JP2006135115A - Magnetic shield structure for ac power cable - Google Patents
Magnetic shield structure for ac power cable Download PDFInfo
- Publication number
- JP2006135115A JP2006135115A JP2004323108A JP2004323108A JP2006135115A JP 2006135115 A JP2006135115 A JP 2006135115A JP 2004323108 A JP2004323108 A JP 2004323108A JP 2004323108 A JP2004323108 A JP 2004323108A JP 2006135115 A JP2006135115 A JP 2006135115A
- Authority
- JP
- Japan
- Prior art keywords
- cable
- magnetic
- magnetic field
- center
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Regulation Of General Use Transformers (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、交流電力ケーブルから発生する磁気ノイズを遮蔽する磁気シールド構造に関するものである。 The present invention relates to a magnetic shield structure that shields magnetic noise generated from an AC power cable.
電力ケーブルの回りには電流により磁場が発生するが、ケーブルが磁場の被曝を気にする場所から遠く離れている場合は、磁場の距離減衰が期待できるためにそれほど重大な問題はない。しかし近年、ケーブルの地中埋設が実施されることが多くなり、しかもその埋設深さは浅くなる傾向にある。また、各相のケーブルが近接していたり、撚り線構造となっていたりする場合は磁場の距離減衰が大きいので問題は少ないが、マンホール下などのジョイント部では、各ケーブルが離れて存在する場合があり、ここからの磁場が問題となることがある。ケーブル間の距離が大きくなるほど、磁場の距離減衰が小さくなるからである。さらに最近は磁場の人体への影響が懸念され始めており、許容される磁場の強さも小さくなる傾向にある。 A magnetic field is generated by the current around the power cable. However, when the cable is far away from the place where the exposure to the magnetic field is concerned, there is no serious problem because the distance attenuation of the magnetic field can be expected. In recent years, however, cables are often buried underground, and the depth of the cables tends to be shallow. Also, if the cables of each phase are close to each other or have a stranded wire structure, there is little problem because the distance attenuation of the magnetic field is large, but in the joint part under the manhole, etc., when each cable is separated The magnetic field from here can be a problem. This is because the distance attenuation of the magnetic field decreases as the distance between the cables increases. Recently, the influence of the magnetic field on the human body has begun to be concerned, and the allowable magnetic field strength tends to be reduced.
電力ケーブルからの磁場をシールドする方法のひとつとして、ケーブル内の心線が電磁鋼板と電磁軟鉄のテープで覆われた構造を持つ磁気遮蔽ケーブル(特許文献1)が提案されている。また、電源ケーブルを電磁鋼板で囲う磁気シールド用配管(特許文献2、特許文献3)も提案されている。さらに、ケーブル群を磁性体で囲うことを特徴とする磁気シールドピット(特許文献4)も提案されている。
上記の特許文献1〜3の特徴は、電流が流れる導体を同心円状に磁性体で覆うことで磁気シールドするものである。しかしながらこのような構成では、磁気シールド効果が十分に得られないという問題があった。またケーブル同士の間隔が大きくなってくると、特許文献4の技術を用いても磁気シールド効果が不足する場合がある。
以上のように交流ケーブルの磁場の磁気シールドについて、特に各相のケーブルの間隔が開いた場合には、シールド効果を得るための技術的な確立はなされていない。本発明は、このような課題に対して優れた磁気シールド性能を持つ磁気シールド構造を提案することを目的としている。
The features of the above Patent Documents 1 to 3 are to magnetically shield a conductor through which a current flows by concentrically covering it with a magnetic material. However, such a configuration has a problem that a magnetic shield effect cannot be obtained sufficiently. Further, when the distance between the cables is increased, the magnetic shield effect may be insufficient even if the technique of
As described above, regarding the magnetic shield of the magnetic field of the AC cable, in particular when the distance between the cables of each phase is wide, no technical establishment has been made to obtain a shielding effect. An object of the present invention is to propose a magnetic shield structure having excellent magnetic shielding performance against such problems.
本発明は、各相のケーブル中心間の距離dが50mm以上の交流ケーブルで発生する磁場をシールドの対象としている。電流方向と垂直な面内ですべての相のケーブルを、その面内でのケーブル重心位置を中心として180°以上を、厚さ0.2mm以上の軟磁性体で連続して囲い、ケーブル中心から磁性体表面までの最も近い距離Lを、
0.5×d < L ≦ 4×d
の範囲とすることにより、優れた磁気シールド効果を得るものである。
さらに、軟磁性体として無方向性電磁鋼板あるいは方向性電磁鋼板を用いるとシールド効果は顕著になる。方向性電磁鋼板の場合には、その圧延方向をケーブルの電流方向と垂直方向に向けることによって、磁場と磁化容易方向が一致し、より優れた磁気シールド効果が得られる。
In the present invention, a magnetic field generated by an AC cable having a distance d between the cable centers of each phase of 50 mm or more is targeted for shielding. Cables of all phases in a plane perpendicular to the current direction are continuously surrounded by a soft magnetic material having a thickness of 0.2 mm or more, centered on the center of gravity of the cable in the plane, and from the center of the cable. The closest distance L to the magnetic surface is
0.5 × d <L ≦ 4 × d
By setting it as the range, an excellent magnetic shielding effect is obtained.
Furthermore, when a non-oriented electrical steel sheet or a directional electrical steel sheet is used as the soft magnetic material, the shielding effect becomes remarkable. In the case of a grain-oriented electrical steel sheet, by directing the rolling direction in a direction perpendicular to the current direction of the cable, the magnetic field and the easy magnetization direction coincide with each other, and a more excellent magnetic shielding effect can be obtained.
本発明の磁気シールド構造を用いることによって、電力ケーブルからの不要な磁場を効率よく遮蔽することができる。 By using the magnetic shield structure of the present invention, an unnecessary magnetic field from the power cable can be efficiently shielded.
以下に本発明を詳細に説明する。
先に述べたとおり、各相のケーブル中心間の距離dが小さい場合は磁場の距離減衰が期待でき問題は少ないが、距離dが大きくなると磁場が大きくなり、その対策技術は確立されていない。本発明は、ケーブル中心間の距離dが50mm以上の交流電力ケーブルで発生する磁場を対象とする。
The present invention is described in detail below.
As described above, when the distance d between the cable centers of each phase is small, the distance attenuation of the magnetic field can be expected and there are few problems. However, as the distance d increases, the magnetic field increases, and no countermeasure technology has been established. The present invention is directed to a magnetic field generated by an AC power cable having a distance d between the cable centers of 50 mm or more.
本発明ではまず、交流送電では複数ある各相ケーブルのうち、すべての相のケーブルを軟磁性体を用いて囲う必要がある。その理由は以下による。電流源を囲うように磁場要素を積分すると、その積分値は内部の電流に等しくなることはマックスウェルの方程式が教えるところである。ところで交流送電では、ある瞬間にすべての相の電流を足しあわせると電流は0となる。従って、交流すべての相のケーブルを磁性体で囲い、各要素磁場を理想的に形成することができれば、磁性体に沿った磁場の積分値は0となり、囲った外側の磁場を0とすることができる。すなわち、磁気シールドすることができる。一方、各相のうちいくつかの相を除いてケーブルを囲っても、その磁場の積分値、すなわち内部の電流は0にならず、シールドすることは原理的にできない。以上から、交流ケーブルすべての相を一つの磁性体で囲うことが必要である。 In the present invention, first, in AC power transmission, it is necessary to enclose all the phase cables among a plurality of phase cables using a soft magnetic material. The reason is as follows. Maxwell's equations teach that integrating a magnetic field element around a current source results in an integral value equal to the internal current. By the way, in AC power transmission, if the currents of all phases are added at a certain moment, the current becomes zero. Therefore, if all AC phase cables are surrounded by a magnetic material and each element magnetic field can be ideally formed, the integral value of the magnetic field along the magnetic material will be 0, and the outside magnetic field will be 0. Can do. That is, it can be magnetically shielded. On the other hand, even if some of the phases are excluded and the cable is enclosed, the integral value of the magnetic field, that is, the internal current does not become zero, and it cannot be shielded in principle. From the above, it is necessary to surround all phases of the AC cable with one magnetic material.
次に本発明は、複数ある各相ケーブルの重心位置を角度の中心として、180°以上を磁性体で連続して囲わなければならない。この場合、磁場を小さくしたい方面を磁性体で囲う。この角度が180°未満では、磁気シールドしたい面にも磁場が回りこんで漏洩するからである。 Next, according to the present invention, 180 ° or more must be continuously surrounded by a magnetic material with the center of gravity of each phase cable as the center of the angle. In this case, the direction in which the magnetic field is desired to be reduced is surrounded by a magnetic material. This is because if the angle is less than 180 °, the magnetic field also circulates on the surface to be shielded and leaks.
また、本発明は各相のケーブル中心間の距離をd、各相のケーブルから磁性体表面までの最も近い距離をLとしたときに、
0.5×d < L ≦ 4×d
としなければならない。Lが0.5×d以下の場合は十分な磁気シールド性能が得られない。その位置での磁場が非常に大きく磁性体が飽和に近づくため、透磁率が減少するからと考えられる。また、Lが4×dより大きい場合もやはり十分なシールド効果が得られない。磁場が小さすぎ磁性体の高い透磁率の範囲を逸脱するからと考えられる。さらに、4×dより大きい場合は、電流を囲うための磁性体が大きくなり、空間の有効利用の観点からも経済的な観点からも効率的ではない。従って、Lは上記の範囲でなくてはならない。
In the present invention, when the distance between the cable centers of each phase is d, and the closest distance from the cable of each phase to the magnetic surface is L,
0.5 × d <L ≦ 4 × d
And shall be. When L is 0.5 × d or less, sufficient magnetic shielding performance cannot be obtained. This is probably because the magnetic field at that position is very large and the magnetic substance approaches saturation, so that the magnetic permeability decreases. Also, when L is larger than 4 × d, a sufficient shielding effect cannot be obtained. This is probably because the magnetic field is too small and deviates from the high magnetic permeability range of the magnetic material. Furthermore, when larger than 4 * d, the magnetic body for enclosing an electric current becomes large, and it is not efficient from a viewpoint of effective use of space, and an economical viewpoint. Therefore, L must be in the above range.
次に本発明の磁性体の厚さは、0.2mm以上であることが必要である。これ以下では、磁化飽和しやすく、十分なシールド効果は得られにくい。さらに、磁性体は無方向性電磁鋼板あるいは方向性電磁鋼板とすることによって、安価で優れた磁気シールド効果が得られる。方向性電磁鋼板の場合には、その圧延方向をケーブルの電流方向と垂直方向に向けることによって、磁場と磁化容易方向が一致し、より優れた磁気シールド効果が得られる。 Next, the thickness of the magnetic body of the present invention needs to be 0.2 mm or more. Below this range, magnetization is likely to be saturated, and it is difficult to obtain a sufficient shielding effect. Furthermore, the magnetic body is a non-oriented electrical steel sheet or a directional electrical steel sheet, so that an inexpensive and excellent magnetic shielding effect can be obtained. In the case of a grain-oriented electrical steel sheet, by directing the rolling direction perpendicular to the current direction of the cable, the magnetic field and the easy magnetization direction coincide with each other, and a more excellent magnetic shielding effect can be obtained.
本発明の磁気シールド構造の例を図1に示す。これらは電流方向と垂直な面内での構成を示している。また、これら例1〜例3に示すシールド構造は、軟磁性体による3相のケーブルの包囲形態がそれぞれ異なるが、いずれの場合も本発明において規定した各条件を全て満足するものである。 An example of the magnetic shield structure of the present invention is shown in FIG. These show configurations in a plane perpendicular to the current direction. In addition, the shield structures shown in Examples 1 to 3 are different from each other in the surrounding form of the three-phase cable by the soft magnetic material, but in any case, all the conditions defined in the present invention are satisfied.
本発明の実施例を示す。
3本のケーブルを用いて、3相、50Hz、400Aの電流を流し、その周囲を電磁鋼板で包囲し磁気シールド性能を測定した。U、V、Wの各ケーブルは直径30mmであり、d=100mmの間隔で並列に並べた。電磁鋼板として厚さ0.5mmの無方向性電磁鋼板(JIS 50A470)および0.35mmの方向性電磁鋼板(JIS 35G155)を用い、断面が長方形(内寸幅a、高さb)、長さが3mの筒状で1層のシールド体とし、ケーブルを360°包囲する。鋼板の圧延方向は電流の方向と直角方向とした。シールド体断面の大きさを変化させることによって、ケーブル中心から磁性体表面までの距離Lを変化させた。また、シールド体断面の中心を、中心のケーブルの位置にあわせた。この試験の断面の構成を図2に示す。磁場の測定は、図中XおよびYの線上で中心から2mの位置で行った。シールド係数Sはシールド前の磁場H0とシールド後の磁場H1を用いて
S=H0/H1
で定義される。
The Example of this invention is shown.
Using three cables, a three-phase, 50 Hz, 400 A current was passed, and the periphery was surrounded by a magnetic steel sheet, and the magnetic shielding performance was measured. The U, V, and W cables each have a diameter of 30 mm, and were arranged in parallel at intervals of d = 100 mm. A non-oriented electrical steel sheet (JIS 50A470) having a thickness of 0.5 mm and a directional electrical steel sheet having a thickness of 0.35 mm (JIS 35G155) are used as the electrical steel sheet, and the cross section is rectangular (internal width a, height b) and length. Is a 3 m cylindrical, one-layer shield that surrounds the cable 360 °. The rolling direction of the steel sheet was perpendicular to the current direction. By changing the size of the shield cross section, the distance L from the center of the cable to the surface of the magnetic body was changed. Moreover, the center of the shield body cross section was set to the position of the central cable. The cross-sectional configuration of this test is shown in FIG. The magnetic field was measured at a position 2 m from the center on the X and Y lines in the figure. The shield coefficient S is obtained by using the magnetic field H0 before shielding and the magnetic field H1 after shielding S = H0 / H1
Defined by
表1に、評価結果を示す。また、距離Lとシールド係数Sの関係について、無方向性電磁鋼板を用いた場合を図3に、方向性電磁鋼板を用いた場合を図4に示す。表1及び図2、図4から、Lが上述した本発明範囲内であれば、優れたシールド効果が得られることが分かる。 Table 1 shows the evaluation results. Moreover, about the relationship between the distance L and the shield coefficient S, the case where a non-oriented electrical steel plate is used is shown in FIG. 3, and the case where a directional electrical steel plate is used is shown in FIG. From Table 1, FIG. 2, and FIG. 4, it can be seen that if L is within the above-described range of the present invention, an excellent shielding effect can be obtained.
厚さ0.5mmの無方向性電磁鋼板(JIS 50A470)を用いて、図5に示すような断面の樋状のシールド体を作製した。断面高さCを変化させることによって、ケーブルを囲う角度を変化させシールド性能を調査した。U、V、Wの各ケーブルは直径30mmであり、d=100mmの間隔で並列に並べ、3相、50Hz、400Aの電流を流した。
結果を表2に示す。ケーブル中心を包囲する角度が180°以上にすることによって、シールド効果が優れることが分かる。
Using a non-oriented electrical steel sheet (JIS 50A470) having a thickness of 0.5 mm, a bowl-shaped shield body having a cross section as shown in FIG. 5 was produced. By changing the cross-sectional height C, the angle surrounding the cable was changed and the shielding performance was investigated. The U, V, and W cables each had a diameter of 30 mm, and were arranged in parallel at an interval of d = 100 mm, and a three-phase, 50 Hz, 400 A current was passed.
The results are shown in Table 2. It can be seen that the shielding effect is excellent when the angle surrounding the cable center is 180 ° or more.
Claims (3)
0.5×d < L ≦ 4×d
の範囲とすることを特徴とする交流電力ケーブル用磁気シールド構造。 Each phase cable has a structure that shields a magnetic field generated from an AC cable having a center-to-center distance d of 50 mm or more, and all the phase cables are in a plane perpendicular to the current direction, and the cables in the plane 180 ° or more around the center of gravity position is continuously surrounded by a soft magnetic material having a thickness of 0.2 mm or more, and the nearest distance L from the cable center to the magnetic material surface is
0.5 × d <L ≦ 4 × d
Magnetic shield structure for AC power cable, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004323108A JP2006135115A (en) | 2004-11-08 | 2004-11-08 | Magnetic shield structure for ac power cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004323108A JP2006135115A (en) | 2004-11-08 | 2004-11-08 | Magnetic shield structure for ac power cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006135115A true JP2006135115A (en) | 2006-05-25 |
Family
ID=36728381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004323108A Pending JP2006135115A (en) | 2004-11-08 | 2004-11-08 | Magnetic shield structure for ac power cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006135115A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015192034A (en) * | 2014-03-28 | 2015-11-02 | 日立金属株式会社 | Magnetic shield structure of power line for transmission and distribution, and power transmission and reception facility using the same |
-
2004
- 2004-11-08 JP JP2004323108A patent/JP2006135115A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015192034A (en) * | 2014-03-28 | 2015-11-02 | 日立金属株式会社 | Magnetic shield structure of power line for transmission and distribution, and power transmission and reception facility using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101970322B1 (en) | Magnetic field shaping for inductive power transfer | |
EP1399929B1 (en) | Method for shielding the magnetic field generated by an electrical power transmission line, and magnetically shielded electrical power transmission line | |
CN103827982B (en) | Electric wire and coil | |
CN102208837B (en) | Rotating machine | |
AU2002345061A1 (en) | Method for shielding the magnetic field generated by an electrical power transmission line, and magnetically shielded electrical power transmission line | |
EP2065902B1 (en) | Electric three-phase power cable system | |
WO2010094338A1 (en) | Electrical apparatus with electrostatic shield | |
US5365115A (en) | Method and apparatus for mitigation of magnetic fields from low frequency magnetic field sources | |
JP6111645B2 (en) | Coil device and wireless power transmission system using the same | |
WO2001093394A1 (en) | Method of screening the magnetic field generated by an electrical power transmission line, and electrical power transmission line | |
JP2006135115A (en) | Magnetic shield structure for ac power cable | |
JP4354898B2 (en) | Magnetic shield structure for AC power single wire cable | |
JP5930400B2 (en) | Open magnetic shield structure with conductor circuit | |
JP4906323B2 (en) | Magnetic shield device | |
CN107786005A (en) | Double layer screen receiving terminal applied to the magnetic coupling of electric automobile wireless power | |
KR100878615B1 (en) | Power cable and manufacturing thereof | |
JPS638085Y2 (en) | ||
JPH0746664B2 (en) | Magnetic shield structure of toroidal transformer | |
SU1075354A1 (en) | A.c.electric machine | |
KR101079823B1 (en) | Transformer for protecting from thunderbolt and electromagnetic noise using metal-tape with directional magnetic pole of molecular magnet | |
JP3327460B2 (en) | Current transformer | |
KR20230057583A (en) | The magnetic flux density reduction facility utilizing ferromagnetic material at power cable outside space | |
JP2015192034A (en) | Magnetic shield structure of power line for transmission and distribution, and power transmission and reception facility using the same | |
JPH0364009A (en) | Transformer prevented from producing noise | |
JPS5864006A (en) | Superconducting coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20060808 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060831 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090408 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090414 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090615 |
|
A02 | Decision of refusal |
Effective date: 20090714 Free format text: JAPANESE INTERMEDIATE CODE: A02 |