[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006252854A - Manufacturing method for metallic glass separator - Google Patents

Manufacturing method for metallic glass separator Download PDF

Info

Publication number
JP2006252854A
JP2006252854A JP2005065297A JP2005065297A JP2006252854A JP 2006252854 A JP2006252854 A JP 2006252854A JP 2005065297 A JP2005065297 A JP 2005065297A JP 2005065297 A JP2005065297 A JP 2005065297A JP 2006252854 A JP2006252854 A JP 2006252854A
Authority
JP
Japan
Prior art keywords
separator
metallic glass
alloy
manufacturing
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065297A
Other languages
Japanese (ja)
Inventor
Akihisa Inoue
明久 井上
Hisamichi Kimura
久道 木村
Isamu Cho
偉 張
Ryuichi Saito
隆一 斎藤
Hideki Onishi
秀貴 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dynax Corp
Original Assignee
Tohoku University NUC
Dynax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dynax Corp filed Critical Tohoku University NUC
Priority to JP2005065297A priority Critical patent/JP2006252854A/en
Publication of JP2006252854A publication Critical patent/JP2006252854A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a metallic glass separator, by which productivity of the metallic glass separator is improved and manufacturing cost of the metallic glass separator can be reduced. <P>SOLUTION: The separator 10 consisting of metallic glass is manufactured by injecting alloy 12 of melting state into the inside of a mold 26, and cooling the alloy 12 in the mold 26 to the glass transition temperature of the alloy 12 or lower with cooling rate suppressing crystallization of the alloy 12. By manufacturing the metallic glass separator 10 using an injection molding, material alloy installation in a crucible, melting process and shaping process can be carried out in several minutes. Consequently, the productivity improvement of the metallic glass separator and hence great reduction in its manufacturing cost can be realized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池のセルに組込まれるセパレータの製造方法の技術分野に属する。   The present invention belongs to the technical field of a method for manufacturing a separator incorporated in a cell of a polymer electrolyte fuel cell.

固体高分子型燃料電池(以下、単に「燃料電池」という。)は、高分子電解質膜からなる電極に、反応ガス(水素・酸素)を供給して発電する装置である。
図2は、燃料電池を構成する最小ユニットであるセルCの斜視図である。
燃料電池のセルCは、触媒層と多孔質支持層からなる2つの電極E1,E2(アノード、及びカソード)、電極E1,E2間に挿入される電解質D、及び電極E1,E2の外側に配置されたセパレータ100からなる。
上記構成のセルCでは、1つにつき1V弱の電圧しか得られないので、実際の燃料電池としては、通常、数十〜数百のセルCを直列に積層したものが使用されている。
A polymer electrolyte fuel cell (hereinafter simply referred to as “fuel cell”) is a device that generates electricity by supplying a reaction gas (hydrogen / oxygen) to an electrode made of a polymer electrolyte membrane.
FIG. 2 is a perspective view of the cell C, which is the smallest unit constituting the fuel cell.
The cell C of the fuel cell is arranged outside the two electrodes E1 and E2 (anode and cathode) composed of a catalyst layer and a porous support layer, the electrolyte D inserted between the electrodes E1 and E2, and the electrodes E1 and E2. The separator 100 is made.
In the cell C having the above configuration, only a voltage of less than 1 V can be obtained for each cell. Therefore, as an actual fuel cell, a cell in which several tens to several hundreds of cells C are stacked in series is usually used.

図3は、燃料電池に使用される従来のセパレータ100の正面図である。
プレート状のセパレータ100の両面に、図3に示すように、幅、及び深さが0.5〜2mm程度の多数の溝120が設けられており、この溝120は、反応ガスの流路、及び反応によって発生した水の排出路として機能する。溝120の周囲には、シール用溝121が設けられている。
多数のセルCが積層されてなる燃料電池において、上記のセパレータ100は、各セルC間の仕切り板としてだけでなく、溝120を介して隣合う電極E1(又はE2)に反応ガスを供給したり、反応に伴って発生した水を外部に排出するために設けられている。
また、セパレータ100は、セルCで発生した電気を外部に伝達するための役割も果たしている。
FIG. 3 is a front view of a conventional separator 100 used in a fuel cell.
As shown in FIG. 3, a large number of grooves 120 having a width and a depth of about 0.5 to 2 mm are provided on both surfaces of the plate-shaped separator 100. And function as a drain for water generated by the reaction. A sealing groove 121 is provided around the groove 120.
In a fuel cell in which a large number of cells C are stacked, the separator 100 not only serves as a partition plate between the cells C but also supplies a reaction gas to the adjacent electrode E1 (or E2) via the groove 120. Or is provided to discharge water generated by the reaction to the outside.
The separator 100 also plays a role for transmitting electricity generated in the cell C to the outside.

従って、燃料電池のセパレータ100としては、電極E1,E2(アノード側、カソード側)に供給される反応ガスが混合しないようにガス遮蔽性が高く、反応ガスによって腐食されることがないように耐蝕性・耐酸化性に優れ、軽量で、且つ、導電性を有し、さらに、積層した各セルCの荷重に耐え得る強度を具えていることが要求される。また、燃料電池を小型化するためには、セパレータ100をできるだけ薄くする必要がある。   Therefore, as the separator 100 of the fuel cell, the gas shielding property is high so that the reaction gas supplied to the electrodes E1 and E2 (the anode side and the cathode side) is not mixed, and the corrosion resistance is prevented from being corroded by the reaction gas. It is required to have excellent properties and oxidation resistance, light weight, conductivity, and strength sufficient to withstand the load of each stacked cell C. Moreover, in order to reduce the size of the fuel cell, it is necessary to make the separator 100 as thin as possible.

上記特性を満たすセパレータ100の材料として、従来から、等方性カーボンが使用されている。しかし、より小型で高出力の燃料電池を開発するために、セパレータを薄くすると機械的強度及び成形性に限界があった。そこで、現在では、セパレータを薄くしても機械強度、成形性に優れた、金属を母材とするセパレータの開発が進められている。   Conventionally, isotropic carbon has been used as a material for the separator 100 that satisfies the above characteristics. However, in order to develop a fuel cell having a smaller size and a higher output, if the separator is made thinner, the mechanical strength and moldability are limited. Therefore, at present, development of a metal-based separator that is excellent in mechanical strength and formability even when the separator is thin is underway.

ところが、金属を母材とするセパレータを用いる場合、燃料電池内の水によって金属が腐食するという問題がある。
また、金属表面には不働態層が形成されるためカーボン材料に比べて接触抵抗が高く、そのような金属セパレータに通電された場合には電圧降下が大きくなり、燃料電池の性能低下を招くおそれがある。
However, when using a separator having a metal as a base material, there is a problem that the metal corrodes due to water in the fuel cell.
In addition, since a passive layer is formed on the metal surface, the contact resistance is higher than that of the carbon material, and when such a metal separator is energized, the voltage drop becomes large and the performance of the fuel cell may be degraded. There is.

上記の問題に対して、例えば、セパレータに用いる母材の金属にステンレス鋼を用い、その表面をサンドブラスト等により粗面化する方法や、表面に金メッキを施す方法がある。これらの技術によれば、母材の金属にステンレス鋼が用いられるので耐食性に優れるとともに、母材表面の粗面化や金メッキにより接触抵抗が低下する。しかし、表面を粗面化する方法では、電力を発生する反応中にセパレータが酸化雰囲気となるため、使用中に腐食されてしまうという問題がある。また、金メッキを用いる方法は貴金属を用いるためにコスト高となる。   To solve the above problem, for example, there are a method of using stainless steel as a base metal used for a separator and roughening the surface by sandblasting or a method of applying gold plating to the surface. According to these techniques, since stainless steel is used for the base metal, the corrosion resistance is excellent, and the contact resistance is reduced by roughening the surface of the base metal or gold plating. However, the method of roughening the surface has a problem in that the separator becomes an oxidizing atmosphere during a reaction that generates electric power, and is corroded during use. Further, the method using gold plating is expensive because it uses a noble metal.

上述した金属セパレータの問題を解決するために、以下に説明する非晶質合金を材質に用いた燃料電池用セパレータの開発が行われている。
「非晶質合金」とは、多元素合金の或る種のものを溶融し、これを急速冷却することにより得られる、結晶構造を持たない合金であり、薄帯状、フィラメント状、粉粒体状など、種々の形状を有することがよく知られている。
上述した非晶質合金のうち、ガラス遷移を示し、広い過冷却液体温度域(結晶化温度Txとガラス遷移温度Tgとの差ΔTxで定義されるもの)及び大きな換算ガラス化温度(ガラス遷移温度Tgと毎分5Kの加熱速度で示差熱量分析を行うことにより得られる合金液相線温度Tlの比で定義され、非晶質形成能力を示す 数値)を有するものは、一般的に金属ガラスと呼ばれ、結晶化に対する高い安定性を示し、大きな非晶質形成能を有することが知られており、金型鋳造法等によりバルク状非晶質材を製造することが可能である。
これら非晶質合金は、酸化の開始点となる結晶粒界がないことから、燃料電池内の水によって金属が腐食することを抑制することができ、強度や導電性についても従来のカーボン系の材料よりも優れている。
In order to solve the above-described problems of the metal separator, development of a fuel cell separator using an amorphous alloy described below as a material has been performed.
An “amorphous alloy” is an alloy having no crystal structure, obtained by melting a certain kind of multi-element alloy and rapidly cooling it. It is well known to have various shapes such as shapes.
Among the above-mentioned amorphous alloys, it exhibits glass transition, has a wide supercooled liquid temperature range (defined by the difference ΔT x between the crystallization temperature T x and the glass transition temperature T g ), and a large converted vitrification temperature ( is defined as the ratio of the glass transition temperature T g and per minute alloy liquidus temperature obtained by performing a differential thermal analysis at a heating rate of 5K T l, those with a numerical value) that indicates the amorphous forming ability is generally Known as metallic glass, it is known to have high stability against crystallization and to have a large amorphous forming ability, and it is possible to produce bulk amorphous materials by die casting method etc. It is.
Since these amorphous alloys do not have a grain boundary that is the starting point of oxidation, the metal can be prevented from corroding by water in the fuel cell, and the strength and conductivity of the conventional carbon-based alloy can also be suppressed. It is better than the material.

この金属ガラスを燃料電池のセパレータに用いた例として、溶融状態から単ロール又は双ロール法でNi基非晶質合金薄帯を成形し、これに樹脂を塗膜又は積層し、打抜き加工又は機械加工により、ガス流路及び生成水排水のための溝付けを行って製造されたセパレータが特許文献1に開示されている。
また、溶融状態から単ロール法又は双ロール法によりNi基非晶質合金薄帯を成形し、これを過冷却液体温度域で、温間プレスにより溝付けを行って製造されたセパレータ、及び溶融金属を金型に流し込み、急速冷却して非晶質化させ、過冷却液体温度域で鍛造加工を施すことによって製造されたセパレータが特許文献2に開示されている。
As an example of using this metallic glass as a separator for a fuel cell, a Ni-based amorphous alloy ribbon is formed from a molten state by a single roll or twin roll method, and a resin coating or lamination is formed thereon, and punching or machine Patent Document 1 discloses a separator manufactured by grooving for gas flow path and generated water drainage by processing.
In addition, a separator manufactured by forming a Ni-based amorphous alloy ribbon from a molten state by a single roll method or a twin roll method, and grooving it with a warm press in the supercooled liquid temperature range, and melting Patent Document 2 discloses a separator manufactured by pouring metal into a mold, rapidly cooling it to make it amorphous, and performing forging in a supercooled liquid temperature range.

特開2004−232070号公報Japanese Patent Laid-Open No. 2004-232070 特開2004−273314号公報JP 2004-273314 A

しかし、特許文献1及び特許文献2においては、非晶質合金薄帯に溝付けを行う工程があるため、製造に比較的多くの時間と手間がかかり、生産性の点で問題がある。
また、特許文献2における溶湯鍛造の場合、溶融した金属を雌型に注ぎ、雄型で押すという手順のため、金属ガラス製造に必須の急冷作業が困難である、大型のもの又は肉厚が薄いものには適用が難しく表面形状等の精度が低い、雄型で押した際に溶湯があふれる等の問題がある。
However, in Patent Document 1 and Patent Document 2, since there is a step of grooving an amorphous alloy ribbon, it takes a relatively long time and labor to manufacture, which is problematic in terms of productivity.
In addition, in the case of molten metal forging in Patent Document 2, because of the procedure of pouring molten metal into a female die and pressing it with a male die, it is difficult to perform a rapid cooling operation essential for the production of metal glass. There is a problem that the material is difficult to apply and the accuracy of the surface shape is low, and the molten metal overflows when pushed with a male mold.

本発明は、上述の問題に鑑み、従来よりも金属ガラスセパレータの生産性を向上させ、製造コストを削減することができる金属ガラスセパレータの製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the metallic glass separator which can improve the productivity of a metallic glass separator conventionally, and can reduce manufacturing cost in view of the above-mentioned problem.

本発明は、溶融状態の合金を金型内部に射出し、前記金型内部の合金を、該合金が結晶化しない程度の冷却速度で、該合金のガラス遷移温度以下まで冷却することによって、金属ガラスからなるセパレータを得ることを特徴とする、金属ガラスセパレータの製造方法により、前記の課題を解決した。
前記金属ガラスは、Cu基非晶質合金であることが好ましく、特にCu−Zr−Ti−Co、Cu−Zr−Ti−Ni、Cu−Zr−Ti−Ni−Co、Cu−Zr−Al、Cu−Zr−Al−Nb、Cu−Zr−Al−Ta、Cu−Zr−Al−Nb−Taのいずれかであることが好ましい。
The present invention injects a molten alloy into a mold, and cools the alloy inside the mold to a temperature below the glass transition temperature of the alloy at a cooling rate that does not cause the alloy to crystallize. The above-mentioned problems have been solved by a method for producing a metallic glass separator, characterized in that a separator made of glass is obtained.
The metallic glass is preferably a Cu-based amorphous alloy, particularly Cu-Zr-Ti-Co, Cu-Zr-Ti-Ni, Cu-Zr-Ti-Ni-Co, Cu-Zr-Al, It is preferably any of Cu—Zr—Al—Nb, Cu—Zr—Al—Ta, and Cu—Zr—Al—Nb—Ta.

本発明の金属ガラスセパレータの製造方法では、溶融金属を水冷の金型内に射出することにより、溶融金属をガラス遷移温度Tg以下に急速冷却して非晶質化させると同時に、成形も行われるため、再び過冷却液体温度域ΔTxまで加熱して成形を行う必要がない。
従って、原料合金の坩堝内設置、溶解、成形工程を数分で行うことが可能になるため、従来の金属ガラスセパレータの製造方法よりも、金属ガラスセパレータの生産効率が飛躍的に向上し、その結果、製造コストを大幅に削減することができる。
In the method for producing a metallic glass separator according to the present invention, the molten metal is injected into a water-cooled mold so that the molten metal is rapidly cooled to a glass transition temperature Tg or less to be amorphous and simultaneously molded. Therefore, it is not necessary to perform heating to the supercooled liquid temperature range ΔT x again.
Therefore, since it is possible to perform the raw material alloy installation in the crucible, melting, and forming process in a few minutes, the production efficiency of the metal glass separator is dramatically improved compared to the conventional method of manufacturing a metal glass separator, As a result, the manufacturing cost can be greatly reduced.

本発明の金属ガラスセパレータの製造方法を、図1に基づいて説明する。
なお、本明細書中の「金属ガラス」とは非晶質合金を意味する。
図1は、本発明の金属ガラスセパレータの製造方法の一例を示す概略図である。本発明の製造方法においては、原料合金を溶融し、この溶融金属を金型内に射出し、金型との接触により溶融金属を急速冷却して非晶質化し、金属ガラスセパレータを得る。
The manufacturing method of the metallic glass separator of this invention is demonstrated based on FIG.
In the present specification, “metallic glass” means an amorphous alloy.
FIG. 1 is a schematic view showing an example of a method for producing a metallic glass separator of the present invention. In the production method of the present invention, a raw material alloy is melted, the molten metal is injected into a mold, and the molten metal is rapidly cooled to be amorphous by contact with the mold to obtain a metallic glass separator.

本発明に用いられる金属ガラスは、固体高分子型燃料電池のセパレータの使用環境に適したものであり、加工性・機械的性質のみならず、耐食性・導電性にも優れるCu基非晶質合金が好ましい。具体的にはCu−Zr−Ti−Co、Cu−Zr−Ti−Ni、Cu−Zr−Ti−Ni−Coのいずれかであり、より具体的には、Cu50−Zr25−Ti15−Co10、Cu50−Zr25−Ti15−Ni10、Cu50−Zr22−Ti18−Ni5−Co5(各組成は原子%)の組成を有するCu基非晶質合金が好ましい。
その他に使用可能なCu基非晶質合金としては、Cu−Zr−Al、Cu−Zr−Al−Nb、Cu−Zr−Al−Ta、Cu−Zr−Al−Nb−Taのいずれかであり、具体的には、本発明者らが先に出願した特願2004−414092に開示されているCu100-a-bZraAlb(式中、30≦a≦60、0≦b ≦15)により表されるCu基非晶質合金、又は前記Zr又はAlの一部が、Nb及び/又はTa(それぞれ最大10原子%)で置換されたCu基非晶質合金が好ましい。
さらに、特開2002−256401号に開示されているCu100-a-b(Zr +Hf)aTib又はCu100-a-b-c-d(Zr+Hf)aTibcd[式中、Mは、Fe、Cr、Mn、Ni、Co、Nb、Mo、W、Sn、Al、Ta、希土類元素よりなる群から選択される1種又は2種以上の元素、Tは、Ag、Pd、Pt、Auよりなる群から選択される1種又は2種以上の元素であり、a、b、c、dは原子%で、5<a≦55、0≦b≦45、30<a+b≦60、0.5≦c≦5、0≦d≦10である。] で示される組成を有する非晶質相を体積百分率で90%以上含むCu基非晶質合金、及び特開2004−91868号に開示されているCu100-a-b(Zr,H f)a(Al,Ga)b[式中、a、bは原子%で、35原子%≦a≦50原子%、2原子%≦b≦10原子%である]で示される組成を有する非晶質相を体積百分率で90%以上含むCu基非晶質合金等を挙げることができる。
The metallic glass used in the present invention is suitable for the use environment of the separator of the polymer electrolyte fuel cell, and is a Cu-based amorphous alloy that is excellent not only in workability and mechanical properties but also in corrosion resistance and conductivity. Is preferred. Specifically it is either Cu-Zr-Ti-Co, Cu-Zr-Ti-Ni, Cu-Zr-Ti-Ni-Co, and more specifically, Cu 50 -Zr 25 -Ti 15 - Co 10, Cu 50 -Zr 25 -Ti 15 -Ni 10, Cu 50 -Zr 22 -Ti 18 -Ni 5 -Co 5 Cu -based amorphous alloy having a composition of (each composition is atomic%) is preferred.
Other usable Cu-based amorphous alloys include Cu-Zr-Al, Cu-Zr-Al-Nb, Cu-Zr-Al-Ta, and Cu-Zr-Al-Nb-Ta. Specifically, according to Cu 100-ab Zr a Al b (in the formula, 30 ≦ a ≦ 60, 0 ≦ b ≦ 15) disclosed in Japanese Patent Application No. 2004-414092 filed earlier by the present inventors. A Cu-based amorphous alloy represented by the above, or a Cu-based amorphous alloy in which a part of Zr or Al is substituted with Nb and / or Ta (each up to 10 atomic%) is preferable.
Further, Cu 100-ab (Zr + Hf) a Ti b or Cu 100-abcd (Zr + Hf) a Ti b M c T d disclosed in JP-A No. 2002-256401 [wherein M is Fe, Cr, One or more elements selected from the group consisting of Mn, Ni, Co, Nb, Mo, W, Sn, Al, Ta, and rare earth elements, T is selected from the group consisting of Ag, Pd, Pt, and Au. One or more elements selected, a, b, c, d are atomic%, 5 <a ≦ 55, 0 ≦ b ≦ 45, 30 <a + b ≦ 60, 0.5 ≦ c ≦ 5, 0 ≦ d ≦ 10. ] A Cu-based amorphous alloy containing an amorphous phase having a composition of 90% or more by volume percentage, and Cu 100-ab (Zr, H f) a (disclosed in Japanese Patent Application Laid-Open No. 2004-91868. Al, Ga) b [wherein a and b are atomic%, 35 atomic% ≦ a ≦ 50 atomic%, 2 atomic% ≦ b ≦ 10 atomic%] Examples thereof include a Cu-based amorphous alloy containing 90% or more by volume percentage.

本発明で使用する射出成形装置20は、図1に示すような公知の金属用射出成形機であり、射出装置21と型締装置(図示せず)及びこれらに駆動力を供給する電気・油圧装置(図示せず)とその制御装置(図示せず)等からなる。溶融金属の酸化を防止するために、チェインバー30内を真空引きし、アルゴンガス等の不活性雰囲気にする。以下、金属ガラスセパレータの製造方法を工程別に説明する。   An injection molding apparatus 20 used in the present invention is a known metal injection molding machine as shown in FIG. 1, and includes an injection apparatus 21, a mold clamping apparatus (not shown), and electric / hydraulic pressure for supplying driving force thereto. It consists of a device (not shown) and its control device (not shown). In order to prevent oxidation of the molten metal, the inside of the chain bar 30 is evacuated to create an inert atmosphere such as argon gas. Hereinafter, the manufacturing method of a metallic glass separator is demonstrated according to process.

(工程1)原料合金11を所期の組成となるように配合し、坩堝22を用いて高周波誘導溶解炉等の溶解炉23内にてレーザービームにより合金を融解し、高周波で攪拌することにより溶融金属12(溶融状態の合金)とする。次に、溶解炉23を回転させて溶融金属12をホッパー24に注入する。 (Step 1) By mixing the raw material alloy 11 to have the desired composition, melting the alloy with a laser beam in a melting furnace 23 such as a high-frequency induction melting furnace using a crucible 22, and stirring at high frequency A molten metal 12 (alloy in a molten state) is used. Next, the melting furnace 23 is rotated to inject the molten metal 12 into the hopper 24.

(工程2)溶融金属12をホッパー24からシリンダ25内に投入し、シリンダ25内の溶融金属12を押出し、金型26の内部(以下、「キャビティ27」という。)に射出する。溶融金属12は、水冷の金型26と接触することにより、ガラス遷移温度Tg以下にまで急速に冷却されて凝固し、非晶質化する。 (Step 2) Molten metal 12 is put into cylinder 25 from hopper 24, molten metal 12 in cylinder 25 is extruded, and injected into mold 26 (hereinafter referred to as “cavity 27”). When the molten metal 12 comes into contact with the water-cooled mold 26, the molten metal 12 is rapidly cooled to a glass transition temperature T g or less, solidifies, and becomes amorphous.

なお、射出時の溶融金属12の温度は、合金の融点等により異なるが、Cu基非晶質合金の場合には、1000℃〜1300℃であることが好ましい。
また、溶融金属12の冷却速度は、キャビティ27の容量、セパレータの厚さ、表面積によって変わるが、溶融金属12が結晶化しない程度の冷却速度であればよい。例えば、厚さ0.2mm、表面積630cm2の場合のセパレータを製 造する場合、溶融金属12の冷却速度は、100℃/秒以上であることが好ましい。
The temperature of the molten metal 12 at the time of injection varies depending on the melting point of the alloy and the like, but in the case of a Cu-based amorphous alloy, it is preferably 1000 ° C. to 1300 ° C.
The cooling rate of the molten metal 12 varies depending on the capacity of the cavity 27, the thickness of the separator, and the surface area, but may be a cooling rate that does not cause the molten metal 12 to crystallize. For example, when manufacturing a separator having a thickness of 0.2 mm and a surface area of 630 cm 2 , the cooling rate of the molten metal 12 is preferably 100 ° C./second or more.

(工程3)金型26を開き、キャビティ27に対応した形状の凹凸を有する金属ガラス成形体、すなわち、金属ガラスからなるセパレータ10を取り出す。なお、金属ガラスセパレータ10の厚さは、0.5mm以下であることが望ましい。本発明の方法により製造された金属ガラスセパレータ10は、金属ガラスが酸化の開始点となる結晶粒界がないことから、燃料電池内の水によって金属が腐食することを抑制することができる。また、強度や導電性についても従来のカーボン系の材料よりも優れている。 (Step 3) Open the mold 26 and take out the metal glass molded body having irregularities corresponding to the cavity 27, that is, the separator 10 made of metal glass. The thickness of the metallic glass separator 10 is preferably 0.5 mm or less. Since the metal glass separator 10 manufactured by the method of the present invention has no crystal grain boundary where the metal glass becomes the starting point of oxidation, the metal can be prevented from being corroded by water in the fuel cell. Also, strength and conductivity are superior to conventional carbon materials.

従来の溶湯鍛造による金属ガラスセパレータの製造方法では、雌型の金型に溶融金属を流し込み雄型の金型で押すことにより、溶融金属をガラス遷移温度Tg以下に急速冷却して非晶質化し、過冷却液体温度域ΔTxで雄型の加圧を継続す ることにより金属ガラスセパレータを得ていた。また、温間プレスによる製造方法においては、単ロール急冷法により金属ガラスシートを成形し、これを過冷却液体温度域ΔTxまで加熱してプレスすることにより溝付けを行っていた。 In the conventional method for producing a metallic glass separator by molten metal forging, the molten metal is poured into a female mold and pressed with a male mold, whereby the molten metal is rapidly cooled to a glass transition temperature Tg or less to be amorphous. However, had received metallic glass separator by Rukoto to continue pressurization of the male in the supercooled liquid temperature range [Delta] T x. Moreover, in the manufacturing method by the warm press, a metal glass sheet is formed by a single roll quenching method, and this is heated and pressed to a supercooled liquid temperature range ΔT x to perform grooving.

これらに対して、本発明の金属ガラスセパレータの製造方法では、溶融金属12を水冷の金型26内(すなわち、キャビティ27)に射出することにより、溶融金属12をガラス遷移温度Tg以下に急速冷却して非晶質化させると同時に、 成形も行われる。すなわち、急速冷却して非晶質化させた後に、再び過冷却液体温度域ΔTxまで加熱して成形を行う必要がない。
従って、単ロールによるシート成形後に温間プレスする製造方法と比べて、工程を少なくすることができる。
また、射出成形は、セパレータのような薄く大型なものの製造に適しており、溶湯鍛造と比較して精度の高い成形品が得られ、歩留まりが高くなる。
For these, in the manufacturing method of the metallic glass separator of the present invention, the molten metal 12 within the water-cooled mold 26 (i.e., cavity 27) by injecting a rapidly molten metal 12 below the glass transition temperature T g Molding is performed at the same time as it is made amorphous by cooling. That is, it is not necessary to perform molding by heating to the supercooled liquid temperature range ΔT x again after rapid cooling and amorphization.
Therefore, the number of steps can be reduced as compared with a manufacturing method in which warm pressing is performed after sheet forming with a single roll.
Moreover, the injection molding is suitable for manufacturing a thin and large product such as a separator, and a molded product with higher accuracy can be obtained as compared with the molten metal forging, and the yield is increased.

以上説明したように、本発明の金属ガラスセパレータの製造方法によれば、原料合金の坩堝内設置、溶解、成形工程を数分で行うことが可能であるため、従来の金属ガラスセパレータの製造方法よりも、金属ガラスセパレータの生産効率が飛躍的に向上し、その結果、製造コストを大幅に削減することができる。   As described above, according to the method for producing a metallic glass separator of the present invention, since the raw material alloy can be installed in the crucible, melted, and formed in a few minutes, a conventional method for producing a metallic glass separator. As a result, the production efficiency of the metallic glass separator is dramatically improved, and as a result, the manufacturing cost can be greatly reduced.

本発明の金属ガラスセパレータの製造方法の一例を示す概略図。Schematic which shows an example of the manufacturing method of the metallic glass separator of this invention. 燃料電池を構成する最小ユニットであるセルの斜視図。The perspective view of the cell which is the minimum unit which comprises a fuel cell. 燃料電池に使用されるセパレータの正面図。The front view of the separator used for a fuel cell.

符号の説明Explanation of symbols

10:金属ガラスセパレータ
12:溶融金属
26:金型
10: Metallic glass separator 12: Molten metal 26: Mold

Claims (4)

溶融状態の合金を金型内部に射出し、前記金型内部の合金を、該合金が結晶化しない程度の冷却速度で、該合金のガラス遷移温度以下まで冷却することによって、金属ガラスからなるセパレータを得ることを特徴とする、
金属ガラスセパレータの製造方法。
A separator made of metal glass by injecting a molten alloy into the mold and cooling the alloy inside the mold to a temperature below the glass transition temperature of the alloy at a cooling rate that does not cause the alloy to crystallize. Characterized by
A method for producing a metallic glass separator.
前記金属ガラスが、Cu基非晶質合金である、請求項1の金属ガラスセパレータの製造方法。   The method for producing a metallic glass separator according to claim 1, wherein the metallic glass is a Cu-based amorphous alloy. 前記Cu基非晶質合金が、Cu−Zr−Ti−Co、Cu−Zr−Ti−Ni、Cu−Zr−Ti−Ni−Coのいずれかである、請求項2の金属ガラスセパレータの製造方法。   The method for producing a metallic glass separator according to claim 2, wherein the Cu-based amorphous alloy is any one of Cu-Zr-Ti-Co, Cu-Zr-Ti-Ni, and Cu-Zr-Ti-Ni-Co. . 前記Cu基非晶質合金が、Cu−Zr−Al、Cu−Zr−Al−Nb、Cu−Zr−Al−Ta、Cu−Zr−Al−Nb−Taのいずれかである、請求項2の金属ガラスセパレータの製造方法。


The Cu-based amorphous alloy is Cu-Zr-Al, Cu-Zr-Al-Nb, Cu-Zr-Al-Ta, or Cu-Zr-Al-Nb-Ta. A method for producing a metallic glass separator.


JP2005065297A 2005-03-09 2005-03-09 Manufacturing method for metallic glass separator Pending JP2006252854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065297A JP2006252854A (en) 2005-03-09 2005-03-09 Manufacturing method for metallic glass separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065297A JP2006252854A (en) 2005-03-09 2005-03-09 Manufacturing method for metallic glass separator

Publications (1)

Publication Number Publication Date
JP2006252854A true JP2006252854A (en) 2006-09-21

Family

ID=37093125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065297A Pending JP2006252854A (en) 2005-03-09 2005-03-09 Manufacturing method for metallic glass separator

Country Status (1)

Country Link
JP (1) JP2006252854A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169609A (en) * 2004-12-20 2006-06-29 Erugu:Kk Plating solution, method for preparing plating solution, surface treatment method and contact member
JP2010208223A (en) * 2009-03-11 2010-09-24 Olympus Corp Method for molding integrated molded article with metal glass and polymer material, and device for molding the same
CN107829050A (en) * 2017-11-08 2018-03-23 湖南理工学院 A kind of Cu base bulk metallic glass and its preparation technology containing aluminium
CN108063269A (en) * 2017-12-29 2018-05-22 成都新柯力化工科技有限公司 It is a kind of using glassy metal as the fuel-cell catalyst and preparation method of carrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318077A (en) * 1992-05-22 1993-12-03 Toyo Mach & Metal Co Ltd Vacuum vertical injection casting method and device therefor
JPH10296424A (en) * 1997-05-01 1998-11-10 Ykk Corp Manufacture and device for amorphous alloy formed product pressure cast with metallic mold
JP2001246451A (en) * 2000-03-01 2001-09-11 Ykk Corp Vacuum melting and injection molding apparatus for active alloy molding
JP2002256401A (en) * 2000-12-27 2002-09-11 Japan Science & Technology Corp Amorphous copper base alloy
JP2004091868A (en) * 2002-08-30 2004-03-25 Japan Science & Technology Corp Cu-BASED AMORPHOUS ALLOY
JP2004273314A (en) * 2003-03-10 2004-09-30 Daido Steel Co Ltd Fuel cell metal separator, manufacturing method of the same, and fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318077A (en) * 1992-05-22 1993-12-03 Toyo Mach & Metal Co Ltd Vacuum vertical injection casting method and device therefor
JPH10296424A (en) * 1997-05-01 1998-11-10 Ykk Corp Manufacture and device for amorphous alloy formed product pressure cast with metallic mold
JP2001246451A (en) * 2000-03-01 2001-09-11 Ykk Corp Vacuum melting and injection molding apparatus for active alloy molding
JP2002256401A (en) * 2000-12-27 2002-09-11 Japan Science & Technology Corp Amorphous copper base alloy
JP2004091868A (en) * 2002-08-30 2004-03-25 Japan Science & Technology Corp Cu-BASED AMORPHOUS ALLOY
JP2004273314A (en) * 2003-03-10 2004-09-30 Daido Steel Co Ltd Fuel cell metal separator, manufacturing method of the same, and fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169609A (en) * 2004-12-20 2006-06-29 Erugu:Kk Plating solution, method for preparing plating solution, surface treatment method and contact member
JP2010208223A (en) * 2009-03-11 2010-09-24 Olympus Corp Method for molding integrated molded article with metal glass and polymer material, and device for molding the same
CN107829050A (en) * 2017-11-08 2018-03-23 湖南理工学院 A kind of Cu base bulk metallic glass and its preparation technology containing aluminium
CN108063269A (en) * 2017-12-29 2018-05-22 成都新柯力化工科技有限公司 It is a kind of using glassy metal as the fuel-cell catalyst and preparation method of carrier

Similar Documents

Publication Publication Date Title
US6652679B1 (en) Highly-ductile nano-particle dispersed metallic glass and production method therefor
JP5639003B2 (en) Conductor and device
CN100460544C (en) Deformed Al-Mn series alloy and preparing process thereof
CN101590528A (en) A kind of preparation method of nano porous copper
CN103502505A (en) Cu-Ga alloy sputtering target and method for producing same
CN112916870B (en) Preparation method of medium-high entropy alloy material
CN100495625C (en) Method for producing seal welding sheet of microwave over magnetic control tube
CN110317970A (en) A kind of Cu-Cr-Zr alloy, preparation method and applications
US7175721B2 (en) Method for preparing Cr-Ti-V type hydrogen occlusion alloy
CN100491558C (en) High-performance yttrium-base heavy rare earth copper alloy die material and preparation method thereof
CN104838025A (en) Battery-case aluminium alloy plate exhibiting excellent moulding properties, heat-dissipation properties, and welding properties
JP2006252854A (en) Manufacturing method for metallic glass separator
CN102146550B (en) Nickel-free zirconium alloy with amorphous structure easily formed by pouring melt copper mould
CN108393370B (en) Production process of copper bar for positive and negative electrode leading-out terminals of battery
JPH1027616A (en) Lead-acid battery with erosion resistant electrode structure and its manufacture
JP2004273314A (en) Fuel cell metal separator, manufacturing method of the same, and fuel cell
CN102690971A (en) High-strength copper alloy strip and preparation method thereof
CN100368575C (en) Magnesium alloy cast into amorphous block with centimeter size
JP2005171333A (en) Metal glass alloy
MXPA03001213A (en) Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article using the same.
CN113481417B (en) Eutectic high-entropy alloy and preparation method thereof
CN113249612A (en) Novel contact copper alloy and preparation method thereof
CN102534299B (en) Beryllium-free polybasic copper alloy
JP2006253089A (en) Metal separator for fuel cell and its manufacturing method
JP2006339045A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206