[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006242906A - Surface defect inspection method and device therefor - Google Patents

Surface defect inspection method and device therefor Download PDF

Info

Publication number
JP2006242906A
JP2006242906A JP2005062733A JP2005062733A JP2006242906A JP 2006242906 A JP2006242906 A JP 2006242906A JP 2005062733 A JP2005062733 A JP 2005062733A JP 2005062733 A JP2005062733 A JP 2005062733A JP 2006242906 A JP2006242906 A JP 2006242906A
Authority
JP
Japan
Prior art keywords
defect
degree
inspection
feature amount
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062733A
Other languages
Japanese (ja)
Other versions
JP4639858B2 (en
Inventor
Yasuo Kushida
靖夫 櫛田
Yasuhiro Yuasa
康弘 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005062733A priority Critical patent/JP4639858B2/en
Publication of JP2006242906A publication Critical patent/JP2006242906A/en
Application granted granted Critical
Publication of JP4639858B2 publication Critical patent/JP4639858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface defect inspection method allowing grading for deciding whether delivery is allowed, in response to required quality in a customer side, and to provide a device therefor. <P>SOLUTION: In this surface defect inspection method for inspecting the surface of an inspected object for detecting the feature amount for determining a defect, based on the inspection signal therein, and for determining at least either the kind or the degree of the defect, based on the feature amount, the inspected object is divided a unit length by a unit length to determine a representative defect in each area formed therein, based on the kind and the degree of the defect, the ratio of the representative defect mixed into the inspected object is computed, and the quality of the inspected object is determined, based on a computed result and a preset allowance range to make quality decision of the inspected object. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、連続的に搬送される帯状の被検査体の表面欠陥を検査する表面欠陥検査方法及びその装置に関し、特に、鋼板やアルミニウム板等の金属帯やフィルム等の被検査体の格付けに関する。   The present invention relates to a surface defect inspection method and apparatus for inspecting a surface defect of a strip-shaped object to be continuously conveyed, and particularly relates to a rating of an object to be inspected such as a metal band or a film such as a steel plate or an aluminum plate. .

鋼板やアルミニウム板等の帯状被検査体に関して表面欠陥検査装置により薄板表面の欠陥の検査を行うことは従来より一般的に行われている。   Conventionally, inspection of defects on the surface of a thin plate using a surface defect inspection apparatus with respect to a strip-shaped inspection object such as a steel plate or an aluminum plate has been performed.

図2は従来の表面欠陥検査装置の概略構成を示した図である。図2に示されるように、被検査体10の表面に対向して画像入力部11(11a,11b)が設置されている。画像入力部11は、CCDカメラやフォトマル(光電子増倍管)等の画像入力手段と、画像入力手段に被検査体表面からの光を導くためのレンズ、ミラーや光学的な補正を行うためのフィルタから構成されている。画像入力部11には画像処理部12に接続されており、画像処理部12は、画像入力部からの電気信号を増幅する増幅器、電気的ノイズをカットするフィルタ、画像入力部からのアナログ出力をデジタル信号に変換するA/D変換器などの入力手段、入力された信号に対して地合の影響を除くためのシェーディング補正など各種補正処理や空間フィルタなどの前処理部分、得られた画像から2値以上にクラス分けするn値化や所定のしきい値により欠陥候補を抽出する処理部から構成されている。   FIG. 2 is a diagram showing a schematic configuration of a conventional surface defect inspection apparatus. As shown in FIG. 2, an image input unit 11 (11 a, 11 b) is installed facing the surface of the inspection object 10. The image input unit 11 performs image input means such as a CCD camera or photomultiplier (photomultiplier tube), and a lens, mirror, or optical correction for guiding light from the surface of the object to be inspected to the image input means. It is made up of filters. The image input unit 11 is connected to an image processing unit 12. The image processing unit 12 receives an amplifier that amplifies an electrical signal from the image input unit, a filter that cuts electrical noise, and an analog output from the image input unit. From input means such as an A / D converter that converts to a digital signal, various correction processes such as shading correction to remove the influence of formation on the input signal, preprocessing parts such as spatial filters, and the obtained image It consists of a processing unit that extracts defect candidates based on n-valued classification into two or more values and a predetermined threshold value.

画像処理部12には特徴量演算部13に接続されており、特徴量演算部13は、画像処理部12で得られた欠陥候補の長さや幅、面積、被検査体基準線から長手方向の距離、被検査体基準端部からの幅方向の距離などの特徴量を演算する。特徴量演算部13は、欠陥種別判定部14及び欠陥程度判定部15にそれぞれ接続されている。欠陥種別判定部14は、特徴量演算部13で得られた欠陥候補の特徴量から所定のアルゴリズムにしたがって欠陥種別を判定する。また、欠陥種別判定部14には欠陥程度判定部15に接続されている。欠陥程度判定部15は、特徴量演算部13で得られた欠陥の特徴量及び欠陥種別判定部14で判定された欠陥種別から、欠陥の程度を判定する。   The image processing unit 12 is connected to a feature amount calculation unit 13, and the feature amount calculation unit 13 extends in the longitudinal direction from the length, width and area of the defect candidate obtained by the image processing unit 12, and the inspection object reference line. A feature amount such as a distance and a distance in the width direction from the reference object end is calculated. The feature amount calculation unit 13 is connected to the defect type determination unit 14 and the defect degree determination unit 15, respectively. The defect type determination unit 14 determines the defect type from the feature amount of the defect candidate obtained by the feature amount calculation unit 13 according to a predetermined algorithm. The defect type determination unit 14 is connected to a defect degree determination unit 15. The defect degree determination unit 15 determines a defect degree from the defect feature amount obtained by the feature amount calculation unit 13 and the defect type determined by the defect type determination unit 14.

欠陥種別判定部14及び欠陥程度判定部15には結果出力部18が接続されており、結果出力部18は、欠陥種別及び欠陥程度をCRTなどのモニタ、プリンタ、ランプ、ブザーなどのアナンシエータに出力する。   A result output unit 18 is connected to the defect type determination unit 14 and the defect degree determination unit 15, and the result output unit 18 outputs the defect type and defect level to an annunciator such as a monitor such as a CRT, a printer, a lamp, and a buzzer. To do.

通常、全ての製品を欠陥の無いものとするのは極めて困難である。そのため、当該ラインでCRT等に表示された欠陥情報に基づいて顧客にとっての有害欠陥部を除去し、あるいは、前記欠陥情報に基づいて次工程で再検査して顧客にとっての有害欠陥部を除去した後に出荷している。また、有害欠陥部を含んだままのコイルとともにプリントアウトされた前記欠陥情報を記載した書類を顧客に提出し、顧客側で有害欠陥を除去してもらうこともある。   Usually, it is very difficult to make all products defect-free. Therefore, the harmful defect portion for the customer is removed based on the defect information displayed on the CRT or the like in the line, or the harmful defect portion for the customer is removed by re-inspecting in the next process based on the defect information. After shipping. In addition, a document in which the defect information printed out together with the coil including the harmful defect portion is described may be submitted to the customer, and the customer may have the harmful defect removed.

当該ライン又は次工程で有害欠陥部を除去する場合には、品質保証面からオーバーアクションとなってしまうことがよくある。また見逃し及びギリギリの判別困難欠陥等での判断ミスにより有害欠陥部が除去されない場合もある。また有害欠陥部を除去することにより、コイルの単重が小さくなり、顧客側の作業能率低下等の弊害がある。   When removing a harmful defect part in the said line or the following process, it will often be an over action from a quality assurance side. Further, there may be a case where the harmful defect portion is not removed due to a determination error such as a missed or difficult-to-determine defect. Moreover, by removing the harmful defect portion, the unit weight of the coil is reduced, and there are problems such as a reduction in work efficiency on the customer side.

このようなことから、例えば欠陥検出装置により検出された鋼板の欠陥部にマーキング装置を用いてマーキングし、顧客が欠陥部を再検査する際に容易に欠陥部を識別できるようにすることが提案されている(例えば特許文献1)。
特開2001−188046号公報
For this reason, for example, it is proposed to mark a defective portion of a steel plate detected by a defect detection device using a marking device so that the customer can easily identify the defective portion when re-inspecting the defective portion. (For example, Patent Document 1).
JP 2001-188046 A

顧客側の要求品質にもよるが、程度の軽い欠陥である場合多少混入しても支障がない場合もあり、また逆にこれらの軽度の欠陥部を全て切断除去したり、あるいはマーキングすることはオーバーアクションであるとともにコスト増要因となってしまう。   Although it depends on the quality required by the customer, there may be no problem even if it is a minor defect, and conversely, all these minor defects may be cut off or marked. It is an over action and a cost increase factor.

本発明は、上記問題点を考慮したものであり、顧客側の要求品質に応じて出荷可能なものであるかどうか判断するための格付けをすることを可能にした表面欠陥検査方法及びその装置を提供することにある。   The present invention takes into account the above-mentioned problems, and provides a surface defect inspection method and apparatus capable of performing a rating for judging whether or not the product can be shipped according to the quality required by the customer. It is to provide.

本発明に係る表面欠陥検査方法は、被検査体の表面を検査し、その検査信号から欠陥判定のための特徴量を検出し、該特徴量から欠陥の種別及び程度の少なくとも一方を判定する表面欠陥検査方法において、前記欠陥の種別及び程度に基づいて、被検査体を単位長さ毎に分割して形成される各領域の代表欠陥を決定し、該代表欠陥が被検査体に混入する割合を演算し、前記演算結果と予め設定された許容範囲から被検査体の合否判定を行うことにより被検査体の格付けを行う。
また、本発明に係る表面欠陥検査装置は、被検査体の表面を検査し、その検査信号から少なくとも欠陥判定のための特徴量を検出し、該特徴量から欠陥の種別及び程度の少なくとも一方を判定する表面欠陥検査装置において、前記欠陥の種別及び程度に基づいて、被検査体を単位長さ毎に分割して形成される各領域の代表欠陥を決定し、該代表欠陥が被検査体に混入する割合を演算し、前記演算結果と予め設定された許容範囲から被検査体の合否判定を行うことにより被検査体の格付けを行う判定部を備えたものである。
The surface defect inspection method according to the present invention inspects the surface of an object to be inspected, detects a feature quantity for defect determination from the inspection signal, and determines at least one of the type and degree of the defect from the feature quantity In the defect inspection method, based on the type and degree of the defect, the representative defect of each region formed by dividing the inspection object into unit lengths is determined, and the representative defect is mixed into the inspection object The test object is rated by performing pass / fail determination of the test object from the calculation result and a preset allowable range.
The surface defect inspection apparatus according to the present invention inspects the surface of the object to be inspected, detects at least a feature quantity for defect determination from the inspection signal, and determines at least one of the type and degree of the defect from the feature quantity. In the surface defect inspection apparatus to be determined, based on the type and degree of the defect, a representative defect of each region formed by dividing the inspection object for each unit length is determined, and the representative defect is in the inspection object. The apparatus includes a determination unit that calculates a mixing ratio and performs a pass / fail determination of the object to be inspected based on the calculation result and a preset allowable range.

以上説明したように本発明によれば、被検査体の格付けを行うようにしたので、欠陥部を全て切断除去したり、あるいはマーキングするなどのオーバーアクションを防止し、顧客側での要求品質に応じたコイルを製造、出荷することができるとともに製造コストを下げることができる。   As described above, according to the present invention, since the inspected object is rated, overaction such as cutting and removing all defective portions or marking is prevented, and the required quality on the customer side is achieved. Corresponding coils can be manufactured and shipped, and the manufacturing cost can be reduced.

実施形態1.
図1は本発明の実施形態1に係る表面欠陥検査装置の概略構成を示す図である。図1に示すように、鋼板やアルミニウム等の比較的厚さが薄い被検査体10の表面側及び裏面側にそれぞれ対向して画像入力部11a,11bが設置されている。画像入力部11a,11bは、CCDカメラやフォトマル(光電子増倍管)等の画像入力手段と、画像入力手段に被検査体表面からの光を導くためのレンズ、ミラーや光学的な補正を行うためのフィルタから構成されている。画像入力部11a,11bには画像処理部12a,12bがそれぞれ接続されている。画像処理部12a,12bは、画像入力部11a,11bからの電気信号を増幅する増幅器、電気的ノイズをカットするフィルタ、画像入力部からのアナログ出力をデジタル信号に変換するA/D変換器などの入力手段、入力された信号に対して地合の影響を除くためのシェーディング補正など各種補正処理や空間フィルタなどの前処理部分、及び得られた画像から2値以上にクラス分けするn値化や所定のしきい値により欠陥(疵)候補を抽出する処理部から構成されている。
Embodiment 1. FIG.
FIG. 1 is a diagram showing a schematic configuration of a surface defect inspection apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, image input units 11 a and 11 b are installed to face the front side and the back side of a relatively thin object 10 such as a steel plate or aluminum. The image input units 11a and 11b include image input means such as a CCD camera and a photomultiplier (photomultiplier tube), and lenses, mirrors, and optical corrections for guiding light from the surface of the object to be inspected to the image input means. It consists of filters to do. Image processing units 12a and 12b are connected to the image input units 11a and 11b, respectively. The image processing units 12a and 12b are amplifiers that amplify the electrical signals from the image input units 11a and 11b, filters that cut electrical noise, A / D converters that convert analog output from the image input unit into digital signals, and the like. Input means, various correction processes such as shading correction to remove the influence of the formation on the input signal, pre-processing parts such as spatial filters, and n-valued classification into two or more classes from the obtained image Or a processing unit that extracts defect (疵) candidates based on a predetermined threshold.

画像処理部12a,12bには特徴量演算部13a,13bがそれぞれ接続されている。特徴量演算部13a,13bは画像処理部12a,12bで得られた欠陥候補の長さや幅、面積、被検査体基準線から長手方向の距離、被検査体基準端部からの幅方向の距離などの特徴量を演算する。特徴量演算部13a,13bには記憶部16が接続されている。記憶部16は、欠陥候補の長さや幅、面積、被検査体基準線から長手方向の距離、被検査体基準端部からの幅方向の距離等の特徴量等を記憶する。欠陥種別判定部14は、欠陥の特徴量から、所定のアルゴリズムにしたがって欠陥種別を判定する。また、この欠陥種別判定部14は、欠陥程度判定部15に接続されており、欠陥程度判定部15は、欠陥(疵)の特徴量、及び欠陥種別判定部14で判定された欠陥種別から、欠陥の程度を判定する。また、欠陥種別判定部14及び欠陥程度判定部15には判定部17が接続されている。判定部17には結果出力部18が接続されており、結果出力部18は判定された結果をCRTなどのモニタ、プリンタ、ランプ、ブザーなどのアナンシエータに出力する。   Feature amount calculation units 13a and 13b are connected to the image processing units 12a and 12b, respectively. The feature amount calculation units 13a and 13b are the length, width and area of the defect candidates obtained by the image processing units 12a and 12b, the distance in the longitudinal direction from the inspection object reference line, and the distance in the width direction from the inspection object reference end. The feature amount such as is calculated. A storage unit 16 is connected to the feature amount calculation units 13a and 13b. The storage unit 16 stores feature amounts such as the length, width, and area of defect candidates, the distance in the longitudinal direction from the inspection target reference line, and the distance in the width direction from the inspection target reference end. The defect type determination unit 14 determines the defect type from the feature amount of the defect according to a predetermined algorithm. In addition, the defect type determination unit 14 is connected to the defect degree determination unit 15, and the defect degree determination unit 15 includes the defect (defect) feature amount and the defect type determined by the defect type determination unit 14. Determine the degree of defects. In addition, a determination unit 17 is connected to the defect type determination unit 14 and the defect degree determination unit 15. A result output unit 18 is connected to the determination unit 17 and the result output unit 18 outputs the determined result to a monitor such as a CRT, an annunciator such as a printer, a lamp, and a buzzer.

次に、図1の表面欠陥検査装置の動作を説明するが、画像入力部11a,11b、画像処理部12a,12b、特徴量演算部13、欠陥種別判定部14及び欠陥程度判定部15については、図2の従来装置と同様なので説明を省略する。欠陥種別判定部14及び欠陥程度判定部15により得られた欠陥種別及び欠陥程度についてのデータは記憶部16に格納される。判定部17は、記憶部16に格納されたデータに基づいて次に述べるように、(1)欠陥混入率、(2)表、裏、両面欠陥混入率、(3)欠陥程度別欠陥混入率 (4)欠陥発生要因別欠陥混入率 及び(5)組み合わせ欠陥混入率をそれぞれ求めて、(6)コイル格付けを行う。   Next, the operation of the surface defect inspection apparatus of FIG. 1 will be described. The image input units 11a and 11b, the image processing units 12a and 12b, the feature amount calculation unit 13, the defect type determination unit 14, and the defect degree determination unit 15 are described. Since it is the same as that of the conventional apparatus in FIG. Data on the defect type and the defect level obtained by the defect type determination unit 14 and the defect level determination unit 15 are stored in the storage unit 16. Based on the data stored in the storage unit 16, the determination unit 17, as will be described below, (1) defect mixture rate, (2) front, back, double-sided defect mix rate, (3) defect mix rate by defect level (4) Defect mixing rate by defect occurrence factor and (5) Combined defect mixing rate are obtained, and (6) Coil rating is performed.

(1)欠陥混入率
単位長さをn、コイル長さをLとすると、欠陥混入率を以下のようにして演算する。
<1>コイルの欠陥情報を単位長さで分割する。なお、1つの欠陥が単位長さで分割した2つの領域に跨る場合には、例えば以下の何れかとして扱う。
(a)両方の領域に欠陥がある。
(b)どちらか一方(例えば欠陥の長さの長い方が存在する領域)のみに欠陥がある。 また、この(b)の場合でも、3領域以上に跨る非常に長い欠陥がある場合は例外的に全ての領域に欠陥があるとしてもよい。何れにしても長い欠陥(疵)の場合には処理は特に限定されない。
<2>各単位長さごとに代表欠陥を決定する。代表欠陥は最も欠陥の程度の悪いものとする。また同じ程度の欠陥が複数ある場合は予め決められた欠陥の優先順にしたがい、最も優先度の高いものとする。これは、例えば、「欠陥種:ヘゲ、程度:C」 、「欠陥種:スリキズ、程度:C」、及び「欠陥種:押し疵、程度:C」が検出された場合には、予め、欠陥種優先度:(高)ヘゲ→スリキズ→押し疵(低)と決めておいて、代表欠陥を「欠陥種:ヘゲ、程度:C」と決定する。この場合には、欠陥混合率には残りの2つの欠陥の存在はなかったことになる。なお、上記の程度は後述の表1を参照されたい。
<3>ここで、例えば代表欠陥と判定した部分がm個あるとすると、
欠陥混入率=(m×n/L)×100(%)
と定義する。
(1) Defect mixing rate When the unit length is n and the coil length is L, the defect mixing rate is calculated as follows.
<1> Divide coil defect information by unit length. In addition, when one defect straddles two areas divided by unit length, it is handled as one of the following, for example.
(A) Both areas are defective.
(B) Only one of them (for example, a region where a longer defect exists) has a defect. Even in the case of (b), if there is a very long defect extending over three or more regions, it may be exceptional that all the regions have defects. In any case, the processing is not particularly limited in the case of a long defect (flaw).
<2> A representative defect is determined for each unit length. The representative defect is assumed to be the worst defect. If there are a plurality of defects of the same level, the highest priority is given in the order of predetermined defect priority. For example, when “defect type: baldness, degree: C”, “defect type: scratches, degree: C”, and “defect type: push rod, degree: C” are detected, Defect type priority: (High) Hege → Scratch → Push (Low) and the representative defect is determined as “Defect type: Hege, degree: C”. In this case, the remaining two defects did not exist in the defect mixing ratio. For the above degree, see Table 1 described later.
<3> Here, for example, if there are m portions determined to be representative defects,
Defect mixing rate = (m × n / L) × 100 (%)
It is defined as

(2)表、裏、両面欠陥混入率
表面、裏面それぞれの代表欠陥による欠陥混入率をそれぞれ表面欠陥混入率、裏面欠陥混入率とする。また、同じ単位長さ分割位置における表裏それぞれの代表欠陥を比較し、さらに両面における代表欠陥を上記の<1>及び<2>と同様に決定して、これにより欠陥混入率を演算したものを両面欠陥混入率とする。これは、表面、裏面を別々にカウントするのでなく、一体物としてカウントすることを意味しており、例えば、表側に、「欠陥種:ヘゲ、程度:C」 と 「欠陥種:スリキズ、程度:B」、 裏面に「欠陥種:押し疵、程度:C」がある場合は、表側の「欠陥種:ヘゲ、程度:C」を表裏の代表欠陥とする。なお、表裏の代表欠陥が同一欠陥種、等級であった場合には、どちらかの面の欠陥を代表欠陥としても同じ結果になるが、例えば表面側の欠陥を優先(採用)するように設定しておく。
(2) Front, back, and double-sided defect mixing ratio The surface defect mixing ratio and the back surface defect mixing ratio are the defect mixing ratios due to representative defects on the front and back surfaces, respectively. Also, the representative defects on the front and back sides at the same unit length division position are compared, and the representative defects on both sides are determined in the same manner as in the above <1> and <2>, and the defect mixture rate is calculated by this. The double-sided defect mixing rate. This means that the front and back surfaces are not counted separately, but are counted as a single object. For example, on the front side, “Defect type: Hege, degree: C” and “Defect type: Scratch, degree : “B”, and “Defect type: squeezed, degree: C” on the back side, the “Defect type: Hege, degree: C” on the front side is the representative defect on the front and back sides. If the representative defects on the front and back are of the same defect type and grade, the same result is obtained even if the defect on either side is used as the representative defect. For example, the defect on the front side is set to be given priority (adopted). Keep it.

(3)欠陥程度別欠陥混入率
欠陥の程度を複数のランクに分けたとき、それぞれの欠陥程度別の欠陥混入率を演算する。また、或る欠陥程度より悪い程度のものを全て累積した欠陥混入率を演算する。これは、例えば、次の表1に示されるように、程度が、大分類A〜Eの5ランクに設定(Eほど悪い)された場合には、それぞれの程度の欠陥混入率x1〜x5を算出する(欠陥程度別の欠陥混入率)。x1〜x5の累積は最大で100%。である。例えば、C〜Eを管理項目とした場合には、x3〜x5を累積する(累積した欠陥混入率)。
(3) Defect mixing rate by defect level When the defect level is divided into a plurality of ranks, the defect mixing rate is calculated for each defect level. In addition, the defect mixture rate is calculated by accumulating all the defects worse than a certain defect. For example, as shown in the following Table 1, when the degree is set to 5 ranks of the major classifications A to E (as bad as E), the defect mixture rates x1 to x5 of the respective degrees are set. Calculate (defect mixing rate by defect level). The maximum accumulation of x1 to x5 is 100%. It is. For example, when C to E are set as management items, x3 to x5 are accumulated (accumulated defect mixture rate).

Figure 2006242906
Figure 2006242906

(4)欠陥発生要因別欠陥混入率
欠陥発生の要因別、例えば上工程以前を発生場所とする原板性欠陥、自ラインで発生した自ライン性欠陥等に予め分類しておき、各分類ごとに欠陥混入率を演算する。例えば、表面欠陥計で検出された欠陥種によって、4種類に分類して、各欠陥種の程度毎に欠陥混入率例えば次の表2のように整理する。ここで、欠陥種と欠陥原因とは、例えば、ヘゲ、スリバー→製鋼起因、スケール→熱延起因、ドロス、不めっき→めっき起因、スリキズ、押し疵→通板トラブル、のような関係がある。
(4) Defect contamination rate by defect occurrence factor Classify in advance into the cause of defect occurrence, for example, original plate defect that occurs before the upper process, self-line defect that occurred in own line, etc. Calculate the defect contamination rate. For example, the defect types detected by the surface defect meter are classified into four types, and the defect mixture rate, for example, as shown in Table 2 below, is arranged for each defect type. Here, the defect type and the cause of the defect have a relationship such as, for example, hege, sliver → steel making, scale → hot rolling, dross, non-plating → plating, scratch, push rod → threading trouble. .

Figure 2006242906
Figure 2006242906

(5)組み合わせ欠陥混入率
以上述べた各欠陥混入率単独又は組み合わせた欠陥混入率を演算する。例えば表2に示されるケースにおいて、製鋼起因欠陥、熱延起因欠陥、めっき起因欠陥、通板トラブル欠陥のそれぞれにおいて、程度C〜Eの欠陥混入率の累積値を演算したり、製鋼起因欠陥と熱延起因欠陥とを組み合わせた欠陥混入率の累積を演算する。なお、欠陥種類の組み合わせは、必要な情報にあわせて適宜設定される。
(5) Combined defect mixing rate The defect mixing rate described above is calculated individually or combined. For example, in the case shown in Table 2, in each of the steelmaking-induced defects, hot-rolling-derived defects, plating-induced defects, and sheet-feeding trouble defects, the cumulative value of the defect mixing rate of degree C to E is calculated, The accumulation of the defect contamination rate combined with the hot-rolled defect is calculated. The combination of defect types is appropriately set according to necessary information.

(6)コイル格付け
顧客要求仕様別に、各欠陥混入率の許容範囲を予め決めておき、以上述べた各欠陥混入率と比較することにより、合格か不合格か格付けを決定する。
例えば
<1>顧客(又は用途)αの程度C以上(C〜Eを含む悪いもの)欠陥混入率の許容範囲1%以下 → 格付けA級品
<2>顧客(又は用途)βの程度C以上欠陥混入率の許容範囲2%以下
→ 格付けB級品
<3>顧客(あるいは用途)γの程度C以上欠陥混入率の許容範囲5%以下
→ 格付けC級品
という条件があった場合には、混入率が1.5%の場合には、格付けがB級品であり、顧客αには販売不可となるが、顧客β、γには販売ができる。また、混入率が3%の場合には格付けがC級品であり、顧客γにしか販売できない。混入率が7%の場合には、格付けがC級品にもならないので、格付けがスクラップとなる。
(6) Coil rating For each customer requirement specification, an acceptable range of each defect mixing rate is determined in advance, and the rating is determined by comparing with each defect mixing rate described above.
For example, <1> customer (or application) α degree C or higher (bad items including CE) 1% or less allowable range of defect contamination → rating class A product <2> customer (or application) β degree C or higher The allowable range of defect contamination is 2% or less
→ Grade B product <3> Degree of customer (or application) γ C or higher Defect mixing rate tolerance 5% or less
→ If there is a condition of rating C grade, if the mixing rate is 1.5%, the rating is B grade and cannot be sold to customer α, but customers β and γ Can be sold. When the mixing rate is 3%, the rating is a C-class product and can only be sold to the customer γ. When the mixing rate is 7%, the rating is not a class C product, so the rating is scrap.

本発明の実施形態の表面欠陥検査装置の概略構成図。The schematic block diagram of the surface defect inspection apparatus of embodiment of this invention. 従来の表面欠陥検査装置の概略構成図。The schematic block diagram of the conventional surface defect inspection apparatus.

符号の説明Explanation of symbols

10…被検査体
11…画像入力部
12…画像処理部
13…特徴量演算部
14…欠陥種別判定部
15…欠陥程度判定部
16…記憶部
17…判定部
18…結果出力部
DESCRIPTION OF SYMBOLS 10 ... Inspected object 11 ... Image input part 12 ... Image processing part 13 ... Feature-value calculating part 14 ... Defect type determination part 15 ... Defect degree determination part 16 ... Memory | storage part 17 ... Determination part 18 ... Result output part

Claims (2)

被検査体の表面を検査し、その検査信号から欠陥判定のための特徴量を検出し、該特徴量から欠陥の種別及び程度の少なくとも一方を判定する表面欠陥検査方法において、
前記欠陥の種別及び程度に基づいて、被検査体を単位長さ毎に分割して形成される各領域の代表欠陥を決定し、該代表欠陥が被検査体に混入する割合を演算し、前記演算結果と予め設定された許容範囲から被検査体の合否判定を行うことにより被検査体の格付けを行うことを特徴とする表面欠陥検査方法。
In the surface defect inspection method for inspecting the surface of an object to be inspected, detecting a feature amount for defect determination from the inspection signal, and determining at least one of the type and degree of the defect from the feature amount,
Based on the type and degree of the defect, determine the representative defect of each region formed by dividing the inspection object for each unit length, calculate the ratio of the representative defect mixed in the inspection object, A method for inspecting a surface defect, wherein the inspection object is rated by performing a pass / fail determination on the inspection object from a calculation result and a preset allowable range.
被検査体の表面を検査し、その検査信号から少なくとも欠陥判定のための特徴量を検出し、該特徴量から欠陥の種別及び程度の少なくとも一方を判定する表面欠陥検査装置において、
前記欠陥の種別及び程度に基づいて、被検査体を単位長さ毎に分割して形成される各領域の代表欠陥を決定し、該代表欠陥が被検査体に混入する割合を演算し、前記演算結果と予め設定された許容範囲から被検査体の合否判定を行うことにより被検査体の格付けを行う判定部
を備えたことを特徴とする表面欠陥検査装置。
In the surface defect inspection apparatus that inspects the surface of the object to be inspected, detects at least a feature amount for defect determination from the inspection signal, and determines at least one of the type and degree of the defect from the feature amount,
Based on the type and degree of the defect, determine the representative defect of each region formed by dividing the inspection object for each unit length, calculate the ratio of the representative defect mixed in the inspection object, A surface defect inspection apparatus comprising: a determination unit that ranks an object to be inspected by performing pass / fail determination of the object to be inspected based on a calculation result and a preset allowable range.
JP2005062733A 2005-03-07 2005-03-07 Surface defect inspection method and apparatus Active JP4639858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062733A JP4639858B2 (en) 2005-03-07 2005-03-07 Surface defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062733A JP4639858B2 (en) 2005-03-07 2005-03-07 Surface defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2006242906A true JP2006242906A (en) 2006-09-14
JP4639858B2 JP4639858B2 (en) 2011-02-23

Family

ID=37049455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062733A Active JP4639858B2 (en) 2005-03-07 2005-03-07 Surface defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4639858B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253049A (en) * 2011-06-30 2011-11-23 东北大学 Method for accurately detecting surface quality on line in production process of band steel
JP2012073119A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Surface defect inspection method and device therefor
JP2013160590A (en) * 2012-02-03 2013-08-19 Jfe Steel Corp Surface defect inspection method and surface defect inspection device
JP2013545979A (en) * 2010-11-12 2013-12-26 スリーエム イノベイティブ プロパティズ カンパニー Fast processing and detection of inhomogeneities in web-based materials
JP2014085221A (en) * 2012-10-24 2014-05-12 Jfe Steel Corp Surface defect inspection method and device
CN101596871B (en) * 2008-06-03 2015-06-03 株式会社日立制作所 Control system for vehicle receiving power intermittently
WO2020134210A1 (en) * 2018-12-29 2020-07-02 中冶南方工程技术有限公司 Cold-rolled strip steel surface quality management system and method
CN112598621A (en) * 2020-11-27 2021-04-02 攀钢集团西昌钢钒有限公司 Intelligent determination method for surface quality of cold-rolled strip steel
CN115018847A (en) * 2022-08-09 2022-09-06 海门市华呈精密标准件有限公司 Automatic identification and classification method for surface defects of metal plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556462B2 (en) * 1985-04-23 1993-08-19 Nisshin Steel Co Ltd
JPH10107102A (en) * 1996-10-02 1998-04-24 Hitachi Ltd Inspection method and device for manufacturing semiconductor device and semiconductor manufacturing method
JP2000035321A (en) * 1998-07-17 2000-02-02 Nisshin Steel Co Ltd Inspection device for surface of metal zone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556462B2 (en) * 1985-04-23 1993-08-19 Nisshin Steel Co Ltd
JPH10107102A (en) * 1996-10-02 1998-04-24 Hitachi Ltd Inspection method and device for manufacturing semiconductor device and semiconductor manufacturing method
JP2000035321A (en) * 1998-07-17 2000-02-02 Nisshin Steel Co Ltd Inspection device for surface of metal zone

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101596871B (en) * 2008-06-03 2015-06-03 株式会社日立制作所 Control system for vehicle receiving power intermittently
JP2012073119A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Surface defect inspection method and device therefor
JP2013545979A (en) * 2010-11-12 2013-12-26 スリーエム イノベイティブ プロパティズ カンパニー Fast processing and detection of inhomogeneities in web-based materials
CN102253049A (en) * 2011-06-30 2011-11-23 东北大学 Method for accurately detecting surface quality on line in production process of band steel
JP2013160590A (en) * 2012-02-03 2013-08-19 Jfe Steel Corp Surface defect inspection method and surface defect inspection device
JP2014085221A (en) * 2012-10-24 2014-05-12 Jfe Steel Corp Surface defect inspection method and device
WO2020134210A1 (en) * 2018-12-29 2020-07-02 中冶南方工程技术有限公司 Cold-rolled strip steel surface quality management system and method
CN112598621A (en) * 2020-11-27 2021-04-02 攀钢集团西昌钢钒有限公司 Intelligent determination method for surface quality of cold-rolled strip steel
CN115018847A (en) * 2022-08-09 2022-09-06 海门市华呈精密标准件有限公司 Automatic identification and classification method for surface defects of metal plate

Also Published As

Publication number Publication date
JP4639858B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4639858B2 (en) Surface defect inspection method and apparatus
US11635389B2 (en) Methods and systems for the quantitative measurement of internal defects in as-cast steel products
JP5471818B2 (en) Method and apparatus for inspecting periodic defects in strip material
JP6992457B2 (en) Inspection equipment, image formation system, inspection method and program
KR101937562B1 (en) Method for determining surface quality of strip
JP5967860B2 (en) Surface defect inspection method and apparatus
JP2012251983A (en) Wrap film wrinkle inspection method and device
JP2010151493A (en) Process failure detecting device and process failure detecting method
KR100838723B1 (en) Device for detecting and evaluating the point of defect on strip surface
JPH11211674A (en) Method and apparatus for inspection of flaw on surface
JP5853738B2 (en) Surface defect inspection method and surface defect inspection apparatus
CN104985002A (en) Hot rolled strip steel edge defect alarm method and apparatus
US20090268950A1 (en) Product-Quality Inspection System and Method thereof
JP2002090305A (en) Surface defect inspection device
JP6028520B2 (en) Surface defect inspection method and apparatus
JP5786631B2 (en) Surface defect inspection equipment
JP4863117B2 (en) High temperature steel surface inspection equipment
JP2001343331A (en) System and method for inspecting defect
JP2005241356A (en) Cyclic flaw detection method and apparatus therefor
JP2007078455A (en) Inspection device of sheet material
JP7464208B1 (en) METAL STRIP DEFECT DETECTION APPARATUS, METAL STRIP COLD ROLLING APPARATUS, METAL STRIP DEFECT DETECTION METHOD, AND METAL STRIP COLD ROLLING METHOD
JP7517385B2 (en) METHOD FOR DETERMINING ACCEPTANCE OF METAL STRIP AND METAL STRIP MANUFACTURING METHOD
JP7524717B2 (en) Inspection Equipment
JP2000035321A (en) Inspection device for surface of metal zone
WO2024185206A1 (en) Metal strip defect detection device, cold rolling device for metal strip, metal strip defect detection method, and cold rolling method for metal strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250