[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006137857A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread Download PDF

Info

Publication number
JP2006137857A
JP2006137857A JP2004328990A JP2004328990A JP2006137857A JP 2006137857 A JP2006137857 A JP 2006137857A JP 2004328990 A JP2004328990 A JP 2004328990A JP 2004328990 A JP2004328990 A JP 2004328990A JP 2006137857 A JP2006137857 A JP 2006137857A
Authority
JP
Japan
Prior art keywords
weight
rubber
parts
rubber composition
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004328990A
Other languages
Japanese (ja)
Inventor
Satoshi Mihara
諭 三原
Keisuke Chino
圭介 知野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004328990A priority Critical patent/JP2006137857A/en
Publication of JP2006137857A publication Critical patent/JP2006137857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve processability, abrasion resistance, aging resistance and wet skid properties of a silica-compounded natural rubber-based rubber composition. <P>SOLUTION: The rubber composition for a tire tread contains (A) 100 pts.wt. dienic rubber containing ≥10 pts.wt. natural rubber (NR), (B) 5-100 pts.wt. silica and (C) 1-15 wt.% thiirane-silane compound having an alkoxysilyl group and a thiirane ring in one molecule and represented by formulas (I) and/or (II) (wherein, R<SP>1</SP>and R<SP>2</SP>are each independently a methyl group or an ethyl group; and n is an integer of 0-2) based on the weight of the silica. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はタイヤトレッド用ゴム組成物及びそれをタイヤトレッド部に用いた空気入りタイヤに関する。   The present invention relates to a rubber composition for a tire tread and a pneumatic tire using the rubber composition for a tire tread portion.

近年、乗用車用タイヤのトレッドコンパウンドにはタイヤの低燃費化やウェット制動性能向上を目的としてシリカを配合することが主流となっている(例えば特許文献1及び2参照)。しかしながら、シリカ配合では所望の優れた低燃費性や湿潤路面でのグリップ性を発現させるためには、混合条件、特に混合温度の制約があり、また原料ゴムのガラス転移温度Tgを高くするなど手法をとる必要があり、これらの制約は生産性悪化、ゴム物性の低下(特に低温ゴム性能の低下)を招くという問題がある。   2. Description of the Related Art In recent years, silica has been mainly used in tread compounds for passenger car tires for the purpose of reducing fuel consumption and improving wet braking performance of the tire (see, for example, Patent Documents 1 and 2). However, in the case of silica compounding, there are restrictions on mixing conditions, especially the mixing temperature, and a technique such as increasing the glass transition temperature Tg of the raw rubber in order to express the desired excellent fuel economy and grip on wet roads. These restrictions have the problem that the productivity is deteriorated and the rubber properties are deteriorated (particularly, the low temperature rubber performance is deteriorated).

一方、トラック・バス等の重荷重用タイヤにおいては低燃費化や省メンテナンス性を目的とし、キャップトレッドゴムに配合するカーボンブラックの減量や低グレード化、シリカの配合及びタイヤトレッドの浅溝化が検討されており、これらの手法によりタイヤの低燃費性能は向上するが、カーボンブラックを減量する耐摩耗性及びウェット性能の低下が起り、またシリカ配合では耐摩耗性が悪化するため、浅溝化では耐摩耗性が実用性に欠けるようになり、いずれの方法を用いてもタイヤ用としての低燃費化/耐摩耗性/ウェット性能の高次元でのバランス化が困難であった。   On the other hand, for heavy-duty tires such as trucks and buses, for the purpose of reducing fuel consumption and maintenance, consider reducing the weight and grade of carbon black blended in cap tread rubber, blending silica, and shallow grooves in tire treads. Although these methods improve the fuel efficiency of tires, the wear resistance and wet performance of carbon black are reduced, and the wear resistance of silica blends deteriorates. Wear resistance has become impractical, and it has been difficult to achieve a high level balance of low fuel consumption / wear resistance / wet performance for tires using either method.

従来、シリカ配合系ゴムコンパウンドには、シランカップリング剤として、例えばビス−3−トリエトキシシリルプロピル−テトラスルフィド(Si69)が使用されているが、Si69を配合するときには、シリカの分散性向上及びムーニー粘度の低減のために140〜165℃の混合温度で混合してマスターバッチを得る必要がある。しかしながら、天然ゴムブレンド系コンパウンドを140〜165℃の温度で混合すると、ゴム分子に過剰な分子鎖切断→再結合によるゲル化が起こるため、ムーニー粘度が増加してしまうという問題があった(シリカの反応と分子鎖切断は背反関係にある)。また、トラックやバスのような高荷重用タイヤのキャップコンパウンドに使用するSAF級の小粒径カーボンブラック配合の場合には、混練り時の増粘効果により分子鎖切断が冗長され、更には酸化による分子鎖切断、過酸化物化が起こるため老化特性も低下してしまうという問題があった。   Conventionally, for example, bis-3-triethoxysilylpropyl-tetrasulfide (Si69) is used as a silane coupling agent in a silica compounded rubber compound. However, when Si69 is compounded, silica dispersibility is improved and In order to reduce Mooney viscosity, it is necessary to mix at a mixing temperature of 140 to 165 ° C. to obtain a master batch. However, when a natural rubber blend compound is mixed at a temperature of 140 to 165 ° C., gelation occurs due to excessive molecular chain scission → recombination in the rubber molecule, which increases the Mooney viscosity (silica). Reaction and chain break are in contradiction). In addition, in the case of a SAF grade small particle size carbon black compound used for cap compounds of heavy duty tires such as trucks and buses, molecular chain scission is redundant due to the thickening effect during kneading, and further oxidation As a result, molecular chain scission and peroxide formation occur due to degradation of aging characteristics.

特開平3−252431号公報JP-A-3-252431 特開平7−70309号公報JP-A-7-70309

従って、本発明の目的は前述のシリカ配合ゴム組成物の問題点を排除して、シリカ配合天然ゴム系タイヤトレッド用ゴム組成物を低温混合で加工性、耐摩耗性、耐老化性、低温ウェットスキッド性などを改良することができるゴム組成物を提供することにある。   Accordingly, the object of the present invention is to eliminate the problems of the above-described silica-blended rubber composition, and to process the rubber composition for silica-blended natural rubber tire treads at low temperature mixing, wear resistance, aging resistance, low temperature wet An object of the present invention is to provide a rubber composition capable of improving skidability and the like.

本発明に従えば、(A)天然ゴム(NR)10重量部以上を含むジエン系ゴム100重量部、(B)シリカ5〜100重量部及び(C)1分子中にアルコキシシリル基とチイラン環を有する式(I)及び/又は(II):   According to the present invention, (A) 100 parts by weight of a diene rubber containing 10 parts by weight or more of natural rubber (NR), (B) 5 to 100 parts by weight of silica, and (C) an alkoxysilyl group and a thiirane ring in one molecule Formula (I) and / or (II) having:

Figure 2006137857
Figure 2006137857

(式中、R1及びR2は独立にメチル基又はエチル基であり、nは0〜2の整数である)
で表されるチイランシラン化合物をシリカ重量の1〜15重量%含んでなるタイヤトレッド用ゴム組成物が提供される。
(In the formula, R 1 and R 2 are each independently a methyl group or an ethyl group, and n is an integer of 0 to 2)
A rubber composition for a tire tread comprising 1 to 15% by weight of the silica weight of a thiirane silane compound represented by the formula:

本発明の第一の好ましい態様によれば、前記ジエン系ゴム(A)100重量部中に、スチレンブタジエン共重合体ゴム(SBR)が少なくとも20重量部以上含まれるタイヤトレッド用ゴム組成物が提供される。   According to a first preferred embodiment of the present invention, there is provided a rubber composition for a tire tread in which at least 20 parts by weight of styrene butadiene copolymer rubber (SBR) is contained in 100 parts by weight of the diene rubber (A). Is done.

本発明の第二の好ましい態様によれば、前記ジエン系ゴム(A)が天然ゴム(NR)とポリブタジエンゴム(BR)からなり、且つNR/BR(重量比)が60/40〜95/5であり、更に窒素吸着比表面積(N2SA)が100m2/g以上のカーボンブラック30〜45重量部を含み、カーボンブラックとシリカとの合計量が40〜70重量部であるタイヤトレッド用ゴム組成物が提供される。 According to a second preferred embodiment of the present invention, the diene rubber (A) is composed of natural rubber (NR) and polybutadiene rubber (BR), and NR / BR (weight ratio) is 60/40 to 95/5. The tire tread rubber further includes 30 to 45 parts by weight of carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 100 m 2 / g or more, and the total amount of carbon black and silica is 40 to 70 parts by weight. A composition is provided.

本発明によれば、シリカ配合天然ゴム系ゴム組成物にチイラン化合物を配合することにより、例えば120〜165℃、更に好ましくは120〜140℃の低温で混合することが可能になり、ゴム分子の分子鎖切断を抑制し、ムーニー粘度の混合温度依存性が小さくすることによって、粘度低下を大きくすることができ、また分子鎖切断抑制による耐摩耗性向上及び耐老化性向上(硬さ変化が小さい)を達成することができ、更にE’の温度依存性が小さく広範囲な温度領域で優れたウェットスキッド性能を発揮できる。従って、特に分子鎖切断が起こりやすい、天然ゴム/小粒径カーボンブラック配合/シリカ配合系に有効である。   According to the present invention, by mixing a thiirane compound with a silica-containing natural rubber-based rubber composition, it becomes possible to mix at a low temperature of, for example, 120 to 165 ° C, more preferably 120 to 140 ° C. Suppressing molecular chain breakage and making Mooney viscosity less dependent on mixing temperature can increase viscosity drop, and also improve wear resistance and aging resistance by suppressing molecular chain breakage (small change in hardness) In addition, the temperature dependence of E ′ is small and excellent wet skid performance can be exhibited in a wide temperature range. Therefore, it is particularly effective for a natural rubber / small particle size carbon black blend / silica blend system in which molecular chain breakage is likely to occur.

前述の如く、シリカ配合系コンパウンドには、通常シランカップリング剤としてSi69を使用されているが、Si69を配合するとシリカの分散性向上及びムーニー粘度低減のために、140〜165℃の温度で混合する必要があった。しかしながら、天然ゴムブレンド系コンパウンドは140〜165℃の温度で混合すると過剰な分子鎖切断、それに続く再結合によりゲル化が起こるためムーニー粘度が増加してしまうという問題があった。また、E’の温度依存性の改善効果も十分ではないため、広範囲な温度領域で優れたウエット制動性能を発現できないという問題もあり、更に高荷重タイヤのキャップトレッドなどでは耐老化特性にも問題があった。   As described above, Si69 is usually used as a silane coupling agent in a silica compound, but when Si69 is compounded, it is mixed at a temperature of 140 to 165 ° C in order to improve dispersibility of silica and reduce Mooney viscosity. There was a need to do. However, when the natural rubber blend compound is mixed at a temperature of 140 to 165 ° C., there is a problem that Mooney viscosity increases because gelation occurs due to excessive molecular chain breakage and subsequent recombination. In addition, since the effect of improving the temperature dependence of E 'is not sufficient, there is also a problem that excellent wet braking performance cannot be expressed in a wide temperature range, and there is also a problem with anti-aging characteristics in cap treads of high-load tires. was there.

然るに本発明によれば、この天然ゴムブレンド系コンパウンドに分子中にアルコキシシリル基とチイラン基を有するチイランシラン化合物を配合することにより、ムーニー粘度の混合温度依存性が非常に小さく、低温でもムーニー粘度を低減することが可能になり、そのため混合によるゴム分子の過剰な分子鎖切断を抑制してムーニー粘度の増加を抑制することができ、更には耐摩耗性を向上させることができる。またゴム物性(E’)の温度依存性も小さく、広範囲な温度領域(特に低温)で優れたウエットスキッド性能を発現させることが可能となり、また低温混練りで高分子量化させることができるので耐老化性も改良される。   However, according to the present invention, by blending the natural rubber blend compound with a thiirane silane compound having an alkoxysilyl group and a thiirane group in the molecule, the dependency of the Mooney viscosity on the mixing temperature is very small, and the Mooney viscosity can be reduced even at low temperatures. Therefore, excessive molecular chain scission of rubber molecules due to mixing can be suppressed, and an increase in Mooney viscosity can be suppressed, and wear resistance can be improved. In addition, the temperature dependence of the rubber physical properties (E ′) is small, it is possible to exhibit excellent wet skid performance in a wide temperature range (especially low temperature), and high molecular weight can be achieved by low-temperature kneading. Aging is also improved.

なお、このチイランシラン化合物は公知であり、例えば特開平11−180988号公報にはチイランシラン化合物をゴム組成物に配合することによってスコーチを防止すると共にシリカゴムの補強効果を高め得ることが記載されている。しかしながら、この文献にはチイランシラン化合物を天然ゴム配合系に具体的に配合した実施例はなく、更に混合温度に関する記述はない。   This thiirane silane compound is publicly known. For example, Japanese Patent Application Laid-Open No. 11-180988 describes that by adding a thiirane silane compound to a rubber composition, scorch can be prevented and the reinforcing effect of silica rubber can be enhanced. However, in this document, there is no example in which a thiirane silane compound is specifically blended with a natural rubber blending system, and there is no description regarding the mixing temperature.

本発明において用いるチイランシラン化合物は前記式(I)及び(II)に示す分子中にアルコキシシリル基とチイラン環を有する化合物(モノマー)並びにこれらの縮合物である式(III)及び(IV):   The thiirane silane compound used in the present invention is a compound (monomer) having an alkoxysilyl group and a thiirane ring in the molecule represented by the above formulas (I) and (II), and the condensates thereof (III) and (IV):

Figure 2006137857
Figure 2006137857

(式中、R1はメチル基又はエチル基であり、R3及びR4は同一であっても異なっていてもよく、それぞれが独立にメチル基、エチル基、メチルオキシ基又はエチルオキシ基であり、mは2以上の整数である)
を用いることができる。これらのモノマー及び縮合物は、例えば我々の先願である前記特開平11−180988号公報に記載されている方法によって製造することができる。
(In the formula, R 1 is a methyl group or an ethyl group, and R 3 and R 4 may be the same or different, and each independently represents a methyl group, an ethyl group, a methyloxy group, or an ethyloxy group. M is an integer of 2 or more)
Can be used. These monomers and condensates can be produced, for example, by the method described in the aforementioned Japanese Patent Application Laid-Open No. 11-180988, which is our prior application.

本発明の第一の好ましい態様では、SBRと天然ゴムのブレンドで、SBR20重量部以上、好ましくは20〜85重量部で天然ゴムの10重量部以上、好ましくは15〜80重量部配合する。このブレンドは120〜165℃での混合も可能であるが、ゴムポリマーへの影響を考慮すると145℃以下、特に130〜145℃で混合するのが好ましい。   In the first preferred embodiment of the present invention, the blend of SBR and natural rubber contains 20 parts by weight or more, preferably 20 to 85 parts by weight of SBR, and 10 parts by weight or more, preferably 15 to 80 parts by weight of natural rubber. This blend can be mixed at 120 to 165 ° C, but considering the influence on the rubber polymer, it is preferable to mix at 145 ° C or less, particularly 130 to 145 ° C.

本発明で用いるチイランシラン化合物は前記式(I)及び(II)のモノマーもしくはチイランシラン化合物の縮合物で、シリカ重量の1〜15重量%、好ましくは3〜10重量%であることが好ましい。この配合量が少な過ぎるとシリカとチイランシラン化合物との反応が不十分となり、補強性が低下するので好ましくなく、逆に多過ぎると混合時にゲル化が進行してムーニー粘度が増加し、加工性が低下するので好ましくない。   The thiirane silane compound used in the present invention is a monomer of the above formulas (I) and (II) or a condensate of the thiirane silane compound and is preferably 1 to 15% by weight, preferably 3 to 10% by weight of the silica weight. If the amount is too small, the reaction between the silica and the thiirane silane compound becomes insufficient and the reinforcing property is lowered, which is not preferable. On the other hand, if the amount is too large, gelation proceeds during mixing, the Mooney viscosity increases, and the workability increases. Since it falls, it is not preferable.

シリカの配合量は、ジエン系ゴム(A)の合計量100重量部に対し、5〜100重量部、好ましくは20〜80重量部である。この配合量が少な過ぎるとウェットスキッド性能が低下するので好ましくなく、逆に多過ぎると耐摩耗性が低下するので好ましくない。シリカとしては従来からゴム配合用に使用されている任意のシリカ、例えば日本シリカ工業(株)製のNipsil AQなどを用いることができる。   The compounding quantity of a silica is 5-100 weight part with respect to 100 weight part of total amounts of a diene rubber (A), Preferably it is 20-80 weight part. If the amount is too small, the wet skid performance deteriorates, which is not preferable. Conversely, if the amount is too large, the wear resistance decreases, which is not preferable. As the silica, any silica conventionally used for rubber compounding, such as Nippon AQ manufactured by Nippon Silica Kogyo Co., Ltd., can be used.

本発明の第二の好ましい態様によれば、ジエン系ゴム(A)が天然ゴムとBRのブレンドゴムで、天然ゴムが60〜95重量部、更に好ましくは65〜90重量部、BRが5〜40重量部、更に好ましくは10〜35重量部である。このブレンドにおいて、天然ゴムの配合量が少な過ぎるとウェットスキッド性能が低下するので好ましくなく、逆に多過ぎると耐摩耗性が低下するので好ましくない。   According to the second preferred embodiment of the present invention, the diene rubber (A) is a blend rubber of natural rubber and BR, the natural rubber is 60 to 95 parts by weight, more preferably 65 to 90 parts by weight, and the BR is 5 to 5 parts by weight. 40 parts by weight, more preferably 10 to 35 parts by weight. In this blend, if the blending amount of the natural rubber is too small, the wet skid performance decreases, which is not preferable. On the other hand, if the blending amount is too large, the wear resistance decreases.

本発明の第二の好ましい態様においても、ゴムのブレンドは120〜165℃の温度で混合することが可能であるが、ゴムポリマーへの影響を考慮すると145℃以下、特に130〜145℃で混合するのが好ましい。   In the second preferred embodiment of the present invention, the rubber blend can be mixed at a temperature of 120 to 165 ° C., but considering the influence on the rubber polymer, it is not higher than 145 ° C., particularly 130 to 145 ° C. It is preferable to do this.

本発明の第二の好ましい態様で用いるチイランシラン化合物は式(I)及び/又は(II)のチイランシランモノマー又はそのチイランシラン化合物の縮合物(III)及び/又は(IV)を用いることができ、その配合量は、シリカ重量の1〜15重量%であることが好ましく、更に好ましくは3〜10重量%である。   The thiirane silane compound used in the second preferred embodiment of the present invention may be a thiirane silane monomer of the formula (I) and / or (II) or a condensate (III) and / or (IV) of the thiirane silane compound, The blending amount is preferably 1 to 15% by weight of silica weight, more preferably 3 to 10% by weight.

本発明の第二の好ましい態様ではN2SA(ASTM D3037にて測定)が110m2/g以上の、好ましくは115〜150m2/gのカーボンブラックをゴム100重量部に対し、30〜45重量部、好ましくは35〜40重量部配合し、前述のシリカをゴム100重量部当り、好ましくは5〜30重量部、更に好ましくは5〜25重量部配合する。但し、カーボンブラックとシリカとの合計量は好ましくは40〜75重量部好ましくは40〜65重量部とする。この配合量が少なすぎると補強性が低下するので好ましくなく、逆に多過ぎると混合時の分子鎖切断・ポリマーの再結合によるゲル化が起こり加工性が低下するので好ましくない。 In a second preferred embodiment of the present invention N 2 SA (measured by ASTM D3037) is not less than 110m 2 / g, relative to preferably 100 parts by weight rubber of carbon black 115~150m 2 / g, 30~45 weight Parts, preferably 35 to 40 parts by weight, and the above-mentioned silica is preferably blended in an amount of 5 to 30 parts by weight, more preferably 5 to 25 parts by weight per 100 parts by weight of rubber. However, the total amount of carbon black and silica is preferably 40 to 75 parts by weight, preferably 40 to 65 parts by weight. If the blending amount is too small, the reinforcing property is lowered, which is not preferable. On the other hand, if the blending amount is too large, gelation occurs due to molecular chain breakage and polymer recombination during mixing, and the processability is lowered.

本発明に係るゴム組成物には、前記した必須成分に加えて、他のカーボンブラックや他のシリカなどのその他の補強剤(フィラー)、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練、加硫して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。   In addition to the above-described essential components, the rubber composition according to the present invention includes other reinforcing agents (fillers) such as carbon black and other silica, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, Various additives that are generally blended for tires such as oil, anti-aging agent, plasticizer, and other general rubber can be blended, and these additives are kneaded and vulcanized by a general method. The composition can be used to vulcanize or crosslink. The blending amounts of these additives may be conventional conventional blending amounts as long as the object of the present invention is not adversely affected.

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

本発明の実施例及び比較例に用いた配合成分の入手源は以下の通りである。
SBR:日本ゼオン(株)製SBR(Nipol 9528R)
NR:RSS#4
BR:日本ゼオン(株)製BR(Nipol 1220)
A2000:日本シリカ工業(株)製シリカNipsil AQ
165GR:ローディア社製シリカ165GR
Si69:デグッサ社製シランカップリング剤Si69
チイランシラン化合物(1)〜(4):以下の合成例参照
CB:東海カーボン(株)製カーボンブラック(シースト9M)
The sources of the ingredients used in the examples and comparative examples of the present invention are as follows.
SBR: SBR manufactured by Nippon Zeon Co., Ltd. (Nipol 9528R)
NR: RSS # 4
BR: BR manufactured by Nippon Zeon Co., Ltd. (Nipol 1220)
A2000: Nippon Silica Co., Ltd. Silica Nippon AQ
165GR: Rhodia silica 165GR
Si69: Sigus coupling agent Si69 manufactured by Degussa
Thialansilane compounds (1) to (4): Refer to the following synthesis examples. CB: Carbon black (Seast 9M) manufactured by Tokai Carbon Co., Ltd.

6C:FLEXYS社製老化防止剤(SANTOFLEX 6PPD)
RD:バイエル社製老化防止剤(VULKANOX HS/LG)
亜鉛華:東邦亜鉛(株)製酸化亜鉛(銀嶺)
ステアリン酸:日本油脂(株)製ビーズステアリン酸
オイル:ジャパンエナジー(株)製プロセスオイルX−140
6C: Anti-aging agent manufactured by FLEXXYS (SANTOFLEX 6PPD)
RD: Anti-aging agent manufactured by Bayer (VULKANOX HS / LG)
Zinc flower: Zinc oxide (silver candy) manufactured by Toho Zinc Co., Ltd.
Stearic acid: Nippon Oil & Fats Co., Ltd. Beads stearic acid oil: Japan Energy Co., Ltd. Process Oil X-140

CZ:大内新興化学(株)製加硫促進剤(ノクセラーCZ−G)
DPG:住友化学工業(株)製加硫促進剤(サンセラーD−G)
NS:大内新興化学(株)製加硫促進剤(ノクセラーNS−P)
PVI:FLEXYS社製加硫促進剤(SANTOGURAD PVI DSPOWDER)
硫黄:細井化学工業(株)製油処理硫黄
CZ: Ouchi Shinsei Chemical Co., Ltd. vulcanization accelerator (Noxeller CZ-G)
DPG: Vulcanization accelerator manufactured by Sumitomo Chemical Co., Ltd. (Sunceller DG)
NS: Ouchi Shinsei Chemical Co., Ltd. vulcanization accelerator (Noxeller NS-P)
PVI: vulcanization accelerator (SANTOGURAD PVI DSPOWDER) manufactured by FLEXXYS
Sulfur: Hosei Chemical Co., Ltd. oil processing sulfur

チイランシラン化合物(1):r−グリシドキシプロピルトリエトキシシラン化合物と、チイラン化剤を反応させ、前記式(I)のR1がエチル基で、nが0の化合物を得た。 Thialansilane compound (1): An r-glycidoxypropyltriethoxysilane compound and a thiirane agent were reacted to obtain a compound in which R 1 in the formula (I) was an ethyl group and n was 0.

チイランシラン化合物(2):β−(3,4エポキシシクロヘキシル)エチルトリエトキシシラン化合物とチイラン化剤を反応させ、前記式(II)のR1がエチル基で、nが0の化合物を得た。 Thiilansilane compound (2): A β- (3,4-epoxycyclohexyl) ethyltriethoxysilane compound and a thiirane agent were reacted to obtain a compound in which R 1 in the formula (II) was an ethyl group and n was 0.

チイランシラン化合物(3):チイランシラン化合物(1)のエトキシシリル基を加水分解により縮重合させ、前記式(III)のm=2〜5、R3及びR4がエトキシ基でR1がエチル基の縮合体を得た。 Chiiranshiran Compound (3): Chiiranshiran compound ethoxy silyl group (1) by polycondensing by hydrolysis, m = 2 to 5 of the formula (III), R 3 and R 4 are R 1 ethoxy group is an ethyl group A condensate was obtained.

チイランシラン化合物(4):チイランシラン化合物(2)のエトキシシリル基を加水分解により縮重合させ、前記式(IV)のm=2〜5、R3及びR4がエトキシ基でR1がエチル基の縮合体を得た。 Chiiranshiran Compound (4): Chiiranshiran compound ethoxy silyl group (2) by polycondensing by hydrolysis, m = 2 to 5 of the formula (IV), R 3 and R 4 are R 1 ethoxy group is an ethyl group A condensate was obtained.

標準例1及び実施例1〜16及び比較例1〜8
サンプルの調製
表I及びIIに示す配合において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉型ミキサーで5分間混練し、140±5℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。このゴム組成物を用いて以下に示す試験法で未加硫物性を評価した。結果は表I及びIIに示す。
Standard Example 1 and Examples 1-16 and Comparative Examples 1-8
Sample preparation In the formulations shown in Tables I and II, the ingredients other than the vulcanization accelerator and sulfur were kneaded for 5 minutes in a 1.7 liter closed mixer, and released when the temperature reached 140 ± 5 ° C. Got. A vulcanization accelerator and sulfur were kneaded with this master batch with an open roll to obtain a rubber composition. Using this rubber composition, unvulcanized physical properties were evaluated by the following test methods. The results are shown in Tables I and II.

次に得られたゴム組成物を15×15×0.2cmの金型中で148℃で30分間加硫して加硫ゴムシート及び耐摩耗性用として厚さ5mm直径49mmの円盤状サンプルを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表I及びIIに示す。   Next, the obtained rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 148 ° C. for 30 minutes to obtain a vulcanized rubber sheet and a disk-shaped sample having a diameter of 5 mm and a diameter of 49 mm for wear resistance. The physical properties of the vulcanized rubber were measured by the following test methods. The results are shown in Tables I and II.

ゴム物性評価試験法
ムーニー粘度(ML1+4):JIS K−6300に準拠して、130℃、160℃及び180℃で混合したものについて測定し、各表において標準例の値を100として指数表示した。この値が小さいほど加工性が良好である。
Rubber property evaluation test method Mooney viscosity (ML 1 + 4 ): Measured according to JIS K-6300, mixed at 130 ° C., 160 ° C. and 180 ° C. displayed. The smaller this value, the better the workability.

重量平均分子量Mwの測定
未加硫ゴムをTHFに3日間浸漬した後、THF溶解分をメタノールで沈殿精製し、沈殿ポリマーからメタノールを乾燥除去し0.5wt%試料溶液を作製した。この試料溶液をポアサイズ0.5μm/0.1μmのフィルターにてゲル分を除去して測定用試料として用いた。測定に用いたGPCは東ソー製HLC−8020、カラムはPLgel20μmMIXED−A300×7.5mm×2本である。Mwは混合時の分子鎖切断の尺度として用い、このMwが大きいほど分子鎖切断が抑制されていることを意味する。
Measurement of Weight Average Molecular Weight Mw After unvulcanized rubber was immersed in THF for 3 days, the THF-soluble matter was purified by precipitation with methanol, and methanol was removed from the precipitated polymer by drying to prepare a 0.5 wt% sample solution. This sample solution was used as a measurement sample by removing the gel content with a filter having a pore size of 0.5 μm / 0.1 μm. GPC used for the measurement is Tosoh HLC-8020, and the columns are PLgel 20 μm MIXED-A 300 × 7.5 mm × 2. Mw is used as a measure of molecular chain breakage at the time of mixing, and the larger Mw means that the molecular chain breakage is suppressed.

△E’:伸長型粘弾性測定基(東洋精機社製)を使用して、初期伸長10%歪率2%周波数20Hzの条件で−20℃及び20℃のE’(貯蔵弾性率)を測定し、−20℃のE’と20℃のE’との差(E’(−20℃)−E’(20℃))を計算した。
各表で標準例の値を100として指数表示した。この値が小さいほど、E’の温度依存性が小さいことを表す。
ΔE ′: E ′ (storage elastic modulus) at −20 ° C. and 20 ° C. was measured under the conditions of initial elongation 10% distortion 2% frequency 20 Hz using an extension type viscoelasticity measuring group (manufactured by Toyo Seiki Co., Ltd.). The difference between E ′ at −20 ° C. and E ′ at 20 ° C. (E ′ (− 20 ° C.) − E ′ (20 ° C.)) was calculated.
In each table, the value of the standard example was set to 100 and indicated as an index. The smaller this value, the smaller the temperature dependence of E ′.

耐摩耗性:ランボーン摩耗試験機を用いて、温度23℃/スリップ率50%の条件で摩損失体積を測定した。各表で標準例の値を100として指数表示した。この数値が大きいほど耐摩耗性に優れていることを示す。   Abrasion resistance: The wear loss volume was measured using a Lambourn abrasion tester at a temperature of 23 ° C. and a slip ratio of 50%. In each table, the value of the standard example was set to 100 and indicated as an index. It shows that it is excellent in abrasion resistance, so that this figure is large.

ウェットスキッド性能:周波数20Hz、初期歪10%、振幅±2%の条件で0℃のtanδを測定した。このときのtanδ(0℃)の値はウェットスキッド抵抗性に相関し、各表で標準例の値を100として指数表示した。その数値の大きい方がウェットスキッド抵抗に優れることを示す。   Wet skid performance: tan δ at 0 ° C. was measured under the conditions of frequency 20 Hz, initial strain 10%, amplitude ± 2%. The value of tan δ (0 ° C.) at this time correlates with the wet skid resistance, and the value of the standard example is set to 100 in each table and indicated as an index. A larger value indicates better wet skid resistance.

Figure 2006137857
Figure 2006137857

Figure 2006137857
Figure 2006137857

標準例2及び3、実施例17〜28及び比較例1〜5
サンプルの調製
表III及びIVに示す配合において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉型ミキサーで5分間混練し、145℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。このゴム組成物を用いて以下に示す試験法で未加硫物性を評価した。結果は表III及びIVに示す。
Standard Examples 2 and 3, Examples 17 to 28, and Comparative Examples 1 to 5
Sample preparation In the formulations shown in Tables III and IV, the ingredients other than the vulcanization accelerator and sulfur were kneaded for 5 minutes in a 1.7 liter closed mixer and released when the temperature reached 145 ° C to obtain a master batch. It was. A vulcanization accelerator and sulfur were kneaded with this master batch with an open roll to obtain a rubber composition. Using this rubber composition, unvulcanized physical properties were evaluated by the following test methods. The results are shown in Tables III and IV.

次に得られたゴム組成物を15×15×0.2cmの金型中で160℃で20分間加硫して加硫ゴムシートを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表III及びIVに示す。   Next, the resulting rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 160 ° C. for 20 minutes to prepare a vulcanized rubber sheet. The physical properties of the vulcanized rubber were measured by the following test methods. It was measured. The results are shown in Tables III and IV.

ゴム物性評価試験法
Hs変化率:JIS K6253に準拠して、室温において老化前の硬度、70℃×96時間で老化した後の硬度を測定した。老化後の硬度を老化前の硬度で割った値をHs変化率とし、Hs変化率が小さいほど耐熱老化性に優れることを表す。
その他の物性は前述と同じ方法で試験した。
Rubber property evaluation test method Hs change rate: Based on JIS K6253, the hardness before aging at room temperature and the hardness after aging at 70 ° C. × 96 hours were measured. A value obtained by dividing the hardness after aging by the hardness before aging is defined as the Hs change rate, and the smaller the Hs change rate, the better the heat aging resistance.
Other physical properties were tested by the same method as described above.

Figure 2006137857
Figure 2006137857

Figure 2006137857
Figure 2006137857

本発明によれば、前述の通り、シリカを配合した天然ゴム系ゴム組成物にチイランシラン化合物(I)及び/又は(II)、式(I)とはその縮合物(III)及び/又は(IV)を特定量配合することにより、145℃以下の低温でゴムマスターバッチを得ることができ、加工性、耐摩耗性、耐老化性、ウェットスキッド性能などに優れたゴム組成物を得ることができ、タイヤトレッド用として、更には小粒径カーボンブラックの配合により重荷重用タイヤのタイヤトレッド用として非常に有用である。   According to the present invention, as described above, the natural rubber-based rubber composition containing silica and the thiirane silane compound (I) and / or (II), the formula (I) is the condensate (III) and / or (IV ) Can be obtained at a low temperature of 145 ° C. or less, and a rubber composition excellent in processability, wear resistance, aging resistance, wet skid performance, etc. can be obtained. It is very useful for tire treads, and further for tire treads of heavy duty tires by blending small particle size carbon black.

Claims (7)

(A)天然ゴム(NR)10重量部以上を含むジエン系ゴム100重量部、(B)シリカ5〜100重量部及び(C)1分子中にアルコキシシリル基とチイラン環を有する式(I)及び/又は(II):
Figure 2006137857
(式中、R1及びR2は独立にメチル基又はエチル基であり、nは0〜2の整数である)
で表されるチイランシラン化合物をシリカ重量の1〜15重量%含んでなるタイヤトレッド用ゴム組成物。
(A) 100 parts by weight of a diene rubber containing 10 parts by weight or more of natural rubber (NR), (B) 5 to 100 parts by weight of silica, and (C) Formula (I) having an alkoxysilyl group and a thiirane ring in one molecule And / or (II):
Figure 2006137857
(In the formula, R 1 and R 2 are each independently a methyl group or an ethyl group, and n is an integer of 0 to 2)
A rubber composition for a tire tread comprising 1 to 15% by weight of the silica weight of a thiirane silane compound represented by the formula:
前記ジエン系ゴム(A)100重量部中に、スチレンブタジエン共重合体ゴム(SBR)が少なくとも20重量部以上含まれる請求項1に記載のタイヤトレッド用ゴム組成物。   The rubber composition for a tire tread according to claim 1, wherein at least 20 parts by weight of styrene butadiene copolymer rubber (SBR) is contained in 100 parts by weight of the diene rubber (A). 前記ジエン系ゴム(A)が天然ゴム(NR)とポリブタジエンゴム(BR)からなり、且つNR/BR(重量比)が60/40〜95/5であり、更に窒素吸着比表面積(N2SA)が100m2/g以上のカーボンブラック30〜45重量部を含み、カーボンブラックとシリカとの合計量が40〜70重量部である請求項1に記載のタイヤトレッド用ゴム組成物。 The diene rubber (A) is composed of natural rubber (NR) and polybutadiene rubber (BR), NR / BR (weight ratio) is 60/40 to 95/5, and nitrogen adsorption specific surface area (N 2 SA). 2 ) contains 30 to 45 parts by weight of carbon black of 100 m 2 / g or more, and the total amount of carbon black and silica is 40 to 70 parts by weight. 一分子中にアルコキシシリル基とチイラン環を有するチイランシラン化合物(C)が前記式(I)及び/又は(II)の縮合物である式(III)及び/又は(IV):
Figure 2006137857
(式中、R1はメチル基又はエチル基であり、R3及びR4は同一であっても異なっていてもよく、それぞれが独立にメチル基、エチル基、メチルオキシ基又はエチルオキシ基であり、mは2以上の整数である)
で表される化合物である請求項1〜3のいずれか1項に記載のタイヤトレッド用ゴム組成物。
Formula (III) and / or (IV), wherein the thiirane silane compound (C) having an alkoxysilyl group and a thiirane ring in one molecule is a condensate of the above formula (I) and / or (II):
Figure 2006137857
(In the formula, R 1 is a methyl group or an ethyl group, and R 3 and R 4 may be the same or different, and each independently represents a methyl group, an ethyl group, a methyloxy group, or an ethyloxy group. M is an integer of 2 or more)
The rubber composition for tire treads according to any one of claims 1 to 3, wherein the rubber composition is a compound represented by the formula:
加硫系配合剤を除く配合成分を120〜165℃の温度で混合する請求項1〜4のいずれか1項に記載のタイヤトレッド用ゴム組成物。   The rubber composition for a tire tread according to any one of claims 1 to 4, wherein compounding ingredients excluding the vulcanizing compounding ingredients are mixed at a temperature of 120 to 165C. 請求項1〜5のいずれか1項に記載のタイヤトレッド用ゴム組成物をトレッドに用いた空気入りタイヤ。   The pneumatic tire which used the rubber composition for tire treads of any one of Claims 1-5 for tread. 請求項3〜5のいずれか1項に記載のタイヤトレッド用ゴム組成物をトレッドに用いた重荷重用空気入りタイヤ。   A heavy-duty pneumatic tire using the rubber composition for a tire tread according to any one of claims 3 to 5 in a tread.
JP2004328990A 2004-11-12 2004-11-12 Rubber composition for tire tread Pending JP2006137857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328990A JP2006137857A (en) 2004-11-12 2004-11-12 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328990A JP2006137857A (en) 2004-11-12 2004-11-12 Rubber composition for tire tread

Publications (1)

Publication Number Publication Date
JP2006137857A true JP2006137857A (en) 2006-06-01

Family

ID=36618872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328990A Pending JP2006137857A (en) 2004-11-12 2004-11-12 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP2006137857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169559A (en) * 2005-12-26 2007-07-05 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire using the same
JP2016060836A (en) * 2014-09-18 2016-04-25 東洋ゴム工業株式会社 Silane compound and rubber composition prepared therewith
US10273352B2 (en) 2006-08-03 2019-04-30 The Yokohama Rubber Co., Ltd. Pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140830A (en) * 1977-06-28 1979-02-20 Union Carbide Corporation Polymer composite articles containing episulfide substituted organosilicon coupling agents
JPH11165502A (en) * 1997-12-05 1999-06-22 Bridgestone Corp Pneumatic tire for heavy load
JPH11180988A (en) * 1997-12-17 1999-07-06 Yokohama Rubber Co Ltd:The Alkoxysilane compound containing thiirane ring and composition using the same
JP2002105245A (en) * 2000-07-28 2002-04-10 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire using the same
JP2004250703A (en) * 2003-02-17 2004-09-09 Goodyear Tire & Rubber Co:The Tire with tread of natural rubber-rich rubber composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140830A (en) * 1977-06-28 1979-02-20 Union Carbide Corporation Polymer composite articles containing episulfide substituted organosilicon coupling agents
JPH11165502A (en) * 1997-12-05 1999-06-22 Bridgestone Corp Pneumatic tire for heavy load
JPH11180988A (en) * 1997-12-17 1999-07-06 Yokohama Rubber Co Ltd:The Alkoxysilane compound containing thiirane ring and composition using the same
JP2002105245A (en) * 2000-07-28 2002-04-10 Sumitomo Rubber Ind Ltd Rubber composition for tire tread and pneumatic tire using the same
JP2004250703A (en) * 2003-02-17 2004-09-09 Goodyear Tire & Rubber Co:The Tire with tread of natural rubber-rich rubber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169559A (en) * 2005-12-26 2007-07-05 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire using the same
US10273352B2 (en) 2006-08-03 2019-04-30 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2016060836A (en) * 2014-09-18 2016-04-25 東洋ゴム工業株式会社 Silane compound and rubber composition prepared therewith

Similar Documents

Publication Publication Date Title
JP4666089B2 (en) Rubber composition for tire tread and pneumatic tire
JP4138729B2 (en) Rubber composition and tire comprising the same
JP5776356B2 (en) Rubber composition for tire tread
JP2009126907A (en) Rubber composition
JP5286642B2 (en) Rubber composition for tire and pneumatic tire using the same
JP6701939B2 (en) Rubber composition and pneumatic tire using the same
JP2011094013A (en) Rubber composition for tread, and studless tire
JP2009029961A (en) Masterbatch for rubber composition and its manufacturing method
JP2011052146A (en) Rubber composition for tire and pneumatic tire
JP2019137281A (en) Rubber composition for tire
JP2007145898A (en) Rubber composition for coating carcass cord and tire having carcass using the same
JP5003011B2 (en) Rubber composition
JP2006188571A (en) Rubber composition and tire formed out of the same
JP5038040B2 (en) Rubber composition for tire tread and tire
JP5998587B2 (en) Rubber composition for tire and pneumatic tire using the same
CN118829683A (en) Rubber composition for tire
JP2006137857A (en) Rubber composition for tire tread
JP2014028902A (en) Rubber composition for tire
JP5418142B2 (en) Rubber composition for tire
JP2011068911A (en) Rubber composition, and tire comprising the same
JP6701664B2 (en) Rubber composition for tires
JP6657759B2 (en) Rubber composition for tire
JP2004175993A (en) Rubber composition for tire
JP6141118B2 (en) Rubber composition for studless tire and studless tire
JP2005068211A (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824