[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006266817A - Surface inspection apparatus - Google Patents

Surface inspection apparatus Download PDF

Info

Publication number
JP2006266817A
JP2006266817A JP2005084290A JP2005084290A JP2006266817A JP 2006266817 A JP2006266817 A JP 2006266817A JP 2005084290 A JP2005084290 A JP 2005084290A JP 2005084290 A JP2005084290 A JP 2005084290A JP 2006266817 A JP2006266817 A JP 2006266817A
Authority
JP
Japan
Prior art keywords
light
linearly polarized
polarization
substrate
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005084290A
Other languages
Japanese (ja)
Inventor
Kenzo Chiaki
謙三 千秋
Tatsumi Sato
立美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005084290A priority Critical patent/JP2006266817A/en
Priority to KR1020050044555A priority patent/KR101248674B1/en
Priority to US11/150,385 priority patent/US7307725B2/en
Priority to TW094120000A priority patent/TWI445947B/en
Publication of JP2006266817A publication Critical patent/JP2006266817A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection apparatus capable of corresponding to the micronization of a repeating pitch without making the wavelength of illumination light short. <P>SOLUTION: The inspection apparatus is equipped with a light source means Ls for emitting a divergent luminous flux of linear polarization for illuminating a substrate 20 to be inspected, an optical member 35 for allowing the divergent luminous flux of linear polarization to enter so that the main light of the luminous flux has a predetermined incident angle to guide it to the substrate to be inspected, light receiving means 38 and 39 receiving the linear polarization component of which the polarizing direction crosses the linear polarization in the luminous flux from the substrate to be inspected at a right angle, a correction means 10 for setting stress strain to the correction member arranged in the light path between the light source means and the light receiving means to eliminate the disturbance of a polarization front caused by the optical member and a detection means 15 for detecting the surface flaw of the substrate to be inspected on the basis of the light received by the light receiving means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子等の基板表面の検査を行う表面検査装置に関する。   The present invention relates to a surface inspection apparatus for inspecting the surface of a substrate such as a semiconductor element.

半導体回路素子等の製造工程におけるウエハの表面に形成された繰り返しパターンの欠陥の検査装置として、従来から、回折を利用したものが知られている。回折を利用した装置では、パターンのピッチによりステージのチルト角の調整が必要になる。また、より微細なパターンへの対応のためには照明光の波長の短波長化が必要である。
特開平10−232122号公報
2. Description of the Related Art Conventionally, a device using diffraction is known as an inspection device for a defect of a repeated pattern formed on the surface of a wafer in a manufacturing process of a semiconductor circuit element or the like. In an apparatus using diffraction, it is necessary to adjust the tilt angle of the stage according to the pattern pitch. In order to cope with finer patterns, it is necessary to shorten the wavelength of illumination light.
Japanese Patent Laid-Open No. 10-232122

しかしながら、繰り返しピッチの微細化(すなわち配線パターンなどのライン・アンド・スペースの微細化)に対応するために、照明光の短波長化を行おうとすると、光源の種類が限定され、高価で大掛かりな光源となってしまう。また、更に照明系や受光系を構成する光学素子の材料も高価なものに限定され、好ましくない。   However, in order to cope with repetitive pitch miniaturization (that is, line and space miniaturization of wiring patterns, etc.), when trying to shorten the wavelength of illumination light, the types of light sources are limited, which is expensive and large. It becomes a light source. Further, the material of the optical element constituting the illumination system and the light receiving system is also limited to an expensive material, which is not preferable.

本発明の目的は、照明光を短波長化しなくても、確実に繰り返しピッチの微細化に対応できる表面検査装置を提供することにある。   An object of the present invention is to provide a surface inspection apparatus that can reliably cope with repetitive miniaturization of the pitch without shortening the wavelength of illumination light.

上記課題の解決のため、請求項1の発明は、
被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、
前記直線偏光の発散光束を、その光束の主光線が所定の入射角を有するように入射して、前記被検基板に導く光学部材と、
前記被検基板からの光束のうち前記直線偏光と偏光方向が直交する直線偏光成分を受光する受光手段と、
前記光源手段と前記受光手段との間の光路中に配置される補正部材に、応力歪を設定することにより、前記光学部材に起因して発生する偏光面の乱れを解消する補正手段と、
前記受光手段で受光した光に基づいて前記被検査基板の表面の欠陥を検出する検出手段と
を備えたことを特徴とする。
In order to solve the above problems, the invention of claim 1
Light source means for emitting a linearly polarized divergent light beam for illuminating the substrate to be inspected;
An optical member that introduces the linearly polarized divergent light beam so that a principal ray of the light beam has a predetermined incident angle and guides it to the test substrate;
A light receiving means for receiving a linearly polarized light component whose polarization direction is orthogonal to the linearly polarized light in the light beam from the test substrate;
Correction means for eliminating the disturbance of the polarization plane caused by the optical member by setting a stress strain in the correction member disposed in the optical path between the light source means and the light receiving means;
And detecting means for detecting defects on the surface of the substrate to be inspected based on light received by the light receiving means.

また、請求項2の発明は、
被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、
前記直線偏光の発散光束を、その光束の主光線が所定の入射角を有するように入射して、前記被検基板に導く光学部材と、
前記被検基板からの光束のうち前記直線偏光と偏光方向が直交する偏光成分を抽出する抽出手段と、
前記抽出手段によって抽出された光により前記被検基板を像を結像する結像手段と、
前記光源手段と前記検出手段との間の光路中に配置される補正部材に、応力歪を設定することにより、前記光学部材に起因して発生する偏光面の乱れを解消する補正手段と、
結像された前記像に基づいて、前記被検基板の表面の欠陥を検出する検出手段と
を備えたことを特徴とする。
The invention of claim 2
Light source means for emitting a linearly polarized divergent light beam for illuminating the substrate to be inspected;
An optical member that introduces the linearly polarized divergent light beam so that a principal ray of the light beam has a predetermined incident angle and guides it to the test substrate;
An extraction means for extracting a polarization component having a polarization direction orthogonal to the linearly polarized light out of the light flux from the test substrate;
An imaging unit that forms an image of the test substrate with the light extracted by the extraction unit;
Correction means for eliminating the disturbance of the polarization plane caused by the optical member by setting a stress strain in the correction member arranged in the optical path between the light source means and the detection means;
And detecting means for detecting defects on the surface of the test substrate based on the image formed.

なた、請求項3の発明は、
請求項1または2に記載の表面検査装置において、
前記補正手段は、前記応力歪を任意の値に固定可能であることを特徴とする。
The invention of claim 3 is:
The surface inspection apparatus according to claim 1 or 2,
The correction means can fix the stress strain to an arbitrary value.

本発明によれば、照明光を短波長化しなくても、繰り返しピッチが微細化された基板の検査に対応できる。   According to the present invention, it is possible to cope with inspection of a substrate having a repetitive fine pitch without shortening the wavelength of illumination light.

図1は、本発明の実施形態の表面検査装置の構成を示す図である。図1において、表面検査装置は、被検基板である半導体ウエハ20を支持するステージ11と、アライメント系12と、照明光学系13と、受光光学系14と、画像処理装置15とで構成されている。表面検査装置は、半導体回路素子の製造工程において、半導体ウエハ20の表面の検査を自動的に行う装置である。半導体ウエハ20は、最上層のレジスト膜への露光・現像後、不図示の搬送系により、不図示のウエハカセットまたは現像装置から運ばれ、ステージ11に吸着される。   FIG. 1 is a diagram showing a configuration of a surface inspection apparatus according to an embodiment of the present invention. In FIG. 1, the surface inspection apparatus includes a stage 11 that supports a semiconductor wafer 20 that is a substrate to be tested, an alignment system 12, an illumination optical system 13, a light receiving optical system 14, and an image processing apparatus 15. Yes. The surface inspection apparatus is an apparatus that automatically inspects the surface of the semiconductor wafer 20 in the manufacturing process of the semiconductor circuit element. After exposure / development of the uppermost resist film, the semiconductor wafer 20 is carried from a wafer cassette (not shown) or a developing device by a conveyance system (not shown) and is attracted to the stage 11.

図1において、ランプハウスLSの内部には、不図示のハロゲンランプやメタルハライドランプ、水銀ランプなどの光源と、波長選択フィルタ、光量調整用のNDフィルタ等が内蔵されており、一部の波長の光のみが照明光L1として抽出され、ライトガイドファイバ33に入射している。照明光学系13はライトガイドファイバ33と偏光板34と偏光補償板9と凹面反射鏡35とで構成されている。ライトガイドファイバ33から射出された発散光束である照明光L1は球面形状の凹面反射鏡35によりほぼ平行な光に変換され、ステージ11上に載置されたウエハ20を照明する。   In FIG. 1, a lamp house LS includes a light source such as a halogen lamp, a metal halide lamp, and a mercury lamp (not shown), a wavelength selection filter, an ND filter for adjusting the amount of light, and the like. Only the light is extracted as illumination light L 1 and is incident on the light guide fiber 33. The illumination optical system 13 includes a light guide fiber 33, a polarizing plate 34, a polarization compensator 9, and a concave reflecting mirror 35. The illumination light L1 that is a divergent light beam emitted from the light guide fiber 33 is converted into substantially parallel light by the spherical concave reflecting mirror 35, and illuminates the wafer 20 placed on the stage 11.

ライトガイドファイバ33の射出部付近には偏光板34が配置されていて、ライトガイドファイバ33から射出された照明光L1を直線偏光にする。偏光板34によって直線偏光となった光は、偏光補償板9を経て凹面反射鏡35によってコリメートされ、直線偏光のコリメート光がウエハ20を照明する。   A polarizing plate 34 is disposed in the vicinity of the emission portion of the light guide fiber 33, and the illumination light L1 emitted from the light guide fiber 33 is linearly polarized. The light that has been linearly polarized by the polarizing plate 34 is collimated by the concave reflecting mirror 35 through the polarization compensator 9, and the linearly polarized collimated light illuminates the wafer 20.

スループットを向上させるためには、ウエハ面全面の画像を一括で取ることが極めて有利であるので、本実施形態では、上述のように、光源からの光束を拡大して、凹面反射鏡35によりコリメートし、ウエハ全面を照明できる構成となっている。   In order to improve the throughput, it is extremely advantageous to collect images of the entire wafer surface in a lump. In this embodiment, as described above, the luminous flux from the light source is expanded and collimated by the concave reflecting mirror 35. The entire surface of the wafer can be illuminated.

ウエハ20に入射した直線偏光のコリメート光L1はウエハ表面で反射されて、受光光学系14に入射する。受光光学系14は、凹面反射鏡36と偏光補償板10と偏光板38と集光レンズ37とで構成されている。ウエハ20で反射された光束L2は、凹面反射鏡36に入射して集光作用を受ける。凹面反射鏡36で反射した集光光束は、偏光補償板10と、偏光板34とはクロスニコルの関係に配置された偏光板38とを経て、結像レンズ37によりウエハ20の表面と共役な位置に配置された撮像素子39の撮像面上にウエハ20表面の像を形成する。   The linearly polarized collimated light L 1 incident on the wafer 20 is reflected by the wafer surface and enters the light receiving optical system 14. The light receiving optical system 14 includes a concave reflecting mirror 36, a polarization compensation plate 10, a polarizing plate 38, and a condenser lens 37. The light beam L2 reflected by the wafer 20 enters the concave reflecting mirror 36 and receives a condensing action. The condensed light beam reflected by the concave reflecting mirror 36 passes through the polarization compensator 10 and the polarizing plate 38 disposed in a crossed Nicols relationship with the polarizing plate 34, and is conjugate with the surface of the wafer 20 by the imaging lens 37. An image of the surface of the wafer 20 is formed on the imaging surface of the imaging device 39 arranged at the position.

半導体ウエハ20の表面には、図2に示すように、複数のチップ領域21がXY方向に配列され、各チップ領域21の中に繰り返しパターン22が形成されている。繰り返しパターン22のライン部の配列方向(X方向)を「繰り返しパターン22の繰り返し方向」という。   As shown in FIG. 2, a plurality of chip areas 21 are arranged in the XY direction on the surface of the semiconductor wafer 20, and a repeated pattern 22 is formed in each chip area 21. The arrangement direction (X direction) of the line portions of the repetitive pattern 22 is referred to as “repetitive direction of the repetitive pattern 22”.

また、本実施形態では、繰り返しパターン22に対する照明光の波長と比較して繰り返しパターン22のピッチPが十分小さいとする。このため、繰り返しパターン22から回折光が発生することはない。本実施形態における欠陥検査の原理は、本出願人がすでに出願した特願2003-366255号に記載されているので、ここでは原理に関しては詳しく説明しない。   In the present embodiment, it is assumed that the pitch P of the repeating pattern 22 is sufficiently small as compared with the wavelength of illumination light with respect to the repeating pattern 22. For this reason, diffracted light is not generated from the repeated pattern 22. The principle of defect inspection in the present embodiment is described in Japanese Patent Application No. 2003-366255 already filed by the present applicant, so the principle will not be described in detail here.

ステージ11の表面には、上述のパターンが形成されたウエハ20が載置され、真空吸着等により固定保持される。さらに、ステージ11はステージ回転機構16によってステージ面に直交する所定の回転軸周りに回転可能に構成されている。このステージ回転機構16により、ウエハ20を照明する光束L1の直線偏光の振動面に対するウエハ20表面の形成された繰り返しパターンの長手方向とのなす角度を任意の角度に設定することができる。   On the surface of the stage 11, the wafer 20 on which the above-mentioned pattern is formed is placed and fixed and held by vacuum suction or the like. Further, the stage 11 is configured to be rotatable around a predetermined rotation axis orthogonal to the stage surface by a stage rotation mechanism 16. With this stage rotation mechanism 16, the angle formed by the longitudinal direction of the repeated pattern formed on the surface of the wafer 20 with respect to the linearly polarized vibrating surface of the light beam L1 that illuminates the wafer 20 can be set to an arbitrary angle.

また、図1の表面検査装置において、凹面反射鏡35と凹面反射鏡36との間には、ステージ11に載置されたウエハ20の表面に形成されたパターンの向きを検知するためのアライメント系12が配設され、予め設定された光束L1の直線偏光の振動面と繰り返しパターン22の長手方向Yとのなす角度を検知して、ステージ回転機構16により照明光学系13及び受光光学系14に対する繰り返しパターンの長手方向Yの向きを調整することができる。   In the surface inspection apparatus of FIG. 1, an alignment system for detecting the orientation of the pattern formed on the surface of the wafer 20 placed on the stage 11 between the concave reflecting mirror 35 and the concave reflecting mirror 36. 12 is arranged, and an angle formed by a preset linearly polarized vibrating surface of the light beam L1 and the longitudinal direction Y of the repeated pattern 22 is detected, and the stage rotating mechanism 16 is used to detect the illumination optical system 13 and the light receiving optical system 14. The direction of the longitudinal direction Y of the repeated pattern can be adjusted.

アライメント系12は、ステージ11が回転しているときに、半導体ウエハ20の外縁部を照明し、外縁部に設けられた外形基準(例えばノッチ)の回転方向の位置を検出し、所定位置でステージ11を停止させる。その結果、半導体ウエハ20の繰り返しパターン22の繰り返し方向(図2のX方向)を、後述の照明光の入射面3A(図3参照)に対して、45度の角度に傾けて設定することができる。   The alignment system 12 illuminates the outer edge of the semiconductor wafer 20 when the stage 11 is rotating, detects the position in the rotation direction of an external reference (for example, a notch) provided on the outer edge, and moves the stage at a predetermined position. 11 is stopped. As a result, the repetitive direction (X direction in FIG. 2) of the repetitive pattern 22 of the semiconductor wafer 20 can be set to be inclined at an angle of 45 degrees with respect to the illumination light incident surface 3A (see FIG. 3) described later. it can.

本実施形態では、直線偏光の光束L1がP偏光である。つまり、図4(a)に示すように、直線偏光L1の進行方向とベクトルの振動方向とを含む平面(直線偏光L1の振動面)が、直線偏光L1の入射面(3A)内に含まれる。直線偏光L1の振動面は、凹面反射鏡35の前段に配置された偏光板34の透過軸により規定される。   In the present embodiment, the linearly polarized light beam L1 is P-polarized light. That is, as shown in FIG. 4A, a plane including the traveling direction of the linearly polarized light L1 and the vibration direction of the vector (the vibrating surface of the linearly polarized light L1) is included in the incident surface (3A) of the linearly polarized light L1. . The vibration plane of the linearly polarized light L <b> 1 is defined by the transmission axis of the polarizing plate 34 disposed in front of the concave reflecting mirror 35.

本実施形態では、半導体ウエハ20に入射する直線偏光L1がP偏光(図4(a))であるため、図5に示す通り、半導体ウエハ20の繰り返しパターン22の繰り返し方向(X方向)が直線偏光L1の入射面(3A)に対して45度の角度に設定された場合、半導体ウエハ20の表面における直線偏光L1の振動面の方向(図5のV方向)と、繰り返しパターン22の繰り返し方向(X方向)との成す角度も、45度に設定される。   In this embodiment, since the linearly polarized light L1 incident on the semiconductor wafer 20 is P-polarized light (FIG. 4A), the repeat direction (X direction) of the repeat pattern 22 of the semiconductor wafer 20 is a straight line as shown in FIG. When the angle is set to 45 degrees with respect to the incident surface (3A) of the polarized light L1, the direction of the vibration surface of the linearly polarized light L1 on the surface of the semiconductor wafer 20 (the V direction in FIG. 5) and the repeated direction of the repeated pattern 22 The angle formed with the (X direction) is also set to 45 degrees.

換言すると、直線偏光L1は、半導体ウエハ20の表面における振動面の方向(図5のV方向)が繰り返しパターン22の繰り返し方向(X方向)に対して45度に傾いた状態で、繰り返しパターン22を斜めに横切るような状態で、繰り返しパターン22に入射する。   In other words, the linearly polarized light L1 has the repeating pattern 22 in a state where the direction of the vibration surface (the V direction in FIG. 5) on the surface of the semiconductor wafer 20 is inclined 45 degrees with respect to the repeating direction (X direction) of the repeating pattern 22. Is incident on the repetitive pattern 22 in a state of crossing diagonally.

このような直線偏光L1と繰り返しパターン22との角度状態は、半導体ウエハ20の表面全体において均一である。なお、45度を135度,225度,315度の何れかに言い換えても、直線偏光L1と繰り返しパターン22との角度状態は同じである。また、図5の振動面の方向(V方向)と繰り返し方向(X方向)との成す角度を45度に設定するのは、繰り返しパターン22の欠陥検査の感度を最も高くするためである。   Such an angle state between the linearly polarized light L1 and the repeated pattern 22 is uniform over the entire surface of the semiconductor wafer 20. Note that the angle state between the linearly polarized light L1 and the repetitive pattern 22 is the same even if 45 degrees is replaced with any of 135 degrees, 225 degrees, and 315 degrees. The reason why the angle formed by the vibration plane direction (V direction) and the repeat direction (X direction) in FIG. 5 is set to 45 degrees is to maximize the sensitivity of the defect inspection of the repeat pattern 22.

そして、上記の直線偏光L1を用いて繰り返しパターン22を照明すると、繰り返しパターン22から正反射方向に楕円偏光L2が発生する(図1,図4(b))。この場合、楕円偏光L2の進行方向が正反射方向に一致する。正反射方向とは、直線偏光L1の入射面(3A)内に含まれ、ステージ11の法線1Aに対して直線偏光L1の入射角度等しい角度だけ傾いた方向である。なお、上記の通り、繰り返しパターン22のピッチPが照明波長と比較して十分小さいため、繰り返しパターン22から回折光が発生することはない。   When the repeating pattern 22 is illuminated using the linearly polarized light L1, the elliptically polarized light L2 is generated from the repeating pattern 22 in the regular reflection direction (FIGS. 1 and 4B). In this case, the traveling direction of the elliptically polarized light L2 coincides with the regular reflection direction. The regular reflection direction is a direction that is included in the incident surface (3A) of the linearly polarized light L1 and is inclined with respect to the normal line 1A of the stage 11 by an angle equal to the incident angle of the linearly polarized light L1. As described above, since the pitch P of the repeated pattern 22 is sufficiently smaller than the illumination wavelength, no diffracted light is generated from the repeated pattern 22.

次に、受光光学系14の説明を行う。受光系14は、図1に示すように、凹面反射鏡36と結像レンズ37と偏光板38と偏光補償板10と撮像素子39とで構成されている。
凹面反射鏡36は、上記した照明光学系13の凹面反射鏡35と同様の反射鏡であり、楕円偏光L2を反射して結像レンズ37の方に導き、結像レンズ37と協働して撮像素子39の撮像面に集光する。
Next, the light receiving optical system 14 will be described. As shown in FIG. 1, the light receiving system 14 includes a concave reflecting mirror 36, an imaging lens 37, a polarizing plate 38, a polarization compensator 10, and an image sensor 39.
The concave reflecting mirror 36 is a reflecting mirror similar to the concave reflecting mirror 35 of the illumination optical system 13, and reflects the elliptically polarized light L2 toward the imaging lens 37 and cooperates with the imaging lens 37. The light is condensed on the imaging surface of the image sensor 39.

ただし、結像レンズ37と凹面反射鏡36との間には、偏光板38が配置されている。偏光板38の透過軸の方位は、上記した照明光学系13の偏光板34の透過軸に対して直交するように設定されている(クロスニコル(直交ニコル)の状態)。したがって、偏光板38により、楕円偏光L2の図4(c)の偏光成分L3に相当する偏光成分のみを抽出して、撮像素子39に導くことができる。その結果、撮像素子39の撮像面には、図4(c)の偏光成分L3に相当する偏光成分による半導体ウエハ20の反射像が形成される。   However, a polarizing plate 38 is disposed between the imaging lens 37 and the concave reflecting mirror 36. The direction of the transmission axis of the polarizing plate 38 is set so as to be orthogonal to the transmission axis of the polarizing plate 34 of the illumination optical system 13 described above (crossed Nicol state). Therefore, the polarizing plate 38 can extract only the polarization component corresponding to the polarization component L3 of the elliptically polarized light L2 in FIG. As a result, a reflection image of the semiconductor wafer 20 is formed on the imaging surface of the imaging element 39 by the polarization component corresponding to the polarization component L3 in FIG.

撮像素子39は、例えばCCD撮像素子などであり、撮像面に形成された半導体ウエハ20の反射像を光電変換して、画像信号を画像処理装置15に出力する。半導体ウエハ20の反射像の明暗は、図4(c)の偏光成分L3の大きさに略比例し、半導体ウエハ20の反射像が最も明るくなるのは、繰り返しパターン22が理想的な形状の場合である。なお、半導体ウエハ20の反射像の明暗は、ショット領域ごとに現れる。   The image sensor 39 is, for example, a CCD image sensor or the like, photoelectrically converts a reflected image of the semiconductor wafer 20 formed on the imaging surface, and outputs an image signal to the image processing device 15. The brightness of the reflected image of the semiconductor wafer 20 is substantially proportional to the magnitude of the polarization component L3 in FIG. 4C, and the reflected image of the semiconductor wafer 20 is brightest when the repetitive pattern 22 has an ideal shape. It is. Note that the brightness of the reflected image of the semiconductor wafer 20 appears for each shot area.

画像処理装置15は、撮像素子39から出力される画像信号に基づいて、半導体ウエハ20の反射画像を取り込む。なお、画像処理装置15は、比較のため、良品ウエハの反射画像を予め記憶している。良品ウエハとは、繰り返しパターン22が理想的な形状で表面全体に形成されたものである。良品ウエハの反射画像の輝度情報は、最も高い輝度値を示すと考えられる。   The image processing device 15 captures a reflected image of the semiconductor wafer 20 based on the image signal output from the image sensor 39. Note that the image processing apparatus 15 stores in advance a reflection image of a non-defective wafer for comparison. A non-defective wafer is one in which the repeated pattern 22 is formed on the entire surface in an ideal shape. It is considered that the luminance information of the reflected image of the non-defective wafer shows the highest luminance value.

したがって、画像処理装置15は、被検基板である半導体ウエハ20の反射画像を取り込むと、その輝度情報を良品ウエハの反射画像の輝度情報と比較する。そして、半導体ウエハ20の反射画像の暗い箇所の輝度値の低下量に基づいて、繰り返しパターン22の欠陥を検出する。例えば、輝度値の低下量が予め定めた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判断すればよい。   Therefore, when the image processing apparatus 15 captures the reflection image of the semiconductor wafer 20 that is the test substrate, the image processing apparatus 15 compares the luminance information with the luminance information of the reflection image of the non-defective wafer. Then, the defect of the repetitive pattern 22 is detected based on the amount of decrease in the luminance value in the dark part of the reflected image of the semiconductor wafer 20. For example, if the amount of decrease in luminance value is larger than a predetermined threshold (allowable value), it is determined as “defect”, and if it is smaller than the threshold, it is determined as “normal”.

上記したように、本実施形態の表面検査装置によれば、直線偏光L1を用い、図5の振動面の方向(V方向)が繰り返しパターン22の繰り返し方向(X方向)に対して傾いた状態で、繰り返しパターン22を照明すると共に、正反射方向に発生した楕円偏光L2のうち、図4(c)の偏光成分L3の大きさに基づいて、繰り返しパターン22の欠陥を検出するため、照明波長と比較して繰り返しパターン22のピッチPが十分小さくても、確実に欠陥検査を行うことができる。つまり、照明光である直線偏光L1を短波長化しなくても、確実に繰り返しピッチの微細化に対応できる。   As described above, according to the surface inspection apparatus of the present embodiment, the linearly polarized light L1 is used, and the vibration surface direction (V direction) in FIG. 5 is inclined with respect to the repeating direction (X direction) of the repeating pattern 22. In order to illuminate the repetitive pattern 22 and detect defects in the repetitive pattern 22 based on the magnitude of the polarization component L3 in FIG. 4C among the elliptically polarized light L2 generated in the regular reflection direction, the illumination wavelength Even if the pitch P of the repeated pattern 22 is sufficiently small as compared with the above, the defect inspection can be surely performed. That is, even if the linearly polarized light L1 that is illumination light is not shortened in wavelength, it is possible to reliably cope with repetitive miniaturization of the pitch.

さらに、本実施形態においては、照明光学系13には、偏光板34と凹面反射鏡35との間に、偏光補償板9が配置されている。また、受光光学系14には、偏光板38と凹面反射鏡36との間に、偏光補償板10が配置されている。   Furthermore, in the present embodiment, the polarization compensation plate 9 is disposed in the illumination optical system 13 between the polarizing plate 34 and the concave reflecting mirror 35. In the light receiving optical system 14, the polarization compensation plate 10 is disposed between the polarizing plate 38 and the concave reflecting mirror 36.

まず、これらの偏光補償板を有さない場合に、凹面反射鏡35に入射し、反射した光束の偏光状態について説明する。
図1において、凹面反射鏡35に関して、凹面反射鏡に入射する直線偏光L1の主光線AX1を含み凹面反射鏡の光軸O35に平行な平面が、凹面反射鏡に入射する直線偏光L1の入射面である。一方、ライトガイドファイバ33の開口数に応じて発散された照明光L1は上述のように偏光板34で所定の直線偏光に変換され、発散光束の主光線AX1は凹面反射鏡35の光軸O35に対してずれた部位に入射する所謂軸外しの光学系となっている。
First, a description will be given of the polarization state of a light beam incident on and reflected from the concave reflecting mirror 35 when these polarization compensators are not provided.
In FIG. 1, with respect to the concave reflecting mirror 35, a plane including the principal ray AX1 of the linearly polarized light L1 incident on the concave reflecting mirror and parallel to the optical axis O35 of the concave reflecting mirror is incident on the incident surface of the linearly polarized light L1 incident on the concave reflecting mirror. It is. On the other hand, the illumination light L1 diverged in accordance with the numerical aperture of the light guide fiber 33 is converted into predetermined linearly polarized light by the polarizing plate 34 as described above, and the principal ray AX1 of the divergent light beam is the optical axis O35 of the concave reflecting mirror 35. In other words, it is a so-called off-axis optical system that is incident on a portion that is deviated from the above.

従って、凹面反射鏡35に入射する光線は、凹面反射鏡35に対して垂直ではない。このためFrenelの反射の式に従って、偏光のP成分とS成分との間に透過率の差が発生し、その結果偏光面の回転が発生する。   Therefore, the light beam incident on the concave reflecting mirror 35 is not perpendicular to the concave reflecting mirror 35. Therefore, according to Frenel's reflection formula, a difference in transmittance occurs between the P component and S component of the polarized light, and as a result, the polarization plane rotates.

例えば、偏光板34により、この入射面に対して平行な振動面(P偏光)を有する直線偏光が生成されるとする。この場合、主光線AX1と光軸O35とで形成される入射面を基準入射面とすると、光軸O35を含み前記入射面に対して垂直な面と凹面反射鏡35との交点付近においては、偏光面の回転は起こらないが、凹面反射鏡35の他の部位では回転が起こる。偏光の振動面は、凹面反射鏡35の面内のうち基準入射面を挟んで線対称に回転する。この回転量は凹面反射鏡の光軸O35から離れた部位ほど大きい。これは、凹面反射鏡35に入射する発散光束が、凹面反射鏡35の光軸O35からずれた位置から入射するため、図1において、凹面反射鏡35に入射する光束の最も左側の光は最も入射角度が小さく、最も右側の光は最も入射角度が大きくなるような傾斜を有するからである(入射角度は入射光と、凹面反射鏡面の法線との角度である)。   For example, it is assumed that the polarization plate 34 generates linearly polarized light having a vibration surface (P-polarized light) parallel to the incident surface. In this case, assuming that the incident surface formed by the principal ray AX1 and the optical axis O35 is a reference incident surface, in the vicinity of the intersection of the concave reflecting mirror 35 including the optical axis O35 and a surface perpendicular to the incident surface, Although the polarization plane does not rotate, rotation occurs in other parts of the concave reflecting mirror 35. The plane of vibration of the polarized light rotates symmetrically with respect to the reference incidence plane in the plane of the concave reflecting mirror 35. The amount of this rotation is larger as the position is away from the optical axis O35 of the concave reflecting mirror. This is because the divergent light beam incident on the concave reflecting mirror 35 enters from a position deviated from the optical axis O35 of the concave reflecting mirror 35, and therefore the leftmost light of the light beam incident on the concave reflecting mirror 35 in FIG. This is because the incident angle is small and the rightmost light has an inclination that makes the incident angle largest (the incident angle is an angle between the incident light and the normal of the concave reflecting mirror surface).

このように凹面反射鏡に対する光の入射角度が面内で異なる(傾斜を有する)ため、面内で偏光面の回転にわずかの差が生じ、クロスニコルでの消光比のムラが発生する。
さらに、受光光学系14で発生する消光比のムラについて説明する。図1において、凹面反射鏡36に関して、凹面反射鏡36から射出する直線偏光L2の主光線AX2を含み凹面反射鏡の光軸O36に平行な平面が、凹面反射鏡36から射出する直線偏光L2の入射面を基準入射面である。一方、ウエハ20を反射した平行光束L2は、凹面反射鏡36のうち光軸O36から外れた部位に入射して収束作用を受けるので、受光光学系14は、所謂軸外しの光学系となっている。
As described above, since the incident angle of light with respect to the concave reflecting mirror is different (inclined) in the plane, a slight difference occurs in the rotation of the polarization plane in the plane, and unevenness of the extinction ratio in crossed Nicols occurs.
Further, the non-uniformity of the extinction ratio that occurs in the light receiving optical system 14 will be described. In FIG. 1, with respect to the concave reflecting mirror 36, a plane including the principal ray AX <b> 2 of the linearly polarized light L <b> 2 emitted from the concave reflecting mirror 36 and parallel to the optical axis O <b> 36 of the concave reflecting mirror The incident surface is a reference incident surface. On the other hand, the parallel light beam L2 reflected from the wafer 20 is incident on a portion of the concave reflecting mirror 36 that is off the optical axis O36 and receives a converging action, so that the light receiving optical system 14 is a so-called off-axis optical system. Yes.

凹面反射鏡36から射出する収束光束の偏光面の回転は、前述の照明光学系13の場合と同様である。凹面反射鏡36において、凹面反射鏡36の面内のうち、前記基準入射面を挟んで線対称に、偏光の振動面が回転する。この回転量は凹面反射鏡の光軸O36から離れた部位ほど大きい。これは、凹面反射鏡36を射出する収束光束L2が、凹面反射鏡36の光軸O36からずれた位置から射出するため、図1において、凹面反射鏡36から射出する光束の最も右側の光は最も入射角度が小さく、最も左側の光は最も射出角度が大きくなるような傾斜を有するからである(入射角度は入射光と、凹面反射鏡面の法線との角度である)。このように凹面反射鏡に対する光の射出角度が面内で異なる(傾斜を有する)ため、面内で偏光面の回転にわずかの差が生じ、クロスニコルでの消光比のムラが発生する。   The rotation of the polarization plane of the convergent light beam emitted from the concave reflecting mirror 36 is the same as in the case of the illumination optical system 13 described above. In the concave reflecting mirror 36, the polarization vibration plane rotates in line symmetry with respect to the reference incident surface in the plane of the concave reflecting mirror 36. The amount of this rotation is larger as the distance from the optical axis O36 of the concave reflecting mirror increases. This is because the convergent light beam L2 emitted from the concave reflecting mirror 36 is emitted from a position shifted from the optical axis O36 of the concave reflecting mirror 36, and therefore the rightmost light of the light beam emitted from the concave reflecting mirror 36 in FIG. This is because the light having the smallest incident angle and the light on the leftmost side has an inclination that gives the largest emission angle (the incident angle is an angle between the incident light and the normal line of the concave reflecting mirror surface). As described above, since the light emission angle with respect to the concave reflecting mirror is different in the plane (has an inclination), a slight difference occurs in the rotation of the polarization plane in the plane, resulting in uneven extinction ratio in crossed Nicols.

本実施形態のように、クロスニコルに配置した2枚の偏光板34、38によって、構造複屈折による偏光の変化を検出する場合は、このような、装置に起因する僅かの偏光の乱れがノイズとなり検出精度を劣化させる。   When a change in polarization due to structural birefringence is detected by the two polarizing plates 34 and 38 arranged in crossed Nicols as in the present embodiment, such slight polarization disturbance due to the device is noise. As a result, the detection accuracy is degraded.

このような、傾斜を有して分布する微小な偏光面の回転による、照明光の面内での偏光面の回転ムラを解消するために、本実施形態では、偏光補償板9、10をそれぞれ偏光板34と凹面反射鏡35との間、偏光板38と凹面反射鏡36との間に配置する。しかしながら、どちらか一方だけに偏光補償板を配置しても偏光面の回転ムラの解消に効果がある。   In order to eliminate such uneven rotation of the polarization plane in the plane of the illumination light due to the rotation of the minute polarization plane distributed with an inclination, in the present embodiment, the polarization compensation plates 9 and 10 are respectively provided. They are disposed between the polarizing plate 34 and the concave reflecting mirror 35 and between the polarizing plate 38 and the concave reflecting mirror 36. However, even if the polarization compensator is disposed on only one of them, it is effective in eliminating the rotation unevenness of the polarization plane.

図6は、偏光補償板9、10の構成を示す図である。偏光補償板9,10は、例えばガラスの平行平板であり、支持部材40a、40bによって両端を固定されている。支持部材40a、40bは、それぞれ軸41a、41bを中心として回動可能に構成されており、支持部材40a、40bの一方あるいは両方を回動させることにより、偏光補償板9,10に応力を加えることができる。偏光補償板9,10は、応力が加わることにより形状が歪む。例えば偏光補償板9は、応力が加わっていない状態では、その入射面(出射面の同じ)が照明光L1の光軸AX1に対して垂直になるように配置されている。しかし、応力が加わり、表面形状が歪むことにより、入射面(出射面)の少なくとも一部が光軸AX1に対して傾斜した状態となる。   FIG. 6 is a diagram showing the configuration of the polarization compensators 9 and 10. The polarization compensation plates 9 and 10 are, for example, glass parallel plates, and both ends are fixed by support members 40a and 40b. The support members 40a and 40b are configured to be rotatable about shafts 41a and 41b, respectively, and apply stress to the polarization compensators 9 and 10 by rotating one or both of the support members 40a and 40b. be able to. The polarization compensators 9 and 10 are distorted in shape when stress is applied. For example, the polarization compensator 9 is arranged so that its incident surface (the same as the exit surface) is perpendicular to the optical axis AX1 of the illumination light L1 when no stress is applied. However, when stress is applied and the surface shape is distorted, at least a part of the incident surface (outgoing surface) is inclined with respect to the optical axis AX1.

ライトガイドファイバ11から射出され、偏光板34を経て直線偏光となった光束L1は偏光補償板9に入射する。ここで、光束L1は発散光束であり、かつ偏光補償板9は光軸AX1に対して傾いた入射面が存在するので、偏光補償板9に入射する光束の入射角度の大きさは光束の断面方向で傾斜を有する。したがって、偏光補償板9を透過した照明光L1は、入射光の入射角度に応じて、P成分とS成分の位相差が変化し偏光面が回転する。   A light beam L1 emitted from the light guide fiber 11 and converted into linearly polarized light through the polarizing plate 34 enters the polarization compensation plate 9. Here, since the light beam L1 is a divergent light beam, and the polarization compensator 9 has an incident surface inclined with respect to the optical axis AX1, the magnitude of the incident angle of the light beam incident on the polarization compensator 9 is the cross section of the light beam. Has a slope in the direction. Accordingly, the illumination light L1 transmitted through the polarization compensation plate 9 changes the phase difference between the P component and the S component according to the incident angle of the incident light, and the plane of polarization rotates.

ウエハ20を照明する時点での照明光L1の偏光面は、偏光補償板9で生じた偏光面の回転と凹面反射鏡35で生じた偏光面の回転量との足し合わせとなる。従って、凹面反射鏡35で生じる偏光面の回転量の傾斜とは反対の傾斜を有する偏光面の回転を生じるように、偏光補償板9を照明光学系の光軸AX1に対して傾斜を生じさせるように歪ませれば、偏光面の回転量の値を揃えることができる。受光光学系14に設けられた偏光補償板10においても同様のことが言えるので、2つの偏光補償板をそれぞれ歪ませることにより、偏光面の回転量の値をより均一に揃えることが可能となる。   The polarization plane of the illumination light L1 at the time of illuminating the wafer 20 is the sum of the rotation of the polarization plane generated by the polarization compensation plate 9 and the rotation amount of the polarization plane generated by the concave reflecting mirror 35. Accordingly, the polarization compensator 9 is inclined with respect to the optical axis AX1 of the illumination optical system so as to cause rotation of the polarization plane having an inclination opposite to the inclination of the rotation amount of the polarization plane generated by the concave reflecting mirror 35. If it is distorted in this way, the value of the rotation amount of the polarization plane can be made uniform. The same can be said for the polarization compensator 10 provided in the light receiving optical system 14. Therefore, by distorting the two polarization compensators, the values of the rotation amounts of the polarization planes can be made more uniform. .

偏光補償板9、10を固定している支持部材40a、40bは、回動させた状態で、その状態に固定することができる。したがって、任意の回動位置(すなわち任意の応力を加えた状態)で固定させておくことができる。   The support members 40a and 40b that fix the polarization compensators 9 and 10 can be fixed in that state while being rotated. Therefore, it can be fixed at an arbitrary rotational position (that is, a state where an arbitrary stress is applied).

次に、偏光面の回転量の値を揃えた状態にするための調整のしかたについて説明する。
まず、偏光補償板9、10に応力が加えられていない状態で、ベアウエハ(表面に何も処理が施されていないウエハ)をステージ11上に載置する。このベアウエハは、表面にパターンが形成されていないので、直線偏光L1はベアウエハに照射されても楕円偏光成分が発生しない。したがって、理論的には、直線偏光L1と偏光方向が同一の光束が偏光板38に入射することになり、偏光板38を透過する偏光成分はなく、撮像素子39には光が入射しないことになる。しかしながら、前述のように、凹面反射鏡35,36で偏光面が回転することにより、撮像素子39にはその偏光面が回転した部分の偏光成分が入射して、その部分が明るく見えることになる。図7は、撮像されたベアウエハの像を示す図であり、黒い帯状領域51aと、領域51aより明るく見える領域51b、51cがある。領域51b、51cは、偏光面が回転した部分である。このように明るさにムラ(消光比のムラ)ができている。
Next, a description will be given of how to adjust the polarization plane rotation amount values to be in a uniform state.
First, a bare wafer (a wafer whose surface is not subjected to any processing) is placed on the stage 11 in a state where no stress is applied to the polarization compensation plates 9 and 10. Since this bare wafer has no pattern formed on its surface, the linearly polarized light L1 does not generate an elliptically polarized component even if it is irradiated onto the bare wafer. Therefore, theoretically, a light beam having the same polarization direction as that of the linearly polarized light L1 is incident on the polarizing plate 38, there is no polarization component transmitted through the polarizing plate 38, and no light is incident on the image sensor 39. Become. However, as described above, when the plane of polarization is rotated by the concave reflecting mirrors 35 and 36, the polarized light component of the portion where the plane of polarization is rotated is incident on the image sensor 39, and the portion looks bright. . FIG. 7 is a diagram showing a captured image of a bare wafer, which includes a black belt-like region 51a and regions 51b and 51c that appear brighter than the region 51a. The regions 51b and 51c are portions where the polarization plane is rotated. In this way, the brightness is uneven (extinction ratio is uneven).

この状態で、偏光補償板9、10の支持部材40a、40bを回動させることにより、偏光補償板9、10に応力を加え歪ませる。そして、撮像素子39で撮像されたベアウエハの像を見ながら、図7のような明るさのムラがなくなるような、支持部材40a、40bの回動位置を探す。そして、明るさのムラがなくなった位置で支持部材40a、40bを固定する。   In this state, by rotating the support members 40a and 40b of the polarization compensation plates 9 and 10, stress is applied to the polarization compensation plates 9 and 10 to distort them. Then, while looking at the bare wafer image picked up by the image pickup device 39, the rotation positions of the support members 40a and 40b are searched such that the brightness unevenness as shown in FIG. 7 is eliminated. Then, the support members 40a and 40b are fixed at a position where the brightness unevenness is eliminated.

このような状態で、パターンが形成されたウエハをステージ11に載置して検査を行う。
本実施形態では、偏光補償板9、10に平行平板を用いたが、応力を加えることにより歪ませることができ、明るさのムラを補正できるのであれば、他の形状の部材であってもよい。
In this state, the wafer on which the pattern is formed is placed on the stage 11 and inspected.
In the present embodiment, a parallel plate is used for the polarization compensators 9 and 10, but other shapes can be used as long as they can be distorted by applying stress and uneven brightness can be corrected. Good.

以上のように、本実施形態によれば、偏光補償板9、10により、凹面反射鏡35,36による光束の断面方向での偏光面の回転量の傾斜を補正することができるのでウエハ面全面で偏光面の回転方向の揃えることができる。そのため、ウエハの欠陥検出の検出精度を劣化させることがない。   As described above, according to the present embodiment, the polarization compensators 9 and 10 can correct the tilt of the rotation amount of the polarization plane in the cross-sectional direction of the light beam by the concave reflecting mirrors 35 and 36. Can align the rotation direction of the polarization plane. Therefore, the detection accuracy of defect detection on the wafer is not deteriorated.

本発明の実施形態による表面検査装置の全体構成を示す図である。It is a figure which shows the whole structure of the surface inspection apparatus by embodiment of this invention. 半導体ウエハ20の表面の外観図である。2 is an external view of the surface of a semiconductor wafer 20. FIG. 直線偏光L1の入射面(3A)と、繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the incident surface (3A) of the linearly polarized light L1 and the repeating direction (X direction) of the repeating pattern 22. FIG. 直線偏光L1と楕円偏光L2の振動方向を説明する図である。It is a figure explaining the vibration direction of linearly polarized light L1 and elliptically polarized light L2. 直線偏光L1の振動面の方向(V方向)と、繰り返しパターン22の繰り返し方向(X方向)との傾き状態を説明する図である。It is a figure explaining the inclination state of the direction (V direction) of the vibration surface of the linearly polarized light L1, and the repeating direction (X direction) of the repeating pattern 22. FIG. 偏光補償板9、10の構成を示す図である。It is a figure which shows the structure of the polarization compensation plates 9 and 10. FIG. 撮像されたベアウエハの像であり、消光ムラを示す図である。It is the image of the image | photographed bare wafer and is a figure which shows a quenching nonuniformity.

符号の説明Explanation of symbols

9,10:偏光補償板、11:ステージ、12:アライメント系、13:照明光学系、14:受光光学系、15:画像処理装置、16:ステージ回転機構、20:半導体ウエハ、21:チップ領域、22,25,26:繰り返しパターン、33:ライトガイドファイバ、34,38:偏光板、35,36:凹面反射鏡、37:結像レンズ、39:撮像素子、40a、40b:支持部材、L1:照明光、L2:反射光、LS:ランプハウス。 9, 10: Polarization compensator, 11: Stage, 12: Alignment system, 13: Illumination optical system, 14: Light receiving optical system, 15: Image processing device, 16: Stage rotation mechanism, 20: Semiconductor wafer, 21: Chip area 22, 25, 26: repetitive pattern, 33: light guide fiber, 34, 38: polarizing plate, 35, 36: concave reflecting mirror, 37: imaging lens, 39: imaging device, 40a, 40b: support member, L1 : Illumination light, L2: reflected light, LS: lamp house.

Claims (3)

被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、
前記直線偏光の発散光束を、その光束の主光線が所定の入射角を有するように入射して、前記被検基板に導く光学部材と、
前記被検基板からの光束のうち前記直線偏光と偏光方向が直交する直線偏光成分を受光する受光手段と、
前記光源手段と前記受光手段との間に配置される補正部材に、応力歪を設定することにより、前記光学部材に起因して発生する偏光面の乱れを解消する補正手段と、
前記受光手段で受光した光に基づいて前記被検査基板の表面の欠陥を検出する検出手段と
を備えたことを特徴とする表面検査装置。
Light source means for emitting a linearly polarized divergent light beam for illuminating the substrate to be inspected;
An optical member that introduces the linearly polarized divergent light beam so that a principal ray of the light beam has a predetermined incident angle and guides it to the test substrate;
A light receiving means for receiving a linearly polarized light component whose polarization direction is orthogonal to the linearly polarized light in the light beam from the test substrate;
Correction means for eliminating the disturbance of the polarization plane caused by the optical member by setting a stress strain in the correction member disposed between the light source means and the light receiving means,
A surface inspection apparatus comprising: detection means for detecting defects on the surface of the substrate to be inspected based on light received by the light receiving means.
被検査基板を照明するための直線偏光の発散光束を射出する光源手段と、
前記直線偏光の発散光束を、その光束の主光線が所定の入射角を有するように入射して、前記被検基板に導く光学部材と、
前記被検基板からの光束のうち前記直線偏光と偏光方向が直交する偏光成分を抽出する抽出手段と、
前記抽出手段によって抽出された光により前記被検基板を像を結像する結像手段と、
前記光源手段と前記検出手段との間の光路中に配置される補正部材に、応力歪を設定することにより、前記光学部材に起因して発生する偏光面の乱れを解消する補正手段と、
結像された前記像に基づいて、前記被検基板の表面の欠陥を検出する検出手段と
を備えたことを特徴とする表面検査装置。
Light source means for emitting a linearly polarized divergent light beam for illuminating the substrate to be inspected;
An optical member that introduces the linearly polarized divergent light beam so that a principal ray of the light beam has a predetermined incident angle and guides it to the test substrate;
An extraction means for extracting a polarization component having a polarization direction orthogonal to the linearly polarized light out of the light flux from the test substrate;
An imaging unit that forms an image of the test substrate with the light extracted by the extraction unit;
Correction means for eliminating the disturbance of the polarization plane caused by the optical member by setting a stress strain in the correction member arranged in the optical path between the light source means and the detection means;
A surface inspection apparatus comprising: a detecting unit configured to detect a defect on the surface of the test substrate based on the formed image.
請求項1または2に記載の表面検査装置において、
前記補正手段は、前記応力歪を任意の値に固定可能であることを特徴とする表面検査装置。
The surface inspection apparatus according to claim 1 or 2,
The surface inspection apparatus characterized in that the correction means can fix the stress strain to an arbitrary value.
JP2005084290A 2004-06-16 2005-03-23 Surface inspection apparatus Pending JP2006266817A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005084290A JP2006266817A (en) 2005-03-23 2005-03-23 Surface inspection apparatus
KR1020050044555A KR101248674B1 (en) 2004-06-16 2005-05-26 Surface inspecting device and surface inspecting method
US11/150,385 US7307725B2 (en) 2004-06-16 2005-06-13 Surface inspection apparatus, polarization illuminating device and light-receiving device
TW094120000A TWI445947B (en) 2004-06-16 2005-06-16 A surface inspection apparatus, a polarizing apparatus, and a light receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005084290A JP2006266817A (en) 2005-03-23 2005-03-23 Surface inspection apparatus

Publications (1)

Publication Number Publication Date
JP2006266817A true JP2006266817A (en) 2006-10-05

Family

ID=37202964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084290A Pending JP2006266817A (en) 2004-06-16 2005-03-23 Surface inspection apparatus

Country Status (1)

Country Link
JP (1) JP2006266817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271312A (en) * 2006-03-30 2007-10-18 Nikon Corp Surface inspection device
WO2009048003A1 (en) * 2007-10-12 2009-04-16 Nikon Corporation Surface examining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271312A (en) * 2006-03-30 2007-10-18 Nikon Corp Surface inspection device
WO2009048003A1 (en) * 2007-10-12 2009-04-16 Nikon Corporation Surface examining device

Similar Documents

Publication Publication Date Title
JP5201350B2 (en) Surface inspection device
US7834993B2 (en) Surface inspection apparatus and surface inspection method
JP5585615B2 (en) Inspection apparatus and inspection method
US8072592B2 (en) Reticle defect inspection apparatus and reticle defect inspection method
US20090315988A1 (en) Observation device, inspection device and inspection method
KR101248674B1 (en) Surface inspecting device and surface inspecting method
TWI464390B (en) Surface inspection device and surface inspection method
JP4462232B2 (en) Surface inspection device
JP4853758B2 (en) Surface inspection apparatus and surface inspection method
JP4506723B2 (en) Surface inspection device
JP4605089B2 (en) Surface inspection device
JP4696607B2 (en) Surface inspection device
JP2010271186A (en) Defect inspection apparatus
JP2009097988A (en) Surface inspection apparatus
JP2006266817A (en) Surface inspection apparatus
JP4462222B2 (en) Surface inspection device
JP2008008777A (en) Surface inspection system
JP2006250839A (en) Surface inspection apparatus
JP2009068892A (en) Inspection device
JP2011149951A (en) Device and method for surface inspection
JP5201443B2 (en) Surface inspection apparatus and surface inspection method
JP2009025293A (en) Device and method for measuring pattern pitch and device and method for surface inspection
JP2009150776A (en) Surface inspection device
JP2010122121A (en) Surface inspection device