JP2006137857A - Rubber composition for tire tread - Google Patents
Rubber composition for tire tread Download PDFInfo
- Publication number
- JP2006137857A JP2006137857A JP2004328990A JP2004328990A JP2006137857A JP 2006137857 A JP2006137857 A JP 2006137857A JP 2004328990 A JP2004328990 A JP 2004328990A JP 2004328990 A JP2004328990 A JP 2004328990A JP 2006137857 A JP2006137857 A JP 2006137857A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- rubber
- parts
- rubber composition
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 51
- 239000005060 rubber Substances 0.000 title claims abstract description 51
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 33
- 244000043261 Hevea brasiliensis Species 0.000 claims abstract description 27
- 229920003052 natural elastomer Polymers 0.000 claims abstract description 27
- 229920001194 natural rubber Polymers 0.000 claims abstract description 27
- -1 thiirane-silane compound Chemical class 0.000 claims abstract description 22
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims abstract description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 7
- 125000005370 alkoxysilyl group Chemical group 0.000 claims abstract description 6
- 125000001730 thiiranyl group Chemical group 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 16
- 239000006229 carbon black Substances 0.000 claims description 13
- 239000005062 Polybutadiene Substances 0.000 claims description 8
- 229920003244 diene elastomer Polymers 0.000 claims description 8
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 8
- 239000002174 Styrene-butadiene Substances 0.000 claims description 6
- 239000004615 ingredient Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 238000013329 compounding Methods 0.000 claims description 4
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229920002857 polybutadiene Polymers 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 230000032683 aging Effects 0.000 abstract description 11
- 238000005299 abrasion Methods 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 description 23
- 238000004073 vulcanization Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000004594 Masterbatch (MB) Substances 0.000 description 4
- 230000003712 anti-aging effect Effects 0.000 description 4
- 238000012668 chain scission Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000004636 vulcanized rubber Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- VOVUARRWDCVURC-UHFFFAOYSA-N thiirane Chemical compound C1CS1 VOVUARRWDCVURC-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- ZNRLMGFXSPUZNR-UHFFFAOYSA-N 2,2,4-trimethyl-1h-quinoline Chemical compound C1=CC=C2C(C)=CC(C)(C)NC2=C1 ZNRLMGFXSPUZNR-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000010058 rubber compounding Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明はタイヤトレッド用ゴム組成物及びそれをタイヤトレッド部に用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for a tire tread and a pneumatic tire using the rubber composition for a tire tread portion.
近年、乗用車用タイヤのトレッドコンパウンドにはタイヤの低燃費化やウェット制動性能向上を目的としてシリカを配合することが主流となっている(例えば特許文献1及び2参照)。しかしながら、シリカ配合では所望の優れた低燃費性や湿潤路面でのグリップ性を発現させるためには、混合条件、特に混合温度の制約があり、また原料ゴムのガラス転移温度Tgを高くするなど手法をとる必要があり、これらの制約は生産性悪化、ゴム物性の低下(特に低温ゴム性能の低下)を招くという問題がある。 2. Description of the Related Art In recent years, silica has been mainly used in tread compounds for passenger car tires for the purpose of reducing fuel consumption and improving wet braking performance of the tire (see, for example, Patent Documents 1 and 2). However, in the case of silica compounding, there are restrictions on mixing conditions, especially the mixing temperature, and a technique such as increasing the glass transition temperature Tg of the raw rubber in order to express the desired excellent fuel economy and grip on wet roads. These restrictions have the problem that the productivity is deteriorated and the rubber properties are deteriorated (particularly, the low temperature rubber performance is deteriorated).
一方、トラック・バス等の重荷重用タイヤにおいては低燃費化や省メンテナンス性を目的とし、キャップトレッドゴムに配合するカーボンブラックの減量や低グレード化、シリカの配合及びタイヤトレッドの浅溝化が検討されており、これらの手法によりタイヤの低燃費性能は向上するが、カーボンブラックを減量する耐摩耗性及びウェット性能の低下が起り、またシリカ配合では耐摩耗性が悪化するため、浅溝化では耐摩耗性が実用性に欠けるようになり、いずれの方法を用いてもタイヤ用としての低燃費化/耐摩耗性/ウェット性能の高次元でのバランス化が困難であった。 On the other hand, for heavy-duty tires such as trucks and buses, for the purpose of reducing fuel consumption and maintenance, consider reducing the weight and grade of carbon black blended in cap tread rubber, blending silica, and shallow grooves in tire treads. Although these methods improve the fuel efficiency of tires, the wear resistance and wet performance of carbon black are reduced, and the wear resistance of silica blends deteriorates. Wear resistance has become impractical, and it has been difficult to achieve a high level balance of low fuel consumption / wear resistance / wet performance for tires using either method.
従来、シリカ配合系ゴムコンパウンドには、シランカップリング剤として、例えばビス−3−トリエトキシシリルプロピル−テトラスルフィド(Si69)が使用されているが、Si69を配合するときには、シリカの分散性向上及びムーニー粘度の低減のために140〜165℃の混合温度で混合してマスターバッチを得る必要がある。しかしながら、天然ゴムブレンド系コンパウンドを140〜165℃の温度で混合すると、ゴム分子に過剰な分子鎖切断→再結合によるゲル化が起こるため、ムーニー粘度が増加してしまうという問題があった(シリカの反応と分子鎖切断は背反関係にある)。また、トラックやバスのような高荷重用タイヤのキャップコンパウンドに使用するSAF級の小粒径カーボンブラック配合の場合には、混練り時の増粘効果により分子鎖切断が冗長され、更には酸化による分子鎖切断、過酸化物化が起こるため老化特性も低下してしまうという問題があった。 Conventionally, for example, bis-3-triethoxysilylpropyl-tetrasulfide (Si69) is used as a silane coupling agent in a silica compounded rubber compound. However, when Si69 is compounded, silica dispersibility is improved and In order to reduce Mooney viscosity, it is necessary to mix at a mixing temperature of 140 to 165 ° C. to obtain a master batch. However, when a natural rubber blend compound is mixed at a temperature of 140 to 165 ° C., gelation occurs due to excessive molecular chain scission → recombination in the rubber molecule, which increases the Mooney viscosity (silica). Reaction and chain break are in contradiction). In addition, in the case of a SAF grade small particle size carbon black compound used for cap compounds of heavy duty tires such as trucks and buses, molecular chain scission is redundant due to the thickening effect during kneading, and further oxidation As a result, molecular chain scission and peroxide formation occur due to degradation of aging characteristics.
従って、本発明の目的は前述のシリカ配合ゴム組成物の問題点を排除して、シリカ配合天然ゴム系タイヤトレッド用ゴム組成物を低温混合で加工性、耐摩耗性、耐老化性、低温ウェットスキッド性などを改良することができるゴム組成物を提供することにある。 Accordingly, the object of the present invention is to eliminate the problems of the above-described silica-blended rubber composition, and to process the rubber composition for silica-blended natural rubber tire treads at low temperature mixing, wear resistance, aging resistance, low temperature wet An object of the present invention is to provide a rubber composition capable of improving skidability and the like.
本発明に従えば、(A)天然ゴム(NR)10重量部以上を含むジエン系ゴム100重量部、(B)シリカ5〜100重量部及び(C)1分子中にアルコキシシリル基とチイラン環を有する式(I)及び/又は(II): According to the present invention, (A) 100 parts by weight of a diene rubber containing 10 parts by weight or more of natural rubber (NR), (B) 5 to 100 parts by weight of silica, and (C) an alkoxysilyl group and a thiirane ring in one molecule Formula (I) and / or (II) having:
(式中、R1及びR2は独立にメチル基又はエチル基であり、nは0〜2の整数である)
で表されるチイランシラン化合物をシリカ重量の1〜15重量%含んでなるタイヤトレッド用ゴム組成物が提供される。
(In the formula, R 1 and R 2 are each independently a methyl group or an ethyl group, and n is an integer of 0 to 2)
A rubber composition for a tire tread comprising 1 to 15% by weight of the silica weight of a thiirane silane compound represented by the formula:
本発明の第一の好ましい態様によれば、前記ジエン系ゴム(A)100重量部中に、スチレンブタジエン共重合体ゴム(SBR)が少なくとも20重量部以上含まれるタイヤトレッド用ゴム組成物が提供される。 According to a first preferred embodiment of the present invention, there is provided a rubber composition for a tire tread in which at least 20 parts by weight of styrene butadiene copolymer rubber (SBR) is contained in 100 parts by weight of the diene rubber (A). Is done.
本発明の第二の好ましい態様によれば、前記ジエン系ゴム(A)が天然ゴム(NR)とポリブタジエンゴム(BR)からなり、且つNR/BR(重量比)が60/40〜95/5であり、更に窒素吸着比表面積(N2SA)が100m2/g以上のカーボンブラック30〜45重量部を含み、カーボンブラックとシリカとの合計量が40〜70重量部であるタイヤトレッド用ゴム組成物が提供される。 According to a second preferred embodiment of the present invention, the diene rubber (A) is composed of natural rubber (NR) and polybutadiene rubber (BR), and NR / BR (weight ratio) is 60/40 to 95/5. The tire tread rubber further includes 30 to 45 parts by weight of carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 100 m 2 / g or more, and the total amount of carbon black and silica is 40 to 70 parts by weight. A composition is provided.
本発明によれば、シリカ配合天然ゴム系ゴム組成物にチイラン化合物を配合することにより、例えば120〜165℃、更に好ましくは120〜140℃の低温で混合することが可能になり、ゴム分子の分子鎖切断を抑制し、ムーニー粘度の混合温度依存性が小さくすることによって、粘度低下を大きくすることができ、また分子鎖切断抑制による耐摩耗性向上及び耐老化性向上(硬さ変化が小さい)を達成することができ、更にE’の温度依存性が小さく広範囲な温度領域で優れたウェットスキッド性能を発揮できる。従って、特に分子鎖切断が起こりやすい、天然ゴム/小粒径カーボンブラック配合/シリカ配合系に有効である。 According to the present invention, by mixing a thiirane compound with a silica-containing natural rubber-based rubber composition, it becomes possible to mix at a low temperature of, for example, 120 to 165 ° C, more preferably 120 to 140 ° C. Suppressing molecular chain breakage and making Mooney viscosity less dependent on mixing temperature can increase viscosity drop, and also improve wear resistance and aging resistance by suppressing molecular chain breakage (small change in hardness) In addition, the temperature dependence of E ′ is small and excellent wet skid performance can be exhibited in a wide temperature range. Therefore, it is particularly effective for a natural rubber / small particle size carbon black blend / silica blend system in which molecular chain breakage is likely to occur.
前述の如く、シリカ配合系コンパウンドには、通常シランカップリング剤としてSi69を使用されているが、Si69を配合するとシリカの分散性向上及びムーニー粘度低減のために、140〜165℃の温度で混合する必要があった。しかしながら、天然ゴムブレンド系コンパウンドは140〜165℃の温度で混合すると過剰な分子鎖切断、それに続く再結合によりゲル化が起こるためムーニー粘度が増加してしまうという問題があった。また、E’の温度依存性の改善効果も十分ではないため、広範囲な温度領域で優れたウエット制動性能を発現できないという問題もあり、更に高荷重タイヤのキャップトレッドなどでは耐老化特性にも問題があった。 As described above, Si69 is usually used as a silane coupling agent in a silica compound, but when Si69 is compounded, it is mixed at a temperature of 140 to 165 ° C in order to improve dispersibility of silica and reduce Mooney viscosity. There was a need to do. However, when the natural rubber blend compound is mixed at a temperature of 140 to 165 ° C., there is a problem that Mooney viscosity increases because gelation occurs due to excessive molecular chain breakage and subsequent recombination. In addition, since the effect of improving the temperature dependence of E 'is not sufficient, there is also a problem that excellent wet braking performance cannot be expressed in a wide temperature range, and there is also a problem with anti-aging characteristics in cap treads of high-load tires. was there.
然るに本発明によれば、この天然ゴムブレンド系コンパウンドに分子中にアルコキシシリル基とチイラン基を有するチイランシラン化合物を配合することにより、ムーニー粘度の混合温度依存性が非常に小さく、低温でもムーニー粘度を低減することが可能になり、そのため混合によるゴム分子の過剰な分子鎖切断を抑制してムーニー粘度の増加を抑制することができ、更には耐摩耗性を向上させることができる。またゴム物性(E’)の温度依存性も小さく、広範囲な温度領域(特に低温)で優れたウエットスキッド性能を発現させることが可能となり、また低温混練りで高分子量化させることができるので耐老化性も改良される。 However, according to the present invention, by blending the natural rubber blend compound with a thiirane silane compound having an alkoxysilyl group and a thiirane group in the molecule, the dependency of the Mooney viscosity on the mixing temperature is very small, and the Mooney viscosity can be reduced even at low temperatures. Therefore, excessive molecular chain scission of rubber molecules due to mixing can be suppressed, and an increase in Mooney viscosity can be suppressed, and wear resistance can be improved. In addition, the temperature dependence of the rubber physical properties (E ′) is small, it is possible to exhibit excellent wet skid performance in a wide temperature range (especially low temperature), and high molecular weight can be achieved by low-temperature kneading. Aging is also improved.
なお、このチイランシラン化合物は公知であり、例えば特開平11−180988号公報にはチイランシラン化合物をゴム組成物に配合することによってスコーチを防止すると共にシリカゴムの補強効果を高め得ることが記載されている。しかしながら、この文献にはチイランシラン化合物を天然ゴム配合系に具体的に配合した実施例はなく、更に混合温度に関する記述はない。 This thiirane silane compound is publicly known. For example, Japanese Patent Application Laid-Open No. 11-180988 describes that by adding a thiirane silane compound to a rubber composition, scorch can be prevented and the reinforcing effect of silica rubber can be enhanced. However, in this document, there is no example in which a thiirane silane compound is specifically blended with a natural rubber blending system, and there is no description regarding the mixing temperature.
本発明において用いるチイランシラン化合物は前記式(I)及び(II)に示す分子中にアルコキシシリル基とチイラン環を有する化合物(モノマー)並びにこれらの縮合物である式(III)及び(IV): The thiirane silane compound used in the present invention is a compound (monomer) having an alkoxysilyl group and a thiirane ring in the molecule represented by the above formulas (I) and (II), and the condensates thereof (III) and (IV):
(式中、R1はメチル基又はエチル基であり、R3及びR4は同一であっても異なっていてもよく、それぞれが独立にメチル基、エチル基、メチルオキシ基又はエチルオキシ基であり、mは2以上の整数である)
を用いることができる。これらのモノマー及び縮合物は、例えば我々の先願である前記特開平11−180988号公報に記載されている方法によって製造することができる。
(In the formula, R 1 is a methyl group or an ethyl group, and R 3 and R 4 may be the same or different, and each independently represents a methyl group, an ethyl group, a methyloxy group, or an ethyloxy group. M is an integer of 2 or more)
Can be used. These monomers and condensates can be produced, for example, by the method described in the aforementioned Japanese Patent Application Laid-Open No. 11-180988, which is our prior application.
本発明の第一の好ましい態様では、SBRと天然ゴムのブレンドで、SBR20重量部以上、好ましくは20〜85重量部で天然ゴムの10重量部以上、好ましくは15〜80重量部配合する。このブレンドは120〜165℃での混合も可能であるが、ゴムポリマーへの影響を考慮すると145℃以下、特に130〜145℃で混合するのが好ましい。 In the first preferred embodiment of the present invention, the blend of SBR and natural rubber contains 20 parts by weight or more, preferably 20 to 85 parts by weight of SBR, and 10 parts by weight or more, preferably 15 to 80 parts by weight of natural rubber. This blend can be mixed at 120 to 165 ° C, but considering the influence on the rubber polymer, it is preferable to mix at 145 ° C or less, particularly 130 to 145 ° C.
本発明で用いるチイランシラン化合物は前記式(I)及び(II)のモノマーもしくはチイランシラン化合物の縮合物で、シリカ重量の1〜15重量%、好ましくは3〜10重量%であることが好ましい。この配合量が少な過ぎるとシリカとチイランシラン化合物との反応が不十分となり、補強性が低下するので好ましくなく、逆に多過ぎると混合時にゲル化が進行してムーニー粘度が増加し、加工性が低下するので好ましくない。 The thiirane silane compound used in the present invention is a monomer of the above formulas (I) and (II) or a condensate of the thiirane silane compound and is preferably 1 to 15% by weight, preferably 3 to 10% by weight of the silica weight. If the amount is too small, the reaction between the silica and the thiirane silane compound becomes insufficient and the reinforcing property is lowered, which is not preferable. On the other hand, if the amount is too large, gelation proceeds during mixing, the Mooney viscosity increases, and the workability increases. Since it falls, it is not preferable.
シリカの配合量は、ジエン系ゴム(A)の合計量100重量部に対し、5〜100重量部、好ましくは20〜80重量部である。この配合量が少な過ぎるとウェットスキッド性能が低下するので好ましくなく、逆に多過ぎると耐摩耗性が低下するので好ましくない。シリカとしては従来からゴム配合用に使用されている任意のシリカ、例えば日本シリカ工業(株)製のNipsil AQなどを用いることができる。 The compounding quantity of a silica is 5-100 weight part with respect to 100 weight part of total amounts of a diene rubber (A), Preferably it is 20-80 weight part. If the amount is too small, the wet skid performance deteriorates, which is not preferable. Conversely, if the amount is too large, the wear resistance decreases, which is not preferable. As the silica, any silica conventionally used for rubber compounding, such as Nippon AQ manufactured by Nippon Silica Kogyo Co., Ltd., can be used.
本発明の第二の好ましい態様によれば、ジエン系ゴム(A)が天然ゴムとBRのブレンドゴムで、天然ゴムが60〜95重量部、更に好ましくは65〜90重量部、BRが5〜40重量部、更に好ましくは10〜35重量部である。このブレンドにおいて、天然ゴムの配合量が少な過ぎるとウェットスキッド性能が低下するので好ましくなく、逆に多過ぎると耐摩耗性が低下するので好ましくない。 According to the second preferred embodiment of the present invention, the diene rubber (A) is a blend rubber of natural rubber and BR, the natural rubber is 60 to 95 parts by weight, more preferably 65 to 90 parts by weight, and the BR is 5 to 5 parts by weight. 40 parts by weight, more preferably 10 to 35 parts by weight. In this blend, if the blending amount of the natural rubber is too small, the wet skid performance decreases, which is not preferable. On the other hand, if the blending amount is too large, the wear resistance decreases.
本発明の第二の好ましい態様においても、ゴムのブレンドは120〜165℃の温度で混合することが可能であるが、ゴムポリマーへの影響を考慮すると145℃以下、特に130〜145℃で混合するのが好ましい。 In the second preferred embodiment of the present invention, the rubber blend can be mixed at a temperature of 120 to 165 ° C., but considering the influence on the rubber polymer, it is not higher than 145 ° C., particularly 130 to 145 ° C. It is preferable to do this.
本発明の第二の好ましい態様で用いるチイランシラン化合物は式(I)及び/又は(II)のチイランシランモノマー又はそのチイランシラン化合物の縮合物(III)及び/又は(IV)を用いることができ、その配合量は、シリカ重量の1〜15重量%であることが好ましく、更に好ましくは3〜10重量%である。 The thiirane silane compound used in the second preferred embodiment of the present invention may be a thiirane silane monomer of the formula (I) and / or (II) or a condensate (III) and / or (IV) of the thiirane silane compound, The blending amount is preferably 1 to 15% by weight of silica weight, more preferably 3 to 10% by weight.
本発明の第二の好ましい態様ではN2SA(ASTM D3037にて測定)が110m2/g以上の、好ましくは115〜150m2/gのカーボンブラックをゴム100重量部に対し、30〜45重量部、好ましくは35〜40重量部配合し、前述のシリカをゴム100重量部当り、好ましくは5〜30重量部、更に好ましくは5〜25重量部配合する。但し、カーボンブラックとシリカとの合計量は好ましくは40〜75重量部好ましくは40〜65重量部とする。この配合量が少なすぎると補強性が低下するので好ましくなく、逆に多過ぎると混合時の分子鎖切断・ポリマーの再結合によるゲル化が起こり加工性が低下するので好ましくない。 In a second preferred embodiment of the present invention N 2 SA (measured by ASTM D3037) is not less than 110m 2 / g, relative to preferably 100 parts by weight rubber of carbon black 115~150m 2 / g, 30~45 weight Parts, preferably 35 to 40 parts by weight, and the above-mentioned silica is preferably blended in an amount of 5 to 30 parts by weight, more preferably 5 to 25 parts by weight per 100 parts by weight of rubber. However, the total amount of carbon black and silica is preferably 40 to 75 parts by weight, preferably 40 to 65 parts by weight. If the blending amount is too small, the reinforcing property is lowered, which is not preferable. On the other hand, if the blending amount is too large, gelation occurs due to molecular chain breakage and polymer recombination during mixing, and the processability is lowered.
本発明に係るゴム組成物には、前記した必須成分に加えて、他のカーボンブラックや他のシリカなどのその他の補強剤(フィラー)、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練、加硫して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。 In addition to the above-described essential components, the rubber composition according to the present invention includes other reinforcing agents (fillers) such as carbon black and other silica, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, Various additives that are generally blended for tires such as oil, anti-aging agent, plasticizer, and other general rubber can be blended, and these additives are kneaded and vulcanized by a general method. The composition can be used to vulcanize or crosslink. The blending amounts of these additives may be conventional conventional blending amounts as long as the object of the present invention is not adversely affected.
以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.
本発明の実施例及び比較例に用いた配合成分の入手源は以下の通りである。
SBR:日本ゼオン(株)製SBR(Nipol 9528R)
NR:RSS#4
BR:日本ゼオン(株)製BR(Nipol 1220)
A2000:日本シリカ工業(株)製シリカNipsil AQ
165GR:ローディア社製シリカ165GR
Si69:デグッサ社製シランカップリング剤Si69
チイランシラン化合物(1)〜(4):以下の合成例参照
CB:東海カーボン(株)製カーボンブラック(シースト9M)
The sources of the ingredients used in the examples and comparative examples of the present invention are as follows.
SBR: SBR manufactured by Nippon Zeon Co., Ltd. (Nipol 9528R)
NR: RSS # 4
BR: BR manufactured by Nippon Zeon Co., Ltd. (Nipol 1220)
A2000: Nippon Silica Co., Ltd. Silica Nippon AQ
165GR: Rhodia silica 165GR
Si69: Sigus coupling agent Si69 manufactured by Degussa
Thialansilane compounds (1) to (4): Refer to the following synthesis examples. CB: Carbon black (Seast 9M) manufactured by Tokai Carbon Co., Ltd.
6C:FLEXYS社製老化防止剤(SANTOFLEX 6PPD)
RD:バイエル社製老化防止剤(VULKANOX HS/LG)
亜鉛華:東邦亜鉛(株)製酸化亜鉛(銀嶺)
ステアリン酸:日本油脂(株)製ビーズステアリン酸
オイル:ジャパンエナジー(株)製プロセスオイルX−140
6C: Anti-aging agent manufactured by FLEXXYS (SANTOFLEX 6PPD)
RD: Anti-aging agent manufactured by Bayer (VULKANOX HS / LG)
Zinc flower: Zinc oxide (silver candy) manufactured by Toho Zinc Co., Ltd.
Stearic acid: Nippon Oil & Fats Co., Ltd. Beads stearic acid oil: Japan Energy Co., Ltd. Process Oil X-140
CZ:大内新興化学(株)製加硫促進剤(ノクセラーCZ−G)
DPG:住友化学工業(株)製加硫促進剤(サンセラーD−G)
NS:大内新興化学(株)製加硫促進剤(ノクセラーNS−P)
PVI:FLEXYS社製加硫促進剤(SANTOGURAD PVI DSPOWDER)
硫黄:細井化学工業(株)製油処理硫黄
CZ: Ouchi Shinsei Chemical Co., Ltd. vulcanization accelerator (Noxeller CZ-G)
DPG: Vulcanization accelerator manufactured by Sumitomo Chemical Co., Ltd. (Sunceller DG)
NS: Ouchi Shinsei Chemical Co., Ltd. vulcanization accelerator (Noxeller NS-P)
PVI: vulcanization accelerator (SANTOGURAD PVI DSPOWDER) manufactured by FLEXXYS
Sulfur: Hosei Chemical Co., Ltd. oil processing sulfur
チイランシラン化合物(1):r−グリシドキシプロピルトリエトキシシラン化合物と、チイラン化剤を反応させ、前記式(I)のR1がエチル基で、nが0の化合物を得た。 Thialansilane compound (1): An r-glycidoxypropyltriethoxysilane compound and a thiirane agent were reacted to obtain a compound in which R 1 in the formula (I) was an ethyl group and n was 0.
チイランシラン化合物(2):β−(3,4エポキシシクロヘキシル)エチルトリエトキシシラン化合物とチイラン化剤を反応させ、前記式(II)のR1がエチル基で、nが0の化合物を得た。 Thiilansilane compound (2): A β- (3,4-epoxycyclohexyl) ethyltriethoxysilane compound and a thiirane agent were reacted to obtain a compound in which R 1 in the formula (II) was an ethyl group and n was 0.
チイランシラン化合物(3):チイランシラン化合物(1)のエトキシシリル基を加水分解により縮重合させ、前記式(III)のm=2〜5、R3及びR4がエトキシ基でR1がエチル基の縮合体を得た。 Chiiranshiran Compound (3): Chiiranshiran compound ethoxy silyl group (1) by polycondensing by hydrolysis, m = 2 to 5 of the formula (III), R 3 and R 4 are R 1 ethoxy group is an ethyl group A condensate was obtained.
チイランシラン化合物(4):チイランシラン化合物(2)のエトキシシリル基を加水分解により縮重合させ、前記式(IV)のm=2〜5、R3及びR4がエトキシ基でR1がエチル基の縮合体を得た。 Chiiranshiran Compound (4): Chiiranshiran compound ethoxy silyl group (2) by polycondensing by hydrolysis, m = 2 to 5 of the formula (IV), R 3 and R 4 are R 1 ethoxy group is an ethyl group A condensate was obtained.
標準例1及び実施例1〜16及び比較例1〜8
サンプルの調製
表I及びIIに示す配合において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉型ミキサーで5分間混練し、140±5℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。このゴム組成物を用いて以下に示す試験法で未加硫物性を評価した。結果は表I及びIIに示す。
Standard Example 1 and Examples 1-16 and Comparative Examples 1-8
Sample preparation In the formulations shown in Tables I and II, the ingredients other than the vulcanization accelerator and sulfur were kneaded for 5 minutes in a 1.7 liter closed mixer, and released when the temperature reached 140 ± 5 ° C. Got. A vulcanization accelerator and sulfur were kneaded with this master batch with an open roll to obtain a rubber composition. Using this rubber composition, unvulcanized physical properties were evaluated by the following test methods. The results are shown in Tables I and II.
次に得られたゴム組成物を15×15×0.2cmの金型中で148℃で30分間加硫して加硫ゴムシート及び耐摩耗性用として厚さ5mm直径49mmの円盤状サンプルを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表I及びIIに示す。 Next, the obtained rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 148 ° C. for 30 minutes to obtain a vulcanized rubber sheet and a disk-shaped sample having a diameter of 5 mm and a diameter of 49 mm for wear resistance. The physical properties of the vulcanized rubber were measured by the following test methods. The results are shown in Tables I and II.
ゴム物性評価試験法
ムーニー粘度(ML1+4):JIS K−6300に準拠して、130℃、160℃及び180℃で混合したものについて測定し、各表において標準例の値を100として指数表示した。この値が小さいほど加工性が良好である。
Rubber property evaluation test method Mooney viscosity (ML 1 + 4 ): Measured according to JIS K-6300, mixed at 130 ° C., 160 ° C. and 180 ° C. displayed. The smaller this value, the better the workability.
重量平均分子量Mwの測定
未加硫ゴムをTHFに3日間浸漬した後、THF溶解分をメタノールで沈殿精製し、沈殿ポリマーからメタノールを乾燥除去し0.5wt%試料溶液を作製した。この試料溶液をポアサイズ0.5μm/0.1μmのフィルターにてゲル分を除去して測定用試料として用いた。測定に用いたGPCは東ソー製HLC−8020、カラムはPLgel20μmMIXED−A300×7.5mm×2本である。Mwは混合時の分子鎖切断の尺度として用い、このMwが大きいほど分子鎖切断が抑制されていることを意味する。
Measurement of Weight Average Molecular Weight Mw After unvulcanized rubber was immersed in THF for 3 days, the THF-soluble matter was purified by precipitation with methanol, and methanol was removed from the precipitated polymer by drying to prepare a 0.5 wt% sample solution. This sample solution was used as a measurement sample by removing the gel content with a filter having a pore size of 0.5 μm / 0.1 μm. GPC used for the measurement is Tosoh HLC-8020, and the columns are PLgel 20 μm MIXED-A 300 × 7.5 mm × 2. Mw is used as a measure of molecular chain breakage at the time of mixing, and the larger Mw means that the molecular chain breakage is suppressed.
△E’:伸長型粘弾性測定基(東洋精機社製)を使用して、初期伸長10%歪率2%周波数20Hzの条件で−20℃及び20℃のE’(貯蔵弾性率)を測定し、−20℃のE’と20℃のE’との差(E’(−20℃)−E’(20℃))を計算した。
各表で標準例の値を100として指数表示した。この値が小さいほど、E’の温度依存性が小さいことを表す。
ΔE ′: E ′ (storage elastic modulus) at −20 ° C. and 20 ° C. was measured under the conditions of initial elongation 10% distortion 2% frequency 20 Hz using an extension type viscoelasticity measuring group (manufactured by Toyo Seiki Co., Ltd.). The difference between E ′ at −20 ° C. and E ′ at 20 ° C. (E ′ (− 20 ° C.) − E ′ (20 ° C.)) was calculated.
In each table, the value of the standard example was set to 100 and indicated as an index. The smaller this value, the smaller the temperature dependence of E ′.
耐摩耗性:ランボーン摩耗試験機を用いて、温度23℃/スリップ率50%の条件で摩損失体積を測定した。各表で標準例の値を100として指数表示した。この数値が大きいほど耐摩耗性に優れていることを示す。 Abrasion resistance: The wear loss volume was measured using a Lambourn abrasion tester at a temperature of 23 ° C. and a slip ratio of 50%. In each table, the value of the standard example was set to 100 and indicated as an index. It shows that it is excellent in abrasion resistance, so that this figure is large.
ウェットスキッド性能:周波数20Hz、初期歪10%、振幅±2%の条件で0℃のtanδを測定した。このときのtanδ(0℃)の値はウェットスキッド抵抗性に相関し、各表で標準例の値を100として指数表示した。その数値の大きい方がウェットスキッド抵抗に優れることを示す。 Wet skid performance: tan δ at 0 ° C. was measured under the conditions of frequency 20 Hz, initial strain 10%, amplitude ± 2%. The value of tan δ (0 ° C.) at this time correlates with the wet skid resistance, and the value of the standard example is set to 100 in each table and indicated as an index. A larger value indicates better wet skid resistance.
標準例2及び3、実施例17〜28及び比較例1〜5
サンプルの調製
表III及びIVに示す配合において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉型ミキサーで5分間混練し、145℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。このゴム組成物を用いて以下に示す試験法で未加硫物性を評価した。結果は表III及びIVに示す。
Standard Examples 2 and 3, Examples 17 to 28, and Comparative Examples 1 to 5
Sample preparation In the formulations shown in Tables III and IV, the ingredients other than the vulcanization accelerator and sulfur were kneaded for 5 minutes in a 1.7 liter closed mixer and released when the temperature reached 145 ° C to obtain a master batch. It was. A vulcanization accelerator and sulfur were kneaded with this master batch with an open roll to obtain a rubber composition. Using this rubber composition, unvulcanized physical properties were evaluated by the following test methods. The results are shown in Tables III and IV.
次に得られたゴム組成物を15×15×0.2cmの金型中で160℃で20分間加硫して加硫ゴムシートを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表III及びIVに示す。 Next, the resulting rubber composition was vulcanized in a 15 × 15 × 0.2 cm mold at 160 ° C. for 20 minutes to prepare a vulcanized rubber sheet. The physical properties of the vulcanized rubber were measured by the following test methods. It was measured. The results are shown in Tables III and IV.
ゴム物性評価試験法
Hs変化率:JIS K6253に準拠して、室温において老化前の硬度、70℃×96時間で老化した後の硬度を測定した。老化後の硬度を老化前の硬度で割った値をHs変化率とし、Hs変化率が小さいほど耐熱老化性に優れることを表す。
その他の物性は前述と同じ方法で試験した。
Rubber property evaluation test method Hs change rate: Based on JIS K6253, the hardness before aging at room temperature and the hardness after aging at 70 ° C. × 96 hours were measured. A value obtained by dividing the hardness after aging by the hardness before aging is defined as the Hs change rate, and the smaller the Hs change rate, the better the heat aging resistance.
Other physical properties were tested by the same method as described above.
本発明によれば、前述の通り、シリカを配合した天然ゴム系ゴム組成物にチイランシラン化合物(I)及び/又は(II)、式(I)とはその縮合物(III)及び/又は(IV)を特定量配合することにより、145℃以下の低温でゴムマスターバッチを得ることができ、加工性、耐摩耗性、耐老化性、ウェットスキッド性能などに優れたゴム組成物を得ることができ、タイヤトレッド用として、更には小粒径カーボンブラックの配合により重荷重用タイヤのタイヤトレッド用として非常に有用である。 According to the present invention, as described above, the natural rubber-based rubber composition containing silica and the thiirane silane compound (I) and / or (II), the formula (I) is the condensate (III) and / or (IV ) Can be obtained at a low temperature of 145 ° C. or less, and a rubber composition excellent in processability, wear resistance, aging resistance, wet skid performance, etc. can be obtained. It is very useful for tire treads, and further for tire treads of heavy duty tires by blending small particle size carbon black.
Claims (7)
で表されるチイランシラン化合物をシリカ重量の1〜15重量%含んでなるタイヤトレッド用ゴム組成物。 (A) 100 parts by weight of a diene rubber containing 10 parts by weight or more of natural rubber (NR), (B) 5 to 100 parts by weight of silica, and (C) Formula (I) having an alkoxysilyl group and a thiirane ring in one molecule And / or (II):
A rubber composition for a tire tread comprising 1 to 15% by weight of the silica weight of a thiirane silane compound represented by the formula:
で表される化合物である請求項1〜3のいずれか1項に記載のタイヤトレッド用ゴム組成物。 Formula (III) and / or (IV), wherein the thiirane silane compound (C) having an alkoxysilyl group and a thiirane ring in one molecule is a condensate of the above formula (I) and / or (II):
The rubber composition for tire treads according to any one of claims 1 to 3, wherein the rubber composition is a compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004328990A JP2006137857A (en) | 2004-11-12 | 2004-11-12 | Rubber composition for tire tread |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004328990A JP2006137857A (en) | 2004-11-12 | 2004-11-12 | Rubber composition for tire tread |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006137857A true JP2006137857A (en) | 2006-06-01 |
Family
ID=36618872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004328990A Pending JP2006137857A (en) | 2004-11-12 | 2004-11-12 | Rubber composition for tire tread |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006137857A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169559A (en) * | 2005-12-26 | 2007-07-05 | Sumitomo Rubber Ind Ltd | Rubber composition and pneumatic tire using the same |
JP2016060836A (en) * | 2014-09-18 | 2016-04-25 | 東洋ゴム工業株式会社 | Silane compound and rubber composition prepared therewith |
US10273352B2 (en) | 2006-08-03 | 2019-04-30 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4140830A (en) * | 1977-06-28 | 1979-02-20 | Union Carbide Corporation | Polymer composite articles containing episulfide substituted organosilicon coupling agents |
JPH11165502A (en) * | 1997-12-05 | 1999-06-22 | Bridgestone Corp | Pneumatic tire for heavy load |
JPH11180988A (en) * | 1997-12-17 | 1999-07-06 | Yokohama Rubber Co Ltd:The | Alkoxysilane compound containing thiirane ring and composition using the same |
JP2002105245A (en) * | 2000-07-28 | 2002-04-10 | Sumitomo Rubber Ind Ltd | Rubber composition for tire tread and pneumatic tire using the same |
JP2004250703A (en) * | 2003-02-17 | 2004-09-09 | Goodyear Tire & Rubber Co:The | Tire with tread of natural rubber-rich rubber composition |
-
2004
- 2004-11-12 JP JP2004328990A patent/JP2006137857A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4140830A (en) * | 1977-06-28 | 1979-02-20 | Union Carbide Corporation | Polymer composite articles containing episulfide substituted organosilicon coupling agents |
JPH11165502A (en) * | 1997-12-05 | 1999-06-22 | Bridgestone Corp | Pneumatic tire for heavy load |
JPH11180988A (en) * | 1997-12-17 | 1999-07-06 | Yokohama Rubber Co Ltd:The | Alkoxysilane compound containing thiirane ring and composition using the same |
JP2002105245A (en) * | 2000-07-28 | 2002-04-10 | Sumitomo Rubber Ind Ltd | Rubber composition for tire tread and pneumatic tire using the same |
JP2004250703A (en) * | 2003-02-17 | 2004-09-09 | Goodyear Tire & Rubber Co:The | Tire with tread of natural rubber-rich rubber composition |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169559A (en) * | 2005-12-26 | 2007-07-05 | Sumitomo Rubber Ind Ltd | Rubber composition and pneumatic tire using the same |
US10273352B2 (en) | 2006-08-03 | 2019-04-30 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
JP2016060836A (en) * | 2014-09-18 | 2016-04-25 | 東洋ゴム工業株式会社 | Silane compound and rubber composition prepared therewith |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4666089B2 (en) | Rubber composition for tire tread and pneumatic tire | |
JP4138729B2 (en) | Rubber composition and tire comprising the same | |
JP5776356B2 (en) | Rubber composition for tire tread | |
JP2009126907A (en) | Rubber composition | |
JP5286642B2 (en) | Rubber composition for tire and pneumatic tire using the same | |
JP6701939B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2011094013A (en) | Rubber composition for tread, and studless tire | |
JP2009029961A (en) | Masterbatch for rubber composition and its manufacturing method | |
JP2011052146A (en) | Rubber composition for tire and pneumatic tire | |
JP2019137281A (en) | Rubber composition for tire | |
JP2007145898A (en) | Rubber composition for coating carcass cord and tire having carcass using the same | |
JP5003011B2 (en) | Rubber composition | |
JP2006188571A (en) | Rubber composition and tire formed out of the same | |
JP5038040B2 (en) | Rubber composition for tire tread and tire | |
JP5998587B2 (en) | Rubber composition for tire and pneumatic tire using the same | |
CN118829683A (en) | Rubber composition for tire | |
JP2006137857A (en) | Rubber composition for tire tread | |
JP2014028902A (en) | Rubber composition for tire | |
JP5418142B2 (en) | Rubber composition for tire | |
JP2011068911A (en) | Rubber composition, and tire comprising the same | |
JP6701664B2 (en) | Rubber composition for tires | |
JP6657759B2 (en) | Rubber composition for tire | |
JP2004175993A (en) | Rubber composition for tire | |
JP6141118B2 (en) | Rubber composition for studless tire and studless tire | |
JP2005068211A (en) | Rubber composition for tire tread |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100726 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100824 |