[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006263699A - Heavy metal-containing water treatment method and apparatus - Google Patents

Heavy metal-containing water treatment method and apparatus Download PDF

Info

Publication number
JP2006263699A
JP2006263699A JP2005125726A JP2005125726A JP2006263699A JP 2006263699 A JP2006263699 A JP 2006263699A JP 2005125726 A JP2005125726 A JP 2005125726A JP 2005125726 A JP2005125726 A JP 2005125726A JP 2006263699 A JP2006263699 A JP 2006263699A
Authority
JP
Japan
Prior art keywords
precipitate
heavy metal
sludge
containing water
iron compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005125726A
Other languages
Japanese (ja)
Other versions
JP3956978B2 (en
Inventor
Hiroshi Hayashi
浩志 林
Hitoshi Takeuchi
均 竹内
Hajime Negishi
一 根岸
Nariyuki Tsuzaki
成幸 津崎
Yoshio Aikawa
良雄 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005125726A priority Critical patent/JP3956978B2/en
Publication of JP2006263699A publication Critical patent/JP2006263699A/en
Application granted granted Critical
Publication of JP3956978B2 publication Critical patent/JP3956978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment system for efficiently and economically removing heavy metals from heavy metal-containing water. <P>SOLUTION: A treatment method for removing heavy metals by adding a reducing iron compound to the heavy metal-containing water to precipitate the heavy metals, and performing the solid-liquid separation of the precipitate comprises a process for adding the reducing iron compound to the heavy metal-containing water [an iron compound addition process], a process for introducing the heavy metal-containing water to which the reducing iron compound has been added to a reaction tank to generate a precipitate [a precipitation process], a process for performing the solid-liquid separation of the generated precipitate (sludge) [a solid-liquid separation process] and a process for making the whole of or a part of the separated sludge alkaline and then returning it to the reaction tank [a sludge return process]. In the precipitation process, the wastewater to which the reducing iron compound has been added and alkaline sludge are mixed, and reacted under a nonoxidizing atmosphere and an alkaline condition to generate the precipitate of the reducing iron compound, and the heavy metals are incorporated into the precipitate to be removed to the outside of a system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、重金属類含有水から効率よく重金属類を除去する経済性に優れた処理システムに関する。より詳しくは、工程が簡単で実用性に優れ、常温で効率よく排水に含まれる重金属類を除去する経済性に優れた重金属類含有水の処理システムに関する。 The present invention relates to an economical treatment system that efficiently removes heavy metals from water containing heavy metals. More specifically, the present invention relates to a heavy metal-containing water treatment system that is simple in process, excellent in practicality, and efficient in removing heavy metals contained in wastewater efficiently at room temperature.

排水等に含まれる重金属類の一例としてセレンが知られている。通常、排水等に含まれるセレンは、亜セレン酸イオン[SeO3 2-](4価セレン)や、セレン酸イオン[SeO4 2-](6価セレン)の形態で存在する。このセレンは汚染物質として、排出基準が厳しく規制されている。従来、排水に含まれるセレンの除去方法として、(イ)水酸化第二鉄などの3価鉄化合物を添加し、その凝集作用によって沈澱にセレンを吸着させて共沈させる方法、(ロ)バリウムや鉛などを添加して難溶性のセレン酸塩沈澱を形成する方法、(ハ)イオン交換樹脂を用いてセレンを吸着させて除去する方法、(ニ)生物処理法が知られている。 Selenium is known as an example of heavy metals contained in waste water and the like. Usually, selenium contained in waste water or the like exists in the form of selenite ion [SeO 3 2- ] (tetravalent selenium) or selenate ion [SeO 4 2- ] (hexavalent selenium). This selenium is a pollutant and its emission standards are strictly regulated. Conventionally, as a method for removing selenium contained in wastewater, (i) a method in which a trivalent iron compound such as ferric hydroxide is added and selenium is adsorbed to the precipitate by coagulation, and (b) barium There are known a method of forming a poorly soluble selenate precipitate by adding lead or lead, (c) a method of adsorbing and removing selenium using an ion exchange resin, and (d) a biological treatment method.

しかし、バリウムや鉛による沈澱化は共存イオンの影響を受けやすいために添加量を多く必要とし、しかもバリウムおよび鉛も重金属類であるため後処理の負担が生じる。また、イオン交換樹脂を用いた方法は硫酸イオン等が存在すると除去効果が激減するなどの問題がある。さらに、生物処理法は処理時間が長くかかる。一方、3価鉄化合物を用いる方法は6価セレンに対しては殆ど効果がない。そこで、第一鉄塩(2価の鉄)を利用した方法が提案されている。 However, since precipitation with barium or lead is easily affected by coexisting ions, a large amount of addition is required, and since barium and lead are also heavy metals, a burden of post-treatment arises. Further, the method using an ion exchange resin has a problem that the removal effect is drastically reduced if sulfate ions or the like are present. Furthermore, the biological treatment method takes a long time. On the other hand, the method using a trivalent iron compound has little effect on hexavalent selenium. Therefore, a method using ferrous salt (divalent iron) has been proposed.

この方法は、第一鉄の還元力を利用して6価セレンを4価セレンに還元することによってセレンの沈澱を促す方法であり、例えば、セレン含有排水に2価鉄イオンを添加し、次いで液温を30℃以上に加温維持しつつ空気遮断環境下とし、アルカリを添加してセレン澱物を生成させる処理方法が知られている(特許文献1)。また、セレン含有排水にアルカリを添加して重金属類の水酸化物を沈澱させる第1工程と、この処理液に不活性ガスを導入して溶存酸素を除去した後にアルカリ域で第一鉄塩を添加してセレンを還元し、沈澱化する第2工程と、この処理液に空気を吹き込んで液中に残留する重金属類を鉄含有沈澱に取り込んで沈澱化する第3工程とを有する処理方法が知られている(特許文献2)。この他に、セレン含有排水に水酸化第一鉄を添加し、さらにアルカリを加えてセレン含有沈澱を生成させる一方、そのスラッジの一部をアルカリ添加後の反応槽に循環して処理効率を高める処理方法が知られている(特許文献3)。 In this method, precipitation of selenium is promoted by reducing hexavalent selenium to tetravalent selenium by utilizing the reducing power of ferrous iron. For example, divalent iron ions are added to selenium-containing wastewater, and then There is known a treatment method in which a liquid temperature is maintained at 30 ° C. or higher while maintaining an air-blocking environment, and alkali is added to produce selenium starch (Patent Document 1). In addition, the first step of adding alkali to the selenium-containing wastewater to precipitate heavy metal hydroxides, and introducing an inert gas into the treatment liquid to remove dissolved oxygen, and then adding ferrous salt in the alkaline region And a second step of adding and reducing selenium and precipitating, and a third step of blowing air into the treatment liquid and taking in heavy metals remaining in the liquid into the iron-containing precipitate and precipitating. Known (Patent Document 2). Besides this, ferrous hydroxide is added to the selenium-containing wastewater, and further alkali is added to produce a selenium-containing precipitate, while a part of the sludge is circulated to the reaction tank after the addition of alkali to increase the processing efficiency. A processing method is known (Patent Document 3).

しかし、従来の上記処理方法は何れも排水中のセレン濃度を環境基準値0.01mg/L以下に低減するのが難しい。また、単に水酸化第一鉄を添加する方法では、排水中の酸素がセレンと競合して第一鉄イオンと反応するため、予め排水中の溶存酸素を除去する必要があり処理工程が煩わしい。さらに、水酸化第一鉄の沈澱は含有水率が大きく嵩高くなるので、このままではスラリー処理の負担が大きい。なお、生成した沈澱の一部を反応槽に循環する方法が知られているが、生成沈澱を単純に循環しても沈澱の圧密効果が低く、後処理に負担がかかる。しかも、従来の処理方法の多くは、水酸化第一鉄を加熱処理して鉄フェライト化しており、処理工程が煩雑であると共に加熱コストも嵩むと云う問題がある。 However, it is difficult to reduce the selenium concentration in the waste water to an environmental standard value of 0.01 mg / L or less in any of the above-described conventional treatment methods. Further, in the method of simply adding ferrous hydroxide, oxygen in the wastewater competes with selenium and reacts with ferrous ions, so it is necessary to remove dissolved oxygen in the wastewater in advance, and the treatment process is troublesome. Furthermore, since precipitation of ferrous hydroxide has a large water content and becomes bulky, the burden on slurry processing is large as it is. In addition, a method is known in which a part of the generated precipitate is circulated to the reaction vessel. However, even if the generated precipitate is simply circulated, the precipitation compaction effect is low, and the post-treatment is burdened. Moreover, many of the conventional treatment methods have the problem that ferrous hydroxide is heat-treated to form iron ferrite, and the treatment process is complicated and the heating cost increases.

また、重金属類排水に第一鉄イオン等を添加し、pH5以上に調整して鉄フェライトまたは疑似鉄フェライトを生成させ、生成したフェライト汚泥を固液分離すると共に、その一部を反応槽に返送して汚泥循環することによって重金属類を排水から除去する処理方法が知られている(特許文献4)。この方法は、フェライト汚泥(FeO・Fe23)が第一鉄と第二鉄を含むことに注目し、第一鉄単独よりも第一鉄と第二鉄を有するほうが容易にフェライト汚泥化することを利用して沈澱を生成させているが、この方法のフェライト汚泥は還元力が弱く、この汚泥を反応槽に返送しても重金属類の除去効果には限界がある。 In addition, ferrous ions etc. are added to heavy metal wastewater, adjusted to pH 5 or higher to produce iron ferrite or pseudo iron ferrite, and the generated ferrite sludge is separated into solid and liquid, and part of it is returned to the reaction tank And the processing method which removes heavy metals from waste water by circulating sludge is known (patent document 4). This method pays attention to the fact that ferrite sludge (FeO · Fe 2 O 3 ) contains ferrous iron and ferric iron. Ferrite sludge is easier to form with ferrous iron and ferric iron than ferrous alone. However, the ferrite sludge of this method has a weak reducing power, and even if this sludge is returned to the reaction tank, the effect of removing heavy metals is limited.

一方、重金属類含有水にアルカリを添加して汚泥を沈澱させ、この汚泥を分離する排水の処理方法において、重金属類排水にアルカリを直接添加せず、分離した汚泥の一部にアルカリを添加し、このアルカリ汚泥を反応槽に返送する処理方法が知られている(特許文献5、特許文献6)。しかし、アルカリ汚泥単独では重金属類を環境基準値以下に低減するのは難しい。
特開平08−267076号公報 特開2002−326090号公報 特開2001−9467号公報 特開2001−321781号公報 特公昭61−156号公報 特開平05−57292号(特許第2910346号)公報
On the other hand, in the wastewater treatment method of adding sludge by adding alkali to water containing heavy metals and separating this sludge, alkali is not added directly to the heavy metal wastewater, but alkali is added to a part of the separated sludge. A processing method for returning the alkaline sludge to the reaction tank is known (Patent Documents 5 and 6). However, it is difficult to reduce heavy metals below the environmental standard value with alkaline sludge alone.
Japanese Patent Laid-Open No. 08-267076 JP 2002-326090 A JP 2001-9467 A Japanese Patent Laid-Open No. 2001-321781 Japanese Patent Publication No. 61-156 Japanese Patent Laid-Open No. 05-57292 (Japanese Patent No. 2910346)

本発明は、第一鉄塩を用いた従来のフェライト法に基づく処理方法を改善して上記問題を解決したものであり、沈澱が圧密化され、固液分離性が良く、かつ常温でフェライト処理が可能な経済性および処理効果に優れ、重金属類の濃度を環境基準値0.01mg/L以下に低減することができる処理方法を提供するものである。 The present invention improves the treatment method based on the conventional ferrite method using a ferrous salt and solves the above problems. The precipitate is consolidated, the solid-liquid separability is good, and the ferrite treatment is performed at room temperature. Therefore, the present invention provides a treatment method that is excellent in economic efficiency and treatment effect, and that can reduce the concentration of heavy metals to an environmental standard value of 0.01 mg / L or less.

本発明は以下の重金属類含有水の処理方法に関する。
(1)重金属類含有水に還元性鉄化合物を添加して重金属類を沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、上記沈澱化工程において、還元性鉄化合物を添加した重金属類含有水とアルカリ性汚泥とを混合し、非酸化性雰囲気下、アルカリ性下で反応させて還元性の鉄化合物沈澱を生成させ、該沈澱に重金属類を取り込んで系外に除去する重金属類含有水の処理方法。
(2)反応槽において生成される還元性鉄化合物沈澱が、グリーンラストと鉄フェライトの混合物であり、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように該沈澱を生成させる上記(1)に記載する処理方法。
(3)反応槽に返送するアルカリ性汚泥のpHを11〜13に調整し、このアルカリ性汚泥を混合した反応槽内のpHを8.5〜11に調整し、非酸化性雰囲気下で上記還元性鉄化合物沈澱を生成させる上記(1)または(2)に記載する処理方法。
(4)還元性鉄化合物として第一鉄化合物を用い、密閉反応槽で非酸化性雰囲気下、10℃〜30℃の液温下で沈澱を生成させる上記(1)〜(3)の何れかに記載する処理方法。
(5)上記処理方法において、鉄化合物添加工程の前に、重金属類含有水に鉄化合物またはアルミニウム化合物を添加し、アルカリ性下で鉄またはアルミニウムの水酸化物を沈殿させることによって、ケイ酸イオン、アルミニウムイオン、微量有機物の少なくとも何れかを上記水酸化物と共に沈澱化し、この沈澱を濾過除去する前処理工程を設け、上記沈殿物を除去した重金属類含有水について、上記還元性鉄化合物添加工程、上記沈澱化工程、上記固液分離工程、上記汚泥返送工程の各処理を行う上記(1)〜(4)の何れかに記載する重金属類含有水の処理方法。
(6) 重金属類含有水に鉄化合物またはアルミニウム化合物を添加して生成した沈澱を固液分離した後に、該重金属類含有水に第一鉄化合物を添加し、この第一鉄化合物を添加した重金属類含有水を反応槽に導入する一方、反応槽から抜き出して固液分離した汚泥の一部または全部にアルカリを添加して汚泥のpHを11〜13にし、このアルカリ性汚泥を反応槽に返送し、該反応槽において、空気を遮断した非酸化性雰囲気下、10℃〜30℃の温度下、pH8.5〜11の液性下で、30分〜3時間反応させ、生成した沈澱(汚泥)を固液分離する一方、沈澱の一部または全部をアルカリ化して反応槽に返送することを繰り返し、固液分離した重金属類含有水の重金属類濃度を0.01mg/L以下に低減する上記(1)〜(5)の何れかに記載する重金属類含有水の処理方法。
(7)含有重金属類がセレン、カドミウム、六価クロム、鉛、亜鉛、銅、ニッケル、ヒ素、アンチモンの何れか1種または2種以上であり、これらの濃度を何れも0.01mg/L以下に低減する上記(1)〜(6)の何れかに記載する重金属類含有水の処理方法。
(8)固液分離手段において分離した汚泥について、反応槽に返送しない汚泥を濾過脱水し、水分を系外に排出する一方、濾渣に別系統の排水等を通水し、濾渣に残存する還元力を利用して上記排水等に含まれる汚染を分解する上記(1)〜(7)の何れかに記載する重金属類含有水の処理方法。
The present invention relates to the following methods for treating heavy metal-containing water.
(1) Add reducible iron compound to water containing heavy metals in a treatment method that adds heavy irons to water containing heavy metals to precipitate heavy metals, and separates this precipitate into solid and liquid to remove heavy metals. Step of adding [iron compound adding step], step of introducing precipitate containing heavy metal containing water containing reducing iron compound into the reaction vessel [precipitation step], step of solid-liquid separation of the generated precipitate (sludge) [ Solid-liquid separation step], a step of converting all or part of the separated sludge to alkalinity and returning it to the reaction tank (sludge return step), and in the precipitation step, heavy metal-containing water added with a reducing iron compound A method of treating heavy metal-containing water by mixing a mixture with alkaline sludge and reacting in a non-oxidizing atmosphere and under alkaline conditions to form a reducible iron compound precipitate, and taking the heavy metal into the precipitate and removing it from the system .
(2) The reducing iron compound precipitate produced in the reaction tank is a mixture of green last and iron ferrite, and the ratio of the divalent iron ions to total iron ions in the precipitate [Fe 2+ / Fe (T)] The processing method according to the above (1), wherein the precipitate is formed so as to be 0.4 to 0.8.
(3) The pH of the alkaline sludge to be returned to the reaction tank is adjusted to 11 to 13, the pH in the reaction tank in which the alkaline sludge is mixed is adjusted to 8.5 to 11, and the reducing property is reduced in a non-oxidizing atmosphere. The processing method according to (1) or (2) above, wherein an iron compound precipitate is formed.
(4) Any one of (1) to (3) above, wherein a ferrous compound is used as the reducing iron compound and a precipitate is produced in a non-oxidizing atmosphere at a liquid temperature of 10 ° C. to 30 ° C. in a closed reaction tank. The processing method described in.
(5) In the above treatment method, before the iron compound addition step, an iron compound or an aluminum compound is added to the heavy metal-containing water, and an iron or aluminum hydroxide is precipitated under alkalinity, whereby silicate ions, Precipitating step for precipitating at least one of aluminum ions and trace organic substances together with the hydroxide, and removing the precipitate by filtration. About the heavy metal-containing water from which the precipitate has been removed, the reducing iron compound adding step, The method for treating heavy metal-containing water according to any one of (1) to (4), wherein each treatment of the precipitation step, the solid-liquid separation step, and the sludge return step is performed.
(6) The solid formed by adding the iron compound or aluminum compound to the heavy metal-containing water and then separating the solid, and then adding the ferrous compound to the heavy metal-containing water, and adding the ferrous compound to the heavy metal Water is introduced into the reaction tank, while alkali is added to a part or all of the sludge extracted from the reaction tank and separated into solid and liquid to adjust the sludge pH to 11-13, and this alkaline sludge is returned to the reaction tank. In the reaction tank, the reaction was carried out for 30 minutes to 3 hours under a non-oxidizing atmosphere in which the air was shut off, at a temperature of 10 ° C. to 30 ° C., and at a pH of 8.5 to 11 for 30 minutes to 3 hours. While solid-liquid separation is repeated, a part or all of the precipitate is alkalized and returned to the reaction tank repeatedly to reduce the heavy metal concentration of the solid-liquid separated heavy metal-containing water to 0.01 mg / L or less ( Heavy metal as described in any of 1) to (5) Method for treating genus-containing water.
(7) Contained heavy metals are selenium, cadmium, hexavalent chromium, lead, zinc, copper, nickel, arsenic and antimony, one or more, and these concentrations are 0.01 mg / L or less. The method for treating heavy metal-containing water according to any one of (1) to (6), wherein
(8) For sludge separated in the solid-liquid separation means, sludge that is not returned to the reaction tank is filtered and dehydrated, and water is discharged out of the system. The method for treating heavy metal-containing water according to any one of the above (1) to (7), wherein force contained in the waste water or the like is decomposed using force.

また、本発明は以下の重金属類含有水の処理装置に関する。
(9)重金属類含有水に第一鉄化合物を添加する槽、第一鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽、該反応槽から抜き出したスラリーを固液分離する手段、分離した汚泥にアルカリを添加する槽、アルカリ性汚泥を反応槽に返送する管路、これらの各槽および固液分離手段を連通する管路を備え、請求項1の処理系を形成したことを特徴とする重金属類含有水の処理装置。
(10)上記(9)の処理装置において、重金属類含有水に還元性鉄化合物を添加する槽の前に、該重金属類含有水に鉄化合物またはアルミニウム化合物を添加する槽、および生成した沈澱の固液分離手段を有する重金属類含有水の処理装置。
Moreover, this invention relates to the processing apparatus of the following heavy metal containing water.
(9) A tank for adding ferrous compounds to heavy metal containing water, a non-oxidizing atmosphere sealed reaction tank for reacting heavy metals containing water added with ferrous compounds, and a slurry extracted from the reaction tank 2. A means for separating, a tank for adding alkali to the separated sludge, a pipe for returning the alkaline sludge to the reaction tank, and a pipe for communicating each of these tanks and the solid-liquid separation means. An apparatus for treating water containing heavy metals.
(10) In the treatment apparatus of (9), before the tank for adding the reducing iron compound to the heavy metal-containing water, the tank for adding the iron compound or the aluminum compound to the heavy metal-containing water, and the generated precipitate An apparatus for treating heavy metal-containing water having solid-liquid separation means.

〔具体的な説明〕
本発明の処理方法は、重金属類含有水に還元性鉄化合物を添加して重金属類を沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、上記重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、上記沈澱化工程において、還元性鉄化合物を添加した重金属類含有水とアルカリ性汚泥とを混合し、非酸化性雰囲気下、アルカリ性下で反応させて還元性の鉄化合物沈澱を生成させ、該沈澱に重金属類を取り込んで系外に除去する重金属類含有水の処理方法である。
[Specific description]
The treatment method of the present invention is a treatment method in which a reducing iron compound is added to heavy metal-containing water to precipitate heavy metals, and the precipitate is solid-liquid separated to remove heavy metals, and reduced to the heavy metal-containing water. A step of adding a ferrous iron compound [iron compound addition step], a step of introducing a heavy metal-containing water to which a reducing iron compound has been added to a reaction vessel to generate a precipitate [precipitation step], and the generated precipitate (sludge) to be solidified. It has a step of liquid separation [solid-liquid separation step], a step of converting all or part of the separated sludge to alkalinity and returning it to the reaction tank [sludge return step]. In the precipitation step, a reducing iron compound is added. Heavy metal containing water and alkaline sludge are mixed and reacted in a non-oxidizing atmosphere under alkali to produce a reduced iron compound precipitate, and the heavy metal is taken out of the system by taking the heavy metal into the precipitate Contains water It is a management method.

本発明において、重金属類含有水とは重金属類を含む水を広く意味し、自然発生的および人為的に生じた各種の廃水や排水等を含み、例えば、工場排水や下水、海水、河川水、沼や湖池の水、地表の溜り水、河川等の堰止域の水、地下の流水や溜り水、暗渠の水などであって重金属類を含有するものを云う。なお、以下の説明において、これらの水を含めて排水等と云い、重金属類含有水について重金属類を含有する排水等と云う場合がある。 In the present invention, heavy metal-containing water broadly means water containing heavy metals, and includes various wastewater and wastewater generated naturally and artificially, such as factory wastewater and sewage, seawater, river water, This refers to water from marshes and lakes, surface pools, rivers and other dams, underground running water and pools, underdrains, etc. that contain heavy metals. In the following description, these waters may be referred to as waste water, and the heavy metal containing water may be referred to as waste water containing heavy metals.

また、本発明において重金属類とは、例えば、セレン、カドミウム、六価クロム、鉛、亜鉛、銅、ニッケル、ヒ素、アンチモンなどの重金属元素や金属元素などを云う。本発明の処理システムは排水等に含まれるこれらの汚染源となる重金属類の何れか1種および2種以上に対して優れた除去効果を有する。 In the present invention, heavy metals refer to heavy metal elements such as selenium, cadmium, hexavalent chromium, lead, zinc, copper, nickel, arsenic, and antimony, and metal elements. The treatment system of the present invention has an excellent removal effect with respect to any one or more of the heavy metals that are the sources of contamination contained in the waste water and the like.

本処理システムの概略を図1に示す。図示するように本処理システムは、重金属類含有水に還元性鉄化合物を添加する槽10、還元性鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽30、該反応槽30から抜き出したスラリーを固液分離する手段40、分離した汚泥にアルカリを添加する槽20、アルカリ性汚泥を反応槽30に返送する管路、これらの各槽および固液分離手段を連通する管路を備えている。なお、図1に示す処理システムにおいて、反応槽30を2台以上直列に設置し、これらを窒素でパージした密閉構造にし、還元性雰囲気下で上記フェライト化処理を行うようにすると良い。 The outline of this processing system is shown in FIG. As shown in the figure, the present processing system includes a tank 10 for adding a reducing iron compound to heavy metal-containing water, a sealed reaction tank 30 in a non-oxidizing atmosphere for reacting heavy metal-containing water added with a reducing iron compound, and the reaction. Means 40 for solid-liquid separation of the slurry extracted from the tank 30, a tank 20 for adding alkali to the separated sludge, a conduit for returning the alkaline sludge to the reaction tank 30, and a pipe for communicating these tanks and the solid-liquid separation means It has a road. In the treatment system shown in FIG. 1, it is preferable to install two or more reaction tanks 30 in series, to form a sealed structure purged with nitrogen, and to perform the ferritization treatment in a reducing atmosphere.

本発明の処理システムでは、重金属類含有水を添加槽10に導き、還元性鉄化合物を添加する。還元性鉄化合物としては、硫酸第一鉄(FeSO4)、塩化第一鉄(FeCl2)などの第一鉄化合物を用いることができる。第一鉄化合物の添加量はFe2+イオン濃度400〜600mg/Lになる量が適当である。還元性鉄化合物を添加した重金属類含有水を反応槽30に導入する。 In the treatment system of the present invention, the heavy metal-containing water is guided to the addition tank 10 and the reducing iron compound is added. As the reducing iron compound, ferrous compounds such as ferrous sulfate (FeSO 4 ) and ferrous chloride (FeCl 2 ) can be used. The addition amount of the ferrous compound is appropriate such that the Fe 2+ ion concentration is 400 to 600 mg / L. Heavy metal-containing water to which the reducing iron compound is added is introduced into the reaction tank 30.

反応槽30には、還元性鉄化合物を添加した重金属類含有水と共に固液分離工程からアルカリ性汚泥が返送され、重金属類含有水と混合される。このアルカリ性汚泥は後工程において固液分離された沈澱(汚泥)の一部または全部にアルカリを添加してpH11〜13に調整したものである。添加するアルカリ物質としては消石灰、生石灰、水酸化ナトリウムなどを用いることができる。アルカリ性汚泥を混合することによって反応槽30のpHは8.5〜11、好ましくはpH9.0〜10に調整される。 Alkaline sludge is returned to the reaction tank 30 from the solid-liquid separation step together with the heavy metal-containing water to which the reducing iron compound is added, and mixed with the heavy metal-containing water. This alkaline sludge is adjusted to pH 11 to 13 by adding alkali to a part or all of the precipitate (sludge) separated into solid and liquid in the subsequent step. As the alkaline substance to be added, slaked lime, quick lime, sodium hydroxide or the like can be used. By mixing the alkaline sludge, the pH of the reaction tank 30 is adjusted to 8.5 to 11, preferably pH 9.0 to 10.

反応槽30において、還元性鉄化合物を添加した重金属類含有水とアルカリ性返送汚泥とを混合し、非酸化性雰囲気下で反応させることによって、還元性の鉄化合物沈澱を生成させる。この鉄化合物沈澱は、グリーンラストと鉄フェライトの混合物であり、還元性の沈澱である。 In the reaction tank 30, heavy metal-containing water to which a reducing iron compound is added and alkaline return sludge are mixed and reacted in a non-oxidizing atmosphere to generate a reducing iron compound precipitate. This iron compound precipitate is a mixture of green last and iron ferrite and is a reductive precipitate.

グリーンラストは第一鉄と第二鉄の水酸化物が層状をなす青緑色の物質であり、層間に重金属類のアニオンを取り込んだ構造を有し、例えば次式(1)によって表される。
〔FeII (6-x)FeIII x(OH)12x+〔Ax/n・yH2O〕x- …(1)
(0.9<x<4.2、Fe2+/全Fe=0.3〜0.85)。
Green last is a blue-green substance in which a hydroxide of ferrous iron and ferric iron forms a layer, and has a structure in which an anion of heavy metals is incorporated between layers, and is represented by, for example, the following formula (1).
[Fe II (6-x) Fe III x (OH) 12 ] x + [A x / n · yH 2 O] x- ... (1)
(0.9 <x <4.2, Fe 2+ / total Fe = 0.3 to 0.85).

また、鉄フェライトはFeIIの鉄(III)酸塩であり、マグネタイト(FeIIFeIII 34)を主体とするが、一部に重金属類の鉄酸塩を含むものでもよい。本発明の還元性の鉄化合物沈澱は、例えば、重金属類含有水中の重金属類イオンがグリーンラストの層間に取り込まれ、重金属類を一部に含んだ状態で鉄フェライト化する。具体的には、例えば、排水等に含まれる6価セレン(SeO4 2-)は第一鉄化合物によって還元されて4価セレン(SeO3 2-)および元素セレンになり、これらはグリーンラストの層間に取り込まれた状態で沈澱化する。 Moreover, iron ferrites are Fe II iron (III) salt, but mainly of magnetite (Fe II FeI II 3 O 4 ), or those containing ferrate heavy metals in a part. In the reducing iron compound precipitate of the present invention, for example, heavy metal ions in water containing heavy metals are taken in between the layers of the green last, and iron ferrite is formed in a state in which the heavy metals are partially included. Specifically, for example, hexavalent selenium (SeO 4 2- ) contained in waste water and the like is reduced by ferrous compounds to tetravalent selenium (SeO 3 2- ) and elemental selenium, which are It precipitates in the state of being taken in between the layers.

本発明の処理方法は、反応槽30で上記還元性鉄化合物沈澱を生成させるために、空気の流入を遮断した密閉反応槽を用い、非酸化性雰囲気下、pH8.5〜11、好ましくはpH9.0〜10のアルカリ性下で反応させる。液温は10℃〜30℃程度で良く、加熱する必要はない。反応時間は30分〜3時間程度で良い。 The treatment method of the present invention uses a closed reaction tank in which the inflow of air is blocked in order to produce the reduced iron compound precipitate in the reaction tank 30, and has a pH of 8.5 to 11 and preferably a pH of 9 in a non-oxidizing atmosphere. The reaction is carried out under alkaline conditions of 0.0 to 10. The liquid temperature may be about 10 ° C. to 30 ° C. and does not need to be heated. The reaction time may be about 30 minutes to 3 hours.

なお、重金属類含有水に第一鉄化合物とアルカリとを添加して、鉄化合物沈澱を生成させる処理方法であっても、従来のように反応槽が密閉されておらず、非酸化性雰囲気下ではないもの、またアルカリの程度が弱いものは、上記還元力を有する沈澱が生成せず、本発明と同様の効果を得ることはできない。 Even in a treatment method in which ferrous compound and alkali are added to heavy metal-containing water to produce an iron compound precipitate, the reaction vessel is not sealed as in the conventional case, and the reaction is performed in a non-oxidizing atmosphere. Those having a low alkali level do not produce precipitates having the above reducing power, and the same effects as those of the present invention cannot be obtained.

本発明の処理方法においては、グリーンラストと鉄フェライトの混合物からなる上記鉄化合物沈澱が還元力を有するように、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように沈澱を生成させることが好ましく、上記鉄イオン比を0.55〜0.65に制御するのが更に好ましい。この比が上記範囲を外れると重金属類の還元が不十分になり、あるいは澱物の沈降性が劣化するので好ましくない。上記還元性の鉄化合物沈澱を生成させることによって、含有重金属類が還元され、容易に沈澱に取り込まれる。 In the treatment method of the present invention, the ratio of divalent iron ions to total iron ions of the precipitate [Fe 2+ / Fe (T )] Is preferably 0.4 to 0.8, and the iron ion ratio is more preferably controlled to 0.55 to 0.65. When this ratio is out of the above range, the reduction of heavy metals becomes insufficient, or the sedimentation property of starch deteriorates, which is not preferable. By producing the reducible iron compound precipitate, the contained heavy metals are reduced and easily incorporated into the precipitate.

反応槽30にアルカリ性汚泥の返送を繰り返し、還元性鉄化合物を添加した重金属類含有水との反応を繰り返すことによって、グリーンラストが酸化して鉄フェライト化することによって最初は深青緑色であった沈澱がしだいに黒色に変化する。グリーンラストの大部分が鉄フェライトになると還元性がなくなるので、本発明の処理方法では、上記鉄化合物沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕を上記範囲内に制御して還元性のある沈澱を生成させる。 By repeating the return of alkaline sludge to the reaction tank 30 and repeating the reaction with the heavy metal-containing water to which the reducing iron compound is added, the green rust is oxidized and iron ferrite is formed. Gradually turns black. Since the reducibility is lost when most of the green rust becomes iron ferrite, in the treatment method of the present invention, the ratio [Fe 2+ / Fe (T)] of the divalent iron ions to the total iron ions in the iron compound precipitate is set as described above. Control within the range to produce a reducing precipitate.

本発明の処理方法では、上記還元性汚泥(鉄化合物沈澱)を分離してその一部または全部をアルカリ化して反応槽に返送し、非酸化性雰囲気下で反応させ、再び還元性汚泥を沈澱させることを繰り返すことによって、汚泥(沈澱)の還元性を維持しつつ鉄フェライト化するので沈澱の圧密化が進み、澱物の濃度が格段に高まるので重金属類の除去効果が向上する。因みに、水酸化鉄を主体とした沈澱(汚泥)は嵩高く、脱水処理の負担が大きい。また、本発明の処理方法では、沈澱を形成している鉄フェライトはマグネタイトを主体とするため磁性を帯びており、分離した沈澱を磁石に吸着させて処理することができる。 In the treatment method of the present invention, the reducing sludge (iron compound precipitation) is separated, and a part or all of the reduced sludge is alkalinized and returned to the reaction tank, reacted in a non-oxidizing atmosphere, and the reducing sludge is precipitated again. By repeating this process, iron ferrite is formed while maintaining the reducibility of the sludge (precipitation), so that the consolidation of the precipitation proceeds and the concentration of the starch is remarkably increased, thereby improving the effect of removing heavy metals. Incidentally, precipitation (sludge) mainly composed of iron hydroxide is bulky and has a heavy dehydration burden. Further, in the treatment method of the present invention, the iron ferrite forming the precipitate is magnetized because it is mainly composed of magnetite, and the separated precipitate can be adsorbed to a magnet for treatment.

反応槽30から排出されたスラリーは、例えばシックナーなどの固液分離手段に導き、汚泥を槽底に沈降させて分離する。この澱物を固液分離して重金属類を系外に除去することができる。また、既に述べたように、汚泥の一部または全部にアルカリを添加してpH11〜13に調整して反応槽30に戻し、反応槽30において沈澱生成反応を繰り返す。返送する汚泥の割合(返送汚泥の循環比)は反応槽30で生成する沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が上記範囲内になるように定めればよい。なお、本発明の処理方法は、バッチ式または連続式の何れの形式でも実施することができる。 The slurry discharged from the reaction tank 30 is guided to a solid-liquid separation means such as a thickener, for example, and sludge is settled on the tank bottom to be separated. This starch can be solid-liquid separated to remove heavy metals out of the system. Moreover, as already stated, an alkali is added to part or all of sludge, it adjusts to pH 11-13, and it returns to the reaction tank 30, The precipitation production | generation reaction is repeated in the reaction tank 30. The ratio of the sludge to be returned (circulation ratio of the returned sludge) is determined so that the ratio [Fe 2+ / Fe (T)] of the divalent iron ions and total iron ions in the precipitate generated in the reaction tank 30 is within the above range. Just do it. The treatment method of the present invention can be carried out in either a batch type or a continuous type.

本処理方法の具体的な一例を示すと、初期セレン濃度2mg/Lの排水に、Fe2+イオン濃度400〜600mg/Lになるように第一鉄化合物を添加して溶解させ、この第一鉄化合物を添加した排水に、アルカリを添加してpH11〜13にした沈澱スラリーを混合し、空気の混入を遮断した密閉反応槽で、10℃〜30℃の温度下、pH9.0〜9.3で30分〜3時間反応させ、生成した沈澱を固液分離し、沈澱の一部にアルカリを添加して反応槽に返送し、繰り返し使用することによって、排水中のセレン濃度を0.01mg/L以下に低減することができる。 As a specific example of this treatment method, a ferrous compound is added to and dissolved in wastewater having an initial selenium concentration of 2 mg / L so that the Fe 2+ ion concentration becomes 400 to 600 mg / L. The waste slurry to which the iron compound was added was mixed with a precipitate slurry adjusted to pH 11 to 13 by adding alkali, and in a closed reaction tank in which air contamination was blocked, at a temperature of 10 ° C. to 30 ° C., pH 9.0 to 9. 3 for 30 minutes to 3 hours, the resulting precipitate is separated into solid and liquid, alkali is added to a part of the precipitate, returned to the reaction vessel, and repeatedly used, so that the selenium concentration in the waste water is 0.01 mg. / L or less.

重金属類含有水にケイ酸イオンやアルミニウムイオン、あるいは微量の有機物が含まれていると、これらのイオンによってフェライト化が影響を受け、重金属類の除去効果が低下する場合がある。このような重金属類含有水に対しては、図3に示すように、鉄化合物添加工程の前に、重金属類含有水に鉄化合物またはアルミニウム化合物を添加してこれらのイオンを沈殿化し、この沈澱を濾過してケイ酸イオン等を除去する前処理工程を設けるのが好ましい。 If the heavy metal-containing water contains silicate ions, aluminum ions, or trace amounts of organic substances, ferritization is affected by these ions, and the removal effect of heavy metals may be reduced. For such heavy metal-containing water, as shown in FIG. 3, before the iron compound addition step, the iron compound or aluminum compound is added to the heavy metal-containing water to precipitate these ions, It is preferable to provide a pretreatment step for removing silicate ions and the like by filtration.

上記前処理工程において、重金属類含有水に鉄化合物を添加してアルカリを加え、アルカリ性下で鉄水酸化物を生成させることによって、ケイ酸イオン、アルミニウムイオン、微量有機物の少なくとも何れかを鉄水酸化物沈澱と共に沈澱化し、この沈澱を固液分離して系外に除去する。鉄化合物としては塩化第二鉄などの第二鉄化合物が好ましい。鉄化合物に代えてアルミニウム化合物を用いてもよい。重金属類含有水にアルミニウム化合物を添加してアルカリを加え、アルカリ性下でアルミニウム水酸化物を沈殿させる。この沈殿にケイ酸イオンや微量有機物が取り込まれて沈殿化するので、これを固液分離して系外に除去する。 In the pretreatment step, an iron compound is added to the heavy metal-containing water, an alkali is added, and an iron hydroxide is generated under alkalinity, whereby at least one of silicate ions, aluminum ions, and a trace amount of organic substances is added to the iron water. It precipitates together with the oxide precipitate, and this precipitate is separated from the system by solid-liquid separation. A ferric compound such as ferric chloride is preferred as the iron compound. An aluminum compound may be used in place of the iron compound. An aluminum compound is added to heavy metal-containing water, an alkali is added, and an aluminum hydroxide is precipitated under alkalinity. Since silicate ions and trace organic substances are taken into this precipitate and precipitate, it is separated from the system by solid-liquid separation.

この前処理によって、フェライト化に影響を与えるケイ酸イオンやアルミニウムイオン、あるいは微量有機物をあらかじめ除去した重金属類含有水について、上記還元性鉄化合物添加工程、上記沈澱化工程、上記固液分離工程、上記汚泥返送工程の各処理を行えば、上記フェライト化が阻害されず、重金属類の除去効果を高めることができる。 By this pretreatment, silicate ions and aluminum ions that affect ferritization, or heavy metal-containing water from which trace organic substances have been removed in advance, the reducing iron compound addition step, the precipitation step, the solid-liquid separation step, If each process of the said sludge return process is performed, the said ferritization will not be inhibited and the removal effect of heavy metals can be heightened.

上記前処理工程は、重金属類含有水に還元性鉄化合物を添加する槽の前に、鉄化合物またはアルミニウム化合物を重金属類含有水に添加する槽と、生成した沈澱の固液分離手段を設ければ良い。 In the pretreatment step, a tank for adding an iron compound or an aluminum compound to heavy metal-containing water and a solid-liquid separation means for the generated precipitate are provided before the tank for adding the reducing iron compound to the heavy metal-containing water. It ’s fine.

また、先に述べたように、固液分離手段において分離した汚泥の全部または一部はアルカリ性にして反応槽に返送されるが、反応槽に返送されない汚泥はフィルタープレスなどによって濾過脱水し、水分は系外に排水する。一方、濾渣は還元力が残存しており、しかもこの濾渣は透水性が良いので、必要に応じ、図3に示すように、この濾渣に汚染度の高くない別系統の排水等を通水し、濾渣に残存する還元力を利用して排水等に含まれる汚染を分解し、排水等から除去することができる。 Further, as described above, all or part of the sludge separated in the solid-liquid separation means is made alkaline and returned to the reaction tank, but the sludge not returned to the reaction tank is filtered and dehydrated by a filter press or the like, Drains out of the system. On the other hand, the filter residue still has a reducing power, and the filter residue has good water permeability. Therefore, as shown in FIG. The contamination contained in the drainage can be decomposed and removed from the drainage by utilizing the reducing power remaining in the residue.

本発明の処理方法によれば、排水等に含まれる重金属類の濃度を排水基準値の0.01mg/L以下に低減することができる。さらに本処理方法は加熱する必要がなく、常温で鉄フェライト化を進めることができ、圧密されたコンパクトな澱物を形成するので脱水性が格段に良く、重金属類の除去効果も高く、経済性および取扱性に優れた処理方法である。 According to the treatment method of the present invention, the concentration of heavy metals contained in waste water or the like can be reduced to 0.01 mg / L or less of the waste water reference value. Furthermore, this treatment method does not require heating, can be ferritized at room temperature, forms a compact compact starch, and has a very good dehydration, high removal effect of heavy metals, and economic efficiency. In addition, it is a processing method with excellent handleability.

以下、本発明を実施例および比較例によって具体的に示す。なお、各例において、澱物のフェライトは磁性によって判定し、澱物の圧密性は嵩高さと沈降性によって判定した。 Hereinafter, the present invention will be specifically described by examples and comparative examples. In each example, the ferrite of the starch was determined by magnetism, and the compactness of the starch was determined by bulkiness and sedimentation.

〔実施例1〕
図1に示す本発明の処理フローに従い、重金属類を含む排水を回分式で以下のように処理した。まず、重金属類含有水(各重金属類濃度:各々2mg/L)2.0Lを添加槽10に導入して硫酸第一鉄をFe(II)として600mg/Lになるように添加した。一方、固液分離した沈澱の全量をアルカリ添加槽20に返送し、消石灰1.5gを添加してpH12の強アルカリに調整した。この強アルカリ沈澱を反応槽に戻し、硫酸第一鉄を添加した排水と混合して2時間反応させた。次いで、反応槽から抜き出したスラリーをシックナーで20時間静置して沈澱を沈降させて固液分離した。この沈澱の全量を上記のとおり強アルカリ性に調整して反応槽に戻し、沈澱の生成分離を30回繰り返した。処理条件と共に処理結果を表1に示した。
[Example 1]
According to the treatment flow of the present invention shown in FIG. 1, wastewater containing heavy metals was treated in a batch manner as follows. First, 2.0 L of heavy metal-containing water (concentration of each heavy metal: 2 mg / L each) was introduced into the addition tank 10 and ferrous sulfate was added as Fe (II) to 600 mg / L. On the other hand, the total amount of the solid-liquid separated precipitate was returned to the alkali addition tank 20 and 1.5 g of slaked lime was added to adjust to a strong alkali of pH 12. This strong alkali precipitate was returned to the reaction vessel, mixed with waste water to which ferrous sulfate was added, and reacted for 2 hours. Next, the slurry extracted from the reaction vessel was allowed to stand for 20 hours with a thickener to settle the precipitate, and solid-liquid separation was performed. The total amount of the precipitate was adjusted to strong alkalinity as described above and returned to the reaction vessel, and the precipitate was separated and produced 30 times. The processing results together with the processing conditions are shown in Table 1.

〔実施例2〜3、比較例1〜2〕
表1に示す処理条件とした他は実施例1と同様にして重金属類を含む排水を処理した。この結果を表1に示した。また、重金属類のうちセレンについて、実施例1と実施例2の処理回数に応じた排水中のセレン濃度を図2のグラフに示した。
[Examples 2-3, Comparative Examples 1-2]
Except for the treatment conditions shown in Table 1, wastewater containing heavy metals was treated in the same manner as in Example 1. The results are shown in Table 1. Moreover, about the selenium among heavy metals, the selenium density | concentration in the waste_water | drain according to the processing frequency of Example 1 and Example 2 was shown on the graph of FIG.

表1の結果に示すように、本処理方法による排水処理を繰り返すことによって、常温で沈澱物がフェライト化して圧密性の高い沈澱が形成され、排水中の重金属類の濃度を環境基準の0.01mg/L以下に低減することができる。 As shown in the results of Table 1, by repeating the wastewater treatment by this treatment method, the precipitates are ferritized at room temperature to form highly compacted precipitates, and the concentration of heavy metals in the wastewater is set at an environmental standard of 0. It can be reduced to 01 mg / L or less.

〔実施例4〕
ケイ酸イオンおよびアルミウムイオンをおのおの100ppm含み、さらにセレン2ppmを含有する模擬排水2Lに、塩化第二鉄溶液を1.0ml/Lとなるように加え、さらにアルカリを加えて排水のpHを8〜8.5に調整し、沈澱を生成させた。この沈澱を濾過分離した後に、その濾液について実施例1と同様の処理を行った。一方、この前処理を行わずに実施例1と同様の処理を行った結果を対比して表2に示した。表2に示すように、前処理を行ってアルミニウムイオンおよびケイ酸イオンをおのおの1ppm、15ppmに低減した排水は、フェライト化処理によってセレン濃度が0.01ppm未満に低減しており、フェライト化が十分に進行しているので高い除去効果を達成している。一方、前処理を行わない排水のセレン濃度は処理後0.07ppmであり、前処理を行ったものより除去効果が低い。
Example 4
Add ferric chloride solution to 1.0 ml / L to 2 L of simulated waste water containing 100 ppm each of silicate ions and aluminum ions, and further containing 2 ppm selenium, and further add alkali to adjust the pH of the waste water to 8- Adjusted to 8.5 to produce a precipitate. After the precipitate was separated by filtration, the filtrate was treated in the same manner as in Example 1. On the other hand, Table 2 shows a comparison of results obtained by performing the same processing as in Example 1 without performing this pretreatment. As shown in Table 2, wastewater in which aluminum ions and silicate ions have been reduced to 1 ppm and 15 ppm by pretreatment has been reduced to a selenium concentration of less than 0.01 ppm by the ferritization treatment, so that ferritization is sufficient. The removal effect has been achieved because of the progress. On the other hand, the selenium concentration of the wastewater not subjected to pretreatment is 0.07 ppm after treatment, and the removal effect is lower than that of the pretreatment.

〔実施例5〕
微量有機物(TOC)を50ppm含み、セレン2ppmを含有する模擬排水2Lに、塩化第二鉄溶液を1.0ml/Lとなるように加え、さらにアルカリを加えて排水のpHを8〜8.5に調整し、沈澱を生成させ、この沈澱を濾過分離して、排水のTOC濃度を20ppm以下にした。この濾液について実施例1と同様の処理を行った。一方、この前処理を行わずに実施例1と同様の処理を行った結果を対比して表3に示した。表3に示すように、前処理を行った排水はセレン濃度が低く、かつ濃縮汚泥容量比が20であって、磁性の強いものであり、フェライト化が十分に進行したものであった。一方、前処理を行わない排水はセレン濃度がやや高く、かつ濃縮汚泥容量比が25であって、磁性の弱くフェライト化が不十分であった。なお、濃縮汚泥容積比は、静置前のスラリー全容積に対する静置沈降したスラリー容積の比〔濃縮汚泥容積比%=(静置沈降したスラリー容積)/(静置前のスラリー全容積)〕である。
Example 5
Ferric chloride solution is added to 2 mL of simulated waste water containing 50 ppm of trace organic matter (TOC) and 2 ppm of selenium to 1.0 ml / L, and further alkali is added to adjust the pH of the waste water to 8 to 8.5. To produce a precipitate, which was filtered and separated to reduce the TOC concentration of the wastewater to 20 ppm or less. The filtrate was treated in the same manner as in Example 1. On the other hand, Table 3 shows a comparison of results obtained by performing the same processing as in Example 1 without performing this pretreatment. As shown in Table 3, the pretreated wastewater had a low selenium concentration and a concentrated sludge volume ratio of 20, a strong magnetic property, and sufficiently ferritized. On the other hand, wastewater without pretreatment had a slightly high selenium concentration and a concentrated sludge volume ratio of 25, was weak in magnetism, and was not sufficiently ferritized. The volume ratio of concentrated sludge is the ratio of the slurry volume that settled and settled to the total volume of the slurry before standing [concentrated sludge volume ratio% = (slurry volume that settled and settled) / (total volume of slurry before standing)]. It is.

〔実施例6〕
図3に示す本発明の処理フローに従い、重金属類を含む排水を回分式で以下のように処理した。まず、重金属類含有水(各重金属類濃度:各々2mg/L)2.0Lを添加槽10に導入して硫酸第一鉄をFe(II)として600mg/Lになるように添加した。一方、固液分離した沈澱の全量をアルカリ添加槽20に返送し、消石灰1.5gを添加してpH12の強アルカリに調整した。この強アルカリ沈澱を反応槽に戻し、硫酸第一鉄を添加した排水と混合して2時間反応させた。次いで、反応槽から抜き出したスラリーをシックナーで20時間静置して沈澱を沈降させて固液分離した。この沈澱の全量を強アルカリ性に調整して反応槽に戻し、沈澱の生成分離を60回繰り返した。この結果生じた余剰殿物をフィルタープレスで濾過し、790g(湿量)の濾渣を得た。この濾渣に上記重金属類含有排水とは別系統の重金属類含有排水をpH9に調整して2.0L通水したところ、排水中の重金属類の濃度が表4に示すように何れも1/10以下に低下した。濾渣に通水前(処理前)と通水後(処理後)の重金属類濃度を表4に示す。
Example 6
According to the treatment flow of the present invention shown in FIG. 3, wastewater containing heavy metals was treated in a batch manner as follows. First, 2.0 L of heavy metal-containing water (concentration of each heavy metal: 2 mg / L each) was introduced into the addition tank 10 and ferrous sulfate was added as Fe (II) to 600 mg / L. On the other hand, the total amount of the solid-liquid separated precipitate was returned to the alkali addition tank 20 and 1.5 g of slaked lime was added to adjust to a strong alkali of pH 12. This strong alkali precipitate was returned to the reaction vessel, mixed with waste water to which ferrous sulfate was added, and reacted for 2 hours. Next, the slurry extracted from the reaction vessel was allowed to stand for 20 hours with a thickener to settle the precipitate, and solid-liquid separation was performed. The total amount of the precipitate was adjusted to strong alkalinity and returned to the reaction vessel, and the precipitate was separated 60 times. The resulting excess residue was filtered with a filter press to obtain 790 g (wet amount) of residue. When 2.0 L of heavy metal-containing wastewater, which is different from the above-mentioned heavy metal-containing wastewater, was adjusted to pH 9 and passed through the residue, the concentration of heavy metals in the wastewater was 1/10 as shown in Table 4. Reduced to: Table 4 shows the concentrations of heavy metals before passing through the filter cake (before treatment) and after passing through the water (after treatment).

〔実施例7〕
図1に示す本発明の処理フローに従い、重金属類を含む地下水を回分式で以下のように処理した。まず、Se濃度0.5mg/L、As濃度0.2mg/L、Cr(VI)0.3mg/L含有する地下水2.0Lを添加槽10に導入して硫酸第一鉄をFe(II)として600mg/Lになるように添加した。一方、固液分離した沈澱の全量をアルカリ添加槽20に返送し、消石灰1.5gを添加してpH12の強アルカリに調整した。この強アルカリ沈澱を反応槽に戻し、硫酸第一鉄を添加した排水と混合して2時間反応させた。次いで、反応槽から抜き出したスラリーをシックナーで20時間静置して沈澱を沈降させて固液分離した。この沈澱の全量を強アルカリ性に調整して反応槽に戻し、沈澱の生成分離を30回繰り返した。その結果処理後の地下水に含まれるSe濃度は0.002mg/L、As濃度は0.001mg/L、Cr(VI)濃度は0.005mg/Lに低減した。
Example 7
In accordance with the treatment flow of the present invention shown in FIG. 1, groundwater containing heavy metals was treated in a batch manner as follows. First, 2.0 L of ground water containing Se concentration of 0.5 mg / L, As concentration of 0.2 mg / L and Cr (VI) of 0.3 mg / L is introduced into the addition tank 10 and ferrous sulfate is added to Fe (II). As 600 mg / L. On the other hand, the total amount of the solid-liquid separated precipitate was returned to the alkali addition tank 20 and 1.5 g of slaked lime was added to adjust to a strong alkali of pH 12. This strong alkali precipitate was returned to the reaction vessel, mixed with waste water to which ferrous sulfate was added, and reacted for 2 hours. Next, the slurry extracted from the reaction vessel was allowed to stand for 20 hours with a thickener to settle the precipitate, and solid-liquid separation was performed. The total amount of the precipitate was adjusted to strong alkalinity and returned to the reaction vessel, and the precipitate was separated and produced 30 times. As a result, the Se concentration in the groundwater after treatment was reduced to 0.002 mg / L, the As concentration was 0.001 mg / L, and the Cr (VI) concentration was 0.005 mg / L.

〔実施例8〕
図1に示す本発明の処理フローに従い、重金属類を含む河川水を回分式で以下のように処理した。まず、Se濃度0.05mg/L、Zn濃度0.3mg/L、Cu0.1mg/L含有する河川水2.0Lを添加槽10に導入して硫酸第一鉄をFe(II)として600mg/Lになるように添加した。一方、固液分離した沈澱の全量をアルカリ添加槽20に返送し、消石灰1.5gを添加してpH12の強アルカリに調整した。この強アルカリ沈澱を反応槽に戻し、硫酸第一鉄を添加した排水と混合して2時間反応させた。次いで、反応槽から抜き出したスラリーをシックナーで20時間静置して沈澱を沈降させて固液分離した。この沈澱の全量を強アルカリ性に調整して反応槽に戻し、沈澱の生成分離を30回繰り返した。その結果処理後の河川水に含まれるSe濃度は<0.001mg/L、Zn濃度は0.003mg/L、Cu濃度は0.002mg/Lに低減した。
Example 8
In accordance with the treatment flow of the present invention shown in FIG. 1, river water containing heavy metals was treated in a batch manner as follows. First, 2.0 L of river water containing Se concentration of 0.05 mg / L, Zn concentration of 0.3 mg / L and Cu of 0.1 mg / L is introduced into the addition tank 10 and ferrous sulfate is converted to Fe (II) to 600 mg / L. L was added. On the other hand, the total amount of the solid-liquid separated precipitate was returned to the alkali addition tank 20 and 1.5 g of slaked lime was added to adjust to a strong alkali of pH 12. This strong alkali precipitate was returned to the reaction vessel, mixed with waste water to which ferrous sulfate was added, and reacted for 2 hours. Next, the slurry extracted from the reaction vessel was allowed to stand for 20 hours with a thickener to settle the precipitate, and solid-liquid separation was performed. The total amount of the precipitate was adjusted to strong alkalinity and returned to the reaction vessel, and the precipitate was separated and produced 30 times. As a result, the Se concentration contained in the river water after treatment was reduced to <0.001 mg / L, the Zn concentration was 0.003 mg / L, and the Cu concentration was 0.002 mg / L.

Figure 2006263699
Figure 2006263699

Figure 2006263699
Figure 2006263699

Figure 2006263699
Figure 2006263699

Figure 2006263699
Figure 2006263699

本処理方法の工程図Process diagram of this treatment method 実施例1および2の処理効果を示すグラフThe graph which shows the processing effect of Example 1 and 2 前処理工程を含む本発明の処理工程図Process diagram of the present invention including pretreatment process

符号の説明Explanation of symbols

10−還元性鉄化合物添加槽、20−アルカリ添加槽、30−反応槽、40−固液分離手段。
10-reducing iron compound addition tank, 20-alkali addition tank, 30-reaction tank, 40-solid-liquid separation means.

Claims (10)

重金属類含有水に還元性鉄化合物を添加して重金属類を沈澱化し、この沈澱を固液分離して重金属類を除去する処理方法において、重金属類含有水に還元性鉄化合物を添加する工程〔鉄化合物添加工程〕、還元性鉄化合物を添加した重金属類含有水を反応槽に導いて沈澱を生成させる工程〔沈澱化工程〕、生成した沈澱(汚泥)を固液分離する工程〔固液分離工程〕、分離した汚泥の全部または一部をアルカリ性にして反応槽に返送する工程〔汚泥返送工程〕を有し、上記沈澱化工程において、還元性鉄化合物を添加した重金属類含有水とアルカリ性汚泥とを混合し、非酸化性雰囲気下、アルカリ性下で反応させて還元性の鉄化合物沈澱を生成させ、該沈澱に重金属類を取り込んで系外に除去する重金属類含有水の処理方法。
A step of adding a reducing iron compound to water containing heavy metals in a processing method of adding heavy irons to water containing heavy metals to precipitate heavy metals, and separating the precipitate by solid-liquid separation to remove heavy metals. Iron compound addition step], a step of producing precipitates by introducing heavy metal-containing water added with a reducing iron compound to a reaction tank (precipitation step), a step of solid-liquid separation of the generated precipitate (sludge) [solid-liquid separation Step), a step (sludge return step) for making all or part of the separated sludge alkaline and returning it to the reaction tank, and in the precipitation step, heavy metal-containing water and alkaline sludge added with a reducing iron compound And a reaction in a non-oxidizing atmosphere and under alkali to form a reducible iron compound precipitate, which takes heavy metals into the precipitate and removes them outside the system.
反応槽において生成される還元性鉄化合物沈澱が、グリーンラストと鉄フェライトの混合物であり、該沈澱の2価鉄イオンと全鉄イオンの比〔Fe2+/Fe(T)〕が0.4〜0.8であるように該沈澱を生成させる請求項1に記載する処理方法。
The reducing iron compound precipitate produced in the reaction vessel is a mixture of green last and iron ferrite, and the ratio of the divalent iron ion to the total iron ion [Fe 2+ / Fe (T)] of the precipitate is 0.4. The processing method according to claim 1, wherein the precipitate is formed so as to be ˜0.8.
反応槽に返送するアルカリ性汚泥のpHを11〜13に調整し、このアルカリ性汚泥を混合した反応槽内のpHを8.5〜11に調整し、非酸化性雰囲気下で上記還元性鉄化合物沈澱を生成させる請求項1または2に記載する処理方法。
The pH of the alkaline sludge to be returned to the reaction tank is adjusted to 11 to 13, the pH in the reaction tank mixed with the alkaline sludge is adjusted to 8.5 to 11, and the reducing iron compound precipitates in a non-oxidizing atmosphere. The processing method according to claim 1 or 2, wherein:
還元性鉄化合物として第一鉄化合物を用い、密閉反応槽で非酸化性雰囲気下、10℃〜30℃の液温下で沈澱を生成させる請求項1〜3の何れかに記載する処理方法。
The processing method according to any one of claims 1 to 3, wherein a ferrous compound is used as the reducing iron compound, and a precipitate is produced in a closed reaction tank in a non-oxidizing atmosphere at a liquid temperature of 10 ° C to 30 ° C.
上記処理方法において、鉄化合物添加工程の前に、重金属類含有水に鉄化合物またはアルミニウム化合物を添加し、アルカリ性下で鉄またはアルミニウムの水酸化物を沈殿させることによって、ケイ酸イオン、アルミニウムイオン、微量有機物の少なくとも何れかを上記水酸化物と共に沈澱化し、この沈澱を濾過除去する前処理工程を設け、上記沈殿物を除去した重金属類含有水について、上記還元性鉄化合物添加工程、上記沈澱化工程、上記固液分離工程、上記汚泥返送工程の各処理を行う請求項1〜4の何れかに記載する重金属類含有水の処理方法。
In the treatment method, before the iron compound addition step, an iron compound or an aluminum compound is added to heavy metal-containing water, and iron or aluminum hydroxide is precipitated under alkalinity, whereby silicate ions, aluminum ions, A pretreatment step for precipitating at least one of the trace organic substances together with the hydroxide and removing the precipitate by filtration is provided, and for the heavy metal-containing water from which the precipitate has been removed, the reducing iron compound addition step, the precipitation The processing method of the heavy metal containing water in any one of Claims 1-4 which performs each process of a process, the said solid-liquid separation process, and the said sludge return process.
重金属類含有水に鉄化合物またはアルミニウム化合物を添加して生成した沈澱を固液分離した後に、該重金属類含有水に第一鉄化合物を添加し、この第一鉄化合物を添加した重金属類含有水を反応槽に導入する一方、反応槽から抜き出して固液分離した汚泥の一部または全部にアルカリを添加して汚泥のpHを11〜13にし、このアルカリ性汚泥を反応槽に返送し、該反応槽において、空気を遮断した非酸化性雰囲気下、10℃〜30℃の温度下、pH8.5〜11の液性下で、30分〜3時間反応させ、生成した沈澱(汚泥)を固液分離する一方、沈澱の一部または全部をアルカリ化して反応槽に返送することを繰り返し、固液分離した重金属類含有水の重金属類濃度を0.01mg/L以下に低減する請求項1〜5の何れかに記載する重金属類含有水の処理方法。
After solid-liquid separation of the precipitate formed by adding an iron compound or aluminum compound to heavy metal-containing water, the ferrous compound is added to the heavy metal-containing water, and the heavy metal-containing water to which the ferrous compound is added Is added to the reaction tank, and alkali is added to a part or all of the sludge separated and solid-liquid separated to adjust the pH of the sludge to 11-13, and the alkaline sludge is returned to the reaction tank, and the reaction is performed. In a tank, the reaction was carried out for 30 minutes to 3 hours under a non-oxidizing atmosphere in which air was shut off, at a temperature of 10 ° C. to 30 ° C., and at a pH of 8.5 to 11 for 30 minutes to 3 hours. 6. While separating, repeating a part or all of the precipitate alkalinized and returning to the reaction tank is repeated to reduce the heavy metal concentration of the solid-liquid separated heavy metal-containing water to 0.01 mg / L or less. Heavy metals described in any of the above Processing method of Arimizu.
含有重金属類がセレン、カドミウム、六価クロム、鉛、亜鉛、銅、ニッケル、ヒ素、アンチモンの何れか1種または2種以上であり、これらの濃度を何れも0.01mg/L以下に低減する請求項1〜6の何れかに記載する重金属類含有水の処理方法。
Contained heavy metals are selenium, cadmium, hexavalent chromium, lead, zinc, copper, nickel, arsenic, antimony, one or more, and these concentrations are all reduced to 0.01 mg / L or less The processing method of the heavy metal containing water in any one of Claims 1-6.
固液分離手段において分離した汚泥について、反応槽に返送しない汚泥を濾過脱水し、水分を系外に排出する一方、濾渣に別系統の排水等を通水し、濾渣に残存する還元力を利用して上記排水等に含まれる汚染を分解する請求項1〜7の何れかに記載する重金属類含有水の処理方法。
For sludge separated in the solid-liquid separation means, sludge that is not returned to the reaction tank is filtered and dehydrated, and water is discharged out of the system. On the other hand, drainage from another system is passed through the filter residue and the remaining reducing power is used. And the processing method of the heavy metal containing water in any one of Claims 1-7 which decomposes | disassembles the contamination contained in the said waste_water | drain etc.
重金属類含有水に第一鉄化合物を添加する槽、第一鉄化合物を添加した重金属類含有水を反応させる非酸化性雰囲気の密閉反応槽、該反応槽から抜き出したスラリーを固液分離する手段、分離した汚泥にアルカリを添加する槽、アルカリ性汚泥を反応槽に返送する管路、これらの各槽および固液分離手段を連通する管路を備え、請求項1の処理系を形成したことを特徴とする重金属類含有水の処理装置。
A tank for adding ferrous compounds to heavy metal-containing water, a non-oxidizing atmosphere sealed reaction tank for reacting heavy metals-containing water added with ferrous compounds, and a means for solid-liquid separation of the slurry extracted from the reaction tank A tank for adding alkali to the separated sludge, a pipe for returning the alkaline sludge to the reaction tank, and a pipe for communicating each of these tanks and the solid-liquid separation means. A water treatment apparatus containing heavy metals.
請求項9の処理装置において、重金属類含有水に還元性鉄化合物を添加する槽の前に、該重金属類含有水に鉄化合物またはアルミニウム化合物を添加する槽、および生成した沈澱の固液分離手段を有する重金属類含有水の処理装置。


10. The treatment apparatus according to claim 9, wherein a tank for adding an iron compound or an aluminum compound to the heavy metal containing water is added before the tank for adding the reducing iron compound to the heavy metal containing water, and a solid-liquid separation means for the generated precipitate. An apparatus for treating water containing heavy metals.


JP2005125726A 2004-04-26 2005-04-22 Method and apparatus for treating heavy metal-containing water Expired - Fee Related JP3956978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125726A JP3956978B2 (en) 2004-04-26 2005-04-22 Method and apparatus for treating heavy metal-containing water

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004130305 2004-04-26
JP2004251762 2004-08-31
JP2004376581 2004-12-27
JP2005051668 2005-02-25
JP2005125726A JP3956978B2 (en) 2004-04-26 2005-04-22 Method and apparatus for treating heavy metal-containing water

Publications (2)

Publication Number Publication Date
JP2006263699A true JP2006263699A (en) 2006-10-05
JP3956978B2 JP3956978B2 (en) 2007-08-08

Family

ID=37200219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125726A Expired - Fee Related JP3956978B2 (en) 2004-04-26 2005-04-22 Method and apparatus for treating heavy metal-containing water

Country Status (1)

Country Link
JP (1) JP3956978B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012444A (en) * 2008-07-07 2010-01-21 National Institute Of Advanced Industrial & Technology Method for reducing heavy metal sludge
JP4473340B1 (en) * 2009-10-23 2010-06-02 松尾機器産業株式会社 Method for treating water containing arsenic
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
CN107324587A (en) * 2017-07-12 2017-11-07 同济大学 A kind of synchronous method for removing heavy metal in waste water and organic matter
JP2019147136A (en) * 2018-02-28 2019-09-05 三菱マテリアル株式会社 Processing method of selenium-containing water
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973864B2 (en) * 2007-08-30 2012-07-11 三菱マテリアル株式会社 Method and apparatus for treating heavy metal-containing water
JP5170461B2 (en) * 2009-08-31 2013-03-27 三菱マテリアル株式会社 Treatment of selenium-containing wastewater
JP5794423B2 (en) * 2011-09-30 2015-10-14 三菱マテリアル株式会社 Processing method and processing apparatus for removing harmful substances

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754099B2 (en) 2004-04-26 2010-07-13 Mitsubishi Materials Corporation Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
US7799232B2 (en) 2004-04-26 2010-09-21 Mitsubishi Materials Corporation Method of treating wastewater with reducing water purification material
US7892426B2 (en) 2004-04-26 2011-02-22 Mitsubishi Materials Corporation Wastewater treatment apparatus
JP2010012444A (en) * 2008-07-07 2010-01-21 National Institute Of Advanced Industrial & Technology Method for reducing heavy metal sludge
JP4473340B1 (en) * 2009-10-23 2010-06-02 松尾機器産業株式会社 Method for treating water containing arsenic
JP2011088091A (en) * 2009-10-23 2011-05-06 Matsuo Kiki Sangyo Kk Arsenic-containing water treatment method
CN107324587A (en) * 2017-07-12 2017-11-07 同济大学 A kind of synchronous method for removing heavy metal in waste water and organic matter
CN107324587B (en) * 2017-07-12 2020-08-18 同济大学 Method for synchronously removing heavy metals and organic matters in wastewater
JP2019147136A (en) * 2018-02-28 2019-09-05 三菱マテリアル株式会社 Processing method of selenium-containing water
JP7047459B2 (en) 2018-02-28 2022-04-05 三菱マテリアル株式会社 Treatment method of selenium-containing water
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products

Also Published As

Publication number Publication date
JP3956978B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
KR100853970B1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JP2009148749A (en) Heavy metal-containing water treating method
JP5170461B2 (en) Treatment of selenium-containing wastewater
JP4973864B2 (en) Method and apparatus for treating heavy metal-containing water
JP2013075252A (en) Treatment method removing cesium and heavy metal from wastewater
JP2009148750A (en) Heavy metal-containing water treating method
JP3956978B2 (en) Method and apparatus for treating heavy metal-containing water
CN105000645B (en) A kind of environmentally friendly water treatment agent and preparation method thereof and method for treating water
JP4747269B2 (en) Method and apparatus for treating heavy metal-containing water
JP6307276B2 (en) Selenium-containing water treatment apparatus and selenium-containing water treatment method
JP4936559B2 (en) Arsenic remover
JP3928650B2 (en) Reducing water purification material and method for producing the same
JP2007117816A (en) Water purification method and apparatus
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
JP2001259657A (en) Treatment method or water containing phosphorus, heavy metals or the like
JP4706828B2 (en) Method and apparatus for treating nitrate-containing water
JP4706827B2 (en) Method and apparatus for treating organic halide-containing water
JP2007117984A (en) Apparatus for treating heavy metals-containing water
CN220223868U (en) Thallium removal system for high-salt high-COD sintering desulfurization wastewater
AU2008202319A1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
Ghosh et al. TREATING DISSOVLED IRON IN GROUNDWATER AND FINDING ITS CORRESPONDING SLUDGE USAGE FOR COMMERCIAL PURPOSES
JPS5931393B2 (en) Treatment method for water containing phosphorus compounds
JPH0361515B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060628

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Ref document number: 3956978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees