JP2006135050A - Linear actuator - Google Patents
Linear actuator Download PDFInfo
- Publication number
- JP2006135050A JP2006135050A JP2004321734A JP2004321734A JP2006135050A JP 2006135050 A JP2006135050 A JP 2006135050A JP 2004321734 A JP2004321734 A JP 2004321734A JP 2004321734 A JP2004321734 A JP 2004321734A JP 2006135050 A JP2006135050 A JP 2006135050A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic pole
- core
- pole plate
- posture
- pole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Lens Barrels (AREA)
- Electromagnets (AREA)
Abstract
Description
本発明は、カメラのズーム調整機構やフォーカス調整機構に用いるに好適なリニアー・アクチュエータに関する。 The present invention relates to a linear actuator suitable for use in a zoom adjustment mechanism and a focus adjustment mechanism of a camera.
例えば、カメラのズーム調整機構においては、カメラレンズを直進変位させるにはモータが利用されており、そのモータのシャフトはスクリューシャフトであって、カメラレンズ側のナットに螺合している。しかしながら、モータを利用する場合、モータの回転運動をレンズの直進運動に変換するスクリューシャフト等が必要となることから、部品点数の削減及び低コスト化のため、簡易なリニアー・アクチュエータの開発が要請されている。 For example, in a zoom adjustment mechanism of a camera, a motor is used to move the camera lens linearly, and the shaft of the motor is a screw shaft that is screwed into a nut on the camera lens side. However, when using a motor, a screw shaft that converts the rotational movement of the motor into the linear movement of the lens is required, so the development of a simple linear actuator is required to reduce the number of parts and reduce the cost. Has been.
従来、リニアー・アクチュエータとしては種々のものが提案されているが、可動子の静止保持状態においても通電を行うものが多く、低消費電力化を図ることができない。 Conventionally, various linear actuators have been proposed, but many of them are energized even when the mover is held stationary, and it is not possible to reduce power consumption.
そこで、上記問題点に鑑み、本発明の課題は、無通電時でも可動子を静止保持できる簡易なリニアー・アクチュエータを提供することにある。 Therefore, in view of the above problems, an object of the present invention is to provide a simple linear actuator that can hold a movable element stationary even when no power is supplied.
本発明に係るリニアー・アクチュエータは、対極の第1磁極面と第3磁極面及び対極の第2磁極面と第4磁極面とが一方向に揃って配向し、第1磁極面及び第4磁極面がN極であって、第2磁極面及び第3磁極面がS極である固定子と、前記一方向に離間させて連結した第1電磁石と第2電磁石を有する可動子を備え、第1電磁石は、第1磁極面と第3磁極面を挟み込んでいずれかに排他的に接触するための第1挟み込み部及び第2磁極面と第4磁極面を挟み込んでいずれかに排他的に接触するための第2挟み込み部を備える第1コア並びに第1挟み込み部と第2挟み込み部とを互いに異極に励磁するための第1コイルを有し、第2電磁石は、第1磁極面と第3磁極面を挟み込んでいずれかに排他的に接触するための第3挟み込み部及び第2磁極面と第4磁極面を挟み込んでいずれかに排他的に接触するための第4挟み込み部を備える第2コア並びに第3挟み込み部と第4挟み込み部とを互いに異極に励磁するための第2コイルを有し、第1コイルと第2コイルに対する電流の通電方向を切り換え又は無通電状態とするための電流制御手段を備えて成ることを特徴とする。 In the linear actuator according to the present invention, the first magnetic pole surface and the third magnetic pole surface of the counter electrode, the second magnetic pole surface of the counter electrode and the fourth magnetic pole surface are aligned in one direction, and the first magnetic pole surface and the fourth magnetic pole surface are aligned. A stator having a north pole and a second magnetic pole face and a third magnetic pole face being an S pole; and a mover having a first electromagnet and a second electromagnet connected to be separated in the one direction; 1 electromagnet sandwiches the first magnetic pole surface and the third magnetic pole surface and exclusively contacts one of the first magnetic sandwich surface and the second magnetic pole surface and the fourth magnetic pole surface. A first core having a second sandwiching portion for performing the first coil and a first coil for exciting the first sandwiching portion and the second sandwiching portion with different polarities from each other. A third sandwiching portion for sandwiching the three magnetic pole faces and making an exclusive contact with either one; A second core having a fourth sandwiching portion for sandwiching the pole surface and the fourth magnetic pole surface and exclusively contacting either of them, and a third core for exciting the third sandwiching portion and the fourth sandwiching portion with different polarities from each other. It has two coils, and is characterized by comprising current control means for switching the current application direction to the first coil and the second coil or to make it non-energized.
第1及び第2コイルの無通電時においては、第1及び第2コアの挟み込み部(4箇所)の片側半体の内側面が第1磁極面及び第2磁極面或いは第3磁極面及び第4磁極面に磁気吸着し、可動子が以下の第1姿勢乃至第4姿勢として固定子に対し静止保持されることになるので、節電を図ることができる。 When the first and second coils are not energized, the inner surface of one half of the sandwiched portion (four locations) of the first and second cores is the first magnetic pole surface and the second magnetic pole surface or the third magnetic pole surface and the second magnetic pole surface. Since the magnetic poles are magnetically attracted to the four magnetic pole surfaces and the mover is held stationary with respect to the stator in the following first to fourth postures, power can be saved.
ここで、可動子の4面の磁極面に対する磁気吸着姿勢としては4通りである。即ち、第1の姿勢は、第1コアにおける第1挟み込み部の一方半体の内側面と第2コアにおける第3挟み込み部の一方半体の内側面とが共に第1磁極面に磁気吸着すると同時に、第1コアにおける第2挟み込み部の一方半体の内側面と第2コアにおける第4挟み込み部の一方半体の内側面とが共に第2磁極面に磁気吸着した状態の平行姿勢である。第2の姿勢は、第1コアにおける第1挟み込み部の一方半体の内側面が第1磁極面に磁気吸着して第2コアにおける第3挟み込み部の他方半体の内側面が第3磁極面に磁気吸着すると同時に、第1コアにおける第2挟み込み部の一方半体の内側面が第2磁極面に磁気吸着して第2コアにおける第4挟み込み部の他方半体の内側面が第4磁極面に磁気吸着した状態の傾斜姿勢である。第3の姿勢は、第1コアにおける第1挟み込み部の他方半体の内側面と第2コアにおける第3挟み込み部の他方半体の内側面とが共に第3磁極面に磁気吸着すると同時に、第1コアにおける第2挟み込み部の他方半体の内側面と第2コアにおける第4挟み込み部の他方半体の内側面とが共に第4磁極面に磁気吸着した状態の平行姿勢である。第4の姿勢は、第1コアにおける第1挟み込み部の他方半体の内側面が第3磁極板の外側面に磁気吸着して第2コアにおける第3挟み込み部の一方半体の内側面が第1磁極面に磁気吸着すると同時に、第1コアにおける第2挟み込み部の他方半体の内側面が第4磁極面に磁気吸着して第2コアにおける第4挟み込み部の一方半体の内側面が第2磁極面に磁気吸着した状態の傾斜姿勢である。第1の姿勢から第4の姿勢は以下に説明するようにサイクリックで生じる。 Here, there are four magnetic adsorption postures with respect to the four magnetic pole surfaces of the mover. That is, the first posture is that both the inner surface of one half of the first sandwiching portion in the first core and the inner surface of one half of the third sandwiching portion in the second core are magnetically attracted to the first magnetic pole surface. At the same time, the inner surface of one half of the second sandwiching portion in the first core and the inner surface of one half of the fourth sandwiching portion in the second core are both in a parallel posture in a state of being magnetically attracted to the second magnetic pole surface. . In the second posture, the inner surface of one half of the first sandwiching portion in the first core is magnetically attracted to the first magnetic pole surface, and the inner surface of the other half of the third sandwiching portion in the second core is the third magnetic pole. At the same time, the inner surface of one half of the second sandwiching portion of the first core is magnetically attracted to the second magnetic pole surface and the inner surface of the other half of the fourth sandwiching portion of the second core is the fourth. It is an inclined posture in a state of being magnetically attracted to the magnetic pole surface. In the third posture, the inner surface of the other half of the first sandwiching portion in the first core and the inner surface of the other half of the third sandwiching portion in the second core are both magnetically attracted to the third magnetic pole surface, The inner surface of the other half of the second sandwiching portion in the first core and the inner surface of the other half of the fourth sandwiching portion in the second core are both in a parallel posture in a state of being magnetically attracted to the fourth magnetic pole surface. The fourth posture is that the inner surface of the other half of the first sandwiching portion in the first core is magnetically attracted to the outer surface of the third magnetic pole plate, and the inner surface of the one half of the third sandwiching portion in the second core is Simultaneously magnetically attracting to the first magnetic pole surface, the inner surface of the other half of the second sandwiched portion of the first core is magnetically attracted to the fourth magnetic pole surface, and the inner surface of the first half of the fourth sandwiched portion of the second core. Is an inclined posture in a state of being magnetically attracted to the second magnetic pole surface. The first to fourth postures occur cyclically as described below.
第1及び第2コイルが無通電状態で、可動子が第1の姿勢にある場合、電流制御手段により第2コイルに通電して、第2コアの第3挟み込み部をN極に、第4挟み込み部をS極になるよう励磁すると、第1コアにおける第1挟み込み部の一方半体の内側面は第1磁極面に、その第2挟み込み部の一方半体の内側面は第2磁極板面にそれぞれ磁気吸着したまま、第2コアにおける第3挟み込み部(N極)の一方半体の内側面が第1磁極面(N極)から磁気反発すると同時にその他方半体の内側面が第3磁極面(S極)に磁気吸着すると共に、第2コアにおける第4挟み込み部(S極)の一方半体の内側面が第2磁極面(S極)から磁気反発すると同時にその他方半体の内側面が第4磁極面(N極)に磁気吸着するため、第1コアにおける第1及び第2挟み込み部の一方半体の内側端縁を瞬間中心として、第2コアにおける第3及び第4挟み込み部の他方半体の内側端縁が第3及び第4磁極面に当るまで正方向に旋回し、第2の姿勢に遷移する。 When the first and second coils are in a non-energized state and the mover is in the first posture, the second coil is energized by the current control means, and the third sandwiching portion of the second core is set to the N pole, the fourth When the sandwiching portion is excited to become the S pole, the inner surface of one half of the first sandwiching portion in the first core is the first magnetic pole surface, and the inner surface of the first half of the second sandwiching portion is the second magnetic pole plate. The inner surface of one half of the third sandwiching portion (N pole) in the second core is magnetically repelled from the first magnetic pole surface (N pole) while the inner surface of the other half is first While magnetically attracting to the three magnetic pole surfaces (S pole), the inner surface of one half of the fourth sandwiching portion (S pole) in the second core is magnetically repelled from the second magnetic pole surface (S pole) and at the same time the other half Since the inner surface of the first magnetic core is magnetically attracted to the fourth magnetic pole surface (N pole), With the inner edge of one half of the second sandwiching portion as the instantaneous center, in the forward direction until the inner edge of the other half of the third and fourth sandwiching portions of the second core hits the third and fourth magnetic pole surfaces It turns and changes to the 2nd posture.
ここで、第1磁極面(第2磁極面)と第3磁極面(第4磁極面)の距離を共にT、全ての挟み込み部の挟間をD、重なった第1挟み込み部(第2挟み込み部)と第3挟み込み部(第4挟み込み部)との総厚を共にL、可動子の旋回角をθとすれば、次の式が成立し、θが与えられる。
T=Dcosθ−Lsinθ
次いで、電流制御手段により第2コイルを無通電状態とし、第1コイルに通電して第1コアの第1挟み込み部をN極に、その第2挟み込み部をS極になるようそれぞれ励磁すると、第2コアにおける第3挟み込み部の他方半体の内側面は第3磁極面に、その第4挟み込み部の他方半体の内側面は第4磁極面にそれぞれ磁気吸着したまま、第1コアにおける第1挟み込み部(N極)の一方半体の内側面が第1磁極面(N極)に磁気反発すると同時にその他方半体の内側面が第3磁極面(S極)に磁気吸着すると共に、第1コアにおける第2挟み込み部(S極)の一方半体の内側面が第2磁極面(S極)に磁気反発すると同時にその他方半体の内側面が第4磁極面(N極)に磁気吸着するため、第2コアにおける第3及び第4挟み込み部の他方半体の内側端縁を瞬間中心として、第1コアにおける第1及び第2挟み込み部の他方半体の内側面が第3及び第4磁極面に当るまで逆方向に旋回し、第3の姿勢に遷移する。
Here, the distance between the first magnetic pole surface (second magnetic pole surface) and the third magnetic pole surface (fourth magnetic pole surface) is T, D is the distance between all the sandwiched portions, and the first sandwiched portion is overlapped (second sandwiched portion). ) And the third sandwiching portion (fourth sandwiching portion) are both L, and the swivel angle of the mover is θ, the following equation is established and θ is given.
T = D cos θ−L sin θ
Next, when the second coil is turned off by the current control means, the first coil is energized to excite the first sandwiched portion of the first core to the N pole and the second sandwiched portion to the S pole. The inner surface of the other half of the third sandwiched portion of the second core is magnetically attracted to the third magnetic pole surface, and the inner surface of the other half of the fourth sandwiched portion is magnetically attracted to the fourth magnetic pole surface. The inner surface of one half of the first sandwiching portion (N pole) magnetically repels the first magnetic pole surface (N pole), and at the same time the inner surface of the other half body magnetically attracts to the third magnetic pole surface (S pole). The inner surface of one half of the second sandwiching portion (S pole) in the first core is magnetically repelled to the second magnetic pole surface (S pole), and at the same time, the inner surface of the other half is the fourth magnetic pole surface (N pole). The other half of the third and fourth sandwiching portions of the second core. Rotating in the opposite direction with the inner edge of the inner center of the first core as the instantaneous center until the inner surface of the other half of the first and second sandwiching portions of the first core hits the third and fourth magnetic pole faces, and transitioned to the third posture To do.
ここで、可動子の第1の姿勢から第3の姿勢までの一方向への歩進量pは、概ね次式で与えられる。
p=Dsinθ+Lcosθ−L
なお、可動子を第2姿勢から第3姿勢へ遷移させるためには、第2コイルに対する通電を止めて第1コイルに通電する必要があるが、可動子が第3姿勢に遷移した後は第1コイルに対する通電を止めても良く、その遷移時の第1コイルに対する通電はトリガーパルスで済ませることができる。
Here, the amount of stepping p in one direction from the first posture to the third posture of the mover is approximately given by the following equation.
p = Dsin θ + L cos θ−L
In order to change the mover from the second position to the third position, it is necessary to stop energization of the second coil and to supply power to the first coil. However, after the mover changes to the third position, The energization of one coil may be stopped, and the energization of the first coil during the transition can be completed with a trigger pulse.
次いで、電流制御手段により第1コイルを無通電状態とし、第2コイルに通電して第2コアの第3挟み込み部をS極に、その第4挟み込み部をN極になるようそれぞれ励磁すると、第1コアにおける第1挟み込み部の他方半体の内側面は第3磁極面に、その第2挟み込み部の他方半体の内側面は第4磁極面にそれぞれ磁気吸着したまま、第2コアにおける第3挟み込み部(S極)の他方半体の内側面が第3磁極面(S極)から磁気反発すると同時にその一方半体の内側面が第1磁極面(N極)に磁気吸着すると共に、第2コアにおける第4挟み込み部(N極)の他方半体の内側面が第4磁極面(N極)から磁気反発すると同時にその一方半体の内側面が第2磁極面(S極)に磁気吸着するため、第1コアにおける第1及び第2挟み込み部の他方半体の内側端縁を瞬間中心として、第2コアにおける第3及び第4挟み込み部の一方半体の内側端縁が第1及び第2磁極面の外側面に当るまで逆方向に旋回し、第4の姿勢に遷移する。 Next, when the first coil is turned off by the current control means, the second coil is energized to excite the third sandwiching portion of the second core to the S pole and the fourth sandwiching portion to the N pole, The inner surface of the other half of the first sandwiched portion of the first core is magnetically attracted to the third magnetic pole surface, and the inner surface of the other half of the second sandwiched portion is magnetically attracted to the fourth magnetic pole surface. While the inner surface of the other half of the third sandwiching portion (S pole) is magnetically repelled from the third magnetic pole surface (S pole), the inner surface of the other half is magnetically attracted to the first magnetic pole surface (N pole). The inner surface of the other half of the fourth sandwiching portion (N pole) in the second core is magnetically repelled from the fourth magnetic pole surface (N pole), and at the same time, the inner surface of the other half is the second magnetic pole surface (S pole). Other than the first and second sandwiching portions in the first core With the inner edge of the half as an instantaneous center, the inner edge of one half of the third and fourth sandwiching portions in the second core pivots in the opposite direction until it hits the outer surface of the first and second magnetic pole faces, Transition to the fourth posture.
次いで、電流制御手段により第2コイルを無通電状態とし、第1コイルに通電して第1コアの第1挟み込み部をS極に、その第2挟み込み部をN極になるようそれぞれ励磁すると、第2コアにおける第3挟み込み部の一方半体の内側面は第1磁極面に、その第4挟み込み部の一方半体の内側面は第2磁極面にそれぞれ磁気吸着したまま、第1コアにおける第1挟み込み部(S極)の他方半体の内側面が第3磁極面(S極)から磁気反発すると同時にその一方半体の内側面が第1磁極面(N極)に磁気吸着すると共に、第1コアにおける第2挟み込み部(N極)の他方半体の内側面が第4磁極面(N極)から磁気反発すると同時にその一方半体の内側面が第2磁極面(S極)に磁気吸着するため、第2コアにおける第3及び第4挟み込み部の一方半体の内側端縁を瞬間中心として、第1コアにおける第1及び第2挟み込み部の一方半体の内側面が第1及び第2磁極面の外側面に当るまで正方向に旋回し、第1の姿勢に遷移する。 Next, when the second coil is turned off by the current control means, and the first coil is energized to excite the first sandwiching portion of the first core to the S pole and the second sandwiching portion to the N pole, The inner surface of one half of the third sandwiching portion of the second core is magnetically attracted to the first magnetic pole surface, and the inner surface of one half of the fourth sandwiching portion is magnetically attracted to the second magnetic pole surface. While the inner surface of the other half of the first sandwiching portion (S pole) is magnetically repelled from the third magnetic pole surface (S pole), the inner surface of the one half is magnetically attracted to the first magnetic pole surface (N pole). The inner surface of the other half of the second sandwiching portion (N pole) in the first core is magnetically repelled from the fourth magnetic pole surface (N pole) and at the same time, the inner surface of the first half is the second magnetic pole surface (S pole). One of the third and fourth sandwiching portions in the second core. With the inner edge of the half body as the instantaneous center, the inner surface of one half of the first and second sandwiching portions in the first core turns in the positive direction until it contacts the outer surface of the first and second magnetic pole faces, Transition to 1 posture.
なお、可動子を第4姿勢から第1姿勢へ遷移させるためには、第2コイルに対する通電を止めて第1コイルに通電する必要があるが、可動子が第1姿勢に遷移した後は第1コイルに対する通電を止めても良く、その遷移時の第1コイルに対する通電はトリガーパルスで済ませることができる。 In order to change the mover from the fourth position to the first position, it is necessary to stop energization of the second coil and to supply power to the first coil. However, after the mover changes to the first position, The energization of one coil may be stopped, and the energization of the first coil during the transition can be completed with a trigger pulse.
このように、可動子が、第1の姿勢→第2の姿勢→第3の姿勢→第4の姿勢→第1の姿勢と1サイクル運動を行い、一方向に、リードP=2pだけリニアー移動する。また可動子を第1の姿勢→第4の姿勢→第3の姿勢→第2の姿勢→第1の姿勢、と逆遷移できるため、正逆移動を実現できる。 In this way, the mover performs a 1-cycle movement from the first posture → the second posture → the third posture → the fourth posture → the first posture, and linearly moves in one direction by the lead P = 2p. To do. Further, since the mover can reversely transit from the first posture → the fourth posture → the third posture → the second posture → the first posture, forward / reverse movement can be realized.
このため、無通電でも可動子が磁極面に磁気吸着して静止保持されるため、低消費電力の簡易なリニアー・アクチュエータが得られる。可動子の移動時には可動子が磁極面上を摺動するのではなく、吸反発によって正逆の旋回で匍匐的に歩進するので、磨耗を抑制でき、長寿命化を図ることができると共に、吸反発によって高応答性が得られる。なお、挟み込み部の内側面と磁極面とのギャップ(=D−T)内では可動子が正逆に旋回可能であれば磁極面が多少湾曲していても構わないので、次第に曲げた磁極面を用いることにより、可動子を3次元空間内で曲線運動を行わせることも可能となる。 For this reason, since the mover is magnetically attracted to the magnetic pole surface and held stationary even when no current is applied, a simple linear actuator with low power consumption can be obtained. When the mover moves, the mover does not slide on the magnetic pole surface, but rather moves forward and backward by absorption and repulsion, so that wear can be suppressed and the life can be extended. High responsiveness is obtained by absorption and repulsion. Note that the magnetic pole surface may be slightly curved as long as the movable element can be rotated in the forward and reverse directions within the gap (= DT) between the inner side surface of the sandwiched portion and the magnetic pole surface. It is also possible to cause the mover to perform a curved motion in a three-dimensional space.
本発明によれば、無通電でも可動子が磁極板に磁気吸着して静止保持されるため、低消費電力の簡易なリニアー・アクチュエータを実現できる。また、可動子の移動時には可動子が磁極面上を摺動するのではなく、吸反発によって正逆の旋回で匍匐的に歩進するので、磨耗を抑制でき、長寿命化を図ることができると共に、吸反発によって高応答性を実現できる。 According to the present invention, a simple linear actuator with low power consumption can be realized because the mover is magnetically attracted to the magnetic pole plate and held stationary even when no current is applied. In addition, when the mover is moved, the mover does not slide on the magnetic pole surface, but rather moves forward and backward by absorption and repulsion, so wear can be suppressed and the life can be extended. At the same time, high responsiveness can be realized by absorption and repulsion.
次に、本発明の実施形態を添付図面に基づいて説明する。図1は本発明の一実施形態に係るリニアー・アクチュエータを示す斜視図である。 Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view showing a linear actuator according to an embodiment of the present invention.
本例のリニアー・アクチュエータは、固定子10と、これに沿う匍匐運動によって直進移動する可動子20と、可動子20の正逆直進移動を電流制御する電流制御手段(図示せず)とを備えている。
The linear actuator of this example includes a
固定子10は、少なくとも一端側を連結して平行に延びる一対の第1ヨーク板2,第2ヨーク板3と、第1ヨーク板2の表裏面に重ね合わせた対極の第1磁極板1N及び第3磁極板3Sと、第2ヨーク板3の表裏面に重ね合わせた対極の第2磁極板2S及び第4磁極板4Nを有し、これら4枚の磁極板1N,2S,3S,4Nはその断面図中心を長方形の頂点P1〜P4に一致させてその法線ν方向に配向している。第1の対角関係にある第1磁極板1N及び第4磁極板4NはN極に、第2の対角関係にある第2磁極板2S及び第3磁極板3SはS極にそれぞれ着磁されている。なお、第1磁極板1Nの外側面はN極の第1磁極面に、第2磁極板2Sの外側面はS極の第2磁極面に、第3磁極板3Sの外側面はS極の第3磁極面に、第4磁極板4Nの外側面はN極の第4磁極面にそれぞれ対応している。
The
可動子20は、法線ν方向に離間させ、スペーサ6を介して平行状態に連結した第1電磁石1Eと第2電磁石2Eを有する。第1電磁石1Eは、第1磁極板1Nと第3磁極板3Sを挟み込んでいずれかの外側面に排他的に接触するための第1二又状端部1G及び第2磁極板2Sと第4磁極板4Nを挟み込んでいずれかの外側面に排他的に接触するための第2二又状端部2Gを備える第1コア1K並びにその第1コア1Kの中央括れ部に巻回して第1二又状端部1Gと第2二又状端部2Gとを互いに異極に励磁するための第1コイル1Cを有する。また、第2電磁石2Eは、第1磁極板1Nと第3磁極板3Sを挟み込んでいずれかの外側面に排他的に接触するための第3二又状端部3G及び第2磁極板2Sと第4磁極板4Nを挟み込んでいずれかの外側面に排他的に接触するための第4二又状端部4Gを備える第2コア2K並びにその第2コア2Kの中央括れ部に巻回して第3二又状端部3Gと第4二又状端部4Gとを互いに異極に励磁するための第2コイル2Cを有する。
The
スペーサ6は、第1磁極板1Nと第3磁極板3Sを余裕隙間を空けて挟む一方側二又状端部6aと、第2磁極板2Sと第4磁極板4Nを余裕隙間を空けて挟む他方側二又状端部6bと、側面に突設した作用部6cとを有する。この作用部6cは原動腕部として従動機構を駆動するものである。なお、この作動部は凹部でも良い。
The
図2(a)〜(e)は同リニアー・アクチュエータにおける可動子20の各遷移姿勢を第1ヨーク板2側から見た状態を示す側面図である。
FIGS. 2A to 2E are side views showing the transition postures of the
可動子20の4枚の磁極板1N,2S,3S,4Nに対する磁気吸着姿勢としては4通りである。即ち、第1の姿勢は、図2(a),(e)に示す如く、第1コア1Kにおける第1二又状端部1Gの一方半体(図示左側)の内側面と第2コア2Kにおける第3二又状端部3Gの一方半体(図示左側)の内側面とが共に第1磁極板1Nの外側面に磁気吸着すると同時に、第1コア1Kにおける第2二又状端部2Gの一方半体の内側面と第2コア2Kにおける第4二又状端部4Gの一方半体の内側面とが共に第2磁極板2Sの外側面に磁気吸着した状態の平行姿勢である。
There are four magnetic adsorption postures of the
第2の姿勢は、図2(b)に示す如く、第1コア1Kにおける第1二又状端部1Gの一方半体(図示左側)の内側面が第1磁極板1Nの外側面に磁気吸着して第2コア2Kにおける第3二又状端部3Gの他方半体(図示右側)の内側面が第3磁極板3Sの外側面に磁気吸着すると同時に、第1コア1Kにおける第2二又状端部2Gの一方半体の内側面が第2磁極板2Sの外側面に磁気吸着して第2コア2Kにおける第4二又状端部4Gの他方半体の内側面が第4磁極板4Nの外側面に磁気吸着した状態の傾斜姿勢である。
As shown in FIG. 2B, the second posture is such that the inner surface of one half (the left side in the drawing) of the first
第3の姿勢は、図2(c)に示す如く、第1コア1Kにおける第1二又状端部1Gの他方半体(図示右側)の内側面と第2コア2Kにおける第3二又状端部3Gの他方半体(図示左側)の内側面とが共に第3磁極板3Sの外側面に磁気吸着すると同時に、第1コア1Kにおける第2二又状端部2Gの他方半体の内側面と第2コア2Kにおける第4二又状端部4Gの他方半体の内側面とが共に第4磁極板4Nの外側面に磁気吸着した状態の平行姿勢である。
As shown in FIG. 2C, the third posture is such that the inner surface of the other half (right side in the drawing) of the first
第4の姿勢は、図2(d)に示す如く、第1コア1Kにおける第1二又状端部1Gの他方半体(図示右側)の内側面が第3磁極板3Sの外側面に磁気吸着して第2コア2Kにおける第3二又状端部3Gの一方半体(図示左側)の内側面が第1磁極板1Nの外側面に磁気吸着すると同時に、第1コア1Kにおける第2二又状端部2Gの他方半体の内側面が第4磁極板4Nの外側面に磁気吸着して第2コア2Kにおける第4二又状端部4Gの一方半体の内側面が第2磁極板2Sの外側面に磁気吸着した状態の傾斜姿勢である。第1の姿勢から第4の姿勢は以下に説明するようにサイクリックで生じる。
As shown in FIG. 2D, the fourth posture is such that the inner surface of the other half (right side in the drawing) of the first
第1及び第2コイル1C,2Cが無通電状態で、図2(a)に示す如く、可動子20が第1の姿勢にある場合、電流制御手段により第2コイル2Cに通電して、第2コア2Kの第3二又状端部3GをN極に、第4二又状端部4GをS極になるよう励磁すると、第1コア1Kにおける第1二又状端部1Gの一方半体(図示左側)の内側面は第1磁極板1Nの外側面に、その第2二又状端部2Gの一方半体の内側面は第2磁極板2Sの外側面にそれぞれ磁気吸着したまま、第2コア2KにおけるN極の第3二又状端部3Gの一方半体(図示左側)の内側面がN極の第1磁極板1Nの外側面から磁気反発すると同時にその他方半体(図示右側)の内側面がS極の第3磁極板3Sの外側面に磁気吸着すると共に、第2コア2KにおけるS極の第4二又状端部4Gの一方半体の内側面がS極の第2磁極板2Sの内側面から磁気反発すると同時にその他方半体の内側面がN極の第4磁極板4Nの外側面に磁気吸着するため、第1コア1Kにおける第1及び第2二又状端部1G,2Gの一方半体の内側端縁O1を瞬間中心として、第2コア2Kにおける第3及び第4二又状端部の他方半体の内側端縁O2が第3及び第4磁極板3S,4Nの外側面に当るまで反時計方向にθだけ旋回し、図2(b)に示す第2の姿勢に遷移する。
When the first and
ここで、第1磁極板1N(第2磁極板2S)の外側面と第3磁極板3S(第4磁極板4N)の外側面との距離をT、二又状端部の挟間をD、重なった第1二又状端部1G(第2二又状端部2G)と第3二又状端部3G(第4二又状端部4G)との総厚をL、可動子20の旋回角をθとすれば、次の式が成立し、θが与えられる。
T=Dcosθ−Lsinθ
次いで、図2(b)に示す第2の姿勢において、電流制御手段により第2コイル2Cを無通電状態とし、第1コイル1Cに通電して第1コア1Kの第1二又状端部1GをN極に、その第2二又状端部2GをS極になるよう励磁すると、第2コア2Kにおける第3二又状端部3Gの他方半体(図示右側)の内側面は第3磁極板3Sの外側面に、その第4二又状端部4Gの他方半体の内側面は第4磁極板4Nの外側面にそれぞれ磁気吸着したまま、第1コア1KにおけるN極の第1二又状端部1Gの一方半体(図示左側)の内側面がN極の第1磁極板1Nの外側面に磁気反発すると同時にその他方半体(図示右側)の内側面がS極の第3磁極板3Sの外側面に磁気吸着すると共に、第1コア1KにおけるS極の第2二又状端部2Gの一方半体の内側面がS極の第2磁極板2Sの外側面に磁気反発すると同時にその他方半体の内側面がN極の第4磁極板(N極)の外側面に磁気吸着するため、第2コア2Kにおける第3及び第4二又状端部3G,4Gの他方半体の内側端縁O2を瞬間中心として、第1コアにおける第1及び第2二又状端部1G,2Gの他方半体の内側面が第3及び第4磁極板3S,4Nの外側面に当るまで時計方向にθだけ旋回し、図2(c)に示す第3の姿勢に遷移する。
Here, the distance between the outer surface of the first
T = D cos θ−L sin θ
Next, in the second posture shown in FIG. 2 (b), the second coil 2C is made non-energized by the current control means, and the
ここで、可動子20の第1の姿勢(図2(a))から第3の姿勢(図2(c))までの法線方向へ並進した歩進量pは、概ね次式で与えられる。
p=Dsinθ+Lcosθ−L
なお、可動子20を第2姿勢(図2(b))から第3姿勢(図2(c))へ遷移させるためには、第2コイル2Cに対する通電を止めて第1コイル1Cに通電する必要があるが、可動子20が第3姿勢に遷移した後は第1コイル1Cに対する通電を止めても良く、その遷移時の第1コイル1Cに対する通電はトリガーパルスで済ませることができる。
Here, the step amount p translated in the normal direction from the first posture (FIG. 2A) to the third posture (FIG. 2C) of the
p = Dsin θ + L cos θ−L
In order to change the
次いで、図2(c)に示す第3の姿勢において、電流制御手段により第1コイル1Cを無通電状態とし、第2コイル2Cに通電して第2コア2Kの第3二又状端部3GをS極に、その第4二又状端部4GをN極になるよう励磁すると、第1コア1Kにおける第1二又状端部1Gの他方半体(図示右側)の内側面は第3磁極板3Sの外側面に、その第2二又状端部2Gの他方半体の内側面は第4磁極板4Nの外側面にそれぞれ磁気吸着したまま、第2コア2KにおけるS極の第3二又状端部3Gの他方半体(図示右側)の内側面がS極の第3磁極板3Sの外側面から磁気反発すると同時にその一方半体(図示左側)の内側面がN極の第1磁極板1Nの外側面に磁気吸着すると共に、第2コア2KにおけるN極の第4二又状端部4Gの他方半体の内側面がN極の第4磁極板4Nの外側面から磁気反発すると同時にその一方半体の内側面がS極の第2磁極板2Sの外側面に磁気吸着するため、第1コア1Kにおける第1及び第2二又状端部1G,2Gの他方半体の内側端縁O3を瞬間中心として、第2コア2Kにおける第3及び第4二又状端部3G,4Gの一方半体の内側端縁O4が第1及び第2磁極板1N,2Sの外側面に当るまで時計方向にθだけ旋回し、図2(d)に示す第4の姿勢に遷移する。
Next, in the third posture shown in FIG. 2C, the
次いで、図2(d)に示す第4の姿勢において、電流制御手段により第2コイル2Cを無通電状態とし、第1コイル1Cに通電して第1コア1Kの第1二又状端部1GをS極に、その第2二又状端部2GをN極になるよう励磁すると、第2コア2Kにおける第3二又状端部3Gの一方半体(図示左側)の内側面は第1磁極板1Nの外側面に、その第4二又状端部4Gの一方半体の内側面は第2磁極板2Sの外側面にそれぞれ磁気吸着したまま、第1コア1KにおけるS極の第1二又状端部1Gの他方半体(図示右側)の内側面がS極の第3磁極板3Sから磁気反発すると同時にその一方半体(図示左側)の内側面がN極の第1磁極板1Nの外側面に磁気吸着すると共に、第1コア1KにおけるN極の第2二又状端部2Gの他方半体の内側面がN極の第4磁極板4Nから磁気反発すると同時にその一方半体の内側面がS極の第2磁極板2Sの外側面に磁気吸着するため、第2コア2Kにおける第3及び第4二又状端部3G,4Gの一方半体の内側端縁O4を瞬間中心として、第1コア1Kにおける第1及び第2二又状端部1G,2Gの一方半体の内側面が第1及び第2磁極板1N,2Sの外側面に当るまで反時計方向にθだけ旋回し、図2(e)に示す第1の姿勢に遷移する。
Next, in the fourth posture shown in FIG. 2 (d), the second coil 2C is made non-energized by the current control means, and the
なお、可動子20を第4姿勢(図2(d))から第1姿勢(図2(e))へ遷移させるためには、第2コイル2Cに対する通電を止めて第1コイル1Cに通電する必要があるが、可動子20が第1姿勢(図2(e))に遷移した後は図2(a)に示すように第1コイル1Cに対する通電を止めても良く、その遷移時の第1コイル1Cに対する通電はトリガーパルスで済ませることができる。
In order to change the
このように、可動子20が、第1の姿勢(図2(a))→第2の姿勢(図2(b))→第3の姿勢(図2(c))→第4の姿勢(図2(d))→第1の姿勢(図2(e))と1サイクル運動を行い、法線ν方向に、リードP=2pだけリニアー移動する。また可動子20を第1の姿勢→第4の姿勢→第3の姿勢→第2の姿勢→第1の姿勢、と逆遷移できるため、正逆移動を実現できる。
In this way, the
このため、無通電でも可動子20が磁極板1N,2S,3S,4Nに磁気吸着して静止保持されるため、低消費電力の簡易なリニアー・アクチュエータが得られる。可動子20が第2姿勢又は第4姿勢の傾斜姿勢で無通電状態とした場合、可動子20は第1姿勢又は第3姿勢の平行姿勢に遷移してしまう場合もあるが、第2姿勢又は第4姿勢での無通電状態を禁止するような電流制御手段を組み込むことによって、歩進量pのリニアー・アクチュエータとして用いることができ、斯かる場合、無通電状態では可動子20が第1姿勢又は第3姿勢の平行姿勢に固定子10に保持される。
For this reason, since the
可動子20の移動時には可動子20が磁極板1N,2S,3S,4N上を摺動するのではなく、吸反発によって正逆の旋回で匍匐的に歩進するので、磨耗を抑制でき、長寿命化を図ることができると共に、吸反発によって高応答性が得られる。なお、二又状端部1G〜4Gの内側面と磁極板1N,2S,3S,4Nの外側面とのギャップ(=D−T)内では可動子20が正逆に旋回可能であれば磁極板1N,2S,3S,4Nが多少湾曲していても構わない。このため、次第に曲げた磁極板を用いることにより、可動子20を3次元空間内で曲線運動を行わせることも可能となる。
When the
なお、図1において長方形4は、磁極板の断面形状等により正方形,平行四辺形,菱形でも、不等辺四辺形でも良い。第1磁極板1N(第2磁極板2S)と第3磁極板3S(第4磁極板4N)とは板幅方向にずれていても良く、またそれぞれの磁極板の板厚が異なっていても、それぞれの二又状端部の挟間などを調整すれば済むからである。また、必要に応じて、第1電磁石1Eと第2電磁石2Eとは非平行状態で連結しても良い。
In FIG. 1, the rectangle 4 may be a square, a parallelogram, a rhombus, or an unequal side quadrilateral depending on the cross-sectional shape of the magnetic pole plate. The first
10…固定子
20…可動子
2…第1ヨーク板
3…第2ヨーク板
4…長方形
6…スペーサ
6a…一方側二又状端部
6b…他方側二又状端部
6c…作用部
1N…第1磁極板
2S…第2磁極板
3S…第3磁極板
4N…第4磁極板
1E…第1電磁石
2E…第2電磁石
1K…第1コア
2K…第2コア
1G…第1二又状端部
2G…第2二又状端部
3G…第3二又状端部
4G…第4二又状端部
1C…第1コイル
2C…第2コイル
P1〜P4…長方形の頂点
ν…法線
O1〜O4…内側端縁
D…二又状端部の挟間
L…重なった第1二又状端部と第3二又状端部との総厚
T…第1磁極板の外側面と第3磁極板の外側面との距離
θ…可動子の旋回角
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004321734A JP2006135050A (en) | 2004-11-05 | 2004-11-05 | Linear actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004321734A JP2006135050A (en) | 2004-11-05 | 2004-11-05 | Linear actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006135050A true JP2006135050A (en) | 2006-05-25 |
Family
ID=36728334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004321734A Pending JP2006135050A (en) | 2004-11-05 | 2004-11-05 | Linear actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006135050A (en) |
-
2004
- 2004-11-05 JP JP2004321734A patent/JP2006135050A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8773226B2 (en) | Driving device and relay | |
US6821033B2 (en) | Electromagnetic actuator and shutter device for camera | |
US7154199B2 (en) | Driving apparatus for moving member to be moved | |
JP3144821U (en) | Lens drive device using electromagnet thrust | |
JP2006340443A5 (en) | ||
JP2002319504A (en) | Electromagnetic linear actuator and remote controller of circuit breaker | |
JP2006135050A (en) | Linear actuator | |
JPH08228466A (en) | Actuator | |
JP2000331824A (en) | Electromagnetic device | |
JP2002110016A (en) | Magnetic system for electromagnetic relay | |
JP2004258062A (en) | Shutter driving device used also as diaphragm | |
JP2754296B2 (en) | Rotary actuator | |
JP2002335662A (en) | Tristable self-holding magnet | |
JP2006054970A (en) | Linear actuator | |
JP2004343930A (en) | Actuator | |
JP3641346B2 (en) | Self-holding rotary solenoid | |
JP3577994B2 (en) | Actuator | |
JP5171067B2 (en) | Driving device and light amount adjusting device | |
JPS61167367A (en) | Electromagnetic actuator | |
JPS60123005A (en) | Polarized bistable solenoid | |
JPS639982Y2 (en) | ||
JP2004320828A (en) | Driving gear | |
JP2000331826A (en) | Electromagnetic device | |
TWM260054U (en) | Magnetic actuator | |
JPH06311720A (en) | Actuator and its motor constitution |