JP2006261399A - Accumulation device - Google Patents
Accumulation device Download PDFInfo
- Publication number
- JP2006261399A JP2006261399A JP2005076994A JP2005076994A JP2006261399A JP 2006261399 A JP2006261399 A JP 2006261399A JP 2005076994 A JP2005076994 A JP 2005076994A JP 2005076994 A JP2005076994 A JP 2005076994A JP 2006261399 A JP2006261399 A JP 2006261399A
- Authority
- JP
- Japan
- Prior art keywords
- storage device
- electrolyte
- thin film
- polarizable
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009825 accumulation Methods 0.000 title abstract 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 75
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 239000010409 thin film Substances 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000003792 electrolyte Substances 0.000 claims abstract description 17
- 238000003860 storage Methods 0.000 claims description 37
- 230000005611 electricity Effects 0.000 claims description 25
- 239000010439 graphite Substances 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 21
- 239000008151 electrolyte solution Substances 0.000 claims description 8
- 239000011245 gel electrolyte Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000010408 film Substances 0.000 abstract description 7
- 238000009826 distribution Methods 0.000 abstract description 6
- 239000003990 capacitor Substances 0.000 abstract description 5
- 239000011521 glass Substances 0.000 abstract description 5
- 239000003513 alkali Substances 0.000 abstract description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract 1
- 239000002041 carbon nanotube Substances 0.000 description 13
- 229910021393 carbon nanotube Inorganic materials 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000002086 nanomaterial Substances 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000005365 phosphate glass Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
この発明は、蓄電デバイスに関し、特に分極性電極を用いた、たとえば電気2重層キャパシタ等の蓄電デバイスに関する。 The present invention relates to an electricity storage device, and more particularly to an electricity storage device using a polarizable electrode, such as an electric double layer capacitor.
従来、例えば腕時計、補聴器などのウェアラブル機器、またはユビキタス分野の機器に搭載する電源として、Liイオン電池、有機ラジカル電池、ナノゲートレドックスキャパシタ、電気2重層キャパシタ等の蓄電デバイスが開発されている。これらの分野においては、小型化、軽量化、薄型化、長寿命化、高信頼性は勿論のこと、エネルギー密度、出力密度および電流容量が高く、また、内部抵抗および漏れ電流の少ない、さらに、急速充電可能な電気特性を充足する蓄電デバイスの開発が強く望まれている。 2. Description of the Related Art Conventionally, power storage devices such as Li-ion batteries, organic radical batteries, nanogate redox capacitors, and electric double layer capacitors have been developed as power sources mounted on wearable devices such as watches and hearing aids, or devices in the ubiquitous field. In these fields, as well as miniaturization, weight reduction, thinning, long life, high reliability, energy density, power density and current capacity are high, internal resistance and leakage current are small, There is a strong demand for the development of an electricity storage device that satisfies the electrical characteristics capable of rapid charging.
このような蓄電デバイスを得るには、電解質としては、電荷密度、移動度、解離度が高く、イオン、プロトン等のキャリア数が多いことが、また、分極電極としては、細孔利用率(比表面積、嵩密度)が高いことが求められている。 In order to obtain such an electricity storage device, the electrolyte has a high charge density, mobility and dissociation, and has a large number of carriers such as ions and protons. High surface area and bulk density) are demanded.
従来、電気2重層キャパシタ等の蓄電デバイスに用いる分極性電極としては、有機、無機、高分子材料等が用いられており、代表的なものとして、微細化されたナノサイズのカーボン(カーボンナノ材料)が知られている。このカーボンナノ材料は、細孔利用率、電気導電性が高い等の長所を有しており、各種の製法により製造されている。 Conventionally, as a polarizable electrode used for an electric storage device such as an electric double layer capacitor, an organic, inorganic, polymer material or the like has been used. As a typical example, a refined nano-sized carbon (carbon nanomaterial) )It has been known. This carbon nanomaterial has advantages such as high pore utilization rate and high electrical conductivity, and is manufactured by various production methods.
たとえば、カーボンナノ材料の製造方法およびこれを用いる電極形成の例としては、炭化水素系高分子材料と水素との反応により高温でカーボンを生成後、焼結、粉砕等の工程を経た後、ナノカーボンを生成する溶媒を使用して、スプレー法、ドクターブレイド法等の物理的手法により電極を形成する方法等が知られている。また、反応性プラズマ法等の化学的手法によりナノ材料を成膜する方法についての研究も進められている。 For example, as an example of a method for producing a carbon nanomaterial and electrode formation using the carbon nanomaterial, carbon is produced at a high temperature by a reaction between a hydrocarbon polymer material and hydrogen, followed by steps such as sintering and pulverization. A method of forming an electrode by a physical method such as a spray method or a doctor blade method using a solvent that generates carbon is known. In addition, research on a method for forming a nanomaterial by a chemical method such as a reactive plasma method is also in progress.
しかしながら、従来のカーボンナノ材料を用いる分極性電極では、カーボンナノ材料の膜の電極上への定着時に、溶媒、バインダー等の使用を必要とするので、ガスが発生したり、化学的安定性に欠けたり、カーボンナノ材料の膜が電極から脱落したりする問題があった。また、従来の分極性電極では、電極膜生成時にカーボンナノ材料のカーボン濃度分布の制御が困難であるという問題があった。 However, conventional polarizable electrodes using carbon nanomaterials require the use of solvents, binders, etc. when fixing the carbon nanomaterial film onto the electrode, which generates gas and increases chemical stability. There was a problem that the film of the carbon nanomaterial was missing from the electrode. In addition, the conventional polarizable electrode has a problem that it is difficult to control the carbon concentration distribution of the carbon nanomaterial when the electrode film is formed.
一般に、カーボン密度を上昇すると、電極中での電解質のイオン吸収濃度分布が上昇するものの、細密化により逆に空隙が少なくなり、イオンの透過が妨げられ、その結果、充放電に必要な電解液の吸収時間が小さくなり、サイクル性や充放電性の低下が発生し、エネルギー密度が低下してしまう。 In general, when the carbon density is increased, the ion absorption concentration distribution of the electrolyte in the electrode is increased. However, the densification conversely reduces the voids and impedes the permeation of ions, and as a result, the electrolyte required for charging and discharging As a result, the cycle time and charge / discharge characteristics are lowered, and the energy density is lowered.
また、逆に、カーボン密度が低下し粗の状態になると、電解液は吸収され易くなり、イオンの透過が容易になる反面、エネルギー密度が低下してしまう。 On the other hand, when the carbon density is reduced to a rough state, the electrolytic solution is easily absorbed and the permeation of ions is facilitated, but the energy density is reduced.
このように、サイクル性や充放電性をも考慮に入れて、分極性電極のカーボンの濃度分布を制御して、高エネルギー密度を達成することが、分極性電極を用いる蓄電デバイスの大きな課題となっている。 In this way, taking into consideration cycleability and charge / discharge characteristics, controlling the carbon concentration distribution of the polarizable electrode to achieve a high energy density is a major problem with power storage devices using polarizable electrodes. It has become.
本発明は、分極性電極を用いる蓄電デバイスにおいて、膜厚、比表面密度、嵩密度、配向性等を制御したカーボンナノ薄膜材料を用い、分極性電極のカーボン濃度分布を制御でき、細孔利用率を向上させ、電解質の媒質イオンおよび電解液の吸収性が制御可能な蓄電デバイスを提供することを目的とする。 The present invention uses a carbon nano-thin film material with controlled film thickness, specific surface density, bulk density, orientation, etc. in an electricity storage device using a polarizable electrode, and can control the carbon concentration distribution of the polarizable electrode and use pores. It is an object of the present invention to provide an electricity storage device capable of improving the rate and controlling the absorption of electrolyte medium ions and electrolyte.
そのため、この発明は、少なくとも一対の分極性電極を、セパレータを介して、またはセパレータを介さずに配置するとともに、その一対の分極性電極間に電解液を充填させてなる蓄電デバイスにおいて、前記一対の分極性電極の少なくとも一方を、導電性基板上にカーボンナノ薄膜材料を成長させてなる、ことを特徴とする。 Therefore, the present invention provides an electricity storage device in which at least a pair of polarizable electrodes are arranged with or without a separator and an electrolyte is filled between the pair of polarizable electrodes. At least one of the polarizable electrodes is formed by growing a carbon nano thin film material on a conductive substrate.
請求項2に記載の発明は、請求項1に記載の蓄電デバイスにおいて、前記導電性基板として、グラファイト基板を用いてなる、ことを特徴とする。 According to a second aspect of the present invention, in the electric storage device according to the first aspect, a graphite substrate is used as the conductive substrate.
請求項3に記載の発明は、請求項1または2に記載の蓄電デバイスにおいて、前記電解液として、無機系ゲル電解質を用いてなる、ことを特徴とする。 According to a third aspect of the present invention, in the electricity storage device according to the first or second aspect, an inorganic gel electrolyte is used as the electrolytic solution.
請求項4に記載の発明は、請求項1、2または3のいずれかに記載の蓄電デバイスにおいて、前記カーボンナノ薄膜材料中に金属原子を担持させてなる、ことを特徴とする。 According to a fourth aspect of the present invention, in the electricity storage device according to any one of the first, second, or third aspect, a metal atom is supported in the carbon nano thin film material.
この発明によれば、一対の分極性電極の少なくとも一方を、導電性基板上にカーボンナノ薄膜材料を成長させてなるから、分極性電極として、膜厚、比表面密度、嵩密度、配向性等を制御したカーボンナノ薄膜材料を用いることができ、そのため、分極性電極の細孔利用率(比表面積、嵩密度)を向上させることができ、小型で電気容量の高い蓄電デバイスを提供することができる。 According to this invention, since at least one of the pair of polarizable electrodes is formed by growing the carbon nano thin film material on the conductive substrate, the polarizable electrode has a film thickness, specific surface density, bulk density, orientation, etc. Carbon nano-thin film material can be used, so that the pore utilization rate (specific surface area, bulk density) of the polarizable electrode can be improved, and a small-sized and high electric storage device can be provided. it can.
また、分極性電極の表面密度および嵩密度を制御でき、カーボン濃度分布を制御できるので、電解質の正負イオンサイズに適合した蓄電デバイスを提供することができる。 In addition, since the surface density and bulk density of the polarizable electrode can be controlled and the carbon concentration distribution can be controlled, it is possible to provide an electricity storage device suitable for the positive and negative ion sizes of the electrolyte.
さらに、導電性基板上にカーボンナノ薄膜材料を成長させて分極性電極を構成するから、たとえばグラファイトの保有抵抗値による保温効果が、電解質イオンの移動度の安定化に寄与し、優れた蓄電デバイスを提供することができる。 Furthermore, because a carbon nano thin film material is grown on a conductive substrate to form a polarizable electrode, for example, the heat retention effect due to the retained resistance value of graphite contributes to the stabilization of the mobility of electrolyte ions and is an excellent power storage device Can be provided.
さらにまた、導電性基板上でカーボンナノ薄膜材料を成長させて分極性電極を構成するのに、たとえば、集電体の裏面にグラファイトを成膜し、その上にカーボンナノチューブを成長させて、あるいはグラファイト基板上にカーボンナノチューブを成長させ、そのグラファイト基板を集電体に接触させて行なうから、従来、必要とされていた電極形成時の接着工程を除去することができる。 Furthermore, to form a polarizable electrode by growing a carbon nano thin film material on a conductive substrate, for example, a graphite film is formed on the back surface of a current collector, and a carbon nanotube is grown thereon, or Since carbon nanotubes are grown on a graphite substrate and the graphite substrate is brought into contact with a current collector, the adhesion process at the time of electrode formation, which has been conventionally required, can be eliminated.
請求項3に係る発明によれば、電解液として、無機系ゲル電解質を用いてなるから、固体系の電解質を用いる場合のような、形状上の制約がなく、分極性電極への浸透の低減を来すことがなく、また、液体系の電解質を用いる場合のような、使用時の反応による温度上昇やガス発生等を生じたり、液漏れ等を生じたりすることもなく、優れた蓄電デバイスを提供することができる。
According to the invention of
請求項4に係る発明によれば、カーボンナノ薄膜材料中に金属原子を担持させてなるから、カーボンナノ薄膜材料の電気導電性が高まり、内部抵抗の小さい蓄電デバイスを形成することができる。 According to the fourth aspect of the present invention, since metal atoms are supported in the carbon nano thin film material, the electrical conductivity of the carbon nano thin film material is increased, and an electricity storage device having a low internal resistance can be formed.
以下、図面を参照しつつ、この発明の実施の最良形態について説明する。
図1は、この発明による一例のセパレータを用いた蓄電デバイスの内部構成を示す縦断面図である。図2は、その蓄電デバイスの外観形状を示す斜視図であり、その一部に部分縦断面図を併せて示す。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an internal configuration of an electricity storage device using an example separator according to the present invention. FIG. 2 is a perspective view showing the external shape of the electricity storage device, and a partial longitudinal sectional view is shown in part.
この発明の蓄電デバイス1は、少なくとも一対の分極性電極2・3を、セパレータ4を介して配置し、その一対の分極性電極2・3の間に電解液5を充填させてなり、この一対の分極性電極2・3の少なくとも一方には、導電性基板上にカーボンナノ薄膜材料を成長させてなる。
In the
たとえば、これらの一対の分極性電極2・3は、まず、一対の集電体6・7の裏面に、導電性のグラファイト薄膜(グラファイト膜状基板)21・31を成膜し、このグラファイト薄膜21・31上に、たとえばプラズマ気相成長法等を用いて、結晶成長方向を制御しながらカーボンナノチューブ22・32を成長させることにより形成する。
For example, in the pair of
こうして形成した、一対の分極性電極2・3の間にセパレータ4を配置する。セパレータ4は電解質中のイオンが透過可能であり、電子の移動透過が可能であるように適宜選定される。これらの一対の分極性電極2・3の間には電解液5として、アルカリガラス等の無機系リン酸ガラスゲル電解質を満たしている。
The
そして、この分極性電極2・3の両極間に電気分解が発生しない程度の電圧を印加すると、それぞれの電極にイオンが吸着され、正および負の電気がそれぞれ蓄積され、蓄電デバイスとして機能することとなる。
When a voltage that does not cause electrolysis is applied between the polarities of the
図3および図4は、この発明で分極性電極として用いる、導電性基板(グラファイト基板)上に形成したカーボンナノチューブの結晶成長を示す走査型電子顕微鏡(SEM)写真であり、それぞれ、図3は倍率20000倍の場合を、図4は倍率4000倍の場合を示す。 3 and 4 are scanning electron microscope (SEM) photographs showing crystal growth of carbon nanotubes formed on a conductive substrate (graphite substrate) used as a polarizable electrode in the present invention. FIG. 4 shows a case where the magnification is 20000, and FIG. 4 shows a case where the magnification is 4000.
図3および図4よりみて、このカーボンナノチューブは、細孔利用率に優れているから、電解質中のキャリア生成度が高く、電気容量の大きな蓄電デバイスを形成できることが分かる。 3 and 4, this carbon nanotube is excellent in pore utilization rate, and thus it can be seen that an electricity storage device with high carrier generation in the electrolyte and a large electric capacity can be formed.
また、カーボンナノ薄膜材料中に金属原子を担持させることもできる。カーボンナノ薄膜材料中に金属原子を担持した分極性電極は、カーボンナノ薄膜材料の電気導電性が高まり、反応速度が加速され、内部抵抗の小さい、電気容量の増大した蓄電デバイスを形成することができる。 Moreover, a metal atom can also be carried in the carbon nano thin film material. A polarizable electrode carrying metal atoms in a carbon nano thin film material can increase the electrical conductivity of the carbon nano thin film material, accelerate the reaction speed, and form an electricity storage device with a small internal resistance and an increased electric capacity. it can.
図5および図6は、それぞれ、正負の金集電体にカーボンナノチューブ分極性電極を接触させ、両極間にアルカリガラス等の無機系リン酸ガラスゲル電解質を用いた電解液を挟み込んだ場合(図5のとき)と、金電極を正負の集電体として用い、両極間に電解質を挟み込んだ場合(図6のとき)について、これらの各電極間に、印加電圧:1Vppと−1Vpp、各パルスの印加時間(周期):30秒、サイクル数:5回の繰り返しパルスを与えて測定した、電荷量変化(クーロン)と時間(秒)の関係を示す図である。 FIGS. 5 and 6 respectively show a case where a carbon nanotube polarizable electrode is brought into contact with a positive and negative gold current collector, and an electrolytic solution using an inorganic phosphate glass gel electrolyte such as alkali glass is sandwiched between both electrodes (FIG. 5). ) And a case where a gold electrode is used as a positive and negative current collector and an electrolyte is sandwiched between both electrodes (in the case of FIG. 6), the applied voltages: 1 Vpp and −1 Vpp, It is a figure which shows the relationship between charge amount change (coulomb) and time (second) measured by giving a repetition pulse of application time (cycle): 30 seconds and cycle number: 5 times.
図5および図6から、分極性電極を用いない場合に比べて、この発明の分極性電極を用いる場合には、電荷量が約2000倍になっており、これより、この発明により、小型で電気容量の高い蓄電デバイスが得られることが分かる。 From FIG. 5 and FIG. 6, when the polarizable electrode of the present invention is used, the charge amount is about 2000 times as compared with the case where the polarizable electrode is not used. It can be seen that an electricity storage device having a high electric capacity can be obtained.
上述の実施例において、分極性電極2・3に用いられるカーボンナノ薄膜材料は、前記カーボンナノチューブの他、カーボンナノファイバー等でもよい。
In the above-described embodiments, the carbon nano thin film material used for the
上述の実施例において、電解液5としては、リン酸ガラス等のアルカリガラスゲル電解質を用いたが、他に、無機系、有機系、高分子系のゲル電解質、また、有機系、無機系、高分子系の電解液または電解質を用いてもよい。
In the above-described embodiment, an alkaline glass gel electrolyte such as phosphate glass was used as the
上述の実施例において、カーボンナノ薄膜材料をグラファイト基板上に形成する手法としては、イオン、レーザー源等を用いた低温プラズマ気相成長法を採用した。 In the above-described embodiment, a low temperature plasma vapor deposition method using an ion, a laser source, or the like was adopted as a method for forming the carbon nano thin film material on the graphite substrate.
上述の実施例では、分極性電極を形成する際、グラファイト基板を用いたが、他の導電性基板を用いることもできる。また、上述の実施例では、グラファイト基板として、グラファイト薄膜(グラファイト膜状基板)を用いたが、グラファイト結晶性基板を用いることもできる。 In the above-described embodiment, the graphite substrate is used when forming the polarizable electrode. However, other conductive substrates can be used. In the above-described embodiments, a graphite thin film (graphite film-like substrate) is used as the graphite substrate, but a graphite crystalline substrate can also be used.
また、上述の実施例では、一対の分極性電極の各々の導電性基板上に、同程度の表面密度および嵩密度のカーボンナノ薄膜材料を成長させたが、それらの分極性電極の各々の導電性基板上に、異なった表面密度および嵩密度のカーボンナノ薄膜材料を成長させることもできる。 In the above-described embodiment, the carbon nano thin film material having the same surface density and bulk density is grown on the conductive substrate of each of the pair of polarizable electrodes. It is also possible to grow carbon nano thin film materials having different surface densities and bulk densities on a conductive substrate.
蓄電デバイスは、集電体6・7の金属裏面にグラファイト薄膜(導電性基板)21・31を成膜した後、このグラファイト薄膜(導電性基板)21・31上にカーボンナノチューブ(カーボンナノ薄膜材料)22・32を成長させて分極性電極2・3を形成した後、周りを絶縁体8で覆って構成されるが、分極性電極の形成、蓄電デバイスの構成はこれに限らず、たとえば、予め導電性基板21・31上にカーボンナノチューブ(カーボンナノ薄膜材料)22・32を生成して形成した分極性電極2・3を、集電体6・7に接触させ挟み込んだ後、周りを絶縁体8で覆って蓄電デバイスを構成することもできる。
In the electricity storage device, graphite thin films (conductive substrates) 21 and 31 are formed on the metal back surfaces of the
上述の実施例では、蓄電デバイスの形状を、図2に示すような円盤状の構成で示したが、形状はこれに限らず、この蓄電デバイスを搭載する機器に適合した任意の形状とすることができる。さらに、電解質、分極性電極を積層化した構造のものとすることもできる。 In the above-described embodiments, the shape of the electricity storage device is shown as a disk-like configuration as shown in FIG. Can do. Furthermore, it can also be set as the structure which laminated | stacked the electrolyte and the polarizable electrode.
1 蓄電デバイス
2・3 分極性電極
4 セパレータ
5 電解液
6・7 集電体
8 絶縁体
21・31 グラファイト薄膜(導電性基板)
22・32 カーボンナノチューブ(カーボンナノ薄膜材料)
DESCRIPTION OF
22.32 Carbon nanotube (carbon nano thin film material)
Claims (4)
The electrical storage device in any one of Claims 1, 2, or 3 made to carry | support a metal atom in the said carbon nano thin film material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005076994A JP2006261399A (en) | 2005-03-17 | 2005-03-17 | Accumulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005076994A JP2006261399A (en) | 2005-03-17 | 2005-03-17 | Accumulation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006261399A true JP2006261399A (en) | 2006-09-28 |
Family
ID=37100300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005076994A Pending JP2006261399A (en) | 2005-03-17 | 2005-03-17 | Accumulation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006261399A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07283084A (en) * | 1994-04-05 | 1995-10-27 | Matsushita Electric Ind Co Ltd | Electric double layer capacitor and manufacture thereof |
JP2001307951A (en) * | 2000-04-12 | 2001-11-02 | Young Hee Lee | Supercapacitor and its manufacturing method |
JP2004087213A (en) * | 2002-08-26 | 2004-03-18 | Hitachi Ltd | Electrode, manufacturing method of the same, electricity storage device, and light emitting device |
JP2004284921A (en) * | 2003-03-25 | 2004-10-14 | Kenjiro Oura | Method of manufacturing carbon nanotube, carbon nanotube device and electrical double layer capacitor |
WO2005006469A1 (en) * | 2003-07-15 | 2005-01-20 | Itochu Corporation | Current collecting structure and electrode structure |
-
2005
- 2005-03-17 JP JP2005076994A patent/JP2006261399A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07283084A (en) * | 1994-04-05 | 1995-10-27 | Matsushita Electric Ind Co Ltd | Electric double layer capacitor and manufacture thereof |
JP2001307951A (en) * | 2000-04-12 | 2001-11-02 | Young Hee Lee | Supercapacitor and its manufacturing method |
JP2004087213A (en) * | 2002-08-26 | 2004-03-18 | Hitachi Ltd | Electrode, manufacturing method of the same, electricity storage device, and light emitting device |
JP2004284921A (en) * | 2003-03-25 | 2004-10-14 | Kenjiro Oura | Method of manufacturing carbon nanotube, carbon nanotube device and electrical double layer capacitor |
WO2005006469A1 (en) * | 2003-07-15 | 2005-01-20 | Itochu Corporation | Current collecting structure and electrode structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | A Two‐Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dual‐Functional Ion Redistributor for Dendrite‐Free Lithium Metal Anodes | |
JP6370835B2 (en) | Method for forming part of energy storage device and method for forming capacitor | |
Zhang et al. | The effect of the carbon nanotube buffer layer on the performance of a Li metal battery | |
KR101946658B1 (en) | Electrode foil, current collector, electrode, and electric energy storage element using same | |
Zhao et al. | In situ formation of highly controllable and stable Na 3 PS 4 as a protective layer for Na metal anode | |
CN107180941B (en) | Negative electrode for lithium secondary battery, and method for producing same | |
US8503161B1 (en) | Supercapacitor cells and micro-supercapacitors | |
CN102282706B (en) | High efficiency energy conversion and storage systems using carbon nanostructured materials | |
EP2387805B1 (en) | A process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes | |
JP5480823B2 (en) | Method for producing silicon-based electrode, silicon-based electrode, and lithium battery comprising such an electrode | |
CN103958742B (en) | Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electricity storage device, electrode for electricity storage device, and electricity storage device | |
JP2016509757A (en) | Graphene lithium ion capacitor | |
US10566615B2 (en) | Battery and method for producing a battery | |
TWI457956B (en) | Apparatus and method for integrating energy storage device onto a substrate of a microelectronic device and a mobile device | |
WO2011071154A1 (en) | Silicon film and lithium secondary cell | |
CN105655139B (en) | A kind of molybdenum oxide/carbon coating titanium nitride nano pipe array composite material and its preparation method and application | |
Wang et al. | Local confinement and alloy/dealloy activation of Sn–Cu nanoarrays for high-performance lithium-ion battery | |
Zhang et al. | Regulating lithium-ion transport route via adjusting lithium-ion affinity in solid polymer electrolyte | |
He et al. | Vertically oriented graphene nanosheets for electrochemical energy storage | |
Ghosh et al. | Performance dependence of electrochemical capacitor on surface morphology for vertically aligned graphene nanosheets | |
CN105340115A (en) | Method and apparatus for energy storage | |
Luo et al. | A universal in situ strategy for charging supercapacitors | |
KR100806678B1 (en) | Method for manufacturing carbon nanotube / metal oxide nanocomposite electrode prepared by electrochemical method | |
WO2020080520A1 (en) | Capacitor, and capacitor electrode | |
CN111710841A (en) | A kind of electrodeposited lithium-carbon-silver composite negative electrode material for lithium battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080312 |
|
A977 | Report on retrieval |
Effective date: 20100823 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A02 | Decision of refusal |
Effective date: 20101224 Free format text: JAPANESE INTERMEDIATE CODE: A02 |