption.

手ぶれによる演算量の増加を軽減して効率的な符号化を実現する技術として、例えば特許文献1には、加速度センサを用いて撮像手段の運動方向および運動量を検知し、これに応じて動き補償フレーム間予測する際の動き補償範囲を移動させる装置が開示されている。   As a technique for realizing efficient encoding by reducing an increase in the amount of calculation due to camera shake, for example, in Patent Document 1, a motion direction and a motion amount of an imaging unit are detected using an acceleration sensor, and motion compensation is performed accordingly. An apparatus for moving a motion compensation range when performing inter-frame prediction is disclosed.

特開2004−56578号公報JP 2004-56578 A

ところで、上記特許文献1に開示の装置は、単に手ぶれによる演算量増加を軽減させるだけなので、例えば電池容量が残り少ない場合や、手ぶれが少ない場合には消費電力を抑えるように符号化する等、手ぶれや電池残量を勘案した動画記録を行うことが出来ない、という問題がある。   By the way, the apparatus disclosed in Patent Document 1 merely reduces an increase in the amount of calculation due to camera shake. In addition, there is a problem that it is impossible to record a moving image in consideration of the remaining battery level.

そこで本発明は、上述した事情に鑑みてなされたもので、手ぶれや電池残量を勘案した動画記録を行うことができる動画記録装置および動画記録処理プログラムを提供することを目的としている。   Therefore, the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a moving image recording apparatus and a moving image recording processing program capable of performing moving image recording in consideration of camera shake and remaining battery level.

上記目的を達成するため、請求項1に記載の発明では、電池残量を検出する残量検出手段と、手ぶれ量を検出する手ぶれ検出手段と、前記残量検出手段により検出される電池残量と前記手ぶれ検出手段により検出される手ぶれ量とに応じて定まる圧縮態様を指示する指示手段と、前記指示手段により指示される圧縮態様に従い、撮像された画像を圧縮符号化して動画記録する記録手段とを具備することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the remaining amount detecting means for detecting the remaining battery level, the shaking detection means for detecting the amount of camera shake, and the remaining battery level detected by the remaining amount detecting means. And an instruction means for instructing a compression mode determined according to the amount of camera shake detected by the camera shake detection means, and a recording means for recording a moving image by compressing and encoding the captured image in accordance with the compression mode instructed by the instruction means It is characterized by comprising.

上記請求項1に従属する請求項2に記載の発明では、前記圧縮態様は、フレーム間予測符号化の動作速度と動きベクトル検出に於ける探索限界であることを特徴とする。 The invention according to claim 2, which is dependent on claim 1, is characterized in that the compression mode is an operation speed of interframe predictive coding and a search limit in motion vector detection.

上記請求項2に従属する請求項3に記載の発明では、前記探索限界は、探索範囲及び試行回数の少なくとも何れか一つであることを特徴とする。 The invention according to claim 3 that depends on claim 2 is characterized in that the search limit is at least one of a search range and the number of trials.

上記請求項1に従属する請求項4に記載の発明では、前記指示手段は、前記手ぶれ検出手段により検出される手ぶれ量を判定する複数の閾値を有し、これら閾値を超える手ぶれ量に対応して圧縮態様を変化させることを特徴とする。 In the invention according to claim 4 dependent on claim 1, the instruction means has a plurality of threshold values for determining the amount of camera shake detected by the camera shake detection means, and corresponds to the amount of camera shake exceeding the threshold value. Thus, the compression mode is changed.

上記請求項1に従属する請求項5に記載の発明では、前記指示手段は、前記手ぶれ検出手段により検出される手ぶれ量を判定する複数の閾値を有し、これら閾値を前記残量検出手段により検出される電池残量に応じて変化させることを特徴とする。 In the invention according to claim 5 subordinate to claim 1, the instruction means has a plurality of threshold values for determining the amount of camera shake detected by the camera shake detection means, and these threshold values are determined by the remaining amount detection means. It changes according to the battery remaining amount detected.

上記請求項1に従属する請求項6に記載の発明では、前記指示手段は、前記手ぶれ検出手段により検出される手ぶれ量を判定する複数の閾値を有し、これら閾値をユーザ操作で可変設定する閾値設定手段を備えることを特徴とする。 In the invention according to claim 6 that is dependent on claim 1, the instruction means has a plurality of threshold values for determining the amount of camera shake detected by the camera shake detection means, and variably sets the threshold values by a user operation. Threshold setting means is provided.

上記請求項1に従属する請求項7に記載の発明では、前記指示手段は、前記残量検出手段により検出される電池残量が所定値より少ない場合、フレーム間予測符号化の動作速度を低速にし、かつ動きベクトル検出に於ける探索限界を狭めるように前記記録手段に指示することを特徴とする。 In the invention according to claim 7, which is dependent on claim 1, the instruction means reduces the operation speed of the inter-frame predictive encoding when the remaining battery level detected by the remaining quantity detection means is less than a predetermined value. And the recording means is instructed to narrow the search limit in motion vector detection.

上記請求項1に従属する請求項8に記載の発明では、前記指示手段は、前記残量検出手段により検出される電池残量が所定量有る時に、前記手ぶれ検出手段により検出される手ぶれ量が動き補償可能な範囲内である場合、フレーム間予測符号化の動作速度を高速にし、かつ動きベクトル検出に於ける探索限界を広げるように前記記録手段に指示することを特徴とする。 In the invention according to claim 8, which is dependent on claim 1, the instruction means detects the amount of camera shake detected by the camera shake detection means when the battery remaining amount detected by the remaining capacity detection means has a predetermined amount. If it is within the range where motion compensation is possible, the recording means is instructed to increase the operation speed of inter-frame predictive coding and widen the search limit in motion vector detection.

上記請求項1に従属する請求項9に記載の発明では、前記指示手段は、前記残量検出手段により検出される電池残量が所定量有る時に、前記手ぶれ検出手段により検出される手ぶれ量が動き補償可能な範囲外である場合、フレーム間予測符号化の動作速度を低速にし、かつ動きベクトル検出に於ける探索限界を狭めるように前記記録手段に指示することを特徴とする。 In the invention according to claim 9 that is dependent on claim 1, the instruction means detects the amount of camera shake detected by the camera shake detection means when the battery remaining amount detected by the remaining capacity detection means has a predetermined amount. If it is outside the range where motion compensation is possible, the recording means is instructed to reduce the operation speed of inter-frame predictive coding and to narrow the search limit in motion vector detection.

請求項10に記載の発明では、電池残量を検出する残量検出処理と、手ぶれ量を検出する手ぶれ検出処理と、前記残量検出処理により検出される電池残量と前記手ぶれ検出処理により検出される手ぶれ量とに応じて定まる圧縮形態を指示する指示処理と、前記指示処理にて指示される圧縮形態に従い、撮像された画像を圧縮符号化して動画記録する記録処理とをコンピュータで実行させることを特徴とする。 According to a tenth aspect of the present invention, the remaining amount detection process for detecting the remaining battery level, the camera shake detection process for detecting the amount of camera shake, the remaining battery level detected by the remaining amount detection process, and the camera shake detection process are detected. An instruction process for instructing a compression form determined according to the amount of camera shake to be performed, and a recording process for recording a moving image by compressing and encoding the captured image according to the compression form instructed in the instruction process are executed by a computer It is characterized by that.

請求項1、10に記載の発明によれば、電池残量と手ぶれ量とを検出し、検出された電池残量と手ぶれ量とに応じて定まる圧縮態様に従い、撮像された画像を圧縮符号化して動画記録するので、手ぶれや電池残量を勘案した動画記録を行うことができる。   According to the first and tenth aspects of the present invention, the remaining battery level and the amount of camera shake are detected, and the captured image is compressed and encoded in accordance with a compression mode determined according to the detected remaining battery level and the amount of camera shake. Therefore, moving image recording can be performed in consideration of camera shake and remaining battery level.

請求項7に記載の発明によれば、電池残量が所定値より少ない場合、フレーム間予測符号化の動作速度を低速にし、かつ動きベクトル探索範囲を狭めるように指示するので、画質劣化を招くことなく電池消耗を抑えた動画記録を行うことができる。   According to the seventh aspect of the invention, when the remaining battery level is less than the predetermined value, the operation speed of the inter-frame predictive encoding is instructed to be reduced and the motion vector search range is narrowed, resulting in image quality deterioration. Video recording with reduced battery consumption can be performed.

請求項8に記載の発明によれば、電池残量が所定量有る時に検出される手ぶれ量が動き補償可能な範囲内である場合、フレーム間予測符号化の動作速度を高速にし、かつ動きベクトル探索範囲を広げるように指示するので、電池寿命を犠牲にして画質を優先した動画記録を行うことができる。   According to the eighth aspect of the present invention, when the amount of camera shake detected when the remaining battery level is within a predetermined range, the operation speed of inter-frame predictive coding is increased, and the motion vector Since an instruction is given to widen the search range, moving image recording with priority on image quality can be performed at the expense of battery life.

請求項9に記載の発明によれば、電池残量が所定量有る時に検出される手ぶれ量が動き補償可能な範囲外である場合、フレーム間予測符号化の動作速度を低速にし、かつ動きベクトル探索範囲を狭めるように指示するので、画質を犠牲にして電池消耗を抑えた動画記録を行うことができる。   According to the ninth aspect of the present invention, when the amount of camera shake detected when the battery remaining amount is a predetermined amount is out of the range capable of motion compensation, the operation speed of inter-frame predictive encoding is reduced, and the motion vector Since the search range is instructed to be narrowed, moving image recording can be performed with reduced battery consumption at the expense of image quality.

以下、図面を参照して本発明の実施の形態について説明する。
A.構成
(1)全体構成
図1は、本発明による動画記録装置を備えた実施の一形態によるデジタルカメラの概略構成を示すブロック図である。この図において、操作部10は、電源スイッチやシャッターキー等の各種操作キーを有し、キー操作に応じたキーイベントを発生して制御部13に供給する。加速度センサ11は、例えばピエゾ抵抗素子等から構成され、撮影時の手ぶれを検出して出力する。電源部12は、DC/DCコンバータを備え、電池電圧を各部に供給する駆動電圧に変換出力すると共に、電池残量を検出して制御部13に出力する。
Embodiments of the present invention will be described below with reference to the drawings.
A. Configuration (1) Overall Configuration FIG. 1 is a block diagram showing a schematic configuration of a digital camera according to an embodiment including a moving image recording apparatus according to the present invention. In this figure, the operation unit 10 has various operation keys such as a power switch and a shutter key, generates a key event corresponding to the key operation, and supplies it to the control unit 13. The acceleration sensor 11 is composed of, for example, a piezoresistive element or the like, and detects and outputs camera shake during photographing. The power supply unit 12 includes a DC / DC converter, converts the battery voltage into a drive voltage to be supplied to each unit, outputs the drive voltage to the respective units, detects the remaining battery level, and outputs it to the control unit 13.

制御部13は、CPU等から構成され、操作部10から入力されるキーイベントに応じて各部を制御する制御信号を発生する。また、制御部13は、動画撮影時には後述の撮影動作制御処理(図3参照)を実行し、電源部12から供給される電池残量と加速度センサ11が検出する手ぶれとを勘案した動画記録態様を画像符号化部15に指示する。撮像部14は、撮影レンズ群およびシャッタ機構を備える光学系と、被写体像を撮像して所定のフレーム周期でカラー画像信号を生成するCCD等のカラーイメージセンサとを有し、撮像して得た画像信号を輝度成分および色差成分とからなる画像データに変換して出力する。   The control unit 13 includes a CPU and the like, and generates a control signal for controlling each unit in accordance with a key event input from the operation unit 10. In addition, the control unit 13 executes a shooting operation control process (see FIG. 3) described later during moving image shooting, and takes into account the remaining battery level supplied from the power supply unit 12 and camera shake detected by the acceleration sensor 11. To the image encoding unit 15. The imaging unit 14 has an optical system including a photographing lens group and a shutter mechanism, and a color image sensor such as a CCD that captures a subject image and generates a color image signal at a predetermined frame period, and is obtained by imaging. The image signal is converted into image data composed of a luminance component and a color difference component and output.

画像符号化部15は、撮像部14から入力される動画像(一連の画像データ)をフレーム間予測符号化方式を用いて圧縮符号化するものであり、その概略構成については追って説明する。また、画像符号化部15では、制御部13からの指示に従って動作クロックを変更し、後述する動きベクトル検出部107における動きベクトルの探索範囲を広めたり狭めたりするようになっている。画像記憶部16は、制御部13の制御の下に、画像符号化部15が出力する符号化データを動画ファイルとして記憶する。画像復号部17は、制御部13の指示に従い、画像記憶部16に格納される動画ファイルを復号して動画像データを出力する。表示部18は、制御部13の制御の下に、画像復号部17が発生する動画像データを画面表示する。   The image encoding unit 15 compresses and encodes a moving image (a series of image data) input from the imaging unit 14 using an inter-frame predictive encoding method, and a schematic configuration thereof will be described later. Further, the image encoding unit 15 changes the operation clock in accordance with an instruction from the control unit 13 so as to widen or narrow the motion vector search range in the motion vector detection unit 107 described later. The image storage unit 16 stores the encoded data output from the image encoding unit 15 as a moving image file under the control of the control unit 13. The image decoding unit 17 decodes the moving image file stored in the image storage unit 16 according to an instruction from the control unit 13 and outputs moving image data. The display unit 18 displays the moving image data generated by the image decoding unit 17 on the screen under the control of the control unit 13.

(2)画像符号化部15の構成
図2は画像符号化部15の概略構成を示すブロック図である。この図において、減算器100は、現ブロックの画素値から予測ブロックの画素値を減算して輝度差分を表す予測誤差信号を発生する。変換/量子化部101は、減算器100から出力される予測誤差信号に整数DCT(離散コサイン変換)を施し、これにより得られる変換係数を所定の量子化幅で量子化して係数データを発生する。エントロピー符号化部102は、変換/量子化部101が発生した係数データについて、可変長符号化VLCをベースとした指数ゴロム符号と、それを応用したCABAC(Context-based Adaptive Binary Arithmetic Coding)とを用いてエントロピー符号化した符号化データを発生する。
(2) Configuration of Image Encoding Unit 15 FIG. 2 is a block diagram showing a schematic configuration of the image encoding unit 15. In this figure, a subtracter 100 generates a prediction error signal representing a luminance difference by subtracting the pixel value of the prediction block from the pixel value of the current block. The transform / quantization unit 101 performs integer DCT (Discrete Cosine Transform) on the prediction error signal output from the subtracter 100, and quantizes the transform coefficient obtained thereby with a predetermined quantization width to generate coefficient data. . The entropy coding unit 102 uses an exponential Golomb code based on the variable length coding VLC and a CABAC (Context-based Adaptive Binary Arithmetic Coding) to which the coefficient data generated by the transform / quantization unit 101 is applied. Encoded data that has been entropy-encoded is generated.

逆量子化/逆変換部103、加算器104、ループフィルタ105およびフレームメモリ106は、ローカル復号部を形成する。ローカル復号部では、変換/量子化部101が発生した係数データに、逆量子化および逆整数DCTを施した後、それに前予測ブロックの画素値を加算して復号画像を生成し、生成した復号画像にループフィルタリングを施してブロックノイズを低減させた後、フレームメモリ106に一時記憶する。動き検出部107は、現ブロックの動きベクトルを検出する。   The inverse quantization / inverse transform unit 103, the adder 104, the loop filter 105, and the frame memory 106 form a local decoding unit. The local decoding unit performs inverse quantization and inverse integer DCT on the coefficient data generated by the transform / quantization unit 101, adds the pixel value of the previous prediction block to the coefficient data, generates a decoded image, and generates the generated decoding The image is subjected to loop filtering to reduce block noise, and then temporarily stored in the frame memory 106. The motion detector 107 detects the motion vector of the current block.

動き検出部107では、制御部13からの指示に応じて、動きベクトルの探索範囲を広めたり狭めたりする。動き補償部108は、動き検出部107が検出した現ブロックの動きベクトルに応じて参照フレーム(フレームメモリ106から読み出される復号画像)に動き補償を施してフレーム間予測ブロック値を算出する。このような構成によれば、時間領域での相関を利用するフレーム間符号化にて動画圧縮され、その圧縮率は手ぶれの量や電池残量に応じて変化するようになっている。 The motion detection unit 107 widens or narrows the motion vector search range in accordance with an instruction from the control unit 13. The motion compensation unit 108 performs motion compensation on the reference frame (the decoded image read from the frame memory 106) according to the motion vector of the current block detected by the motion detection unit 107, and calculates an inter-frame prediction block value. According to such a configuration, the moving image is compressed by inter-frame coding using the correlation in the time domain, and the compression rate changes according to the amount of camera shake and the remaining battery level.

B.動作
次に、図3を参照して制御部13が実行する撮影動作制御処理の動作を説明する。上記構成によるデジタルカメラにおいて、動画撮影するモードに設定されると、制御部13は図3に図示するステップSA1に処理を進め、レジスタBP1、BP2、SH1〜SH3に各々所定の閾値(後述する)をセットしたり、レジスタCK、SRをリセットするイニシャライズを行う。続いて、ステップSA2では、電源部12から供給される電池残量がレジスタBP1に格納される閾値(以下、閾値BP1と記す)より小さいか否か判断する。電源部12の電池残量が閾値BP1より小さければ、判断結果は「YES」になり、ステップSA3に進み、レジスタCKに「L」を、レジスタSRに「S」をセットして本処理を終える。
B. Operation Next, the operation of the photographing operation control process executed by the control unit 13 will be described with reference to FIG. In the digital camera having the above-described configuration, when the mode for moving image shooting is set, the control unit 13 proceeds to step SA1 shown in FIG. 3, and each of the registers BP1, BP2, SH1 to SH3 has predetermined threshold values (described later). Is initialized or the registers CK and SR are reset. Subsequently, in Step SA2, it is determined whether or not the remaining battery level supplied from the power supply unit 12 is smaller than a threshold stored in the register BP1 (hereinafter referred to as threshold BP1). If the remaining battery level of the power supply unit 12 is smaller than the threshold value BP1, the determination result is “YES”, the process proceeds to step SA3, “L” is set in the register CK, “S” is set in the register SR, and this process is finished. .

ここで、レジスタCKにセットされる「L」とは、画像符号化部15の動作クロックを低速にする旨を表す。また、レジスタSRにセットされる「S」とは、画像符号化部15における動き検出部107の動きベクトル探索範囲を狭めることを表す。
したがって、電源部12の電池残量が閾値BP1より小さいと、画像符号化部15は制御部13の指示に従い、動作クロックを低速に設定し、かつ動きベクトルの探索範囲を狭めて消費電力の低減を図る。これにより画質を犠牲にして電池消耗を抑えた動画記録が行われる。
Here, “L” set in the register CK indicates that the operation clock of the image encoding unit 15 is set to a low speed. “S” set in the register SR represents that the motion vector search range of the motion detection unit 107 in the image encoding unit 15 is narrowed.
Therefore, when the remaining battery level of the power supply unit 12 is smaller than the threshold value BP1, the image encoding unit 15 sets the operation clock to a low speed and reduces the motion vector search range in accordance with an instruction from the control unit 13 to reduce power consumption. Plan. As a result, moving image recording with reduced battery consumption at the expense of image quality is performed.

一方、電源部12の電池残量が閾値BP1より大きければ、上記ステップSA2の判断結果は「NO」になり、ステップSA4に進む。ステップSA4では、電源部12から供給される電池残量がレジスタBP2に格納される閾値(以下、閾値BP2と記す)より大きく電池残量に余裕があるかどうかを判断する。閾値BP2より大きく電池残量に余裕があると、判断結果は「YES」となり、レジスタSH1〜SH3の各閾値に所定値αを加算し、手ぶれ量を判定する閾値SH1〜SH3を増加させた後、ステップSA6に進む。   On the other hand, if the remaining battery level of the power supply unit 12 is greater than the threshold value BP1, the determination result of step SA2 is “NO”, and the process proceeds to step SA4. In step SA4, it is determined whether or not the remaining battery level supplied from the power supply unit 12 is larger than a threshold value stored in the register BP2 (hereinafter referred to as threshold value BP2). If the remaining battery level is larger than the threshold BP2, the determination result is “YES”, and after adding a predetermined value α to each threshold of the registers SH1 to SH3 and increasing the thresholds SH1 to SH3 for determining the amount of camera shake The process proceeds to step SA6.

これに対し、閾値BP2より小さく電池残量に余裕がない場合には、上記ステップSA4の判断結果は「NO」となり、この場合、上述のステップSA1にて初期値セットされた閾値SH1〜SH3を用いてステップSA6以降を実行する。なお、閾値SH1〜SH3は、SH1<SH2<SH3の関係にある。   On the other hand, when the remaining battery level is smaller than the threshold BP2, the determination result in step SA4 is “NO”. In this case, the thresholds SH1 to SH3 set as the initial values in step SA1 are set. Step SA6 and subsequent steps are executed. The threshold values SH1 to SH3 are in a relationship of SH1 <SH2 <SH3.

次に、ステップSA6では、加速度センサ11により検出された手ぶれ量が閾値SH1より小さいか否かを判断する。手ぶれ量が閾値SH1より小さいと、判断結果は「YES」になり、ステップSA7に進み、レジスタCKに「L」を、レジスタSRに「S」をセットして本処理を終える。   Next, in step SA6, it is determined whether or not the amount of camera shake detected by the acceleration sensor 11 is smaller than the threshold value SH1. If the amount of camera shake is smaller than the threshold value SH1, the determination result is “YES”, the process proceeds to step SA7, “L” is set in the register CK, and “S” is set in the register SR, and this process is terminated.

したがって、手ぶれ量が閾値SH1より小さければ、画像符号化部15は制御部13の指示に従い、動作クロックを低速に設定し、かつ動きベクトルの探索範囲を狭める。つまり、手ぶれが小さいということは、画像の動きが少なく、動きベクトルの探索範囲を狭めても最適な動きベクトル検出が可能なので、この場合、画質劣化を招くことなく電池消耗を抑えた動画記録を行う。   Therefore, if the amount of camera shake is smaller than the threshold value SH1, the image encoding unit 15 sets the operation clock to a low speed and narrows the motion vector search range in accordance with an instruction from the control unit 13. In other words, low camera shake means that there is little image motion, and optimal motion vector detection is possible even if the search range of motion vectors is narrowed.In this case, video recording with reduced battery consumption without causing image quality degradation is possible. Do.

一方、手ぶれ量が閾値SH1より大きいと、上記ステップSA6の判断結果は「NO」になり、ステップSA8に進む。ステップSA8では、加速度センサ11により検出された手ぶれ量が閾値SH2より小さいか否かを判断する。手ぶれ量が閾値SH2より小さいと、判断結果は「YES」になり、ステップSA9に進み、レジスタCKに「M」を、レジスタSRに「M」をセットして本処理を終える。   On the other hand, if the amount of camera shake is larger than the threshold value SH1, the determination result in step SA6 is “NO”, and the flow proceeds to step SA8. In step SA8, it is determined whether or not the amount of camera shake detected by the acceleration sensor 11 is smaller than the threshold value SH2. If the amount of camera shake is smaller than the threshold value SH2, the determination result is “YES”, the process proceeds to step SA9, “M” is set in the register CK, “M” is set in the register SR, and this process is terminated.

ここで、レジスタCKにセットされる「M」とは、画像符号化部15の動作クロックを中速にする旨を表す。また、レジスタSRにセットされる「M」とは、画像符号化部15における動き検出部107の動きベクトル探索範囲を中位にすることを表す。したがって、手ぶれ量が閾値SH2より小さければ、画像符号化部15は制御部13の指示に従い、動作クロックを中速に設定し、かつ動きベクトルの探索範囲を中位とするので、最適な動きベクトル検出が可能になる。   Here, “M” set in the register CK indicates that the operation clock of the image encoding unit 15 is set to a medium speed. Further, “M” set in the register SR represents that the motion vector search range of the motion detection unit 107 in the image encoding unit 15 is set to the middle. Therefore, if the amount of camera shake is smaller than the threshold value SH2, the image encoding unit 15 sets the operation clock to the medium speed and sets the motion vector search range to the middle according to the instruction of the control unit 13, so that the optimal motion vector Detection is possible.

これに対し、手ぶれ量が閾値SH2より大きいと、上記ステップSA8の判断結果が「NO」になり、ステップSA10に進む。ステップSA10では、加速度センサ11により検出された手ぶれ量が閾値SH3より小さいか否かを判断する。手ぶれ量が閾値SH3より小さいと、判断結果は「YES」になり、ステップSA11に進み、レジスタCKに「H」を、レジスタSRに「L」をセットして本処理を終える。   On the other hand, if the amount of camera shake is larger than the threshold value SH2, the determination result in step SA8 is “NO”, and the process proceeds to step SA10. In step SA10, it is determined whether or not the amount of camera shake detected by the acceleration sensor 11 is smaller than the threshold value SH3. If the amount of camera shake is smaller than the threshold value SH3, the determination result is “YES”, the process proceeds to step SA11, “H” is set in the register CK, “L” is set in the register SR, and the present process is terminated.

ここで、レジスタCKにセットされる「H」とは、画像符号化部15の動作クロックを高速にする旨を表す。また、レジスタSRにセットされる「L」とは、画像符号化部15における動き検出部107の動きベクトル探索範囲を広げることを表す。したがって、手ぶれ量が閾値SH3より小さいと、画像符号化部15は制御部13の指示に従い、動作クロックを高速に設定し、かつ動きベクトルの探索範囲を広げる。これにより、消費電力の増加を招くものの、画質劣化することなく動画記録を行う。   Here, “H” set in the register CK indicates that the operation clock of the image encoding unit 15 is increased. Further, “L” set in the register SR represents that the motion vector search range of the motion detection unit 107 in the image encoding unit 15 is expanded. Therefore, when the amount of camera shake is smaller than the threshold value SH3, the image encoding unit 15 sets the operation clock at a high speed and expands the motion vector search range in accordance with an instruction from the control unit 13. As a result, although the power consumption is increased, moving image recording is performed without image quality deterioration.

一方、手ぶれ量が閾値SH3より大きいと、上記ステップSA10の判断結果は「NO」になり、ステップSA12に進む。ステップSA12では、レジスタCKに「L」を、レジスタSRに「S」をセットして本処理を終える。したがって、手ぶれ量が閾値SH3より大きいと、画像符号化部15は制御部13の指示に従い、動作クロックを低速に設定し、かつ動きベクトルの探索範囲を狭める。つまり、動き補償しきれない程の手ぶれが生じた状態では、動きベクトルの探索範囲を広めても最適な動きベクトル検出が期待できないから、動作クロックを低速に設定し、かつ動きベクトルの探索範囲を狭めて消費電力の低減を図る。これにより画質を犠牲にして電池消耗を抑えた動画記録を行う。   On the other hand, if the amount of camera shake is larger than the threshold value SH3, the determination result in Step SA10 is “NO”, and the process proceeds to Step SA12. In step SA12, "L" is set in the register CK and "S" is set in the register SR, and this process is finished. Therefore, when the amount of camera shake is larger than the threshold value SH3, the image encoding unit 15 sets the operation clock to a low speed and narrows the motion vector search range in accordance with an instruction from the control unit 13. In other words, in a state where camera shake is too high to compensate for motion, even if the motion vector search range is widened, optimal motion vector detection cannot be expected.Therefore, the operation clock is set to a low speed and the motion vector search range is reduced. Narrow down to reduce power consumption. As a result, moving image recording is performed with reduced battery consumption at the expense of image quality.

このように、本実施の形態では、電源部12の電池残量と加速度センサ11により検出された手ぶれ量とに応じて、画像符号化部15の動作クロックと動きベクトル探索範囲とを変化させることによって、「画質劣化を招くことなく電池消耗を抑えた動画記録」、「電池寿命を犠牲にして画質を優先した動画記録」および「画質を犠牲にして電池消耗を抑えた動画記録」を行う。   As described above, in the present embodiment, the operation clock and the motion vector search range of the image encoding unit 15 are changed according to the remaining battery level of the power supply unit 12 and the amount of camera shake detected by the acceleration sensor 11. Thus, “video recording with reduced battery consumption without incurring image quality degradation”, “video recording with priority on image quality at the expense of battery life” and “video recording with reduced battery consumption at the expense of image quality” are performed.

すなわち、電源部12の電池残量が少ないと、画像符号化部15の動作クロックを低速に設定し、かつ動きベクトルの探索範囲を狭めて消費電力の低減を図り、画質を犠牲にして電池消耗を抑えた動画記録を行う。また、電源部12の電池残量が所定量有る時に小さい手ぶれが発生した場合にも、画像符号化部15の動作クロックを低速に設定し、かつ動きベクトルの探索範囲を狭める。この場合、画像の動きが少なく、動きベクトルの探索範囲を狭めても最適な動きベクトル検出が可能だから、画質劣化を招くことなく電池消耗を抑えた動画記録を行うことができる。   That is, when the battery of the power supply unit 12 is low, the operation clock of the image encoding unit 15 is set to a low speed, and the search range of the motion vector is narrowed to reduce power consumption. Record video with reduced image quality. Even when a small amount of camera shake occurs when the battery level of the power supply unit 12 is a predetermined amount, the operation clock of the image encoding unit 15 is set to a low speed and the search range of the motion vector is narrowed. In this case, since the motion of the image is small and the optimum motion vector can be detected even if the search range of the motion vector is narrowed, moving image recording with reduced battery consumption can be performed without causing image quality deterioration.

さらに、電源部12の電池残量が所定量有る時に、動き補償可能な範囲の大きな手ぶれが発生すると、画像符号化部15の動作クロックを高速に設定し、かつ動きベクトルの探索範囲を広げ、電池寿命を犠牲にして画質を優先した動画記録を行う。また、電源部12の電池残量が所定量有る時に、動き補償しきれない程の大きな手ぶれが発生した場合には、動きベクトルの探索範囲を広めても最適な動きベクトル検出が期待できないから、動作クロックを低速に設定し、かつ動きベクトルの探索範囲を狭めて消費電力の低減を図り、画質を犠牲にして電池消耗を抑えた動画記録を行う。この結果、手ぶれや電池残量を勘案した動画記録を行うことができる。   Further, when a large amount of camera shake that can be compensated for motion occurs when the battery level of the power supply unit 12 has a predetermined amount, the operation clock of the image encoding unit 15 is set at a high speed, and the motion vector search range is expanded. Record video with priority on image quality at the expense of battery life. Also, when a large amount of camera shake that cannot be compensated for motion occurs when the battery level of the power supply unit 12 has a predetermined amount, optimal motion vector detection cannot be expected even if the motion vector search range is widened. The operation clock is set to a low speed, the motion vector search range is narrowed to reduce power consumption, and moving image recording is performed with reduced battery consumption at the expense of image quality. As a result, moving image recording can be performed in consideration of camera shake and the remaining battery level.

なお、上述した実施の形態では、電源部12の電池残量の余裕の有無に応じて、手ぶれ量を判別する閾値SH1〜SH3を変更するようにしたが、これに替えてユーザ操作で手ぶれ量を判別する閾値SH1〜SH3を可変設定する態様にしてもよい。このようにすれば、ユーザ好みの動画記録態様を選択できるようになる。
さらに、経時変化する電源部12の電池残量に追随させて連続的に閾値SH1〜SH3を可変設定する態様にすることも可能であり、そのようにすれば時々刻々変化する電源部12の電池残量と手ぶれ量とに適応した動画記録態様を自動的に設定し得るようになる。
In the above-described embodiment, the threshold values SH1 to SH3 for determining the amount of camera shake are changed according to whether or not the remaining battery level of the power supply unit 12 is sufficient, but instead of this, the amount of camera shake is changed by a user operation. The threshold values SH1 to SH3 may be variably set. In this way, it becomes possible to select a user-preferred moving image recording mode.
Furthermore, it is possible to continuously vary the threshold values SH1 to SH3 in accordance with the remaining battery level of the power supply unit 12 that changes with time. In this case, the battery of the power supply unit 12 that changes from time to time can be used. A moving image recording mode adapted to the remaining amount and the amount of camera shake can be automatically set.

C.その他の実施形態
次に、図4を参照して、その他の実施形態による撮影動作制御処理の動作を説明する。図4に図示する撮影動作制御処理が上述の実施形態(図3参照)と相違する点は、動きベクトル探索範囲を、動きベクトル探索の試行回数に替えたことにある。
C. Other Embodiments Next, with reference to FIG. 4, an operation of a shooting operation control process according to another embodiment will be described. 4 is different from the above-described embodiment (see FIG. 3) in that the motion vector search range is changed to the number of motion vector search trials.

すなわち、その他の実施形態において、動画撮影するモードに設定されると、制御部13は図4に図示するステップSB1に処理を進め、レジスタBP1、BP2、SH1〜SH3に各々所定の閾値(後述する)をセットしたり、レジスタCK、RLをリセットするイニシャライズを行う。続いて、ステップSB2では、電源部12から供給される電池残量がレジスタBP1に格納される閾値(以下、閾値BP1と記す)より小さいか否か判断する。電源部12の電池残量が閾値BP1より小さいと、判断結果は「YES」になり、ステップSB3に進み、レジスタCKに「L」を、レジスタRLに「S」をセットして本処理を終える。   That is, in other embodiments, when the mode for shooting a moving image is set, the control unit 13 proceeds to step SB1 shown in FIG. 4 and sets predetermined thresholds (described later) in registers BP1, BP2, SH1 to SH3. ) Or reset the registers CK and RL. Subsequently, in step SB2, it is determined whether or not the remaining battery level supplied from the power supply unit 12 is smaller than a threshold stored in the register BP1 (hereinafter referred to as threshold BP1). If the remaining battery level of the power supply unit 12 is smaller than the threshold value BP1, the determination result is “YES”, the process proceeds to step SB3, “L” is set in the register CK, “S” is set in the register RL, and this process ends. .

ここで、レジスタCKにセットされる「L」とは、画像符号化部15の動作クロックを低速にする旨を表す。また、レジスタRLにセットされる「S」とは、画像符号化部15における動き検出部107の動きベクトル探索の試行回数を少なくすることを表す。   Here, “L” set in the register CK indicates that the operation clock of the image encoding unit 15 is set to a low speed. “S” set in the register RL represents that the number of trials of motion vector search of the motion detection unit 107 in the image encoding unit 15 is reduced.

したがって、電源部12の電池残量が閾値BP1より小さいと、画像符号化部15は制御部13の指示に従い、動作クロックを低速に設定し、かつ動きベクトル探索の試行回数を少なくして消費電力の低減を図る。これにより画質を犠牲にして電池消耗を抑えた動画記録を行う。   Therefore, when the remaining battery level of the power supply unit 12 is smaller than the threshold value BP1, the image encoding unit 15 sets the operation clock to a low speed and reduces the number of motion vector search trials according to the instruction from the control unit 13 to reduce power consumption. To reduce As a result, moving image recording is performed with reduced battery consumption at the expense of image quality.

一方、電源部12の電池残量が閾値BP1より大きいと、上記ステップSB2の判断結果は「NO」になり、ステップSB4に進む。ステップSB4では、電源部12から供給される電池残量がレジスタBP2に格納される閾値(以下、閾値BP2と記す)より大きく電池残量に余裕があるかどうかを判断する。閾値BP2より大きく電池残量に余裕があると、判断結果は「YES」となり、レジスタSH1〜SH3の各閾値に所定値αを加算し、手ぶれ量を判定する閾値SH1〜SH3を増加させた後、ステップSB6に進む。   On the other hand, if the remaining battery level of the power supply unit 12 is greater than the threshold value BP1, the determination result in step SB2 is “NO”, and the process proceeds to step SB4. In step SB4, it is determined whether or not the remaining battery level supplied from the power supply unit 12 is larger than a threshold value stored in the register BP2 (hereinafter referred to as threshold value BP2). If the remaining battery level is larger than the threshold BP2, the determination result is “YES”, and after adding a predetermined value α to each threshold of the registers SH1 to SH3 and increasing the thresholds SH1 to SH3 for determining the amount of camera shake The process proceeds to step SB6.

これに対し、閾値BP2より小さく電池残量に余裕がないと、上記ステップSB4の判断結果は「NO」となり、この場合、上述のステップSB1にて初期値セットされた閾値SH1〜SH3を用いてステップSB6以降を実行する。なお、閾値SH1〜SH3は、SH1<SH2<SH3の関係にある。   On the other hand, if the remaining battery level is smaller than the threshold value BP2, the determination result in step SB4 is “NO”. In this case, the threshold values SH1 to SH3 set as initial values in step SB1 are used. Step SB6 and subsequent steps are executed. The threshold values SH1 to SH3 are in a relationship of SH1 <SH2 <SH3.

次に、ステップSB6では、加速度センサ11により検出された手ぶれ量が閾値SH1より小さいか否かを判断する。手ぶれ量が閾値SH1より小さいと、判断結果は「YES」になり、ステップSB7に進み、レジスタCKに「L」を、レジスタRLに「S」をセットして本処理を終える。   Next, in step SB6, it is determined whether or not the amount of camera shake detected by the acceleration sensor 11 is smaller than the threshold value SH1. If the amount of camera shake is smaller than the threshold value SH1, the determination result is “YES”, the process proceeds to step SB7, “L” is set in the register CK, and “S” is set in the register RL, and this process ends.

したがって、手ぶれ量が閾値SH1より小さいと、画像符号化部15は制御部13の指示に従い、動作クロックを低速に設定し、かつ動きベクトル探索の試行回数を少なくする。つまり、手ぶれが小さいということは、画像の動きが少なく、動きベクトル探索の試行回数を少なくしても最適な動きベクトル検出が可能なので、この場合、画質劣化を招くことなく電池消耗を抑えた動画記録を行う。   Therefore, when the amount of camera shake is smaller than the threshold value SH1, the image encoding unit 15 sets the operation clock to a low speed and decreases the number of motion vector search trials according to the instruction of the control unit 13. In other words, low camera shake means that there is little image motion, and optimal motion vector detection is possible even if the number of motion vector search attempts is reduced, so in this case, a moving image with reduced battery consumption without causing image quality degradation. Make a record.

一方、手ぶれ量が閾値SH1より大きいと、上記ステップSB6の判断結果は「NO」になり、ステップSB8に進む。ステップSB8では、加速度センサ11により検出された手ぶれ量が閾値SH2より小さいか否かを判断する。手ぶれ量が閾値SH2より小さいと、判断結果は「YES」になり、ステップSB9に進み、レジスタCKに「M」を、レジスタRLに「M」をセットして本処理を終える。   On the other hand, if the amount of camera shake is larger than the threshold value SH1, the determination result in step SB6 is “NO”, and the flow proceeds to step SB8. In step SB8, it is determined whether or not the amount of camera shake detected by the acceleration sensor 11 is smaller than the threshold value SH2. If the amount of camera shake is smaller than the threshold value SH2, the determination result is “YES”, the process proceeds to step SB9, “M” is set in the register CK, “M” is set in the register RL, and this process is terminated.

ここで、レジスタCKにセットされる「M」とは、画像符号化部15の動作クロックを中速にする旨を表す。また、レジスタRLにセットされる「M」とは、画像符号化部15における動き検出部107の動きベクトル探索の試行回数を中位にすることを表す。したがって、手ぶれ量が閾値SH2より小さければ、画像符号化部15は制御部13の指示に従い、動作クロックを中速に設定し、かつ動きベクトル探索の試行回数を中位とするので、最適な動きベクトル検出が可能になる。   Here, “M” set in the register CK indicates that the operation clock of the image encoding unit 15 is set to a medium speed. “M” set in the register RL indicates that the number of trials of motion vector search of the motion detection unit 107 in the image encoding unit 15 is set to the middle. Therefore, if the amount of camera shake is smaller than the threshold value SH2, the image encoding unit 15 sets the operation clock to a medium speed and sets the number of trials of motion vector search to the medium according to the instruction of the control unit 13. Vector detection becomes possible.

これに対し、手ぶれ量が閾値SH2より大きいと、上記ステップSB8の判断結果が「NO」になり、ステップSB10に進む。ステップSB10では、加速度センサ11により検出された手ぶれ量が閾値SH3より小さいか否かを判断する。手ぶれ量が閾値SH3より小さいと、判断結果は「YES」になり、ステップSB11に進み、レジスタCKに「H」を、レジスタRLに「L」をセットして本処理を終える。   On the other hand, if the amount of camera shake is larger than the threshold value SH2, the determination result in step SB8 is “NO”, and the flow proceeds to step SB10. In step SB10, it is determined whether or not the amount of camera shake detected by the acceleration sensor 11 is smaller than the threshold value SH3. If the amount of camera shake is smaller than the threshold value SH3, the determination result is “YES”, the process proceeds to step SB11, “H” is set in the register CK, and “L” is set in the register RL, and this process is finished.

ここで、レジスタCKにセットされる「H」とは、画像符号化部15の動作クロックを高速にする旨を表す。また、レジスタRLにセットされる「L」とは、画像符号化部15における動き検出部107の動きベクトル探索の試行回数を多くすることを表す。したがって、手ぶれ量が閾値SH3より小さいと、画像符号化部15は制御部13の指示に従い、動作クロックを高速に設定し、かつ動きベクトル探索の試行回数を多くする。この結果、消費電力が増加するものの、画質劣化することなく動画記録を行う。   Here, “H” set in the register CK indicates that the operation clock of the image encoding unit 15 is increased. Further, “L” set in the register RL indicates that the number of trials of motion vector search of the motion detection unit 107 in the image encoding unit 15 is increased. Therefore, when the amount of camera shake is smaller than the threshold value SH3, the image encoding unit 15 sets the operation clock at a high speed and increases the number of trials of motion vector search in accordance with an instruction from the control unit 13. As a result, although the power consumption increases, moving image recording is performed without image quality deterioration.

一方、手ぶれ量が閾値SH3より大きいと、上記ステップSB10の判断結果は「NO」になり、ステップSB12に進む。ステップSB12では、レジスタCKに「L」を、レジスタRLに「S」をセットして本処理を終える。したがって、手ぶれ量が閾値SH3より大きいと、画像符号化部15は制御部13の指示に従い、動作クロックを低速に設定し、かつ動きベクトル探索の試行回数を少なくする。つまり、動き補償しきれない程の手ぶれが生じた状態では、動きベクトル探索の試行回数を多くしても最適な動きベクトル検出が期待できないから、動作クロックを低速に設定し、かつ動きベクトル探索の試行回数を少なくして消費電力の低減を図る。これにより画質を犠牲にして電池消耗を抑えた動画記録を行う。   On the other hand, if the amount of camera shake is greater than the threshold value SH3, the determination result in step SB10 is “NO”, and the flow proceeds to step SB12. In step SB12, "L" is set in the register CK and "S" is set in the register RL, and this process is finished. Therefore, when the amount of camera shake is larger than the threshold value SH3, the image encoding unit 15 sets the operation clock to a low speed and decreases the number of motion vector search attempts in accordance with the instruction from the control unit 13. In other words, in the state where camera shake that cannot compensate for motion has occurred, optimal motion vector detection cannot be expected even if the number of motion vector search attempts is increased, so the operation clock is set to a low speed and motion vector search is performed. Reduce the number of trials to reduce power consumption. As a result, moving image recording is performed with reduced battery consumption at the expense of image quality.

なお、上述したその他の実施形態では、電源部12の電池残量と加速度センサ11により検出された手ぶれ量とに応じて、画像符号化部15の動作クロックと動きベクトル探索の試行回数とを変化させることによって、「画質劣化を招くことなく電池消耗を抑えた動画記録」、「電池寿命を犠牲にして画質を優先した動画記録」および「画質を犠牲にして電池消耗を抑えた動画記録」を行うようにしたが、これに替えて、手ぶれ量および電池残量に応じて、これら動画記録態様のいずれかをユーザ操作で選択する形態にしても構わない。   In the other embodiments described above, the operation clock of the image encoding unit 15 and the number of motion vector search attempts are changed according to the remaining battery level of the power supply unit 12 and the amount of camera shake detected by the acceleration sensor 11. "Video recording with reduced battery consumption without incurring image quality degradation", "Video recording with priority on image quality at the expense of battery life" and "Video recording with reduced battery consumption at the expense of image quality" However, instead of this, any one of these moving image recording modes may be selected by a user operation in accordance with the amount of camera shake and the remaining battery level.

なお、本明細書中では、動き補償が不十分であった場合の不具合として「画質の劣化」を挙げて記述したが、もとよりこれは符号量を一定に保とうとした場合であって、画質を一定に保とうとすれば「符号量の増加」という形の不具合となって表れることは言うまでもない。 In this specification, “degradation of image quality” is described as an inconvenience when motion compensation is insufficient. However, this is originally a case where the code amount is to be kept constant, and the image quality is reduced. Needless to say, if it is kept constant, it will appear as a defect of "increase in code amount".

本発明による実施の一形態の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of one Embodiment by this invention. 画像符号化部15の概略構成を示すブロック図である。3 is a block diagram illustrating a schematic configuration of an image encoding unit 15. FIG. 撮影動作制御処理の動作を示すフローチャートである。It is a flowchart which shows operation | movement of imaging | photography operation control processing. その他の実施形態による撮影動作制御処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the imaging | photography operation control process by other embodiment.

符号の説明Explanation of symbols

10 操作部
11 加速度センサ
12 電源部
13 制御部
14 撮像部
15 画像符号化部
16 画像記憶部
17 画像復号化部
18 表示部
DESCRIPTION OF SYMBOLS 10 Operation part 11 Acceleration sensor 12 Power supply part 13 Control part 14 Imaging part 15 Image encoding part 16 Image memory | storage part 17 Image decoding part 18 Display part

Claims (10)

電池残量を検出する残量検出手段と、
手ぶれ量を検出する手ぶれ検出手段と、
前記残量検出手段により検出される電池残量と前記手ぶれ検出手段により検出される手ぶれ量とに応じて定まる圧縮態様を指示する指示手段と、
前記指示手段により指示される圧縮態様に従い、撮像された画像を圧縮符号化して動画記録する記録手段と
を具備することを特徴とする動画記録装置。
A battery level detection means for detecting the battery level;
Camera shake detection means for detecting the amount of camera shake;
Indicating means for instructing a compression mode determined according to the remaining battery level detected by the remaining amount detecting means and the amount of camera shake detected by the camera shake detecting means;
A moving image recording apparatus comprising: a recording unit that compresses and encodes a captured image according to a compression mode instructed by the instruction unit and records the moving image.
前記圧縮態様は、フレーム間予測符号化の動作速度と動きベクトル検出に於ける探索限界であることを特徴とする請求項1に記載の動画記録装置。 2. The moving picture recording apparatus according to claim 1, wherein the compression mode is an operation speed of inter-frame predictive coding and a search limit in motion vector detection. 前記探索限界は、探索範囲及び試行回数の少なくとも何れか一つであることを特徴とする請求項2に記載の動画記録装置。 The moving image recording apparatus according to claim 2, wherein the search limit is at least one of a search range and the number of trials. 前記指示手段は、前記手ぶれ検出手段により検出される手ぶれ量を判定する複数の閾値を有し、これら閾値を超える手ぶれ量に対応して圧縮態様を変化させることを特徴とする請求項1に記載の動画記録装置。 The said instruction | indication means has several threshold value which determines the amount of camera shake detected by the said camera shake detection means, The compression mode is changed according to the amount of camera shake exceeding these threshold values. Video recording device. 前記指示手段は、前記手ぶれ検出手段により検出される手ぶれ量を判定する複数の閾値を有し、これら閾値を前記残量検出手段により検出される電池残量に応じて変化させることを特徴とする請求項1に記載の動画記録装置。 The instructing unit has a plurality of thresholds for determining the amount of camera shake detected by the camera shake detecting unit, and changes the thresholds according to the remaining battery level detected by the remaining amount detecting unit. The moving image recording apparatus according to claim 1. 前記指示手段は、前記手ぶれ検出手段により検出される手ぶれ量を判定する複数の閾値を有し、これら閾値をユーザ操作で可変設定する閾値設定手段を備えることを特徴とする請求項1に記載の動画記録装置。 The said instruction | indication means has a some threshold value which determines the amount of camera shake detected by the said camera shake detection means, The threshold value setting means which variably sets these threshold values by user operation is characterized by the above-mentioned. Movie recording device. 前記指示手段は、前記残量検出手段により検出される電池残量が所定値より少ない場合、フレーム間予測符号化の動作速度を低速にし、かつ動きベクトル検出に於ける探索限界を狭めるように前記記録手段に指示することを特徴とする請求項1に記載の動画記録装置。 The instruction means, when the battery remaining amount detected by the remaining amount detecting means is less than a predetermined value, the operation speed of inter-frame predictive encoding is reduced, and the search limit in motion vector detection is reduced. The moving image recording apparatus according to claim 1, wherein the recording unit is instructed. 前記指示手段は、前記残量検出手段により検出される電池残量が所定量有る時に、前記手ぶれ検出手段により検出される手ぶれ量が動き補償可能な範囲内である場合、フレーム間予測符号化の動作速度を高速にし、かつ動きベクトル検出に於ける探索限界を広げるように前記記録手段に指示することを特徴とする請求項1に記載の動画記録装置。 The instruction means performs inter-frame predictive encoding when the amount of camera shake detected by the camera shake detection means is within a motion-compensable range when the battery remaining amount detected by the remaining capacity detection means is a predetermined amount. 2. The moving image recording apparatus according to claim 1, wherein the recording unit is instructed to increase the operation speed and to widen a search limit in motion vector detection. 前記指示手段は、前記残量検出手段により検出される電池残量が所定量有る時に、前記手ぶれ検出手段により検出される手ぶれ量が動き補償可能な範囲外である場合、フレーム間予測符号化の動作速度を低速にし、かつ動きベクトル検出に於ける探索限界を狭めるように前記記録手段に指示することを特徴とする請求項1に記載の動画記録装置。 The instruction means performs inter-frame predictive coding when the amount of camera shake detected by the camera shake detection means is outside a motion compensation range when the battery remaining amount detected by the remaining capacity detection means is a predetermined amount. 2. The moving image recording apparatus according to claim 1, wherein the recording means is instructed to reduce the operation speed and to narrow a search limit in motion vector detection. 電池残量を検出する残量検出処理と、
手ぶれ量を検出する手ぶれ検出処理と、
前記残量検出処理により検出される電池残量と前記手ぶれ検出処理により検出される手ぶれ量とに応じて定まる圧縮形態を指示する指示処理と、
前記指示処理にて指示される圧縮形態に従い、撮像された画像を圧縮符号化して動画記録する記録処理と
をコンピュータで実行させることを特徴とする動画記録処理プログラム。
A battery level detection process for detecting the battery level;
Camera shake detection processing for detecting the amount of camera shake;
An instruction process for instructing a compression mode determined according to a remaining battery level detected by the remaining capacity detection process and an amount of camera shake detected by the camera shake detection process;
A moving image recording processing program that causes a computer to execute a recording process of compressing and encoding a captured image and recording a moving image in accordance with a compression mode instructed in the instruction processing.
JP2005088327A 2005-03-25 2005-03-25 Movie recording apparatus and movie recording processing program Expired - Fee Related JP4446288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088327A JP4446288B2 (en) 2005-03-25 2005-03-25 Movie recording apparatus and movie recording processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088327A JP4446288B2 (en) 2005-03-25 2005-03-25 Movie recording apparatus and movie recording processing program

Publications (2)

Publication Number Publication Date
JP2006270751A true JP2006270751A (en) 2006-10-05
JP4446288B2 JP4446288B2 (en) 2010-04-07

Family

ID=37206200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088327A Expired - Fee Related JP4446288B2 (en) 2005-03-25 2005-03-25 Movie recording apparatus and movie recording processing program

Country Status (1)

Country Link
JP (1) JP4446288B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167048A (en) * 2006-12-27 2008-07-17 Toshiba Corp Information processing apparatus and program
JP2008206020A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Imaging device and lens barrel
US8228391B2 (en) 2007-02-22 2012-07-24 Panasonic Corporation Image pickup apparatus and lens barrel
US8237803B2 (en) 2007-07-09 2012-08-07 Panasonic Coporation Digital single-lens reflex camera including control section that performs camera shake correction and motion detecting section that detects speed of subject
JP2014056595A (en) * 2013-11-01 2014-03-27 Casio Comput Co Ltd Image composition device and program
US8736691B2 (en) 2006-02-20 2014-05-27 Panasonic Corporation Image pickup apparatus to control an exposure time based on motion of a detected optical image
WO2015145168A3 (en) * 2014-03-28 2015-11-19 Sony Corporation Data encoding and decoding
WO2016158401A1 (en) * 2015-03-30 2016-10-06 ソニー株式会社 Image encoding device and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736691B2 (en) 2006-02-20 2014-05-27 Panasonic Corporation Image pickup apparatus to control an exposure time based on motion of a detected optical image
US8130839B2 (en) 2006-12-27 2012-03-06 Kabushiki Kaisha Toshiba Information processing apparatus with video encoding process control based on detected load
JP2008167048A (en) * 2006-12-27 2008-07-17 Toshiba Corp Information processing apparatus and program
JP2008206020A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Imaging device and lens barrel
US8228391B2 (en) 2007-02-22 2012-07-24 Panasonic Corporation Image pickup apparatus and lens barrel
US8411155B2 (en) 2007-02-22 2013-04-02 Panasonic Corporation Image pickup apparatus and lens barrel
US8928761B2 (en) 2007-07-09 2015-01-06 Panasonic Corporation Digital camera
US8237803B2 (en) 2007-07-09 2012-08-07 Panasonic Coporation Digital single-lens reflex camera including control section that performs camera shake correction and motion detecting section that detects speed of subject
JP2014056595A (en) * 2013-11-01 2014-03-27 Casio Comput Co Ltd Image composition device and program
WO2015145168A3 (en) * 2014-03-28 2015-11-19 Sony Corporation Data encoding and decoding
CN106165428A (en) * 2014-03-28 2016-11-23 索尼公司 Data encoding and decoding
US10873759B2 (en) 2014-03-28 2020-12-22 Sony Corporation Data encoding and decoding
US11284105B2 (en) 2014-03-28 2022-03-22 Sony Corporation Data encoding and decoding
WO2016158401A1 (en) * 2015-03-30 2016-10-06 ソニー株式会社 Image encoding device and method
JPWO2016158401A1 (en) * 2015-03-30 2018-01-25 ソニー株式会社 Image coding apparatus and method

Also Published As

Publication number Publication date
JP4446288B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4682102B2 (en) Image coding apparatus and image coding method
JP2006253768A (en) Digital camera
WO2009139123A1 (en) Image processor and imaging device using the same
US8036281B2 (en) Image coding apparatus and image coding method
JP4446288B2 (en) Movie recording apparatus and movie recording processing program
JP2008182527A (en) Image coding device and method, and imaging system
JP3592025B2 (en) Captured image recording device
JPWO2010050089A1 (en) Encoding processing method and encoding processing apparatus in moving image compression encoding
JP3990392B2 (en) Variable length decoding apparatus, variable length decoding method, and imaging system
JP4724639B2 (en) Imaging device
JP4875008B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding apparatus
JP2004128941A (en) Method and device for encoding image
JP4574444B2 (en) Image decoding apparatus and method, image encoding apparatus and method, computer program, and storage medium
JP2009218965A (en) Image processor, imaging device mounted with the same and image reproduction device
US8953055B2 (en) Image pickup apparatus
JP2004180345A (en) Photographed image recording apparatus
JP2007184909A (en) Image encoding apparatus, control method of image encoding apparatus, program, and storage medium
JP4564856B2 (en) Image encoding apparatus and imaging apparatus
JP2006311366A (en) Image recorder and method for driving image recorder
JP2005184626A (en) Image processing apparatus
JP2005130362A (en) Imaging device
JP3645249B2 (en) Electronic still camera
JP4700992B2 (en) Image processing device
JP2018191136A (en) Encoding device, encoding method and program
JP2011023928A (en) Imaging apparatus, image processing apparatus and image processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees