[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006249540A - Method for forming transparent electroconductive thin-film with low resistance - Google Patents

Method for forming transparent electroconductive thin-film with low resistance Download PDF

Info

Publication number
JP2006249540A
JP2006249540A JP2005070181A JP2005070181A JP2006249540A JP 2006249540 A JP2006249540 A JP 2006249540A JP 2005070181 A JP2005070181 A JP 2005070181A JP 2005070181 A JP2005070181 A JP 2005070181A JP 2006249540 A JP2006249540 A JP 2006249540A
Authority
JP
Japan
Prior art keywords
thin film
film
hydrogen
pressure
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005070181A
Other languages
Japanese (ja)
Other versions
JP4919369B2 (en
Inventor
Fumiya Ikuji
文也 生地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2005070181A priority Critical patent/JP4919369B2/en
Publication of JP2006249540A publication Critical patent/JP2006249540A/en
Application granted granted Critical
Publication of JP4919369B2 publication Critical patent/JP4919369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a transparent thin-film superior in electroconductivity on a glass substrate with a plasma sputtering vapor-deposition technique. <P>SOLUTION: The method for forming the transparent thin-film with high functionality comprises the steps of: introducing an inert gas comprising at least one element of Ar or heavier in the group 0 in the periodic table into a vacuum vessel with a pressure of 3×10<SP>-5</SP>Pa or lower, till the pressure reaches 0.7×10<SP>-1</SP>Pa to 1.8×10<SP>-1</SP>Pa; arranging the alkali-free glass substrate so as to face a target, in an atmosphere containing the inert gas and 0.6 to 1% hydrogen and/or deuterium; setting the substrate to an electrically floating state in plasma; and forming the thin film with a thickness of 100 nm or more on the substrate, in the presence of a metallic filament with a low gas-pressure plasma sputtering technique. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガラス基板上に電気抵抗の低い透明な導電性薄膜たとえばITO(indium tin oxide)薄膜を形成する方法に関する。   The present invention relates to a method for forming a transparent conductive thin film having a low electrical resistance, such as an ITO (indium tin oxide) thin film, on a glass substrate.

たとえば液晶表示における電極基板のように、高い光透過性および導電性が要求されるエレクトロニクス材料としてガラス基板上に透明な導電性薄膜たとえばITO薄膜を形成したものが用いられている。ガラス基板上に透明な導電性薄膜を形成する手段として、プラズマスパッタ蒸着による薄膜形成方法が採られることが多い(たとえば、特許文献1参照)。
特開2001−131741号公報
For example, a transparent conductive thin film such as an ITO thin film formed on a glass substrate is used as an electronic material that requires high light transmission and conductivity, such as an electrode substrate in a liquid crystal display. As a means for forming a transparent conductive thin film on a glass substrate, a thin film forming method by plasma sputter deposition is often employed (for example, see Patent Document 1).
JP 2001-131741 A

しかしながら、ガラス基板上に形成すべき透明な導電性薄膜たとえばITO薄膜は複雑な結晶構造を有しているため、その物性たとえば電気伝導度を制御する方法は未だ確立されていない。液晶表示における電極基板として、光透過性に優れるとともに、さらに電気抵抗値の低い薄膜をガラス基板上に形成したものが要求されている。ガラス基板上に透明な導電性薄膜たとえばITO薄膜を形成する手段として、上に述べたように、多く、スパッタ蒸着による成膜法が採られているけれども、スパッタ蒸着による成膜法においては操作パラメータが多く、透明な導電性薄膜たとえばITO薄膜の低抵抗化を可能ならしめる主要パラメータおよびその制御法が明確になっていない。   However, since a transparent conductive thin film such as an ITO thin film to be formed on a glass substrate has a complicated crystal structure, a method for controlling its physical properties such as electrical conductivity has not yet been established. As an electrode substrate in a liquid crystal display, a substrate in which a thin film having excellent light transmittance and a low electric resistance value is formed on a glass substrate is required. As described above, as a means for forming a transparent conductive thin film such as an ITO thin film on a glass substrate, many film forming methods using sputter deposition are employed. However, the main parameters that make it possible to reduce the resistance of a transparent conductive thin film, for example, an ITO thin film, and its control method are not clear.

本発明は、プラズマスパッタ蒸着による、ガラス基板上への透明なかつ導電性に優れた薄膜の形成方法を提供することを目的とする。   An object of the present invention is to provide a method for forming a transparent thin film having excellent conductivity on a glass substrate by plasma sputtering deposition.

上記課題を解決するための請求項1に記載の発明は、圧力:3×10−5Pa以下の真空容器中に、周期表における0族の元素でアルゴン以上の元素の少なくとも1種からなる不活性ガスを0.7×10−1Pa〜1.8×10−1Paの圧力となるまで導入し、該不活性ガスに0.6%〜1%の水素および/または重水素を含有せしめた雰囲気下に、アルカリフリーガラス基板をターゲットに対向配置しプラズマ内で電気的にフローティング状態として、金属フィラメントの存在下に低ガス圧プラズマスパッタ法によって基板上に100nm以上の厚さの高機能透明導電性薄膜を形成するようにした低抵抗透明導電性薄膜の形成方法である。 The invention described in claim 1 for solving the above-mentioned problem is a non- volatile substance composed of at least one element of group 0 element in the periodic table and argon or more in a vacuum vessel having a pressure of 3 × 10 −5 Pa or less. An active gas is introduced until a pressure of 0.7 × 10 −1 Pa to 1.8 × 10 −1 Pa is reached, and 0.6% to 1% of hydrogen and / or deuterium is contained in the inert gas. In an atmosphere, an alkali-free glass substrate is placed opposite to the target to be in an electrically floating state in the plasma, and a highly functional transparent film with a thickness of 100 nm or more is formed on the substrate by low gas pressure plasma sputtering in the presence of a metal filament This is a method for forming a low-resistance transparent conductive thin film in which a conductive thin film is formed.

請求項2に記載の発明は、高機能透明導電性薄膜が、ITO薄膜である請求項1に記載の低抵抗透明導電性薄膜の形成方法である。   Invention of Claim 2 is a formation method of the low resistance transparent conductive thin film of Claim 1 whose highly functional transparent conductive thin film is an ITO thin film.

本発明によれば、0.6%〜1%の水素および/または重水素を雰囲気中に含有せしめることによって、成膜中に膜内から酸素が引き抜かれて酸素欠陥が生成し、これによって約30%の導電率改善がもたらされる。水素添加による導電率改善(膜の低抵抗化)効果は、透明な導電性薄膜たとえばITO薄膜の膜厚増加とともに大きくなり、わけてもエレクトロニクス材料として有用な厚さ200nm〜300nmの領域で大きい。   According to the present invention, by containing 0.6% to 1% hydrogen and / or deuterium in the atmosphere, oxygen is extracted from the film during film formation, thereby generating oxygen defects. A conductivity improvement of 30% is provided. The effect of improving the conductivity (lowering the resistance of the film) by adding hydrogen increases as the thickness of the transparent conductive thin film, for example, the ITO thin film increases, and is particularly large in the region of thickness 200 nm to 300 nm useful as an electronic material.

ガラス基板上に形成される透明な導電性薄膜として、ZnO、SnO、ITOといった金属酸化物を用いることができるが、ITOが最も導電性に優れている。処で、ITO膜のさらなる低抵抗化のためには、酸素欠陥生成によるキャリア密度の増大が課題の1つである。そこで、発明者は低圧プラズマスパッタ蒸着による成膜法でガラス基板上へのITO薄膜の形成に取組み、低圧プラズマスパッタ蒸着による成膜中に、雰囲気中に水素および/または重水素を0.6%〜1%含有せしめておくことによって、成膜中の酸素欠陥の生成とそれによるキャリア密度の増大が可能であることを知見し、本発明を完成させた。 As the transparent conductive thin film formed on the glass substrate, a metal oxide such as ZnO, SnO 2 , or ITO can be used, but ITO has the highest conductivity. By the way, in order to further reduce the resistance of the ITO film, an increase in carrier density due to generation of oxygen defects is one of the problems. Therefore, the inventor worked on the formation of an ITO thin film on a glass substrate by a film formation method by low-pressure plasma sputter deposition, and 0.6% of hydrogen and / or deuterium was added to the atmosphere during film formation by low-pressure plasma sputter deposition. It has been found that by containing ˜1%, oxygen defects can be generated during film formation and the carrier density can be increased, thereby completing the present invention.

発明者は、ガラス基板上の薄膜の電気的特性に及ぼすプラズマ雰囲気の影響について調べた結果、薄膜の比抵抗値にプラズマ雰囲気中の水素依存性があることを知見した。その結果を、図1に示す。図1から明らかなように、水素分圧の増加とともにITO薄膜の比抵抗値が低下して行き、水素含有量:1%(水素分圧:1×10−5Torr付近で最小値を示し、1%以上の水素含有量では顕著に増加している。この実験は、低ガス圧(1.33×10−1Pa)で動作する電子励起プラズマスパッタ法によって、ガラス基板上にITO薄膜を形成したものである。ターゲットには、In/SnO=95/5(重量%)の焼結体を用いた。プラズマ励起ガスとして、99.9999%のArガスを使用した。 As a result of investigating the influence of the plasma atmosphere on the electrical characteristics of the thin film on the glass substrate, the inventor has found that the specific resistance value of the thin film is dependent on hydrogen in the plasma atmosphere. The result is shown in FIG. As is clear from FIG. 1, the specific resistance value of the ITO thin film decreases as the hydrogen partial pressure increases, and the hydrogen content: 1% (hydrogen partial pressure: 1 × 10 −5 Torr shows a minimum value, In the experiment, an ITO thin film is formed on a glass substrate by an electron-excited plasma sputtering method operating at a low gas pressure (1.33 × 10 −1 Pa). As a target, a sintered body of In 2 O 3 / SnO 2 = 95/5 (wt%) was used, and 99.9999% Ar gas was used as a plasma excitation gas.

発明者はさらに、0.6%の水素および/または重水素を含むAr雰囲気中でのプラズマスパッタ蒸着によるガラス基板上へのITO薄膜の形成を行い、ガラス基板上のITO薄膜の電気特性を、ITO薄膜の膜厚をパラメータとして調べた。その結果を、図2に示す。図2には、雰囲気中に水素を添加しないケース(○印)についても併せ示している。   The inventor further formed an ITO thin film on the glass substrate by plasma sputter deposition in an Ar atmosphere containing 0.6% hydrogen and / or deuterium, and the electrical properties of the ITO thin film on the glass substrate were The thickness of the ITO thin film was examined as a parameter. The result is shown in FIG. FIG. 2 also shows a case where no hydrogen is added to the atmosphere (circles).

図2から明らかなように、ITO薄膜の厚さが約20nmまでは水素含有の有無に関係なくITO薄膜の比抵抗値は指数関数的に減少するが、膜厚が20nmを超えると、雰囲気中に水素含有がない場合には、膜厚の増加に伴って著しい比抵抗値の増加の後に単調な減少が見られる。これに対して雰囲気中に0.6%の水素を含有せしめたケース(本発明の一実施形態)(●印)では、ITO薄膜の厚さが20nmを超えて増加しても、ITO薄膜の比抵抗値は単調に減少し続けている。   As is apparent from FIG. 2, the resistivity value of the ITO thin film decreases exponentially regardless of the presence or absence of hydrogen until the thickness of the ITO thin film is about 20 nm, but in the atmosphere when the film thickness exceeds 20 nm. When there is no hydrogen content, a monotonic decrease is observed after a significant increase in specific resistance value as the film thickness increases. On the other hand, in the case where 0.6% hydrogen was contained in the atmosphere (one embodiment of the present invention) (marked with ●), even if the thickness of the ITO thin film increased beyond 20 nm, The specific resistance value continues to decrease monotonously.

また、雰囲気中に0.6%の水素を含有せしめたケース(本発明)では、厚さが100nm以上の領域で、雰囲気中に水素を添加しないケース(○印)に比し約30%比抵抗値が減少している。このことと、図3に示す、水素分圧とキャリア密度の関係(測定結果)から、雰囲気中に0.6%〜1%の水素が存在すると、水素がITO成膜中において還元反応による酸素欠陥生成に関わり、その結果、キャリア密度を増加させ、ITO薄膜の比抵抗値の減少をもたらすものと結論できる。水素ガス含有量が0.6%未満では酸素欠陥の生成が十分ではなくまた、水素ガス含有量が1%を超えると、過度の酸素欠陥が生成されIn金属の析出を招くとともに光透過性の低下をもたらす。   In addition, in the case where 0.6% hydrogen was contained in the atmosphere (invention), the thickness was about 30% compared to the case where hydrogen was not added to the atmosphere (circle mark) in the region of 100 nm or more. The resistance value is decreasing. From this and the relationship (measurement result) between the hydrogen partial pressure and the carrier density shown in FIG. 3, when 0.6% to 1% hydrogen is present in the atmosphere, the hydrogen is reduced by oxygen during the ITO film formation. It can be concluded that it is related to defect generation, resulting in an increase in carrier density and a decrease in the resistivity value of the ITO thin film. When the hydrogen gas content is less than 0.6%, oxygen defects are not sufficiently generated. When the hydrogen gas content exceeds 1%, excessive oxygen defects are generated, leading to precipitation of In metal and light-transmitting properties. Bring about a decline.

一方、本発明において、ガラス基板はアルカリフリーの組成のものでなければならない。ガラス基板組成中に、K、Na、Caといったアルカリ金属やアルカリ土類金属が存在すると、ITO薄膜の電気的特性(比抵抗値)を劣化せしめる。   On the other hand, in the present invention, the glass substrate must have an alkali-free composition. If an alkali metal or alkaline earth metal such as K, Na, or Ca is present in the glass substrate composition, the electrical properties (specific resistance value) of the ITO thin film are deteriorated.

プラズマ励起用ガス(雰囲気)としては、周期表における0族元素即ち、Ar、Kr、Xe、およびRnの少なくとも1種からなるガスを用いることができる。わけてもKr(クリプトン)、Xe(キセノン)といった重い元素が好ましいが、コストを考慮するとAr(アルゴン)が望ましい。たとえばアルゴンガスを真空容器中に導入するに際しては、0.7×10−1Pa〜1.8×10−1Paの圧力となるまで導入する。プラズマスパッタ蒸着によるITO等の成膜のためには少なくとも0.7×10−1PaのAr分圧が必要でありまた、1.8×10−1Paを超えると膜の電気的特性を劣化させる。 As the plasma excitation gas (atmosphere), a group 0 element in the periodic table, that is, a gas composed of at least one of Ar, Kr, Xe, and Rn can be used. In particular, heavy elements such as Kr (krypton) and Xe (xenon) are preferable, but Ar (argon) is preferable in consideration of cost. For example when introducing argon gas into the vacuum container is introduced up to a pressure of 0.7 × 10 -1 Pa~1.8 × 10 -1 Pa. An Ar partial pressure of at least 0.7 × 10 −1 Pa is necessary for film formation of ITO or the like by plasma sputter deposition, and if it exceeds 1.8 × 10 −1 Pa, the electrical characteristics of the film deteriorate. Let

また、たとえばアルゴン雰囲気中に添加する水素としては、水素および/または重水素を用い得る。プラズマ発生用真空容器中に水素を導入するには、この実施形態においては、パラジウムチューブを用いる拡散法によっている。パラジウムは水素のみを通し、水素のパラジウム透過量は温度、圧力の関数である。而して、温度および/または圧力を操作パラメータとする制御によって、水素含有量を精密に制御することができる。   For example, hydrogen and / or deuterium can be used as hydrogen added to the argon atmosphere. In this embodiment, hydrogen is introduced into the plasma generating vacuum vessel by a diffusion method using a palladium tube. Palladium passes only hydrogen, and the palladium permeation amount of hydrogen is a function of temperature and pressure. Thus, the hydrogen content can be precisely controlled by control using temperature and / or pressure as operating parameters.

図4に、本発明の一実施例に係る低抵抗透明導電性薄膜形成法に用いた、プラズマスパッタ蒸着による成膜装置を示す。図4において、1は金属フィラメント、この実施例においてはタングステンフィラメントであって、通電加熱によって熱電子を発生する熱電子源として機能する。金属フィラメント1としてはタングステンに限ることなく、たとえばモリブデン線を用いることもできる。2は円筒陽極(アノード)であり、電圧を印加され電子を加速する。その際、加速された電子の量がある値を超えないと、プラズマを生成しない。この実施例においては、金属フィラメント(タングステンフィラメント)からの熱電子を有磁場中で加速することによって、低圧でプラズマが生成する。   FIG. 4 shows a film forming apparatus by plasma sputter deposition used in the low resistance transparent conductive thin film forming method according to one embodiment of the present invention. In FIG. 4, 1 is a metal filament, and in this embodiment a tungsten filament, which functions as a thermoelectron source that generates thermoelectrons by energization heating. The metal filament 1 is not limited to tungsten, and for example, a molybdenum wire can be used. A cylindrical anode (anode) 2 is applied with a voltage to accelerate electrons. At this time, plasma is not generated unless the amount of accelerated electrons exceeds a certain value. In this embodiment, plasma is generated at a low pressure by accelerating thermoelectrons from a metal filament (tungsten filament) in a magnetic field.

3はプラズマ制御用永久磁石、4はプラズマ制御用円筒レンズである。5はプラズマであって、円筒陽極(アノード)2、ターゲット6間に生起している。ターゲット6は、この実施例においては、In/SnO=95/5(重量%)の粉末を混合し、厚さ:5mm、直径:75mmの円板状に焼結成形したものを用いている。7は薄膜形成用基板ホルダであり、アルカリフリーガラス基板を装着している。アルカリフリーガラス基板は、ターゲット6に対向して配置され、プラズマ内で基板を電気的にフローティング状態にして成膜を行う。 3 is a permanent magnet for plasma control, and 4 is a cylindrical lens for plasma control. Reference numeral 5 denotes plasma, which is generated between the cylindrical anode (anode) 2 and the target 6. In this embodiment, the target 6 is obtained by mixing powder of In 2 O 3 / SnO 2 = 95/5 (wt%), and sintering and forming it into a disk shape having a thickness of 5 mm and a diameter of 75 mm. Used. Reference numeral 7 denotes a substrate holder for forming a thin film, which is equipped with an alkali-free glass substrate. The alkali-free glass substrate is disposed so as to face the target 6 and performs film formation by electrically floating the substrate in plasma.

8はアルゴンガス導入口(リークバルブ)であって、3×10−5Pa以下の真空とされた真空容器(成膜室)11中に0.7×10−1Pa〜1.8×10−1Paの圧力(スパッタ蒸着による成膜圧)となるまで、この実施例においては、アルゴンガスを導入する。その際、アルゴンは、純度:99.9999%のものを用いる。9は水素導入口(パラジウムチューブ)であり、真空容器(成膜室)11中のアルゴンガス雰囲気中に0.6%〜1%の含有量となるように、水素および/または重水素を導入する。10はプラズマ制御用電磁石である。 Reference numeral 8 denotes an argon gas introduction port (leak valve), which is in a vacuum container (film formation chamber) 11 having a vacuum of 3 × 10 −5 Pa or less from 0.7 × 10 −1 Pa to 1.8 × 10 8. In this embodiment, argon gas is introduced until a pressure of −1 Pa (deposition pressure by sputter deposition) is reached. At that time, argon having a purity of 99.9999% is used. Reference numeral 9 denotes a hydrogen inlet (palladium tube), which introduces hydrogen and / or deuterium so that the argon gas atmosphere in the vacuum vessel (film formation chamber) 11 has a content of 0.6% to 1%. To do. Reference numeral 10 denotes a plasma control electromagnet.

次に、この実施例の低抵抗透明導電性薄膜の形成方法を実施するときのプロセスについて、説明する。   Next, a process when the low resistance transparent conductive thin film forming method of this embodiment is carried out will be described.

(1)真空条件の確保
1)真空容器(成膜室)11内を、ロータリーポンプおよび分子ポンプを用いて圧力:3×10−5Paとなるまで排気する。
2)次いで、スパッタ蒸着による成膜圧である1.33×10−1Paまでアルゴンを主成分とするガスを真空容器(成膜室)11内に導入する。その際、アルゴンは、純度:99.9999%のものを用意して、圧力調整器およびニードルバルブを調整しながら導入する。
3)水素は別の容器を用意し、圧力調整器および水素導入口(パラジウムチューブ)9を用いて、所望の量たとえば0.8%の含有量となるまで導入する。
4)真空容器(成膜室)11内の圧力を、電離真空計で常時モニターする。
(1) Ensuring vacuum conditions 1) The inside of the vacuum vessel (film formation chamber) 11 is evacuated to a pressure of 3 × 10 −5 Pa using a rotary pump and a molecular pump.
2) Next, a gas containing argon as a main component is introduced into the vacuum vessel (film formation chamber) 11 up to a film formation pressure of 1.33 × 10 −1 Pa by sputtering deposition. At that time, argon having a purity of 99.9999% is prepared and introduced while adjusting the pressure regulator and the needle valve.
3) Prepare another container for hydrogen, and introduce it to a desired amount, for example, 0.8% by using a pressure regulator and a hydrogen inlet (palladium tube) 9.
4) The pressure in the vacuum vessel (film formation chamber) 11 is constantly monitored with an ionization vacuum gauge.

(2)スパッタ蒸着による成膜条件の確保
1)真空容器(成膜室)11内が1.33×10−1Paの圧力に達したことを確認後、円筒陽極(アノード)2に75Vの電圧を印加するとともに、金属(タングステン)フィラメント1に通電し、円筒陽極(アノード)2の電流値が0.8Aとなるまでゆっくり金属フィラメント1を加熱する。このとき、プラズマが励起される。
2)励起されたプラズマをさらに高密度化するために、プラズマ制御用電磁石10に通電する(0.8A)。
3)ターゲット6にスパッタ蒸着による成膜のための負電圧200Vを印加する。
4)ターゲット6負電圧200Vにおいて、ターゲット6に約15mAの電流が流れる。
5)スパッタ蒸着による成膜前のスパッタを約10分間行い、ターゲット6表面を清浄化する。
6)アルカリフリーガラス基板を装着した薄膜形成用基板ホルダ7を、図4に示すように、ゆっくりプラズマ5中央部に移動させる。その際、成膜基板面がターゲット6表面と対向するように、薄膜形成用基板ホルダ7を水平軸回りに回動させる。このとき、ターゲット6表面からアルカリフリーガラス基板表面までの距離は、約50mmであった。
7)然る後、ターゲット6電流は7mA〜8mAに減少し、成膜が始まる。
8)薄膜形成用基板ホルダ7には、温度制御用ヒータは装着しなかったが、成膜中のプラズマ5からの輻射熱でアルカリフリーガラス基板の温度は250℃まで上昇した。
(2) Ensuring film formation conditions by sputter deposition 1) After confirming that the inside of the vacuum vessel (film formation chamber) 11 has reached a pressure of 1.33 × 10 −1 Pa, 75 V is applied to the cylindrical anode (anode) 2. While applying a voltage, the metal (tungsten) filament 1 is energized, and the metal filament 1 is slowly heated until the current value of the cylindrical anode (anode) 2 becomes 0.8 A. At this time, plasma is excited.
2) In order to further increase the density of the excited plasma, the plasma control electromagnet 10 is energized (0.8 A).
3) A negative voltage of 200 V for film formation by sputter deposition is applied to the target 6.
4) Current of about 15 mA flows through the target 6 at a target 6 negative voltage of 200V.
5) Sputtering for about 10 minutes before film formation by sputter deposition is performed to clean the surface of the target 6.
6) The substrate holder 7 for forming a thin film on which the alkali-free glass substrate is mounted is slowly moved to the center of the plasma 5 as shown in FIG. At that time, the thin film forming substrate holder 7 is rotated about the horizontal axis so that the film forming substrate surface faces the surface of the target 6. At this time, the distance from the surface of the target 6 to the surface of the alkali-free glass substrate was about 50 mm.
7) Thereafter, the target 6 current decreases to 7 mA to 8 mA, and film formation starts.
8) Although the temperature control heater was not attached to the thin film formation substrate holder 7, the temperature of the alkali-free glass substrate rose to 250 ° C. due to the radiant heat from the plasma 5 during film formation.

(3)ターゲット6の組成と形状
1)In粉末とSnO粉末を重量%で95:5の比率として混合し、厚さ:5mm、直径:75mmの円板状に焼結成形したものを用いた。
(3) Composition and shape of target 6 1) In 2 O 3 powder and SnO 2 powder were mixed at a weight ratio of 95: 5 and sintered and formed into a disk shape having a thickness of 5 mm and a diameter of 75 mm. A thing was used.

(4)ガラス基板の組成と成膜前の処理
1)アルカリフリーのガラスであって、20mm×20mm×0.6mm(厚さ)の寸法のものを用いた。
2)ガラス表面の前処理は行わなかった(購入時のまま)。
(4) Composition of glass substrate and treatment before film formation 1) Alkali-free glass having a size of 20 mm × 20 mm × 0.6 mm (thickness) was used.
2) The glass surface was not pretreated (as purchased).

(5)水素の導入方法
1)先端が閉じた厚さ:0.1mm、直径(外径):3mmのパラジウムチューブ9に重水素を3.5×10Paの圧力で入れ、室温で重水素を拡散させて真空容器(成膜室)11内に導入する。
(5) Method of introducing hydrogen 1) Deuterium was charged at a pressure of 3.5 × 10 4 Pa into a palladium tube 9 having a closed tip: 0.1 mm, diameter (outer diameter): 3 mm, and heavy at room temperature. Hydrogen is diffused and introduced into the vacuum container (film formation chamber) 11.

(6)プラズマ内の水素の比率の確保
1)真空容器(成膜室)11内を予め排気して、2×10−5Paの真空度とした後、先ず、重水素を前(5)項の水素導入方法によって真空容器(成膜室)11内に導入し、例えば重水素の分圧を1.33×10−3Paとする。次いで、アルゴンガス(純度:99.9999%)をアルゴンガス導入口(リークバルブ)8を用いて導入し1.33×10−1Paの圧力とする。
2)上記重水素およびアルゴンガスの導入によって、真空容器(成膜室)11内を重水素1%を含むアルゴンガス雰囲気とする。
(6) Ensuring the ratio of hydrogen in the plasma 1) After evacuating the vacuum vessel (film formation chamber) 11 in advance to a vacuum degree of 2 × 10 −5 Pa, first, deuterium is added (5) The hydrogen is introduced into the vacuum container (film formation chamber) 11 by the hydrogen introduction method described in the item 1, for example, and the partial pressure of deuterium is set to 1.33 × 10 −3 Pa. Subsequently, argon gas (purity: 99.9999%) is introduced using an argon gas inlet (leak valve) 8 to obtain a pressure of 1.33 × 10 −1 Pa.
2) By introducing the above deuterium and argon gas, the inside of the vacuum vessel (film formation chamber) 11 is made an argon gas atmosphere containing 1% deuterium.

(7)成膜時におけるその他の要件
1)アルゴンガスに重水素を混合すること以外は、一切他のガスを導入しない。たとえば、酸素は全く導入しない。
2)成膜中は、膜厚モニターで膜厚を監視する。
3)高機能透明導電性膜、この実施例においては、ITO膜厚さの絶対値は、アルカリフリーガラス基板上に成膜したものを多重光干渉法で測定し、膜厚モニターと成膜厚さの関係を調べている。
(7) Other requirements for film formation 1) No other gas is introduced except that deuterium is mixed with argon gas. For example, no oxygen is introduced.
2) During film formation, the film thickness is monitored with a film thickness monitor.
3) High-performance transparent conductive film, in this embodiment, the absolute value of the ITO film thickness is measured on the alkali-free glass substrate by multiple optical interferometry, and the film thickness monitor and film thickness I'm investigating the relationship.

本発明の一実施例に係る、ITO薄膜の比抵抗値に及ぼす水素分圧の影響を示すグラフThe graph which shows the influence of the hydrogen partial pressure which acts on the specific resistance value of ITO thin film based on one Example of this invention 本発明の一実施例に係る、ガラス基板上におけるITO薄膜の比抵抗値と膜厚との関係を示すグラフThe graph which shows the relationship between the specific resistance value and film thickness of the ITO thin film on the glass substrate based on one Example of this invention 本発明の一実施例に係る、成膜時の雰囲気中の水素分圧と膜のキャリア密度の関係を示すグラフThe graph which shows the relationship between the hydrogen partial pressure in the atmosphere at the time of film-forming, and the carrier density of a film | membrane based on one Example of this invention 本発明の一実施例に係る、低抵抗透明導電性薄膜の形成方法を実施するときの装置を示す模式図The schematic diagram which shows the apparatus when enforcing the formation method of the low resistance transparent conductive thin film based on one Example of this invention

符号の説明Explanation of symbols

1 金属フィラメント
2 円筒状陽極(アノード)
3 プラズマ制御用永久磁石
4 プラズマ制御用円筒レンズ
5 プラズマ
6 ターゲット
7 薄膜形成用基板ホルダ
8 アルゴンガス導入口(リークバルブ)
9 水素導入口(パラジウムチューブ)
10 プラズマ制御用電磁石
11 真空容器(成膜室)
1 Metal filament 2 Cylindrical anode (anode)
3 Permanent magnet for plasma control 4 Cylindrical lens for plasma control 5 Plasma 6 Target 7 Substrate holder for thin film formation 8 Argon gas inlet (leak valve)
9 Hydrogen inlet (palladium tube)
10 Electromagnet for plasma control 11 Vacuum container (deposition chamber)

Claims (2)

圧力:3×10−5Pa以下の真空容器中に、周期表における0族の元素でアルゴン以上の元素の少なくとも1種からなる不活性ガスを0.7×10−1Pa〜1.8×10−1Paの圧力となるまで導入し、該不活性ガスに0.6%〜1%の水素および/または重水素を含有せしめた雰囲気下に、アルカリフリーガラス基板をターゲットに対向配置しプラズマ内で電気的にフローティング状態として、金属フィラメントの存在下に低ガス圧プラズマスパッタ法によって基板上に100nm以上の厚さの高機能透明導電性薄膜を形成するようにしたことを特徴とする低抵抗透明導電性薄膜の形成方法。 Pressure: 0.7 × 10 −1 Pa to 1.8 × inert gas consisting of at least one element of group 0 element in the periodic table and more than argon in a vacuum vessel of 3 × 10 −5 Pa or less. Introduced until a pressure of 10 −1 Pa is reached and an alkali-free glass substrate is placed opposite the target in an atmosphere containing 0.6% to 1% hydrogen and / or deuterium in the inert gas. Low resistance, characterized in that a highly functional transparent conductive thin film having a thickness of 100 nm or more is formed on a substrate by low gas pressure plasma sputtering in the presence of a metal filament in an electrically floating state A method for forming a transparent conductive thin film. 高機能透明導電性薄膜が、ITO薄膜である請求項1に記載の低抵抗透明導電性薄膜の形成方法。
The method for forming a low-resistance transparent conductive thin film according to claim 1, wherein the high-functional transparent conductive thin film is an ITO thin film.
JP2005070181A 2005-03-14 2005-03-14 Method for forming low resistance ITO thin film Expired - Fee Related JP4919369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070181A JP4919369B2 (en) 2005-03-14 2005-03-14 Method for forming low resistance ITO thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070181A JP4919369B2 (en) 2005-03-14 2005-03-14 Method for forming low resistance ITO thin film

Publications (2)

Publication Number Publication Date
JP2006249540A true JP2006249540A (en) 2006-09-21
JP4919369B2 JP4919369B2 (en) 2012-04-18

Family

ID=37090335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070181A Expired - Fee Related JP4919369B2 (en) 2005-03-14 2005-03-14 Method for forming low resistance ITO thin film

Country Status (1)

Country Link
JP (1) JP4919369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171384A (en) * 2010-02-16 2011-09-01 Kaneka Corp Thin-film photoelectric conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190612A (en) * 1986-02-17 1987-08-20 株式会社半導体エネルギー研究所 Manufacture of zinc oxide conductive film
JPH06330283A (en) * 1993-05-20 1994-11-29 Hitachi Ltd Film forming apparatus and film formation of transparent conductive film
JP2001131741A (en) * 1999-10-29 2001-05-15 Sony Corp Thin film deposition method by catalyst sputtering and thin film deposition system as well as method for manufacturing semiconductor device
JP2002363732A (en) * 2001-03-15 2002-12-18 Asahi Glass Co Ltd Transparent conductive film manufacturing method, and transparent substrate having transparent conductive film
JP2003105533A (en) * 2001-10-01 2003-04-09 Mitsubishi Heavy Ind Ltd Method of producing transparent electroconductive film and transparent electroconductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190612A (en) * 1986-02-17 1987-08-20 株式会社半導体エネルギー研究所 Manufacture of zinc oxide conductive film
JPH06330283A (en) * 1993-05-20 1994-11-29 Hitachi Ltd Film forming apparatus and film formation of transparent conductive film
JP2001131741A (en) * 1999-10-29 2001-05-15 Sony Corp Thin film deposition method by catalyst sputtering and thin film deposition system as well as method for manufacturing semiconductor device
JP2002363732A (en) * 2001-03-15 2002-12-18 Asahi Glass Co Ltd Transparent conductive film manufacturing method, and transparent substrate having transparent conductive film
JP2003105533A (en) * 2001-10-01 2003-04-09 Mitsubishi Heavy Ind Ltd Method of producing transparent electroconductive film and transparent electroconductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171384A (en) * 2010-02-16 2011-09-01 Kaneka Corp Thin-film photoelectric conversion device

Also Published As

Publication number Publication date
JP4919369B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
TW539752B (en) Method of forming indium tin oxide thin film using magnetron negative ion sputter source
US4113599A (en) Sputtering technique for the deposition of indium oxide
US8894827B2 (en) Electrochromic tungsten oxide film deposition
US4124474A (en) Method and apparatus for controlling the deposition of films by reactive sputtering
US4336277A (en) Transparent electrical conducting films by activated reactive evaporation
KR20000071541A (en) Method of forming transparent conductive film and transparent conductive film formed by the method
CN103436849B (en) A kind of sputtering method of sull
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
JP5186371B2 (en) Method for forming transparent conductive film
JP2009293097A (en) Sputtering composite target, method for producing transparent conductive film using the same and transparent conductive film-fitted base material
Tran et al. Single-beam ion source enhanced growth of transparent conductive thin films
JP4919369B2 (en) Method for forming low resistance ITO thin film
JP2000038654A (en) Production of substrate with transparent electrically conductive film, substrate with transparent electrically conductive film and liquid crystal displaying element
CN104681208B (en) A kind of method improving nano silver film electric conductivity
RU2448197C1 (en) Application method of transparent electrically conducting coating
Jin et al. Comparative study of thermal desorption and pumping performance for TiZrV-, Pd-, or Pd/TiZrV-coated copper tubes
JPH11195333A (en) Manufacture of transparent conductive film and this transparent conductive film
JPH0723532B2 (en) Method for forming transparent conductive film
JP6437330B2 (en) Film forming apparatus and film forming method
JPS61292817A (en) Formation of transparent conducting metal oxide film
JPH10158830A (en) Film forming method by sputtering
TWI417410B (en) A manufacturing method of electric conduction film
JP2018188677A (en) Metal oxide transparent conductive film and method of manufacturing the same
Heinß et al. High productive deposited Mo layers for back ohmic contacts of solar cells
JPH0853760A (en) Production of silicon oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees