JP2006248813A - 水素生成装置及び燃料電池システム - Google Patents
水素生成装置及び燃料電池システム Download PDFInfo
- Publication number
- JP2006248813A JP2006248813A JP2005064634A JP2005064634A JP2006248813A JP 2006248813 A JP2006248813 A JP 2006248813A JP 2005064634 A JP2005064634 A JP 2005064634A JP 2005064634 A JP2005064634 A JP 2005064634A JP 2006248813 A JP2006248813 A JP 2006248813A
- Authority
- JP
- Japan
- Prior art keywords
- reforming
- fuel cell
- hydrogen
- supplied
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
【課題】 安定した水素供給が可能な水素生成装置及びそれを有する燃料電池システムの提供。
【解決手段】 改質反応と燃焼反応とを交互に切替えて行なうPSR型改質器10及びPSR型改質器20を暖機する暖機手段を備える。
【選択図】 図1
【解決手段】 改質反応と燃焼反応とを交互に切替えて行なうPSR型改質器10及びPSR型改質器20を暖機する暖機手段を備える。
【選択図】 図1
Description
本発明は、燃料の改質反応と燃焼反応とを切替えて行なう水素生成装置およびこれを備えた燃料電池システムに関する。
従来の電気自動車は、車両駆動用の電源として燃料電池を搭載すると共に、燃料電池を発電運転させるための燃料である水素又は水素生成用の原燃料を搭載している。
水素自体を搭載する場合、水素ガスを圧縮して高圧ボンベに若しくは液化してタンクに充填し、又は水素吸蔵合金や水素吸着材料を用いて搭載する。しかし、高圧充填による場合は、容器壁厚が厚く大きいわりに内容積をかせげないため水素充填量が少なく、また、液体水素とする液化充填による場合は、気化ロスが避けられないほか液化に多大なエネルギーを要する。また、水素吸蔵合金や水素吸着材料では電気自動車等に必要とされる水素貯蔵密度が不充分で、水素の吸蔵/吸着等の制御も困難である。
水素の供給方法については、未だ技術的に確立されていないのが実状であるが、将来的に各種装置における水素利用の増加が予測されることを踏まえ、水素の供給方法の確立が期待されている。
上記に関連する技術として、触媒を用いて、吸熱反応である燃料の水蒸気改質反応と、水蒸気改質反応で低下した触媒温度を再生する再生反応とを切り替えて繰り返し行なう、複数の改質反応器を備えた水素生成装置を有する燃料電池システムが提案されている(例えば、特許文献1参照。)。また、上記以外に関連する技術として開示されているものがある(例えば、特許文献2乃至4参照。)。
米国特許2003−235529号明細書
米国特許2004−170558号明細書
米国特許2004−170559号明細書
米国特許2004−175326号明細書
上記燃料電池システムにおいては、水素生成装置の起動時には複数の改質反応器のいずれもが改質反応温度には達していないため、改質反応器を改質反応に適した温度に加熱してやる必要がある。ここで、起動時に改質反応器を1基のみ暖機した場合、暖機された改質反応器に改質用原料が供給されて水蒸気改質反応を開始した後に、他の改質反応器に燃焼用燃料が供給されて燃焼反応(再生反応)を起こして触媒が加熱される。水蒸気改質反応を開始した改質反応器の温度が水蒸気改質反応に適さない程度にまで低下すると、燃焼反応を起こしていた前記他の改質反応器への燃焼用燃料の供給が停止され改質用原料の供給が開始される。しかし、このときに前記他の改質反応器が水蒸気改質反応に適した温度にまで暖機されていないと、水蒸気改質反応を起こすことができず水素含有ガスの安定供給ができなくなるおそれがある。
本発明は、上記問題点に鑑みてなされたものであり、安定した水素供給が可能な水素生成装置及びそれを有する燃料電池システムを提供することを目的とする。
上記目的を達成するための第1の発明の水素生成装置は、触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、燃焼用燃料が供給されたときには前記燃焼用燃料を燃焼反応させて前記触媒を加熱する、複数の改質反応器と、前記複数の改質反応器のうち、前記改質反応と前記燃焼反応とを交互に切り替えて行う少なくとも一対の改質反応器を暖機する暖機手段と、を備えたものである。
本発明の水素生成装置には、蓄熱を利用した燃料の水蒸気改質反応と水蒸気改質反応で低下した蓄熱量(すなわち触媒温度)を回復させる燃焼反応とを切替えて行なうことができる少なくとも2基の改質反応器(以下、「PSR(Pressure swing reforming)型改質器」ともいう。)が設けられており、少なくとも1基が燃料の改質反応を行なうと共に、他の少なくとも1基において燃焼反応を行なわせるようになっている(以下、本発明の水素生成装置を「PSR改質装置」ということがある。)。
例えば改質反応器が2基である場合、一方を器内の蓄熱を利用して吸熱反応である水蒸気改質反応させると共に、他方では発熱反応である燃焼反応を行なわせるようにし、前記一方の蓄熱量が水蒸気改質反応により低下したときには燃焼反応に切替えると共に、前記他方では燃焼反応により蓄熱された熱で燃料改質を行なうように改質反応に切替える。これにより、別途の加熱器等が不要になり、熱エネルギーの利用効率の高い連続的な水素生成が可能である。
第1の発明の水素生成装置においては、改質反応と燃焼反応とを交互に切り替えて行う少なくとも一対の改質反応器を暖機する暖機手段を備える。これにより、PSR改質装置に必要な少なくとも2基の改質反応器を暖機することができる。少なくとも2基の改質反応器が暖機されるため、水蒸気改質反応を行った一方の改質反応器の温度が低下した場合、即座に他の一方の改質反応器で水蒸気改質反応を開始できるため水素含有ガスの安定供給が可能となる。
本発明では、改質用原料として改質用燃料と水蒸気との混合ガスが用いられる。改質用燃料としては、水蒸気改質などの改質反応により水素および一酸化炭素の合成ガス(水素含有ガス)を得るための燃料として一般に用いられる炭化水素燃料(例えばメタンガス、ガソリンなど)の中から適宜選択して用いることができる。また、本発明に用いられる燃焼用燃料には、前述の炭化水素燃料の他に、改質反応により生成した水素含有ガス(改質ガス)等を用いることもできる。
第1の発明における暖機手段としては、少なくとも前記一対の改質反応器に加熱用流体を供給して暖機するものが挙げられる。加熱用流体は、改質用原料又は燃焼用燃料を改質反応器に供給するための配管を通じて改質反応器に供給される。そのため、改質反応器内の改質反応及び燃焼反応の生ずる部分を効率的に暖機することができる。加熱用流体としては、燃焼用燃料と酸化剤ガスとの混合ガス、高温ガス(空気、水蒸気等)などが挙げられる。前記高温ガスとしては、バーナーやヒーター等の加熱手段により空気や水蒸気等を加熱したものが挙げられる。また、少なくとも1基の改質反応器に燃焼用燃料と酸化剤ガスとの混合ガスを供給して燃焼反応を起こすことにより排出される流体(オフガス)を加熱用流体として用いることもできる。
第1の発明における暖機手段の構成としては、前記加熱用流体の流路を切り替えるための切替手段と、少なくとも前記一対の改質反応器が暖機されるように前記切替手段を制御する制御手段と、を備えたものであることが好ましい。暖機手段をこのように構成することにより、改質反応器の暖機の順番を任意に調整することができる。例えば、改質反応器を同時に暖機するようにしてもよいし、前記一対の改質反応器のうち水蒸気改質反応を開始させる反応器を先に暖機するようにしてもよい。
第1の発明における複数の改質反応器は、2基(一対)の改質反応器で構成されることが好ましい。これにより、全ての改質反応器を暖機することができ、改質反応器の起動時における水蒸気改質反応の実行を抑制できるために、水蒸気改質反応による改質反応器の温度低下を防ぐことができる。
第2の発明である燃料電池システムは、前記第1の発明の水素生成装置と、水素生成装置で改質生成された水素含有ガスの供給により発電する燃料電池と、を有するものである。
水素含有ガスの安定供給が可能な本発明の水素生成装置を有する本発明の燃料電池システムは、安定した電力供給が可能である。
第2の発明に用いられる燃料電池は特に限定されるものではないが、水素生成装置から供給される水素含有ガスの温度近傍(300〜600℃)で作動する燃料電池が好ましく、水素透過性金属層の少なくとも片面に電解質層が積層された電解質を備えた燃料電池を用いて構成することが効果的である。
暖機された改質反応器から排出されたオフガス(流体)を燃料電池の暖機に用いることがエネルギー効率の観点から好ましい。そこで、第2の発明である燃料電池システムにおいては、暖機手段を構成する制御手段が、前記一対の改質反応器のうちの一方の改質反応器に加熱用流体を供給して前記一方の改質反応器を暖機し、前記一方の改質反応器から排出された流体を前記燃料電池に供給して前記燃料電池を暖機し、前記燃料電池から排出された流体を他の一方の改質反応器に供給して前記他の一方の改質反応器を暖機するように、加熱用流体の流路を切り替えるための切替手段を制御するようにしてもよい。
改質反応器から排出されたオフガスは、燃料電池の燃料供給部、酸化剤ガス供給部又は、燃料電池に必要に応じて設けられる冷却流路を通過するように供給される。これにより、燃料電池を暖機することができる。
第2の発明である燃料電池システムにおいては、暖機手段を構成する制御手段が、前記一対の改質反応器に加熱用流体を供給して前記一対の改質反応器を暖機し、前記加熱用流体により暖機された前記一対の改質反応器から排出された流体を前記燃料電池に供給して前記燃料電池を暖機するように前記切替手段を制御するようにしてもよい。
改質反応器から排出されたオフガスは、燃料電池の燃料供給部と、酸化剤ガス供給部又は燃料電池に必要に応じて設けられる冷却流路とを通過するように供給されることが好ましい。これにより、高速な燃料電池の暖機を実現できる。
本発明によれば、安定した水素供給が可能な水素生成装置及びそれを有する燃料電池システムを提供することができる。
以下、本発明の水素生成装置及び本発明の燃料電池システムの実施形態について図面を用いて詳細に説明する。
<水素生成装置>
図1は本発明の水素生成装置の構成を示す概略図である。本実施形態に係る水素生成装置は、加熱用流体を一対の改質反応器に供給して該改質反応器を暖機するようにしたものである。また、改質用原料としてガソリン及び水蒸気の混合ガスを、燃焼用燃料としてガソリンを、加熱用流体としてガソリンと酸化剤ガス(空気)との混合ガスを用いた。なお、本発明において燃焼用燃料と酸化剤ガス(空気)との混合ガスを燃焼用原料と称する。
図1は本発明の水素生成装置の構成を示す概略図である。本実施形態に係る水素生成装置は、加熱用流体を一対の改質反応器に供給して該改質反応器を暖機するようにしたものである。また、改質用原料としてガソリン及び水蒸気の混合ガスを、燃焼用燃料としてガソリンを、加熱用流体としてガソリンと酸化剤ガス(空気)との混合ガスを用いた。なお、本発明において燃焼用燃料と酸化剤ガス(空気)との混合ガスを燃焼用原料と称する。
図1に示す水素生成装置1は、触媒が設けられ、改質反応と燃焼反応とを切替えて行なわせることが可能な第1のPSR型改質器10及び第2のPSR型改質器20を備える。
PSR型改質器10の一端、およびPSR型改質器20の一端には、ガソリンおよび水蒸気の混合ガス(改質用原料)を供給する配管102がバルブV1及びバルブV3を介して接続されている。バルブV1及びバルブV3の開閉を制御することにより、PSR型改質器10又はPSR型改質器20に改質用原料が供給され、改質反応が開始される。PSR型改質器10及びPSR型改質器20の他の一端には、改質反応器内で改質生成された水素含有ガスを取り出し可能なようにバルブV5及びバルブV7を介して配管104が接続されている。
また、PSR型改質器10及びPSR型改質器20の配管104が接続されている側には、燃焼用原料又は加熱用流体を供給する配管106がバルブV6及びバルブV8を介して接続されている。バルブV6及びバルブV8の開閉を制御することにより、PSR型改質器10及び/又はPSR型改質器20に燃焼用原料又は加熱用流体が供給され、燃焼反応又は暖機が開始される。PSR型改質器10及びPSR型改質器20の配管102が接続されている側には、改質反応器からのオフガスを排出可能なように配管108がバルブV2及びバルブV4を介して接続されている。
図2は、PSR型改質器10の構造を説明するための図である。なお、PSR型改質器20はPSR型改質器10と同様の構造を有するため、PSR型改質器10の説明をもってPSR型改質器20の説明に代える。
PSR型改質器10は、図2に示すように、両端が閉塞された断面円形の筒状体11と、筒状体11の内壁面に担持された触媒(触媒担持部)12とで構成されており、筒状体11は反応を行なうための空間を形成すると共に、触媒担持体としての機能を担っている。
筒状体11は、セラミックスハニカムを用いて直径10cmの断面円形の筒型に成形し、筒の長さ方向の両端を閉塞した中空体である。断面形状やサイズは、目的等に応じて、円形以外の矩形、楕円形などの任意の形状、サイズを選択することができる。
触媒12は、筒状体内壁の曲面のうち、筒状体の長さ方向両端から筒内方向に向かう筒の中央付近、すなわち長さ方向の両端からそれぞれ所定距離Aの領域を触媒を担持しない触媒非担持部12Aとして残し、触媒非担持部を除く全面に担持されている。なお、触媒非担持部12Aは筒状体11の長さ方向両端に設けられてもよいし、筒状体11の加熱用流体の供給される側のみに設けられていてもよい。
触媒12には、Pd、Ni、Pt、Rh、Ag、Ce、Cu、La、Mo、Mg、Sn、Ti、Y、Zn等の金属を用いることができる。
触媒12により改質反応させた場合、改質生成された水素含有ガスは該ガスの排出方向下流側の触媒非担持部12Aで冷却され、水素含有ガスを燃料電池の運転温度に近づけて供給できると共に、逆に改質反応から燃焼反応に切替えられた場合には、触媒非担持部12Aは水素含有ガスとの熱交換により昇温した状態にあり、水素含有ガスとは逆向きに供給された燃焼用原料を触媒非担持部12Aで予熱させてから触媒12に供給できるようになっている。これにより、触媒12が担持された筒状体11の中央付近ほど、蓄熱量が高くなる温度分布が形成され、ガス顕熱ロスの少ない理想的な蓄熱温度分布となる。
筒状体11の曲面部には、触媒の温度を計測するための温度センサ15が取り付けられており、触媒温度に基づいた反応制御を行なうことができるようになっている。
温度センサ15(15A、15B)、バルブV1〜V8並びに不図示の改質用原料供給手段、燃焼用原料供給手段及び加熱用流体供給手段は制御部30と電気的に接続されており、制御部30によって動作タイミングが制御されるようになっている。制御部30は、改質用原料及び燃焼用原料の供給を制御することにより水素含有ガスの生成を制御する通常の改質反応制御を担うと共に、水素生成装置の起動時等、PSR型改質器に十分な蓄熱がなされていない場合にPSR型改質器10及びPSR型改質器20が暖機されるように加熱用流体の流路を制御する暖機制御を担うものである。
次に、図3に基づいて水素生成装置1の制御部30による暖機制御ルーチンについて説明する。
図3は、暖機開始時に実行される暖機制御ルーチンを示す。本ルーチンが実行されると、ステップ200においてPSR型改質器10に取り付けられた温度センサ15A及びPSR型改質器20に取り付けられた温度センサ15Bから触媒の温度tA及び温度tBが取り込まれる。
ステップ210において、温度tA及び温度tBの少なくとも一方が改質可能温度T以上に達しているか否かが判定される。改質可能温度Tとしては、用いられる触媒の種類により最適な値が設定される。温度tA及び温度tBの少なくとも一方が改質可能温度T以上に達していると判定されたときには、ステップ260において改質可能温度Tに達した改質反応器により改質反応が開始され、本ルーチンは終了する。なお、改質反応におけるバルブV1〜V8の切替制御については後述する。
ステップ210において、温度tA及び温度tBのいずれもが改質可能温度Tに達していないと判定されたときには、ステップ220においてバルブV2、バルブV4、バルブV6及びバルブV8が開けられ、バルブV1、バルブV3、バルブV5及びバルブV7が閉じられる。加熱用流体であるガソリンと空気との混合ガスが配管106を通じてPSR型改質器10及びPSR型改質器20に供給され暖機が開始される。
PSR型改質器10及びPSR型改質器20の暖機開始後に、ステップ230で触媒の温度tA及び温度tBが再度取り込まれ、ステップ240において温度tA及び温度tBの少なくとも一方が改質可能温度T以上に達しているか否かが判定される。温度tA及び温度tBの少なくとも一方が改質可能温度T以上に達するまで加熱用流体はPSR型改質器10及びPSR型改質器20に供給される。PSR型改質器10及びPSR型改質器20への加熱用流体の供給量は、同じであってもよいし、最初に改質反応を開始させる改質反応器の温度上昇が速くなるように供給量に適当な差をつけてもよい。本実施形態においては、PSR型改質器10が先に改質可能温度Tに達するようにした。
ステップ240において温度tA及び温度tBの少なくとも一方(本実施形態においては温度tA)が改質可能温度T以上に達していると判定されたときには、ステップ250において加熱用流体の供給を停止する。ステップ260において改質可能温度Tに達した改質反応器により改質反応が開始され、本ルーチンは終了する。
次に、水素生成装置1による水素含有ガスの改質生成のための動作について説明する。バルブV1、バルブV4、バルブV5及びバルブV8を開け、バルブV2、バルブV3、バルブV6及びバルブV7を閉じた状態で改質可能温度Tに達したPSR型改質器10に改質用原料が配管102を通じて供給され、PSR型改質器20に燃焼用原料が配管106を通じて供給される。これにより、PSR型改質器10では改質反応器の蓄熱を利用して水蒸気改質反応が行われ、改質生成された水素含有ガスが配管104を通じて取り出される。また、PSR型改質器20では燃焼反応により改質可能温度T以上となるまで触媒が加熱される。
改質反応の進行に伴いPSR型改質器10の温度が水蒸気改質反応に適さない範囲にまで低下すると、バルブV1、バルブV4、バルブV5及びバルブV8を閉じ、バルブV2、バルブV3、バルブV6及びバルブV7を開けることにより改質可能温度Tに達したPSR型改質器20に改質用原料が配管102を通じて供給され、PSR型改質器10に燃焼用原料が配管106を通じて供給される。この切り替えを繰り返すことにより、水素含有ガスが供給される。
なお、本実施形態に係る水素生成装置では、PSR型改質器10及びPSR型改質器20は加熱用流体を用いて暖機されるが、PSR型改質器10及びPSR型改質器20の筒状体の外壁にヒーターを設け、暖機手段としてヒーターを用いることにより暖機するようにしてもよい。
<燃料電池システム>
次に、本発明の燃料電池システムの実施形態について説明する。本実施形態の燃料電池システムは、水素透過性の金属膜の膜面にプロトン伝導性のセラミックスが積層されたものを電解質膜として用いた水素分離膜型燃料電池(HMFC)と、本発明の水素生成装置と、を有し、該燃料電池が水素生成装置で改質生成された水素含有ガスの供給により発電するようにしたものである。また、改質用原料としてガソリン及び水蒸気の混合ガスを、燃焼用燃料としてガソリン又は水素含有ガスを、加熱用流体として水素含有ガス及び必要に応じて用いられるガソリンと酸化剤ガス(空気)との混合ガスを用いた。
次に、本発明の燃料電池システムの実施形態について説明する。本実施形態の燃料電池システムは、水素透過性の金属膜の膜面にプロトン伝導性のセラミックスが積層されたものを電解質膜として用いた水素分離膜型燃料電池(HMFC)と、本発明の水素生成装置と、を有し、該燃料電池が水素生成装置で改質生成された水素含有ガスの供給により発電するようにしたものである。また、改質用原料としてガソリン及び水蒸気の混合ガスを、燃焼用燃料としてガソリン又は水素含有ガスを、加熱用流体として水素含有ガス及び必要に応じて用いられるガソリンと酸化剤ガス(空気)との混合ガスを用いた。
図4は、本発明の燃料電池システムの第一実施形態の構成を示す図である。第一実施形態に係る燃料電池システム3は、本発明の水素生成装置1と、水素生成装置1で改質生成された水素含有ガスの供給により発電する水素分離膜型燃料電池(HMFC)2と、を有する。燃料電池システム3は、加熱用流体により暖機されたPSR型改質器10から排出された流体(オフガス)を水素分離膜型燃料電池2に供給して水素分離膜型燃料電池2を暖機し、水素分離膜型燃料電池2から排出されたオフガスをPSR型改質器20に供給してPSR型改質器20を暖機するように制御部30により暖機制御が行われるものである。
水素分離膜型燃料電池2は、図5に示すように、水素透過性金属を用いた緻密な水素透過層を有する電解質膜51と、電解質膜51を狭持する酸素極(O2極)52および水素極(H2極)53とで構成されており、水素生成装置1で改質生成された水素含有ガスが供給されると水素を選択的に透過させて発電運転が行なえるようになっている。
酸素極52と電解質膜51との間には、酸化剤ガスとして空気(Air)を通過、すなわち給排するためのエア流路59aが形成されており、水素極53と電解質膜51との間には、水素リッチな燃料ガス(ここでは、改質生成された水素含有ガス)を通過、すなわち給排するための燃料流路59bが形成されている。エア流路59aと燃料流路59bとは、互いに平行になるように設けられている。酸素極52および水素極53は、カーボン(例えば、白金または白金と他の金属とからなる合金を担持したカーボン粉)や電解質溶液(例えば、Aldrich Chemical社製のNafion Solution)など種々の材料を用いて形成可能である。
電解質膜51は、バナジウム(V)で形成された緻密な基材(水素透過性金属からなる緻密な水素透過層)56を含む4層構造となっている。パラジウム(Pd)層(水素透過性材料からなる緻密な水素透過層)55、57は、基材56を両側から挟むようにして設けられており、一方のPd層55の基材56と接する側と逆側の面には、更にBaCeO3(固体酸化物)からなる電解質層54が薄層状に設けられている。
基材56は、バナジウム(V)以外に、ニオブ、タンタル、およびこれらの少なくとも一種を含む合金を用いて好適に形成することができる。これらは、高い水素透過性を有すると共に、比較的安価である。
電解質層(BaCeO3層)54は、BaCeO3以外にSrCeO3系のセラミックスプロトン伝導体などを用いて構成することができる。
水素透過性金属には、パラジウム以外に、例えば、バナジウム、ニオブ、タンタルおよびこれらの少なくとも一種を含む合金、並びにパラジウム合金などが挙げられる。これらを用いた緻密層を設けることで電解質層を保護できる。
水素透過性金属からなる緻密層(被膜)については、酸素極側では、一般に水素透過性が高く比較的安価である点で、例えば、バナジウム(バナジウム単体および、バナジウム−ニッケル等の合金を含む。)、ニオブ、タンタルおよびこれらの少なくとも一種を含む合金のいずれかを用いるのが好ましい。これらは水素極側での適用も可能であるが、水素脆化を回避する点で酸素極側が望ましい。また、水素極側では、水素透過性が比較的高く水素脆化しにくい点で、例えば、パラジウムまたはパラジウム合金を用いるのが好ましい。
図5に示すように、Pd層55/基材56/Pd層57の3層からなるサンドウィッチ構造、すなわち異種金属(水素透過性材料からなる緻密層)からなる2層以上の積層構造を有してなる場合、異種金属の接触界面の少なくとも一部に該異種金属同士の拡散を抑制する金属拡散抑制層を設けるようにしてもよい(例えば図7及び図8参照)。金属拡散抑制層については、特開2004−146337号公報の段落[0015]〜[0016]に記載されている。
上記のように、サンドウィッチ構造をパラジウム(Pd)/バナジウム(V)/Pdとする以外に、Pd/タンタル(Ta)/V/Ta/Pd等の5層構造などとして設けることも可能である。VはPdよりプロトンまたは水素原子の透過速度が速く安価であるが、水素分子をプロトン等に解離する能力が低いため、水素分子をプロトン化する能力の高いPd層をV層の片側または両側の面に設けることで、透過性能を向上させることができる。この場合に、金属層間に金属拡散抑制層を設けることで、異種金属同士の相互拡散を抑え、水素透過性能の低下、ひいては燃料電池の起電力の低下を抑制することができる。
また、電解質層54は固体酸化物からなり、Pd層55との界面の少なくとも一部には、電解質層中の酸素原子とPdとの反応を抑制する反応抑制層を設けるようにしてもよい(例えば図7の反応抑制層65)。この反応抑制層については、特開2004−146337号公報の段落[0024]〜[0025]に記載されている。
電解質膜51は、緻密な水素透過性材料であるバナジウム基材と燃料電池のカソード側に成膜された無機質の電解質層とで構成されることにより、電解質層の薄層化が可能で、一般に高温型の固体酸化物型燃料電池(SOFC)の作動温度を300〜600℃の温度域に低温化することができる。
水素分離膜型燃料電池2は、燃料流路59bに水素(H2)密度の高い水素含有ガスが供給され、エア流路59aに酸素(O2)を含む空気が供給されると、下記式(1)〜(3)で表される電気化学反応(電池反応)を起こして外部に電力を供給する。なお、式(1) 、式(2)は各々アノード側、カソード側での反応を示し、式(3)は燃料電池での全反応である。
H2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
H2+(1/2)O2 → H2O …(3)
(1/2)O2+2H++2e- → H2O …(2)
H2+(1/2)O2 → H2O …(3)
燃料電池システム3で用いられる水素生成装置1において、PSR型改質器10の一端、およびPSR型改質器20の一端には、改質用原料又は加熱用流体を供給する配管110がバルブV1及びバルブV3を介して接続されている。PSR型改質器10及びPSR型改質器20の他の一端には、改質反応器内で改質生成された水素含有ガスを取り出し可能なようにバルブV5及びバルブV7を介して配管112の一端が接続されている。配管112の他の一端は、水素分離膜型燃料電池2の燃料流路59bの水素含有ガス供給口と接続されている。また、PSR型改質器10の触媒非担持部12Aと触媒担持部との境界に、バルブV9を介して配管114の一端が接続している。配管114の他の一端は、配管112と接続している。これにより、PSR型改質器10を暖機する際にオフガスを配管114を通じてPSR型改質器10から取り出すことができるため、触媒非担持部12Aを通過することによるオフガスの温度低下を防ぎ、高温のままオフガスを水素分離膜型燃料電池2に供給することができる。
配管116の一端は、水素分離膜型燃料電池2の燃料流路59bのアノードオフガス排出口と接続している。配管116の他の一端はバルブV6及びバルブV8を介してPSR型改質器10及びPSR型改質器20と接続しており、バルブV6を閉じ、バルブV8を開けることによりアノードオフガス排出口から排出されたオフガスをPSR型改質器20に供給してPSR型改質器20を暖機することができる。
配管116には、バルブV10を介して配管118が接続されており、不図示の燃焼用原料供給手段又は加熱用流体供給手段から燃焼用原料又は加熱用流体が必要に応じてPSR型改質器10又はPSR型改質器20に供給できるようになっている。
PSR型改質器10及びPSR型改質器20の配管110が接続されている側には、改質反応器からのオフガスを排出可能なように配管120がバルブV2及びバルブV4を介して接続されている。
燃料電池システム3において水素生成装置1を暖機する際、図3に示す暖機制御ルーチンが実行される。具体的には、バルブV1、バルブV4、バルブV8及びバルブV9が開けられ、バルブV2、バルブV3、バルブV5、バルブV6及びバルブV7が閉じられた状態で配管110から加熱用流体であるガソリンと空気との混合ガスがPSR型改質器10に供給され、PSR型改質器10が暖機される。PSR型改質器10から配管114を通じて排出されたオフガスは、水素分離膜型燃料電池2の燃料流路59bの水素含有ガス供給口から供給され、水素分離膜型燃料電池2を暖機する。水素分離膜型燃料電池2を暖機したオフガスは配管116を通じてPSR型改質器20に供給され、PSR型改質器20が暖機される。配管118から追加の加熱用流体(ガソリンと空気との混合ガス)を供給してもよい。また、PSR型改質器20の触媒非担持部12Aと触媒担持部との境界から加熱用流体を供給してもよい。本実施形態においては、PSR型改質器10が先に改質可能温度Tに達するようにした。
燃料電池システム3において水素生成装置1により水素含有ガスを改質生成する場合、バルブV1、バルブV4、バルブV5及びバルブV8を開け、バルブV2、バルブV3、バルブV6、バルブV7及びバルブV9を閉じた状態で改質可能温度Tに達したPSR型改質器10に改質用原料が配管110を通じて供給される。PSR型改質器20には水素分離膜型燃料電池2からのアノードオフガス及び必要に応じて配管118を通じて燃焼用原料であるガソリンと空気との混合ガスが供給される。これにより、PSR型改質器10では改質器の蓄熱を利用して改質反応が行われ、改質生成された水素含有ガスが配管112を通じて取り出される。また、PSR型改質器20では燃焼反応により改質可能温度Tとなるまで触媒が加熱される。
PSR型改質器10の温度が改質反応に適さない範囲にまで低下した場合、バルブV1、バルブV4、バルブV5及びバルブV8を閉じ、バルブV2、バルブV3、バルブV6及びバルブV7を開けることにより改質可能温度Tに達したPSR型改質器20に改質用原料が配管110を通じて供給され、PSR型改質器10に水素分離膜型燃料電池2からのアノードオフガス及び必要に応じて配管118を通じて燃焼用原料であるガソリンと空気との混合ガスが供給される。この切替を繰り返すことにより、水素生成装置1から水素分離膜型燃料電池2に水素含有ガスが供給される。
第一実施形態に係る燃料電池システムにおいては、PSR型改質器10から排出されたオフガスを水素分離膜型燃料電池2の燃料流路59bに供給するようにしたが、エア流路59a又は水素分離膜型燃料電池2に必要に応じて設けられる冷却流路にオフガスを供給するようにしてもよい。
図6は、本発明の燃料電池システムの第二実施形態の構成を示す図である。第二実形態に係る燃料電池システム4は、本発明の水素生成装置1と、水素生成装置1で改質生成された水素含有ガスの供給により発電する水素分離膜型燃料電池2と、を有する。燃料電池システム4は、加熱用流体により暖機されたPSR型改質器10及びPSR型改質器20から排出されたオフガスを水素分離膜型燃料電池2に供給して暖機するように制御部30により暖機制御が行われるものである。水素分離膜型燃料電池2としては、第一実施形態に係る燃料電池と同様のものを用いた。
燃料電池システム4で用いられる水素生成装置1において、PSR型改質器10の一端、およびPSR型改質器20の一端には、改質用原料又は加熱用流体を供給する配管130がバルブV1及びバルブV3を介して接続されている。また、PSR型改質器10およびPSR型改質器20の配管130が接続されている側には、改質反応器からのオフガスを排出可能なように配管132がバルブV2及びバルブV4を介して接続されている。
PSR型改質器10及びPSR型改質器20の他の一端には、改質反応器内で改質生成された水素含有ガスを取り出し可能なようにバルブV5及びバルブV7を介して配管134の一端が接続されている。配管134の他の一端は、水素分離膜型燃料電池2の燃料流路59bの水素含有ガス供給口と接続されており、PSR型改質器10から排出されたオフガスを水素分離膜型燃料電池2に供給することができる。また、PSR型改質器10の触媒非担持部12Aと触媒担持部との境界に、バルブV9を介して配管136の一端が接続している。配管136の他の一端は、配管134と接続している。配管136の機能は、図4における配管114と同様である。
配管138の一端はバルブV6及びバルブV8を介してPSR型改質器10及びPSR型改質器20と接続している。他の一端は水素分離膜型燃料電池2のエア流路59aのエア供給口と、燃料流路59bを流れるオフガスの流れ方向とエア流路59aを流れるオフガスの流れ方向とが対向流となるようにして接続されており、PSR型改質器20から排出されたオフガスを水素分離膜型燃料電池2に供給することができる。燃料流路59bを流れるオフガスの流れ方向とエア流路59aを流れるオフガスの流れ方向とが対向流であるため、水素分離膜型燃料電池2の両端から暖機することが可能となり、高速な暖機を実現できる。水素分離膜型燃料電池2を暖機したオフガスは配管を通じて排出される。
PSR型改質器20の触媒非担持部12Aと触媒担持部との境界に、バルブV11を介して配管140の一端が接続している。配管140の他の一端は、配管138と接続している。配管140の機能は、図4における配管114と同様である。
配管138には、バルブV10を介して配管142が接続されており、不図示の燃焼用原料供給手段から燃焼用原料が必要に応じてPSR型改質器10又はPSR型改質器20に供給できるようになっている。
燃料電池システム4において水素生成装置1を暖機する際、図3に示す暖機制御ルーチンが実行される。具体的には、バルブV1、バルブV3、バルブV9及びバルブV11が開けられ、バルブV2、バルブV4、バルブV5、バルブV6、バルブV7及びバルブV8が閉じられた状態で配管130から加熱用流体であるガソリンと空気との混合ガスがPSR型改質器10及びPSR型改質器20に供給され、PSR型改質器10及びPSR型改質器20が暖機される。PSR型改質器10から配管136を通じて排出されたオフガス及びPSR型改質器20から配管140を通じて排出されたオフガスは、各々配管134及び配管138を通じて水素分離膜型燃料電池2に供給され、水素分離膜型燃料電池2が暖機される。本実施形態においては、PSR型改質器10が先に改質可能温度Tに達するようにした。
燃料電池システム4において水素生成装置1により水素含有ガスを改質生成する場合、バルブV1、バルブV4、バルブV5及びバルブV8を開け、バルブV2、バルブV3、バルブV6、バルブV7、バルブV9及びバルブV11を閉じた状態で改質可能温度Tに達したPSR型改質器10に改質用原料が配管130を通じて供給される。PSR型改質器20には配管142を通じて燃焼用原料であるガソリンと空気との混合ガスが供給される。また、PSR型改質器20には水素分離膜型燃料電池2からのアノードオフガスが供給されるようにしてもよい。これにより、PSR型改質器10では改質器の蓄熱を利用して改質反応が行われ、改質生成された水素含有ガスが配管134を通じて取り出される。また、PSR型改質器20では燃焼反応により改質可能温度Tとなるまで触媒が加熱される。
PSR型改質器10の温度が改質反応に適さない範囲にまで低下した場合、バルブV1、バルブV4、バルブV5及びバルブV8を閉じ、バルブV2、バルブV3、バルブV6及びバルブV7を開けることにより改質可能温度Tに達したPSR型改質器20に改質用原料が配管130を通じて供給され、PSR型改質器10に配管142を通じて燃焼用原料であるガソリンと空気との混合ガスが供給される。PSR型改質器10には水素分離膜型燃料電池2からのアノードオフガスが供給されるようにしてもよい。この切替を繰り返すことにより、水素生成装置1から水素分離膜型燃料電池2に水素含有ガスが供給される。
第二実施形態に係る燃料電池システムにおいては、PSR型改質器10から排出されたオフガスを水素分離膜型燃料電池2の燃料流路59bに供給し、PSR型改質器20から排出されたオフガスをエア流路59aに供給するようにしたが、PSR型改質器10から排出されたオフガスを水素分離膜型燃料電池2に必要に応じて設けられる冷却流路に供給するようにしてもよいし、PSR型改質器20から排出されたオフガスを該冷却流路に供給するようにしてもよい。
本発明の燃料電池システムにおいては、燃料電池として、水素透過性金属を用いた緻密な水素透過膜(水素透過性金属層)の少なくとも片面に電解質層が積層された電解質膜を備えた水素分離膜型燃料電池(プロトン伝導性の固体酸化物型、または固体高分子型のいずれであってもよい。)の中から目的等に応じて選択することができる。
例えば、(1) 水素透過性の金属と該金属の少なくとも片側に成膜された無機電解質層(特にプロトン伝導性のセラミックス)とを有する電解質膜と、電解質膜の一方の面に設けられた水素極および該水素極に発電用燃料を供給する燃料供給部と、電解質膜の他方の面に設けられた酸素極および該酸素極に酸化剤ガスを供給する酸化剤ガス供給部とで構成された水素分離膜型燃料電池、または(2) プロトン伝導性の電解質層と該電解質層を両側から挟む水素透過性金属とを有する電解質膜と、電解質膜の一方の面に設けられた水素極および該水素極に発電用燃料を供給する燃料供給部と、電解質膜の他方の面に設けられた酸素極および該酸素極に酸化剤ガスを供給する酸化剤ガス供給部とで構成された固体高分子型の水素分離膜型燃料電池、等を好適に用いることができる。
図7〜図8に本発明の燃料電池システムを構成する水素分離膜型燃料電池の他の具体例を挙げる。なお、他の具体例についての詳細については特開2004−146337号公報の記載を参照することができる。
図7は、バナジウム(V)で形成された緻密な基材66を含む5層構造の電解質膜61と、電解質膜61を狭持する酸素極(O2極)62および水素極(H2極)63とで構成され、金属拡散抑制層および反応抑制層を備えた水素分離膜型燃料電池60を示したものである。電解質膜61は、基材66の水素極(アノード)63側の面に該面側から順に緻密体の金属拡散抑制層67とパラジウム(Pd)層68とを備え、基材66の酸素極(カソード)62側の面に該面側から順に緻密体の反応抑制層(例えばプロトン伝導体や混合伝導体、絶縁体の層)65と、固体酸化物からなる薄層の電解質層(例えばペロブスカイトの1つである金属酸化物SrCeO3層など)64とを備えている。反応抑制層65は、電解質層64中の酸素原子と基材(V)66との反応を抑制する機能を担うものである。なお、酸素極または水素極と電解質膜との間には上記同様に、各々エア流路59a、燃料流路59bが形成されている。金属拡散抑制層および反応抑制層の詳細については既述の通りである。
図8は、水素透過性金属を用いた緻密な水素透過層を有する電解質膜71と、電解質膜71を狭持する酸素極(O2極)72および水素極(H2極)73とで構成された固体高分子型の水素分離膜型燃料電池70を示したものである。電解質膜71は、例えば、ナフィオン(登録商標)膜などの固体高分子膜からなる電解質層76の両側の面を、水素透過性の緻密な金属層で挟んだ多層構造となっており、電解質層76の水素極(アノード)側の面にパラジウム(Pd)層(緻密層)77を備え、電解質層76の酸素極(カソード)側の面に該面側から順に、基材となるバナジウム−ニッケル合金(V−Ni)層(緻密層)75とPd層(緻密層)74とを備えている。なお、酸素極または水素極と電解質膜71との間には上記同様に、各々エア流路59a、燃料流路59bが形成されている。本燃料電池においてもまた、V−Ni層75とPd層74との間には金属拡散抑制層を設けることができ、V−Ni層75またはPd層77と電解質層76との間には反応抑制層を設けることができる。
図8に示す固体高分子型の燃料電池では、含水電解質層を挟むようにして水素透過性金属を用いた水素透過層が形成された構成とすることにより、高温での電解質層の水分蒸発および膜抵抗増大の抑制が可能で、一般に低温型の固体高分子型燃料電池(PEFC)の作動温度を300〜600℃の温度域に向上させることができる。
上記の実施形態では、改質用原料としてガソリンおよび水蒸気の混合ガスを使用した場合を説明したが、ガソリン以外の他の炭化水素燃料を使用した場合も同様である。
1 水素生成装置
2 水素分離膜型燃料電池
10、20 PSR型改質器
15 温度センサ
30 制御部
51 電解質膜
52 酸素極
53 水素極
59a エア流路
59b 燃料流路
2 水素分離膜型燃料電池
10、20 PSR型改質器
15 温度センサ
30 制御部
51 電解質膜
52 酸素極
53 水素極
59a エア流路
59b 燃料流路
Claims (11)
- 触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、燃焼用燃料が供給されたときには前記燃焼用燃料を燃焼反応させて前記触媒を加熱する、複数の改質反応器と、
前記複数の改質反応器のうち、前記改質反応と前記燃焼反応とを交互に切り替えて行う少なくとも一対の改質反応器を暖機する暖機手段と、
を備えた水素生成装置。 - 前記暖機手段は、少なくとも前記一対の改質反応器に加熱用流体を供給して暖機するものである請求項1に記載の水素生成装置。
- 前記暖機手段は、前記加熱用流体の流路を切り替えるための切替手段と、少なくとも前記一対の改質反応器が暖機されるように前記切替手段を制御する制御手段と、を備えた請求項2に記載の水素生成装置。
- 前記複数の改質反応器は、2基の改質反応器で構成された請求項1乃至3のいずれか1項に記載の水素生成装置。
- 触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、燃焼用燃料が供給されたときには前記燃焼用燃料を燃焼反応させて前記触媒を加熱する、複数の改質反応器、及び、前記複数の改質反応器のうち、前記改質反応と前記燃焼反応とを交互に切り替えて行う少なくとも一対の改質反応器を暖機する暖機手段を備えた水素生成装置と、
前記水素生成装置で改質生成された水素含有ガスの供給により発電する燃料電池と、
を有する燃料電池システム。 - 前記暖機手段は、少なくとも前記一対の改質反応器に加熱用流体を供給して暖機するものである請求項5に記載の燃料電池システム。
- 前記暖機手段は、前記加熱用流体の流路を切り替えるための切替手段と、少なくとも前記一対の改質反応器が暖機されるように前記切替手段を制御する制御手段と、を備えた請求項6に記載の燃料電池システム。
- 前記制御手段は、前記一対の改質反応器のうちの一方の改質反応器に加熱用流体を供給して前記一方の改質反応器を暖機し、前記一方の改質反応器から排出された流体を前記燃料電池に供給して前記燃料電池を暖機し、前記燃料電池から排出された流体を他の一方の改質反応器に供給して前記他の一方の改質反応器を暖機するように前記切替手段を制御する請求項7に記載の燃料電池システム。
- 前記制御手段は、前記一対の改質反応器に加熱用流体を供給して前記一対の改質反応器を暖機し、前記加熱用流体により暖機された前記一対の改質反応器から排出された流体を前記燃料電池に供給して前記燃料電池を暖機するように前記切替手段を制御する請求項7に記載の燃料電池システム。
- 前記複数の改質反応器は、2基の改質反応器で構成された請求項5乃至9のいずれか1項に記載の燃料電池システム。
- 前記燃料電池は、水素透過性金属層の少なくとも片面に電解質層が積層された電解質を備えた請求項5乃至10のいずれか1項に記載の燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005064634A JP2006248813A (ja) | 2005-03-08 | 2005-03-08 | 水素生成装置及び燃料電池システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005064634A JP2006248813A (ja) | 2005-03-08 | 2005-03-08 | 水素生成装置及び燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006248813A true JP2006248813A (ja) | 2006-09-21 |
Family
ID=37089694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005064634A Pending JP2006248813A (ja) | 2005-03-08 | 2005-03-08 | 水素生成装置及び燃料電池システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006248813A (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6133133A (ja) * | 1984-05-05 | 1986-02-17 | フエバ−・エ−ル・アクチエンゲゼルシヤフト | 炭化水素類の脱水素方法 |
JPS62148303A (ja) * | 1985-12-23 | 1987-07-02 | インタ−ナシヨナル・フユ−エル・セルズ・コ−ポレイシヨン | 水素含有ガスの製造方法、燃料電池への水素燃料の連続的供給方法、反応装置及び燃料電池システム |
JPH03182591A (ja) * | 1989-12-01 | 1991-08-08 | Inst Fr Petrole | 粒子の流動床によって加熱された反応器における脂肪族炭化水素仕込原料からの芳香族炭化水素の製造方法および装置 |
JP2003303610A (ja) * | 2002-04-10 | 2003-10-24 | Nippon Oil Corp | 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置 |
JP2003335503A (ja) * | 2002-05-17 | 2003-11-25 | Denso Corp | 水素生成装置 |
JP2004146337A (ja) * | 2002-08-28 | 2004-05-20 | Toyota Motor Corp | 中温域で作動可能な燃料電池 |
-
2005
- 2005-03-08 JP JP2005064634A patent/JP2006248813A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6133133A (ja) * | 1984-05-05 | 1986-02-17 | フエバ−・エ−ル・アクチエンゲゼルシヤフト | 炭化水素類の脱水素方法 |
JPS62148303A (ja) * | 1985-12-23 | 1987-07-02 | インタ−ナシヨナル・フユ−エル・セルズ・コ−ポレイシヨン | 水素含有ガスの製造方法、燃料電池への水素燃料の連続的供給方法、反応装置及び燃料電池システム |
JPH03182591A (ja) * | 1989-12-01 | 1991-08-08 | Inst Fr Petrole | 粒子の流動床によって加熱された反応器における脂肪族炭化水素仕込原料からの芳香族炭化水素の製造方法および装置 |
JP2003303610A (ja) * | 2002-04-10 | 2003-10-24 | Nippon Oil Corp | 燃料電池システム及びその運転方法並びにオートサーマルリフォーミング装置 |
JP2003335503A (ja) * | 2002-05-17 | 2003-11-25 | Denso Corp | 水素生成装置 |
JP2004146337A (ja) * | 2002-08-28 | 2004-05-20 | Toyota Motor Corp | 中温域で作動可能な燃料電池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8382864B2 (en) | Hydrogen-generating apparatus and fuel cell system | |
JP5103190B2 (ja) | 脱水素作用或いは水素付加作用を有する触媒、及びその触媒を用いた燃料電池、並びに水素貯蔵・供給装置 | |
US7867647B2 (en) | Hydrogen generation device and fuel cell system including same | |
JP2006012817A (ja) | 燃料電池用改質器及びこれを備えた燃料電池システム | |
US7846594B2 (en) | Reformer and fuel cell system having the same | |
US20080138679A1 (en) | Hydrogen Generation Device and Fuel Cell System Including Same | |
JP2007200709A (ja) | 固体酸化物形燃料電池スタックおよびその運転方法 | |
JP4484767B2 (ja) | 改質装置及び燃料電池システム | |
JP2007063038A (ja) | 水素生成装置及び燃料電池システム | |
JP2006315921A (ja) | 水素生成装置および燃料電池システム | |
JP2006248813A (ja) | 水素生成装置及び燃料電池システム | |
JP2007169116A (ja) | 水素生成装置および燃料電池システム | |
JP2006248811A (ja) | 水素生成装置及び燃料電池システム | |
JP2007161553A (ja) | 水素生成装置および燃料電池システム | |
JP2006282458A (ja) | 水素生成装置及び燃料電池システム | |
JP2006318870A (ja) | 燃料電池システム及び燃料電池 | |
JP4663845B2 (ja) | 急速放出可能な水素吸蔵合金収納容器 | |
JP2006290663A (ja) | 改質ガス利用システム | |
JP2007063037A (ja) | 水素生成装置及び燃料電池システム | |
JP2006335588A (ja) | 水素生成装置および燃料電池システム | |
JP2006282457A (ja) | 水素生成装置及び燃料電池システム | |
JP2006331806A (ja) | 燃料電池システム | |
JP2007106642A (ja) | 水素生成装置及び燃料電池システム | |
JP2007045677A (ja) | 水素生成装置および燃料電池システム | |
JP2005294152A (ja) | 固体酸化物形燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101019 |