[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006134611A - Manufacturing device and manufacturing method of junction - Google Patents

Manufacturing device and manufacturing method of junction Download PDF

Info

Publication number
JP2006134611A
JP2006134611A JP2004319724A JP2004319724A JP2006134611A JP 2006134611 A JP2006134611 A JP 2006134611A JP 2004319724 A JP2004319724 A JP 2004319724A JP 2004319724 A JP2004319724 A JP 2004319724A JP 2006134611 A JP2006134611 A JP 2006134611A
Authority
JP
Japan
Prior art keywords
joined body
cooling
layer
heating
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004319724A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
安起良 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004319724A priority Critical patent/JP2006134611A/en
Publication of JP2006134611A publication Critical patent/JP2006134611A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing device and a manufacturing method of a junction having high productivity capable of preventing warp of the junction. <P>SOLUTION: The manufacturing device of junction manufacturing a junction of catalyst layer and electrolyte film or that of diffusion layer and a catalyst layer carrying electrolyte layer comprises a heating/pressing means forming the junction by continuously transferring a transfer layer on a base material by heating and pressing a carrying base material, carrying a plurality of transfer layers which are either the catalyst layers or the diffusion layers on one face, and a base material composed of a layer to be transported which is either the electrolyte film or the catalyst layer carrying electrolyte layer, in a state that the transfer layer is made to contact with the layer to be transferred; and a cooling/pressing means continuously cooling and pressing the junction. The heating/pressing means and the cooling/pressing means are the junction manufacturing device contacting with respective transfer layers in a manner of face contact or a plurality of line contacts. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、接合体製造装置及び接合体製造方法に関し、詳しくは、触媒層と電解質膜との接合体、あるいは触媒層を有する電解質膜と拡散層との接合体等を製造する接合体製造装置及び接合体製造方法に関する。   The present invention relates to a joined body manufacturing apparatus and a joined body manufacturing method, and more specifically, a joined body manufacturing apparatus for manufacturing a joined body of a catalyst layer and an electrolyte membrane, or a joined body of an electrolyte membrane having a catalyst layer and a diffusion layer. And a joined body manufacturing method.

環境問題や資源問題への対策の一つとして、酸素や空気等の酸化性ガスと、水素やメタン等の還元性ガス(燃料ガス)あるいはメタノール等の液体燃料等とを原料として電気化学反応により化学エネルギーを電気エネルギーに変換して発電する燃料電池が注目されている。燃料電池は、電解質膜の一方の面に燃料極(アノード触媒層)と、もう一方の面に空気極(カソード触媒層)とを電解質膜を挟んで対向するように設け、各触媒層の上に拡散層をさらに設け、これらを原料供給用の通路を設けたセパレータで挟んで電池が構成され、各触媒層に水素、酸素等の原料を供給して発電する装置である。   As one of the countermeasures for environmental problems and resource problems, an electrochemical reaction using an oxidizing gas such as oxygen or air and a reducing gas such as hydrogen or methane (fuel gas) or a liquid fuel such as methanol as raw materials Fuel cells that generate electricity by converting chemical energy into electrical energy have attracted attention. The fuel cell is provided with a fuel electrode (anode catalyst layer) on one side of the electrolyte membrane and an air electrode (cathode catalyst layer) on the other side of the electrolyte membrane with the electrolyte membrane sandwiched between them. Further, a diffusion layer is further provided, and a battery is formed by sandwiching these layers between separators provided with a path for supplying raw materials, and power is generated by supplying raw materials such as hydrogen and oxygen to each catalyst layer.

燃料電池は、発電に使用される原料のガスや液体燃料が豊富に存在すること、また、その発電原理より排出される物質が水であること等により、クリーンなエネルギー源として様々な検討がされている。   Fuel cells have been studied in various ways as a clean energy source due to the abundance of raw material gas and liquid fuel used for power generation and the fact that the substance discharged from the power generation principle is water. ing.

このような燃料電池等に用いられる触媒層と電解質膜との接合体、あるいは触媒層を有する電解質膜と拡散層との接合体等を製造する接合体製造装置及び製造方法としては、例えば、特許文献1に、触媒担持フィルムの触媒層を電解質膜上に熱間プレスあるいは熱間ローラにより転写し、一体化して触媒層−電解質接合体を形成する方法が提案されている。   As a joined body manufacturing apparatus and manufacturing method for manufacturing a joined body of a catalyst layer and an electrolyte membrane used in such a fuel cell or the like, or a joined body of an electrolyte membrane having a catalyst layer and a diffusion layer, for example, a patent Document 1 proposes a method in which a catalyst layer of a catalyst-carrying film is transferred onto an electrolyte membrane by a hot press or a hot roller and integrated to form a catalyst layer-electrolyte assembly.

また、特許文献2には、触媒担持フィルムと予備加熱された電解質膜とを加熱加圧ローラによりホットプレスして触媒層を転写した後、冷却ローラにより冷却すると共に剥離ローラによりフィルムを剥離する接合体製造装置が提案されている。   In Patent Document 2, a catalyst-carrying film and a preheated electrolyte membrane are hot-pressed by a heating and pressing roller to transfer a catalyst layer, and then cooled by a cooling roller and peeled off by a peeling roller. A body manufacturing apparatus has been proposed.

特開平10−64574号公報Japanese Patent Laid-Open No. 10-64574 特開2001−196070号公報JP 2001-196070 A

しかしながら、特許文献1に記載された方法のような熱間プレスによる転写では、触媒層担持フィルムと電解質膜とを1枚ずつプレスして触媒層を転写して、その後そのままの状態で1枚ずつ放冷する必要があるため、作業時間がかかり生産性が悪い。   However, in the transfer by hot pressing as in the method described in Patent Document 1, the catalyst layer supporting film and the electrolyte membrane are pressed one by one to transfer the catalyst layer, and then one by one in the state as it is. Since it is necessary to cool, it takes a long time and productivity is poor.

また、特許文献1及び特許文献2に記載された熱間ローラ(加熱加圧ローラ)による転写では、触媒層担持フィルム及び電解質膜と熱間ローラとの接触が線接触であり、触媒層担持フィルム及び電解質膜全体に均一に熱を与えることができない。また、熱間ローラによる加熱加圧後の冷却過程で接合体の反りが生じる場合がある。特許文献2のように、加熱加圧後に冷却ローラによる冷却工程を設けた場合でも、触媒層担持フィルム及び電解質膜と冷却ローラとの接触が線接触であり、触媒層担持フィルム及び電解質膜全体が均一に冷却されないため、接合体の反りが生じる場合がある。また、同様の問題は、触媒層担持電解質膜と拡散層との接合体等の製造においても発生する。   Moreover, in the transfer by the hot roller (heating and pressing roller) described in Patent Document 1 and Patent Document 2, the contact between the catalyst layer carrying film and the electrolyte membrane and the hot roller is a line contact, and the catalyst layer carrying film In addition, heat cannot be uniformly applied to the entire electrolyte membrane. In addition, warpage of the joined body may occur in the cooling process after heating and pressing by the hot roller. Even when a cooling step using a cooling roller is provided after heating and pressing as in Patent Document 2, the contact between the catalyst layer-supporting film and the electrolyte membrane and the cooling roller is a line contact, and the catalyst layer-supporting film and the entire electrolyte membrane are Since it is not cooled uniformly, warping of the joined body may occur. The same problem also occurs in the manufacture of a joined body of a catalyst layer-supported electrolyte membrane and a diffusion layer.

本発明は、触媒層担持フィルムを用いた触媒層の電解質膜への加熱加圧による転写、あるいは拡散層担持フィルムを用いた拡散層の触媒層担持電解質膜への加熱加圧による転写等において、得られる接合体の反りの発生を防止することができる接合体製造装置及び接合体製造方法である。   In the present invention, the transfer by heating and pressurization of the catalyst layer to the electrolyte membrane using the catalyst layer-supporting film, or the transfer by heating and pressurization of the diffusion layer to the catalyst layer-supporting electrolyte membrane using the diffusion layer support film, It is the joined body manufacturing apparatus and joined body manufacturing method which can prevent generation | occurrence | production of the curvature of the obtained joined body.

また、本発明は、生産性の高い接合体製造装置及び接合体製造方法である。   Moreover, this invention is a bonded body manufacturing apparatus and a bonded body manufacturing method with high productivity.

本発明は、触媒層と電解質膜との接合体または拡散層と触媒層担持電解質膜との接合体を製造する接合体製造装置であって、前記触媒層及び前記拡散層のいずれかである複数の転写層を一面に担持させてなる担持基材と、前記電解質膜及び前記触媒層担持電解質膜のいずれかである被転写層からなる基材とを、前記転写層と前記被転写層とが接触する状態で加熱及び加圧して、連続的に前記転写層を前記基材に転写し接合体を形成する加熱加圧手段と、前記接合体を連続的に冷却及び加圧する冷却加圧手段と、を有し、前記加熱加圧手段及び冷却加圧手段は、各前記転写層に対して面接触または複数線接触する。   The present invention is a joined body manufacturing apparatus for manufacturing a joined body of a catalyst layer and an electrolyte membrane or a joined body of a diffusion layer and a catalyst layer-supporting electrolyte membrane, and a plurality of the catalyst layers and the diffusion layers. A transfer substrate and a transfer layer, and a transfer substrate and a transfer layer that is one of the electrolyte membrane and the catalyst layer-supported electrolyte membrane. Heating and pressurizing means for heating and pressurizing in contact with each other to continuously transfer the transfer layer to the substrate to form a joined body; and cooling and pressurizing means for continuously cooling and pressurizing the joined body. The heating and pressing unit and the cooling and pressing unit are in surface contact or multiple line contact with each of the transfer layers.

また、前記接合体製造装置において、前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは熱伝導性弾性体を含んでなり、前記熱伝導性弾性体が面接触または複数線接触することが好ましい。   Moreover, in the joined body manufacturing apparatus, at least one of the heating and pressing unit and the cooling and pressing unit includes a heat conductive elastic body, and the heat conductive elastic body may be in surface contact or in multiple line contact. preferable.

また、前記接合体製造装置において、前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは金属材料を含んでなり、前記金属材料が面接触または複数線接触することが好ましい。   Moreover, in the joined body manufacturing apparatus, it is preferable that at least one of the heating and pressing unit and the cooling and pressing unit includes a metal material, and the metal material is in surface contact or multiple line contact.

また、前記接合体製造装置において、前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは、無限軌道方式であることが好ましい。   In the joined body manufacturing apparatus, it is preferable that at least one of the heating and pressing unit and the cooling and pressing unit is an endless track system.

また、前記接合体製造装置において、前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは複数のローラを含んでなり、前記複数のローラが複数線接触することが好ましい。   In the joined body manufacturing apparatus, it is preferable that at least one of the heating and pressing unit and the cooling and pressing unit includes a plurality of rollers, and the plurality of rollers are in contact with each other by a plurality of lines.

また、前記接合体製造装置において、前記熱伝導性弾性体からなるプレートが面接触することが好ましい。   In the joined body manufacturing apparatus, it is preferable that the plate made of the thermally conductive elastic body is in surface contact.

また、前記接合体製造装置において、前記熱伝導性弾性体からなるベルトが面接触することが好ましい。   In the joined body manufacturing apparatus, it is preferable that a belt made of the heat conductive elastic body is in surface contact.

また、前記接合体製造装置において、前記熱伝導性弾性体を加圧変形させて面接触することが好ましい。   Moreover, in the joined body manufacturing apparatus, it is preferable that the thermal conductive elastic body is subjected to pressure deformation and brought into surface contact.

さらに、本発明は、触媒層と電解質膜との接合体または拡散層と触媒層担持電解質膜との接合体を製造する接合体製造方法であって、前記触媒層及び前記拡散層のいずれかである複数の転写層を一面に担持させてなる担持基材と、前記電解質膜及び前記触媒層担持電解質膜のいずれかである被転写層からなる基材とを、前記転写層と前記被転写層とが接触する状態で加熱及び加圧して、連続的に前記転写層を前記基材に転写し接合体を形成する加熱加圧工程と、前記接合体を連続的に冷却及び加圧する冷却加圧工程と、を含み、前記加熱加圧工程及び冷却加圧工程において、前記加熱及び加圧ならびに前記冷却及び加圧は、各前記転写層に対して面接触または複数線接触により行われる。   Furthermore, the present invention is a joined body manufacturing method for manufacturing a joined body of a catalyst layer and an electrolyte membrane or a joined body of a diffusion layer and a catalyst layer-supported electrolyte membrane, wherein either the catalyst layer or the diffusion layer is used. The transfer substrate and the transfer layer are formed by supporting a transfer substrate having a plurality of transfer layers supported on one surface and a transfer substrate that is one of the electrolyte membrane and the catalyst layer-supporting electrolyte membrane. And a heating and pressurizing step of continuously transferring and transferring the transfer layer to the substrate to form a joined body, and cooling and pressurizing for continuously cooling and pressurizing the joined body. In the heating and pressing step and the cooling and pressing step, the heating and pressing and the cooling and pressing are performed by surface contact or multi-line contact with respect to each transfer layer.

本発明では、触媒層担持フィルムを用いた触媒層の電解質膜への加熱加圧による転写、あるいは拡散層担持フィルムを用いた拡散層の触媒層担持電解質膜への加熱加圧による転写等において、各触媒層または各拡散層の一面に対して面接触または複数線接触して加熱加圧及び冷却加圧することにより、得られる接合体の反りの発生を防止することができる接合体製造装置及び接合体製造方法を提供することができる。   In the present invention, in the transfer by heating and pressurization to the electrolyte membrane of the catalyst layer using the catalyst layer-supporting film, or in the transfer by heating and pressurization to the catalyst layer-supporting electrolyte membrane of the diffusion layer using the diffusion layer support film, Bonded body manufacturing apparatus and bonded body capable of preventing warpage of the obtained bonded body by performing surface pressure or multiple line contact with one surface of each catalyst layer or each diffusion layer and heating and pressurizing and cooling and pressing. A body manufacturing method can be provided.

また、本発明では、連続的に加熱加圧及び冷却加圧することにより、生産性の高い接合体製造装置及び接合体製造方法を提供することができる。   Moreover, in this invention, the joining body manufacturing apparatus and joining body manufacturing method with high productivity can be provided by carrying out heating pressurization and cooling pressurization continuously.

以下、本発明の実施形態に係る接合体製造装置及び接合体製造方法について説明する。   Hereinafter, a bonded body manufacturing apparatus and a bonded body manufacturing method according to an embodiment of the present invention will be described.

本発明の実施形態に係る接合体製造装置は、触媒層と電解質膜との接合体または拡散層と触媒層担持電解質膜との接合体を製造する接合体製造装置であって、触媒層及び拡散層のいずれかである複数の転写層を一面に担持させてなる担持基材と、電解質膜及び触媒層担持電解質膜のいずれかである被転写層からなる基材とを、転写層と被転写層とが接触する状態で加熱及び加圧して、連続的に転写層を基材に転写し接合体を形成する加熱加圧手段と、接合体を連続的に冷却及び加圧する冷却加圧手段と、を有し、加熱加圧手段及び冷却加圧手段は、各転写層に対して面接触または複数線接触する。   A joined body manufacturing apparatus according to an embodiment of the present invention is a joined body manufacturing apparatus that manufactures a joined body of a catalyst layer and an electrolyte membrane or a joined body of a diffusion layer and a catalyst layer-supported electrolyte membrane. A transfer substrate and a substrate to be transferred, each of which includes a substrate having a plurality of transfer layers that are one of the layers supported on one surface, and a substrate having a transfer layer that is one of the electrolyte membrane and the catalyst layer-supported electrolyte membrane. A heating and pressurizing means for continuously transferring and transferring the transfer layer to the substrate to form a joined body, and a cooling and pressurizing means for continuously cooling and pressurizing the joined body. The heating and pressing means and the cooling and pressing means are in surface contact or multiple line contact with each transfer layer.

なお、本明細書において、従来のローラ方式のようにローラと被加熱加圧部材または被冷却加圧部材が線または極狭い幅で接触する場合を「線接触」といい、本実施形態のように加熱加圧部または冷却加圧部の接触部と被加熱加圧部材または被冷却加圧部材とが一定の幅以上で接触する場合を「面接触」と呼ぶ。また、ローラ等による「線接触」を1つの被加熱加圧部材または被冷却加圧部材に対して複数行い、加熱加圧部または冷却加圧部と被加熱加圧部材または被冷却加圧部材とが複数の「線接触」で接触する場合を「複数線接触」と呼ぶ。   In this specification, a case where a roller and a heated pressure member or a cooled pressure member are in contact with each other with a line or an extremely narrow width as in the conventional roller system is referred to as “line contact”, as in this embodiment. The case where the contact portion of the heating / pressurizing unit or the cooling / pressurizing unit and the heated / pressurized member or the cooled / pressurized member contact with each other with a certain width or more is referred to as “surface contact”. Further, a plurality of “line contact” by a roller or the like is performed on one heated pressure member or a cooled pressure member, and the heating pressure member or the cooling pressure member and the heated pressure member or the cooled pressure member are heated. Is called “multiple line contact”.

図1に本発明の実施形態に係る接合体製造装置1の構成の一例を示す。接合体製造装置1は、基材供給ローラ10、担持基材供給ローラ12A,12B、ガイドローラ14A,14B、加熱加圧部16A,16B、冷却加圧部18A,18B、接合体巻取ローラ20、フィルム巻取ローラ22A,22B等を備える。   FIG. 1 shows an example of the configuration of a joined body manufacturing apparatus 1 according to an embodiment of the present invention. The joined body manufacturing apparatus 1 includes a base material supply roller 10, support base material supply rollers 12A and 12B, guide rollers 14A and 14B, heating and pressing units 16A and 16B, cooling and pressing units 18A and 18B, and a joined body winding roller 20. And film take-up rollers 22A and 22B.

接合体製造装置1において、被転写層からなる基材を供給する基材供給ローラ10の上方に、転写層を一面に担持させてなる担持基材を供給する担持基材供給ローラ12Aが、基材供給ローラ10の下方に担持基材供給ローラ12Bが配置されている。基材供給ローラ10の右側には、ガイドローラ14Aが配置され、さらに右側に加熱加圧部16A,16Bが、基材供給ローラ10から供給される基材及び担持基材供給ローラ12A、12Bから供給される担持基材の面に対しそれぞれ上下に基材及び担持基材を挟むように配置されている。さらにその右側には、冷却加圧部18A,18Bが同じく、基材供給ローラ10から供給される基材及び担持基材供給ローラ12A、12Bから供給される担持基材の面に対してそれぞれ上下に基材及び担持基材を挟むように配置されている。冷却加圧部18A,18Bの右側にガイドローラ14B、さらにその右側に得られる接合体を巻き取る接合体巻取ローラ20が配置されている。また、接合体巻取ローラ20の上方に転写層が剥離された担持基材を巻き取るフィルム巻取ローラ22Aが、接合体巻取ローラ20の下方にフィルム巻取ローラ22Bが配置されている。   In the joined body manufacturing apparatus 1, a supporting substrate supply roller 12 </ b> A that supplies a supporting substrate having a transfer layer supported on one surface is provided above a substrate supplying roller 10 that supplies a substrate composed of a transfer layer. A supporting base material supply roller 12 </ b> B is disposed below the material supply roller 10. A guide roller 14A is disposed on the right side of the base material supply roller 10, and further, heating and pressurizing units 16A and 16B are provided on the right side from the base material supplied from the base material supply roller 10 and the supporting base material supply rollers 12A and 12B. It arrange | positions so that a base material and a support base material may be pinched | interposed respectively up and down with respect to the surface of the support base material supplied. Further, on the right side, the cooling and pressurizing portions 18A and 18B are respectively located above and below the surface of the base material supplied from the base material supply roller 10 and the surface of the support base material supplied from the support base material supply rollers 12A and 12B. Between the substrate and the supporting substrate. A guide roller 14B is disposed on the right side of the cooling and pressurizing portions 18A and 18B, and a joined body winding roller 20 for winding the joined body obtained on the right side thereof is disposed. Further, a film take-up roller 22 </ b> A for taking up the carrier substrate from which the transfer layer has been peeled is disposed above the joined body take-up roller 20, and a film take-up roller 22 </ b> B is disposed below the joined body take-up roller 20.

次に、本実施形態に係る接合体製造装置1により接合体が製造される動作について図1に基づいて説明する。基材供給ローラ10は、被転写層からなる基材である電解質膜24を巻き出して供給する。担持基材供給ローラ12Aは、図2に示すような、転写層である燃料極(アノード触媒層)28が担持基材であるフィルム32に一面に担持された触媒層担持フィルム26Aを、担持基材供給ローラ12Bは、転写層である空気極(カソード触媒層)30が担持基材であるフィルム32に一面に担持された触媒層担持フィルム26Bを、それぞれ巻き出して供給する。ガイドローラ14Aを経て位置が合わされた電解質膜24、触媒層担持フィルム26A及び26Bは、加熱加圧部16A及び16Bにより触媒層(転写層)28及び30と電解質膜24(被転写層)とが接触する状態で加熱加圧されて接合される。接合された接合体はその後、冷却加圧部18A及び18Bにより冷却加圧され、ガイドローラ14Bを経て、フィルム巻取ローラ22A,22Bによりそれぞれフィルム32が剥離されて巻き取られ、接合体巻取ローラ20により接合体、すなわち触媒層28及び30がそれぞれ面上に形成された電解質膜24が巻き取られる。   Next, an operation of manufacturing a joined body by the joined body manufacturing apparatus 1 according to the present embodiment will be described with reference to FIG. The base material supply roller 10 unwinds and supplies the electrolyte membrane 24 which is a base material made of a transfer layer. As shown in FIG. 2, the supporting substrate supply roller 12 </ b> A has a catalyst layer supporting film 26 </ b> A in which a fuel electrode (anode catalyst layer) 28 that is a transfer layer is supported on one surface by a film 32 that is a supporting substrate. The material supply roller 12B unwinds and supplies the catalyst layer carrying film 26B, in which the air electrode (cathode catalyst layer) 30 as the transfer layer is carried on one surface of the film 32 as the carrying base. The electrolyte membrane 24 and the catalyst layer supporting films 26A and 26B aligned with each other through the guide roller 14A are divided into catalyst layers (transfer layers) 28 and 30 and an electrolyte membrane 24 (transfer target layer) by the heating and pressurizing portions 16A and 16B. It is heated and pressurized in the contact state and joined. Thereafter, the joined joined body is cooled and pressurized by the cooling and pressurizing portions 18A and 18B, and after passing through the guide roller 14B, the film 32 is peeled off and taken up by the film take-up rollers 22A and 22B, respectively. The joined body, that is, the electrolyte membrane 24 on which the catalyst layers 28 and 30 are formed on the surface is wound up by the roller 20.

このようにして、連続的に、電解質膜24の一方の面に燃料極28、もう一方の面に空気極30が電解質膜24を挟んで対向するように転写され、接合体が形成される。   In this way, the fuel electrode 28 is continuously transferred to one surface of the electrolyte membrane 24 and the air electrode 30 is transferred to the other surface so as to face each other with the electrolyte membrane 24 interposed therebetween, thereby forming a joined body.

加熱加圧部16A,16Bは、図3に示すように金属プレート34、熱伝導性弾性体36、ローラ38、加熱部40等を備える。プレート状の熱伝導性弾性体36を表面に備える金属プレート34の複数個を、1つ以上、好ましくは複数の円筒状、円柱状等のローラ38の外周に沿うように設け、キャタピラ(登録商標、無限軌道)を構成する。ローラ38の内部に備えた加熱部40によりローラ38の表面が加熱され、金属プレート34を通して熱伝導性弾性体36が加熱される。図1及び図3に示すように、キャタピラを構成する熱伝導性弾性体36を表面に備える金属プレート34と、電解質膜24と、触媒層担持フィルム26A及び26Bと、が押圧可能に搬送され、加熱された熱伝導性弾性体36が、触媒層担持フィルム26A及び26Bの各触媒層28及び30に対してフィルム32を介して面接触して各触媒層28及び30の一面を加熱加圧することにより、電解質膜24、触媒層28及び30が接合される。これにより、加熱加圧を各触媒層28及び30の全面に対して均一に行うことができ、接合体の反りを防止することができる。また、キャタピラ方式とすることにより連続的に加熱加圧を行うことができる。   As shown in FIG. 3, the heating and pressing units 16A and 16B include a metal plate 34, a heat conductive elastic body 36, a roller 38, a heating unit 40, and the like. A plurality of metal plates 34 having a plate-like thermally conductive elastic body 36 on the surface thereof are provided along the outer periphery of one or more, preferably a plurality of cylindrical, columnar, etc. rollers 38. , Endless orbit). The surface of the roller 38 is heated by the heating unit 40 provided inside the roller 38, and the heat conductive elastic body 36 is heated through the metal plate 34. As shown in FIGS. 1 and 3, the metal plate 34 having the heat conductive elastic body 36 constituting the caterpillar on the surface, the electrolyte membrane 24, and the catalyst layer supporting films 26A and 26B are conveyed so as to be pressed, The heated thermally conductive elastic body 36 is in surface contact with the catalyst layers 28 and 30 of the catalyst layer supporting films 26A and 26B through the film 32 to heat and press one surface of the catalyst layers 28 and 30. Thus, the electrolyte membrane 24 and the catalyst layers 28 and 30 are joined. Thereby, heating and pressurization can be performed uniformly over the entire surfaces of the catalyst layers 28 and 30, and warpage of the joined body can be prevented. Moreover, it can heat and press continuously by using a caterpillar system.

ガイドローラ14Aは、加熱加圧部16A及び16Bにおけるキャタピラの回転による電解質膜24の搬送速度と同期するよう回転し、加熱加圧部16A及び16Bで加熱加圧される際に電解質膜24に張力が作用しないようにする。こうすることにより、電解質膜24の加熱加圧の際の変形を抑制することができる。   The guide roller 14A rotates to synchronize with the conveying speed of the electrolyte membrane 24 due to the rotation of the caterpillar in the heating and pressurizing units 16A and 16B, and tension is applied to the electrolyte membrane 24 when heated and pressurized by the heating and pressurizing units 16A and 16B. To prevent it from working. By doing so, deformation of the electrolyte membrane 24 during heating and pressing can be suppressed.

加熱加圧部16A及び16Bにおいて、押圧可能に転写層に接触する時の1つの接触部(ここでは1つの熱伝導性弾性体36)の面積は、転写対象である1つの触媒層28及び30の面積以上であればよい。これにより、転写対象である各触媒層28及び30の全面に対して均一に加熱加圧を行うことができる。また、この接触面積は、複数の触媒層28及び30の全面に対して加熱加圧することができる面積以上であれば、さらに生産性を向上することができる。   In the heating and pressurizing portions 16A and 16B, the area of one contact portion (here, one heat conductive elastic body 36) when contacting the transfer layer in a pressable manner is one catalyst layer 28 and 30 to be transferred. As long as it is at least the area. Thereby, it is possible to uniformly heat and press the entire surfaces of the catalyst layers 28 and 30 to be transferred. Moreover, if this contact area is more than the area which can heat-press with respect to the whole surface of the some catalyst layers 28 and 30, productivity can be improved further.

金属プレート34及びローラ38としては、鋼、ステンレス等の熱容量及び熱伝導性の高い金属材料であれば特に制限はない。   The metal plate 34 and the roller 38 are not particularly limited as long as the metal plate 34 and the roller 38 are metal materials having high heat capacity and heat conductivity such as steel and stainless steel.

熱伝導性弾性体36としては、熱容量、熱伝導性及び耐熱性の高い弾性体であれば特に制限はない。また、弾性体の弾性は高すぎても低すぎても均一に熱をかけることができず、接合が十分に行われないので、適度な弾性の弾性体を選択することが好ましい。好ましい弾性体としては、例えば、ポリエチレン等の樹脂、各種天然ゴム、各種合成ゴム、またはそれらを加硫したゴム等を挙げることができる。また、機械的強度、弾性等を調整するために必要に応じてフィラー等を添加してもよい。   The heat conductive elastic body 36 is not particularly limited as long as it is an elastic body having high heat capacity, heat conductivity, and heat resistance. In addition, if the elasticity of the elastic body is too high or too low, heat cannot be applied uniformly and bonding is not sufficiently performed. Therefore, it is preferable to select an elastic body having an appropriate elasticity. Preferred examples of the elastic body include resins such as polyethylene, various natural rubbers, various synthetic rubbers, and rubbers obtained by vulcanizing them. In addition, a filler or the like may be added as necessary to adjust mechanical strength, elasticity, and the like.

加熱部40としては、ローラ38を加熱することができる手段であれば特に制限はないが、各種ヒータ、各種熱媒等を使用することができる。金属プレート34、熱伝導性弾性体36、ローラ38を均一に加熱するために、加熱部40は蒸気、各種オイル等の熱媒を使用することが好ましい。この場合、蒸気、各種オイル等の熱媒は外部より供給することができる。   The heating unit 40 is not particularly limited as long as it can heat the roller 38, but various heaters, various heating media, and the like can be used. In order to uniformly heat the metal plate 34, the heat conductive elastic body 36, and the roller 38, the heating unit 40 preferably uses a heat medium such as steam or various oils. In this case, a heat medium such as steam and various oils can be supplied from the outside.

冷却加圧部18A,18Bは、図4に示すように金属プレート42、熱伝導性弾性体44、ローラ46、冷却部48等を備える。プレート状の熱伝導性弾性体44を表面に備える金属プレート42の複数個を、1つ以上、好ましくは複数の円筒状、円柱状等のローラ46の外周に沿うように設け、キャタピラ(無限軌道)を構成する。ローラ46の内部に備えた冷却部48によりローラ46の表面が冷却され、金属プレート42を通して熱伝導性弾性体44が冷却される。図1及び図4に示すように、キャタピラを構成する熱伝導性弾性体44を表面に備える金属プレート42と、接合体とが押圧可能に搬送され、冷却された熱伝導性弾性体44が各触媒層28及び30に対してフィルム32を介して面接触して各触媒層28及び30の一面を冷却加圧することにより、接合体が冷却される。これにより、冷却加圧を各触媒層28及び30の全面に対して物理的に拘束したまま(圧力をかけたまま)均一に行うことができ、接合体の反りを防止することができる。また、キャタピラ方式とすることにより連続的に冷却加圧を行うことができる。   As shown in FIG. 4, the cooling and pressurizing units 18A and 18B include a metal plate 42, a heat conductive elastic body 44, a roller 46, a cooling unit 48, and the like. A plurality of metal plates 42 having a plate-like thermally conductive elastic body 44 on the surface thereof are provided along the outer periphery of one or more, preferably a plurality of cylindrical, columnar, etc. rollers 46. ). The surface of the roller 46 is cooled by the cooling unit 48 provided inside the roller 46, and the heat conductive elastic body 44 is cooled through the metal plate 42. As shown in FIGS. 1 and 4, the metal plate 42 having the heat conductive elastic body 44 constituting the caterpillar on the surface and the joined body are conveyed so as to be pressed, and each of the cooled heat conductive elastic bodies 44 is cooled. The joined body is cooled by surface-contacting the catalyst layers 28 and 30 via the film 32 and cooling and pressurizing one surface of each of the catalyst layers 28 and 30. Thereby, cooling and pressurization can be performed uniformly while keeping the physical constraints on the entire surfaces of the catalyst layers 28 and 30 (while pressure is applied), and warpage of the joined body can be prevented. Further, the cooling and pressurization can be continuously performed by using the caterpillar system.

また、冷却加圧部18A及び18Bにおいて、押圧可能に接合体に接触する時の1つの接触部(ここでは1つの熱伝導性弾性体44)の面積は、冷却対象である1つの触媒層28及び30の面積以上であればよい。これにより、冷却対象である各触媒層28及び30の全面に対して均一に冷却加圧を行うことができる。また、この接触面積は、複数の触媒層28及び30の全面に対して冷却加圧することができる面積以上であれば、さらに生産性を向上することができる。   Further, in the cooling and pressurizing portions 18A and 18B, the area of one contact portion (here, one heat conductive elastic body 44) when contacting the joined body so as to be pressed is one catalyst layer 28 to be cooled. And an area of 30 or more. Thereby, it is possible to uniformly cool and pressurize the entire surfaces of the catalyst layers 28 and 30 to be cooled. Further, if the contact area is equal to or larger than the area where the entire surface of the plurality of catalyst layers 28 and 30 can be cooled and pressurized, the productivity can be further improved.

金属プレート42、熱伝導性弾性体44、ローラ46としては、加熱加圧部16A及び16Bの金属プレート34、熱伝導性弾性体36、ローラ38とそれぞれ同様のものを用いることができる。   As the metal plate 42, the heat conductive elastic body 44, and the roller 46, the same materials as the metal plate 34, the heat conductive elastic body 36, and the roller 38 of the heating and pressurizing units 16A and 16B can be used.

冷却部48としては、ローラ46を冷却することができる手段であれば特に制限はないが、各種冷却装置、各種冷媒等を使用することができる。金属プレート42、熱伝導性弾性体44、ローラ46を均一に加熱するために、冷却部48としては水;水/アルコール,水/エチレングリコール等の混合水;空気等の冷媒を使用することが好ましい。この場合、水、混合水、空気等の冷媒は外部より供給することができる。   The cooling unit 48 is not particularly limited as long as it can cool the roller 46, but various cooling devices, various refrigerants, and the like can be used. In order to uniformly heat the metal plate 42, the heat conductive elastic body 44, and the roller 46, the cooling unit 48 may use water; mixed water such as water / alcohol or water / ethylene glycol; or a refrigerant such as air. preferable. In this case, refrigerants such as water, mixed water, and air can be supplied from the outside.

電解質膜24としては、プロトン(H)や酸素イオン(O2−)等のイオン伝導性の高い材料であれば特に制限はなく、例えば、固体高分子電解質膜、安定化ジルコニア膜等が挙げられるが、好ましくはパーフルオロスルホン酸系等の固体高分子電解質膜が用いられる。具体的には、ジャパンゴアテックス(株)のゴアセレクト(Goreselect、登録商標)、デュポン社(Du Pont社)のナフィオン(Nafion、登録商標)、旭化成(株)のアシプレックス(Aciplex、登録商標)、旭硝子(株)のフレミオン(Flemion、登録商標)等のパーフルオロスルホン酸系固体高分子電解質膜を使用することができる。電解質膜28の膜厚は例えば、10μm〜200μm、好ましくは30μm〜50μmの範囲である。 The electrolyte membrane 24 is not particularly limited as long as it is a material having high ion conductivity such as proton (H + ) or oxygen ion (O 2− ), and examples thereof include a solid polymer electrolyte membrane and a stabilized zirconia membrane. However, a solid polymer electrolyte membrane such as perfluorosulfonic acid is preferably used. Specifically, Goreselect (registered trademark) of Japan Gore-Tex Corporation, Nafion (registered trademark) of Du Pont (Du Pont), Aciplex (registered trademark) of Asahi Kasei Co., Ltd. Perfluorosulfonic acid solid polymer electrolyte membranes such as Flemion (registered trademark) of Asahi Glass Co., Ltd. can be used. The film thickness of the electrolyte membrane 28 is, for example, in the range of 10 μm to 200 μm, preferably 30 μm to 50 μm.

触媒層担持フィルム26Aを構成する燃料極28としては、例えば、白金(Pt)等をルテニウム(Ru)等の他の金属と共に担持したカーボン等の触媒が用いられる。燃料極28の膜厚は例えば、1μm〜100μm、好ましくは1μm〜20μmの範囲である。   As the fuel electrode 28 constituting the catalyst layer supporting film 26A, for example, a catalyst such as carbon in which platinum (Pt) or the like is supported together with another metal such as ruthenium (Ru) is used. The film thickness of the fuel electrode 28 is, for example, in the range of 1 μm to 100 μm, preferably 1 μm to 20 μm.

触媒層担持フィルム26Bを構成する空気極30としては、例えば、白金(Pt)等を担持したカーボン等の触媒が用いられる。空気極30の膜厚は例えば、1μm〜100μm、好ましくは1μm〜20μmの範囲である。   As the air electrode 30 constituting the catalyst layer carrying film 26B, for example, a catalyst such as carbon carrying platinum (Pt) or the like is used. The film thickness of the air electrode 30 is, for example, 1 μm to 100 μm, preferably 1 μm to 20 μm.

触媒層(燃料極28及び空気極30)は、例えば、スプレー法、印刷法、転写法等により、ポリテトラフルオロエチレン(PTFE)系等の樹脂製のフィルム32の片面又は両面に形成され、それぞれ触媒層担持フィルム26A及び26Bとすることができる。フィルム32の膜厚は例えば、10μm〜1000μm、好ましくは50μm〜200μmの範囲である。   The catalyst layer (fuel electrode 28 and air electrode 30) is formed on one or both sides of a film 32 made of a resin such as polytetrafluoroethylene (PTFE) by, for example, a spray method, a printing method, a transfer method, etc. The catalyst layer supporting films 26A and 26B can be obtained. The film thickness of the film 32 is, for example, in the range of 10 μm to 1000 μm, preferably 50 μm to 200 μm.

上記説明において、電解質膜24の両面に触媒層(燃料極28及び空気極30)を設けて接合体とする例について説明したが、電解質膜24の片面に燃料極28及び空気極30の少なくともいずれかを設けるように本実施形態に係る接合体製造装置1を構成してもよい。   In the above description, the example in which the catalyst layers (the fuel electrode 28 and the air electrode 30) are provided on both surfaces of the electrolyte membrane 24 to form a joined body has been described, but at least one of the fuel electrode 28 and the air electrode 30 on one surface of the electrolyte membrane 24. You may comprise the conjugate | zygote manufacturing apparatus 1 which concerns on this embodiment so that this may be provided.

また、上記説明において、電解質膜24の両面に触媒層(燃料極28及び空気極30)を形成するための製造装置及び製造方法について説明したが、燃料極28及び空気極30の少なくともいずれかが電解質膜24の片面又は両面に形成された触媒層担持電解質膜50の触媒層28及び30上に、拡散層52を形成する場合にも、本実施形態に係る接合体製造装置及び接合体製造方法を使用することができる。   In the above description, the manufacturing apparatus and the manufacturing method for forming the catalyst layers (the fuel electrode 28 and the air electrode 30) on both surfaces of the electrolyte membrane 24 have been described, but at least one of the fuel electrode 28 and the air electrode 30 is present. Even when the diffusion layer 52 is formed on the catalyst layers 28 and 30 of the catalyst layer-supported electrolyte membrane 50 formed on one side or both sides of the electrolyte membrane 24, the joined body manufacturing apparatus and the joined body manufacturing method according to the present embodiment. Can be used.

この場合、図5に示すように、基材供給ローラ10は、被転写層からなる基材である触媒層担持電解質膜50を巻き出して供給する。担持基材供給ローラ12Aは、図2に示すような、転写層である拡散層52Aが担持基材であるフィルム68に一面に担持された拡散層担持フィルム54Aを、担持基材供給ローラ12Bは、転写層である拡散層52Bが担持基材であるフィルム68に一面に担持された拡散層担持フィルム54Bを、それぞれ巻き出して供給する。ガイドローラ14Aを経て位置が合わされた触媒層担持電解質膜50、拡散層担持フィルム54A及び54Bは、加熱加圧部16A及び16Bにより拡散層(転写層)52A及び52Bと触媒層担持電解質膜50(被転写層)とが接触する状態で加熱加圧されて接合される。接合された接合体はその後、冷却加圧部18A及び18Bにより冷却加圧され、ガイドローラ14Bを経て、フィルム巻取ローラ22A,22Bによりそれぞれフィルム68が剥離されて巻き取られ、接合体巻取ローラ20により接合体、すなわち燃料極28及び空気極30の上に拡散層52がそれぞれ形成された電解質膜が巻き取られる。   In this case, as shown in FIG. 5, the base material supply roller 10 unwinds and supplies the catalyst layer-supported electrolyte membrane 50 that is a base material made of the transfer layer. As shown in FIG. 2, the supporting substrate supply roller 12A is a diffusion layer supporting film 54A in which a diffusion layer 52A as a transfer layer is supported on a film 68 as a supporting substrate. Then, the diffusion layer carrying film 54B, in which the diffusion layer 52B as the transfer layer is carried on one surface of the film 68 as the carrying substrate, is unwound and supplied. The catalyst layer-supporting electrolyte membrane 50 and the diffusion layer-supporting films 54A and 54B, which are aligned via the guide roller 14A, are diffused (transfer layers) 52A and 52B and the catalyst layer-supporting electrolyte membrane 50 (by the heating and pressurizing portions 16A and 16B. The layer to be transferred) is heated and pressed in contact with the layer to be transferred. Thereafter, the joined joined body is cooled and pressurized by the cooling and pressurizing portions 18A and 18B, and after passing through the guide roller 14B, the film 68 is peeled off and taken up by the film take-up rollers 22A and 22B, respectively. The electrolyte membrane in which the diffusion layer 52 is formed on the joined body, that is, the fuel electrode 28 and the air electrode 30 is wound up by the roller 20.

このようにして、連続的に、電解質膜24の一方の面の燃料極28の上、及びもう一方の面の空気極30の上に、拡散層52が電解質膜24を挟んで対向するように転写され、接合体が形成される。   In this way, the diffusion layer 52 continuously faces the fuel electrode 28 on one surface of the electrolyte membrane 24 and the air electrode 30 on the other surface with the electrolyte membrane 24 interposed therebetween. Transferred to form a joined body.

この場合に使用される触媒層担持電解質膜50は、本実施形態に係る接合体製造装置及び接合体製造方法により製造されたものであってもよいし、本実施形態に係る接合体製造方法以外のスプレー法、印刷法、転写法等により電解質膜24上に触媒層28及び30が形成されたものであってもよい。   The catalyst layer-supported electrolyte membrane 50 used in this case may be manufactured by the bonded body manufacturing apparatus and the bonded body manufacturing method according to the present embodiment, or other than the bonded body manufacturing method according to the present embodiment. The catalyst layers 28 and 30 may be formed on the electrolyte membrane 24 by the spray method, the printing method, the transfer method, or the like.

また、拡散層52としては、導電性が高く、燃料及び空気等の原料の拡散性が高い材料であれば特に制限はないが、多孔質導電体材料であることが好ましい。導電性の高い材料としては、例えば、金属板、金属フィルム、導電性高分子、カーボン材料等が挙げられ、カーボンクロス、ガラス状カーボン等のカーボン材料が好ましく、カーボンクロス等の多孔質カーボン材料であることがより好ましい。拡散層52の膜厚は例えば、100μm〜1000μm、好ましくは200μm〜600μmの範囲である。   The diffusion layer 52 is not particularly limited as long as it is a material having high conductivity and high diffusibility of raw materials such as fuel and air, but is preferably a porous conductor material. Examples of the highly conductive material include a metal plate, a metal film, a conductive polymer, a carbon material, and the like. Carbon materials such as carbon cloth and glassy carbon are preferable, and porous carbon materials such as carbon cloth are preferable. More preferably. The film thickness of the diffusion layer 52 is, for example, in the range of 100 μm to 1000 μm, preferably 200 μm to 600 μm.

加熱加圧部16A及び16Bにおける加熱温度は、熱伝導性弾性体36の表面温度で表され、使用する燃料極28及び空気極30の触媒材料の種類や、使用する電解質膜24の種類及びガラス転移温度、拡散層52の材料の種類等に応じて決めればよく特に制限はないが、例えば100℃〜300℃の範囲で設定され、電解質膜24がパーフルオロスルホン酸系等の固体高分子電解質膜の場合、通常は80℃〜120℃の範囲に設定される。   The heating temperature in the heating and pressurizing parts 16A and 16B is represented by the surface temperature of the heat conductive elastic body 36, the kind of the catalyst material of the fuel electrode 28 and the air electrode 30 to be used, the kind of the electrolyte membrane 24 to be used, and the glass. There is no particular limitation as long as it is determined according to the transition temperature, the type of material of the diffusion layer 52, etc., but it is set in the range of, for example, 100 ° C. to 300 ° C., and the electrolyte membrane 24 is a solid polymer electrolyte such as perfluorosulfonic acid. In the case of a film, it is usually set in the range of 80 ° C to 120 ° C.

なお、加熱加圧部16A及び16Bにおける加熱温度は同じであっても異なっていてもよく、使用する燃料極28及び空気極30の触媒材料の種類等に応じて決めればよい。   The heating temperatures in the heating and pressurizing sections 16A and 16B may be the same or different, and may be determined according to the types of catalyst materials for the fuel electrode 28 and the air electrode 30 to be used.

加熱加圧部16A及び16Bならびに冷却加圧部18A及び18Bにおいて熱伝導性弾性体36間に作用させる圧力は、使用する燃料極28及び空気極30の触媒材料の種類や、電解質膜24の種類、拡散層52の材料の種類等に応じて設定すればよく、通常、0.1MPa〜10MPaの範囲内に調整されるが、これに限定されるものではない。加圧は、加圧装置(図示せず)により作用させる。また、加熱加圧部16A及び16Bと、冷却加圧部18A及び18Bとで、異なる圧力としてもよい。   The pressure applied between the heat conductive elastic bodies 36 in the heating and pressurizing units 16A and 16B and the cooling and pressurizing units 18A and 18B depends on the type of the catalyst material of the fuel electrode 28 and the air electrode 30 to be used and the type of the electrolyte membrane 24. It may be set according to the type of material of the diffusion layer 52, etc., and is usually adjusted within the range of 0.1 MPa to 10 MPa, but is not limited thereto. The pressurization is applied by a pressurizer (not shown). Moreover, it is good also as a different pressure by the heating pressurization parts 16A and 16B and the cooling pressurization parts 18A and 18B.

冷却加圧部18A及び18Bにおける冷却温度は、熱伝導性弾性体36の表面温度で表され、使用する燃料極28及び空気極30の触媒材料の種類や、使用する電解質膜24の種類及びガラス転移温度、拡散層52の材料の種類等に応じて決めればよく特に制限はないが、例えば10℃〜30℃の範囲で設定され、電解質膜24がパーフルオロスルホン酸系等の固体高分子電解質膜の場合、通常は20℃〜25℃の範囲に設定される。   The cooling temperature in the cooling and pressurizing portions 18A and 18B is represented by the surface temperature of the heat conductive elastic body 36, the kind of the catalyst material of the fuel electrode 28 and the air electrode 30 to be used, the kind of the electrolyte membrane 24 to be used, and the glass. There is no particular limitation as long as it is determined according to the transition temperature, the type of material of the diffusion layer 52, and the like, but it is set in the range of, for example, 10 ° C to 30 ° C, and the electrolyte membrane 24 is a solid polymer electrolyte such as perfluorosulfonic acid. In the case of a film, it is usually set in the range of 20 ° C to 25 ° C.

なお、冷却加圧部18A及び18Bの冷却温度は同じであっても異なっていてもよく、使用する燃料極28及び空気極30の触媒材料の種類等に応じて決めればよい。   The cooling temperatures of the cooling and pressurizing sections 18A and 18B may be the same or different, and may be determined according to the type of the catalyst material of the fuel electrode 28 and the air electrode 30 to be used.

また、電解質膜24または触媒層担持電解質膜50の上に触媒層28,30または拡散層52を形成する前に、予備加熱手段(図示せず)によって電解質膜24または触媒層担持電解質膜50を予備加熱してもよい。予備加熱することによって、触媒層28,30と電解質膜24との結着強度または触媒層担持電解質膜50と拡散層52との結着強度が高くなり、触媒層28,30または拡散層52が電解質膜24または触媒層担持電解質膜50から剥離することを抑制することができる。   Further, before forming the catalyst layers 28, 30 or the diffusion layer 52 on the electrolyte membrane 24 or the catalyst layer-supported electrolyte membrane 50, the electrolyte membrane 24 or the catalyst layer-supported electrolyte membrane 50 is formed by preheating means (not shown). You may preheat. By preheating, the binding strength between the catalyst layers 28 and 30 and the electrolyte membrane 24 or the binding strength between the catalyst layer-supporting electrolyte membrane 50 and the diffusion layer 52 is increased, so that the catalyst layers 28 and 30 or the diffusion layer 52 Separation from the electrolyte membrane 24 or the catalyst layer-supported electrolyte membrane 50 can be suppressed.

また、電解質膜24及び触媒層担持フィルム26、または触媒層担持電解質膜50及び拡散層担持フィルム54の搬送速度;加熱加圧部16A及び16Bならびに冷却加圧部18A及び18Bにおける接触部(ここでは熱伝導性弾性体36,44)の接触面積;加熱加圧部16及び冷却加圧部18における加熱温度または冷却温度;はそれぞれ相互に最適な条件とすることにより、接合体の反りの抑制、または生産性の向上を達成することができる。   Further, the conveying speed of the electrolyte membrane 24 and the catalyst layer carrying film 26, or the catalyst layer carrying electrolyte membrane 50 and the diffusion layer carrying film 54; the contact portions (here, the heating and pressing portions 16A and 16B and the cooling and pressing portions 18A and 18B) The contact area of the heat conductive elastic bodies 36, 44); the heating temperature or the cooling temperature in the heating / pressurizing unit 16 and the cooling / pressurizing unit 18; Alternatively, improvement in productivity can be achieved.

例えば、接合体の反りを抑制するためには、加熱加圧部16A及び16Bにおける加熱温度を低くして、搬送速度を遅くすることが好ましい。また、生産性を向上させるためには、加熱加圧部16A及び16Bにおける加熱温度を高くして、搬送速度を早くすること、さらに接触面積を大きくすることが好ましい。   For example, in order to suppress warpage of the joined body, it is preferable to lower the heating temperature in the heating and pressurizing units 16A and 16B and to reduce the conveyance speed. In order to improve productivity, it is preferable to increase the heating temperature in the heating and pressurizing units 16A and 16B to increase the conveyance speed and to further increase the contact area.

本実施形態に係る接合体製造装置1において、加熱加圧部16A及び16Bならびに冷却加圧部18A及び18Bは、上記構成の他にも次のような構成とすることができる。   In the joined body manufacturing apparatus 1 according to the present embodiment, the heating and pressurizing units 16A and 16B and the cooling and pressurizing units 18A and 18B can have the following configuration in addition to the above configuration.

図6は、本発明の実施形態に係る接合体製造装置1の構成の別の例を示す図である。加熱加圧部16A及び16Bは、図6に示すように弾性体ベルト56、ローラ38、加熱部40等を備える。1つ以上、好ましくは複数のローラ38により無端の弾性体ベルト56が保持されている。ローラ38の内部に備えた加熱部40によりローラ38の表面が加熱され、弾性体ベルト56が加熱される。キャタピラを構成する無端の弾性体ベルト56と、電解質膜24と、触媒層担持フィルム26A及び26Bと、が押圧可能に搬送され、加熱された弾性体ベルト56が触媒層担持フィルム26A及び26Bの各触媒層28及び30に対してフィルム32を介して面接触して各触媒層28及び30の一面を加熱加圧することにより、電解質膜24と触媒層28及び30とが接合される。これにより、加熱加圧を各触媒層28及び30の全面に対して均一に行うことができ、接合体の反りを防止することができる。また、ベルト方式とすることにより連続的に加熱加圧を行うことができる。   FIG. 6 is a diagram illustrating another example of the configuration of the joined body manufacturing apparatus 1 according to the embodiment of the present invention. The heating and pressing units 16A and 16B include an elastic belt 56, a roller 38, a heating unit 40, and the like as shown in FIG. An endless elastic belt 56 is held by one or more, preferably a plurality of rollers 38. The surface of the roller 38 is heated by the heating unit 40 provided inside the roller 38, and the elastic belt 56 is heated. The endless elastic belt 56 constituting the caterpillar, the electrolyte membrane 24, and the catalyst layer supporting films 26A and 26B are conveyed in a pressable manner, and the heated elastic belt 56 is heated to each of the catalyst layer supporting films 26A and 26B. The electrolyte membrane 24 and the catalyst layers 28 and 30 are joined by surface-contacting the catalyst layers 28 and 30 via the film 32 and heating and pressurizing one surface of each catalyst layer 28 and 30. Thereby, heating and pressurization can be performed uniformly over the entire surfaces of the catalyst layers 28 and 30, and warpage of the joined body can be prevented. Moreover, it can heat and press continuously by using a belt system.

同様に、冷却加圧部18A及び18Bは、図6に示すように弾性体ベルト58、ローラ46、冷却部48等を備える。1つ以上、好ましくは複数のローラ46により弾性体ベルト58が保持されている。ローラ46の内部に備えた冷却部48によりローラ46の表面が冷却され、弾性体ベルト58が冷却される。キャタピラを構成する無端の弾性体ベルト58と、接合体とが押圧可能に搬送され、冷却された弾性体ベルト58が触媒層28及び30に対してフィルム32を介して面接触して各触媒層28及び30の一面を冷却加圧することにより、接合体が冷却される。これにより、冷却加圧を各触媒層28及び30の全面に対して均一に行うことができ、接合体の反りを防止することができる。また、ベルト方式とすることにより連続的に冷却加圧を行うことができる。   Similarly, the cooling and pressurizing units 18A and 18B include an elastic belt 58, a roller 46, a cooling unit 48 and the like as shown in FIG. The elastic belt 58 is held by one or more, preferably a plurality of rollers 46. The surface of the roller 46 is cooled by the cooling unit 48 provided inside the roller 46, and the elastic belt 58 is cooled. The endless elastic body belt 58 constituting the caterpillar and the joined body are conveyed so as to be pressed, and the cooled elastic body belt 58 comes into surface contact with the catalyst layers 28 and 30 via the film 32 to each catalyst layer. By cooling and pressurizing one surface of 28 and 30, the joined body is cooled. Thereby, cooling and pressurization can be performed uniformly over the entire surfaces of the catalyst layers 28 and 30, and warpage of the joined body can be prevented. In addition, the cooling and pressurization can be continuously performed by using the belt system.

弾性体ベルト58としては、熱伝導性弾性体36と同様の材質のものを用いることができる。弾性体ベルト58を使用することにより、図3,図4のような金属プレート34,42、熱伝導性弾性体36,44、ローラ38,46の組み合わせを使用する場合に比べて、回転時の振動が少ない等の回転安定性に優れる場合がある。   As the elastic belt 58, a material similar to that of the heat conductive elastic body 36 can be used. By using the elastic belt 58, compared to the case of using a combination of the metal plates 34, 42, the heat conductive elastic bodies 36, 44, and the rollers 38, 46 as shown in FIGS. There may be excellent rotational stability such as low vibration.

また、弾性体ベルト56を保持する複数のローラ38間の距離、及び弾性体ベルト58を保持する複数のローラ46間の距離としては、弾性体ベルト56,58がたわまないようにそれぞれ適切な距離をとることが好ましい。   The distance between the plurality of rollers 38 that hold the elastic belt 56 and the distance between the plurality of rollers 46 that hold the elastic belt 58 are appropriate so that the elastic belts 56 and 58 do not bend. It is preferable to take a long distance.

図7は、本発明の実施形態に係る接合体製造装置1の構成の別の例を示す図である。加熱加圧部16A及び16Bは、図7に示すように大型変形弾性体ローラ60、加熱部40等を備える。大型変形弾性体ローラ60の表面が、加熱部40により加熱される。電解質膜24と、触媒層担持フィルム26A及び26Bと、が押圧可能に搬送され、加熱された大型変形弾性体ローラ60が加圧手段(図示せず)により加圧変形され、触媒層担持フィルム26A及び26Bの各触媒層28及び30に対してフィルム32を介して面接触して各触媒層28及び30の一面を加熱加圧することにより、電解質膜24と触媒層28及び30とが接合される。これにより、加熱加圧を各触媒層28及び30の全面に対して均一に行うことができ、接合体の反りを防止することができる。また、大型変形弾性体ローラ方式とすることにより連続的に加熱加圧を行うことができる。   FIG. 7 is a diagram illustrating another example of the configuration of the joined body manufacturing apparatus 1 according to the embodiment of the present invention. The heating and pressing units 16A and 16B include a large deformation elastic body roller 60, a heating unit 40 and the like as shown in FIG. The surface of the large deformation elastic body roller 60 is heated by the heating unit 40. The electrolyte membrane 24 and the catalyst layer supporting films 26A and 26B are conveyed so as to be pressable, and the heated large deformation elastic body roller 60 is pressure deformed by a pressurizing means (not shown), and the catalyst layer supporting film 26A. And the electrolyte membrane 24 and the catalyst layers 28 and 30 are joined by surface-contacting each catalyst layer 28 and 30 of 26B and 26B through the film 32, and heating and pressurizing one surface of each catalyst layer 28 and 30. . Thereby, heating and pressurization can be performed uniformly over the entire surfaces of the catalyst layers 28 and 30, and warpage of the joined body can be prevented. Moreover, it can heat-press continuously by using a large deformation elastic body roller system.

同様に、冷却加圧部18A及び18Bは、図7に示すように大型変形弾性体ローラ62、冷却部48等を備える。大型変形弾性体ローラ62の表面が、冷却部48により冷却される。接合体が押圧可能に搬送され、冷却された大型変形弾性体ローラ62が加圧手段(図示せず)により加圧変形され、触媒層28及び30に対してフィルム32を介して面接触して各触媒層28及び30の一面を冷却加圧することにより、接合体が冷却される。これにより、冷却加圧を各触媒層28及び30の全面に対して均一に行うことができ、接合体の反りを防止することができる。また、大型変形弾性体ローラ方式とすることにより連続的に冷却加圧を行うことができる。   Similarly, the cooling and pressurizing units 18A and 18B include a large deformation elastic body roller 62, a cooling unit 48 and the like as shown in FIG. The surface of the large deformation elastic body roller 62 is cooled by the cooling unit 48. The joined body is conveyed so as to be pressed, and the cooled large deformable elastic body roller 62 is pressurized and deformed by a pressurizing means (not shown), and is brought into surface contact with the catalyst layers 28 and 30 via the film 32. The joined body is cooled by cooling and pressurizing one surface of each of the catalyst layers 28 and 30. Thereby, cooling and pressurization can be performed uniformly over the entire surfaces of the catalyst layers 28 and 30, and warpage of the joined body can be prevented. Further, the cooling and pressurization can be continuously performed by adopting a large deformation elastic body roller system.

大型変形弾性体ローラ62としては、熱伝導性弾性体36と同様の材質のものを用いることができる。大型変形弾性体ローラ62を使用することにより、図3,図4のような金属プレート34,42、熱伝導性弾性体36,44、ローラ38,46の組み合わせを使用する場合に比べて、回転時の振動が少ない等の回転安定性に優れる場合がある。   As the large deformation elastic body roller 62, the same material as the heat conductive elastic body 36 can be used. By using the large deformation elastic body roller 62, the rotation can be performed as compared with the case of using the combination of the metal plates 34 and 42, the heat conductive elastic bodies 36 and 44, and the rollers 38 and 46 as shown in FIGS. It may be excellent in rotational stability such as little vibration at the time.

図8は、本発明の実施形態に係る接合体製造装置1の構成の別の例を示す図である。加熱加圧部16A及び16Bは、図8に示すように複数の小型金属ローラ64、加熱部40等を備える。複数の小型金属ローラ64の表面が、加熱部40により加熱される。電解質膜24と、触媒層担持フィルム26A及び26Bと、が押圧可能に搬送され、加熱された複数の小型金属ローラ64が触媒層担持フィルム26A及び26Bの各触媒層28及び30に対してフィルム32を介して複数線接触して各触媒層28及び30の一面を加熱加圧することにより、電解質膜24と触媒層28及び30とが接合される。これにより、加熱加圧を触媒層28及び30の全面に対して均一に行うことができ、接合体の反りを防止することができる。また、複数の小型ローラ方式とすることにより連続的に加熱加圧を行うことができる。   FIG. 8 is a diagram illustrating another example of the configuration of the joined body manufacturing apparatus 1 according to the embodiment of the present invention. The heating and pressing units 16A and 16B include a plurality of small metal rollers 64, the heating unit 40, and the like as shown in FIG. The surfaces of the plurality of small metal rollers 64 are heated by the heating unit 40. The electrolyte membrane 24 and the catalyst layer supporting films 26A and 26B are conveyed so as to be pressed, and a plurality of heated small metal rollers 64 are applied to the film 32 on the catalyst layers 28 and 30 of the catalyst layer supporting films 26A and 26B. The electrolyte membrane 24 and the catalyst layers 28 and 30 are joined by heating and pressurizing one surface of each of the catalyst layers 28 and 30 through contact with a plurality of wires. Thereby, heating and pressurization can be performed uniformly over the entire surfaces of the catalyst layers 28 and 30, and warpage of the joined body can be prevented. Moreover, it can heat and press continuously by using a plurality of small roller systems.

同様に、冷却加圧部18A及び18Bは、図8に示すように複数の小型金属ローラ66、冷却部48等を備える。複数の小型金属ローラ66の表面が、冷却部48により冷却される。接合体が押圧可能に搬送され、冷却された複数の小型金属ローラ66が触媒層28及び30に対してフィルム32を介して複数線接触して各触媒層28及び30の一面を冷却加圧することにより、接合体が冷却される。これにより、冷却加圧を各触媒層28及び30の全面に対して均一に行うことができ、接合体の反りを防止することができる。また、複数の小型ローラ方式とすることにより連続的に冷却加圧を行うことができる。   Similarly, the cooling pressurization units 18A and 18B include a plurality of small metal rollers 66, a cooling unit 48, and the like as shown in FIG. The surfaces of the plurality of small metal rollers 66 are cooled by the cooling unit 48. A plurality of small metal rollers 66 that are conveyed so that the bonded body can be pressed and are cooled are in contact with the catalyst layers 28 and 30 through a plurality of lines through the film 32 to cool and press one surface of each catalyst layer 28 and 30. Thus, the joined body is cooled. Thereby, cooling and pressurization can be performed uniformly over the entire surfaces of the catalyst layers 28 and 30, and warpage of the joined body can be prevented. Further, the cooling and pressurization can be continuously performed by using a plurality of small roller systems.

小型金属ローラ66としては、金属プレート34及びローラ38と同様の材質の金属材料を用いることができるが複数線接触であるため、面接触に近づけるために、小型金属ローラ66の径を小さくして、設置数を増やすことが好ましい。また、小型金属ローラ66の接触面の表面を熱伝導性弾性体36と同様の材質の弾性体で被覆してもかまわない。   As the small metal roller 66, a metal material similar to that of the metal plate 34 and the roller 38 can be used. However, since it is a multi-line contact, the diameter of the small metal roller 66 is reduced in order to approach the surface contact. It is preferable to increase the number of installations. Further, the surface of the contact surface of the small metal roller 66 may be covered with an elastic body made of the same material as the heat conductive elastic body 36.

なお、上記説明において、図1及び図6〜図8のように、加熱加圧部16A及び16Bの加熱加圧方式と、冷却加圧部18A及び18Bの冷却方式とが同じ方式である例について説明したが、加熱加圧部16A及び16Bの加熱加圧方式と、冷却加圧部18A及び18Bの冷却方式とが異なる方式であってもよい。   In the above description, as shown in FIG. 1 and FIGS. 6 to 8, an example in which the heating and pressurizing method of the heating and pressurizing units 16A and 16B and the cooling method of the cooling and pressurizing units 18A and 18B are the same method. As described above, the heating / pressurizing method of the heating / pressurizing units 16A and 16B may be different from the cooling method of the cooling / pressurizing units 18A and 18B.

また、図6〜図8に示す実施形態においても、電解質膜24の両面に触媒層(燃料極28及び空気極30)を設けて接合体とする例について説明したが、電解質膜24の片面に燃料極28及び空気極30の少なくともいずれかを設けるように接合体製造装置1を構成してもよい。   In the embodiment shown in FIGS. 6 to 8, the example in which the catalyst layers (the fuel electrode 28 and the air electrode 30) are provided on both surfaces of the electrolyte membrane 24 to form a joined body has been described. The joined body manufacturing apparatus 1 may be configured to provide at least one of the fuel electrode 28 and the air electrode 30.

また、図6〜図8に示す実施形態においても、電解質膜24の両面に触媒層(燃料極28及び空気極30)を形成するための製造装置及び製造方法について説明したが、燃料極28及び空気極30の少なくともいずれかが電解質膜24の片面又は両面に形成された触媒層担持電解質膜50の触媒層28及び30上に拡散層52を形成する場合にも本実施形態に係る接合体製造装置及び接合体製造方法を使用することができる。   In the embodiment shown in FIGS. 6 to 8, the manufacturing apparatus and the manufacturing method for forming the catalyst layers (the fuel electrode 28 and the air electrode 30) on both surfaces of the electrolyte membrane 24 have been described. Even when the diffusion layer 52 is formed on the catalyst layers 28 and 30 of the catalyst layer-supported electrolyte membrane 50 in which at least one of the air electrodes 30 is formed on one side or both sides of the electrolyte membrane 24, the joined body according to this embodiment is manufactured. Apparatus and assembly manufacturing methods can be used.

また、これらの実施形態において、加熱加圧部16A及び16Bならびに冷却加圧部18及び18における押圧可能に転写層あるいは接合体に接触する時の接触部の接触面積(ここでは弾性体ベルト56,58の接触面積、及び大型変形弾性体ローラ60,62が加圧変形され接触したときの接触面積)は、転写対象あるいは冷却対象である1つの触媒層28及び30あるいは拡散層52の面積以上であればよい。また、複数の小型ローラ方式の場合は、複数の小型ローラが転写対象である1つの触媒層28及び30あるいは1つの拡散層52の一面以上に対して複数線接触すればよい。これにより、転写対象あるいは冷却対象である触媒層28及び30あるいは拡散層52に対して均一に加熱加圧及び冷却加圧を行うことができる。また、前記接触面積は、生産性を向上させるために、複数の触媒層28及び30あるいは拡散層52が接触することができる面積であることが好ましい。   Further, in these embodiments, the contact area of the contact portion when contacting the transfer layer or the joined body so as to be pressable in the heating and pressurizing portions 16A and 16B and the cooling and pressurizing portions 18 and 18 (here, the elastic belt 56, 58 and the contact area when the large deformation elastic body rollers 60 and 62 are pressure-deformed and contacted are equal to or larger than the area of one catalyst layer 28 and 30 or the diffusion layer 52 to be transferred or cooled. I just need it. In the case of a plurality of small roller systems, a plurality of small rollers may be in contact with one or more surfaces of one catalyst layer 28 and 30 or one diffusion layer 52 to be transferred. As a result, it is possible to uniformly apply heat and pressure to the catalyst layers 28 and 30 or the diffusion layer 52 to be transferred or cooled. The contact area is preferably an area where the plurality of catalyst layers 28 and 30 or the diffusion layer 52 can come into contact with each other in order to improve productivity.

このようにして製造された接合体を、例えば、原料供給用の通路を設けたセパレータで挟み、燃料極28及び空気極30より外部負荷に接続する外部端子を設けて電池を構成して、水素ガス及び空気等を供給して運転すれば、外部端子より電気を取り出すことができる。   The joined body manufactured in this way is sandwiched between, for example, separators provided with raw material supply passages, and an external terminal connected to an external load from the fuel electrode 28 and the air electrode 30 is provided to constitute a battery. If operation is performed by supplying gas, air, etc., electricity can be taken out from the external terminal.

燃料極28側に供給する原料としては、水素やメタン等の還元性ガス(燃料ガス)あるいはメタノール等の液体燃料等が挙げられる。空気極30側に供給する原料としては、酸素や空気等の酸化性ガス等が挙げられる。   Examples of the raw material supplied to the fuel electrode 28 include reducing gas (fuel gas) such as hydrogen and methane, or liquid fuel such as methanol. Examples of the raw material supplied to the air electrode 30 include oxidizing gases such as oxygen and air.

例えば、燃料極28の供給する原料を水素ガス、空気極30に供給する原料を空気とした場合、燃料極28において、
2H → 4H+4e
で示される反応式を経て、水素ガス(H)から水素イオン(H)と電子(e)とが発生する。電子(e)は外部端子から外部回路を通じて空気極30に到達する。空気極30において、供給される空気中の酸素(O)と、電解質膜24を通過した水素イオン(H)と、外部回路を通じて空気極30に到達した電子(e)により、
4H+O+4e → 2H
で示される反応式を経て、水が生成する。このように燃料極28及び空気極30において化学反応が起こり、電荷が発生して電池として機能することになる。そして、一連の反応において排出される成分は水であるので、クリーンな電池が構成されることになる。
For example, when the raw material supplied to the fuel electrode 28 is hydrogen gas and the raw material supplied to the air electrode 30 is air,
2H 2 → 4H + + 4e
Through the reaction formula shown below, hydrogen ions (H + ) and electrons (e ) are generated from hydrogen gas (H 2 ). The electrons (e ) reach the air electrode 30 from the external terminal through the external circuit. In the air electrode 30, oxygen (O 2 ) in the supplied air, hydrogen ions (H + ) that have passed through the electrolyte membrane 24, and electrons (e ) that have reached the air electrode 30 through an external circuit,
4H + + O 2 + 4e → 2H 2 O
Water is produced through the reaction formula shown below. In this way, a chemical reaction occurs in the fuel electrode 28 and the air electrode 30, and charges are generated to function as a battery. And since the component discharged | emitted in a series of reaction is water, a clean battery is comprised.

従来の熱間プレスによる方法では、加熱加圧停止後に物理的に拘束せずに自然放冷する過程で接合体の反りが生じる場合があった。また、熱間ローラによる転写では、触媒層担持フィルム等及び電解質膜等と熱間ローラとの接触が線接触であり、触媒層担持フィルム等及び電解質膜等全体に均一に熱が与えられないため、電解質膜、その上下の触媒層の3層、あるいは触媒層担持電解質膜及びその上下の拡散層の3層の弾性係数がぞれぞれ異なるため伸びに差異が生じる。さらに、加熱加圧後の冷却ローラによる冷却では、触媒層担持フィルム等及び電解質膜等と冷却ローラとの接触が線接触であり、触媒層担持フィルム等及び電解質膜等全体が均一に冷却されず、また触媒層全体を物理的に拘束せずに冷却されるため、各層の弾性係数の違いにより加熱時に伸びた各層が冷却により縮むときの縮む量が異なり、接合体の反りが生じる場合があった。   In the conventional hot pressing method, the bonded body may be warped in the process of naturally cooling without being physically constrained after stopping the heating and pressing. In addition, in the transfer by the hot roller, the contact between the catalyst layer-carrying film and the electrolyte membrane and the hot roller is a line contact, and heat is not uniformly applied to the entire catalyst layer-carrying film and the electrolyte membrane. The elastic modulus of the electrolyte membrane and the three layers of the upper and lower catalyst layers, or the three layers of the catalyst layer-supporting electrolyte membrane and the upper and lower diffusion layers thereof are different, resulting in a difference in elongation. Furthermore, in the cooling by the cooling roller after heating and pressing, the contact between the catalyst layer supporting film and the electrolyte membrane and the cooling roller is a line contact, and the entire catalyst layer supporting film and the electrolyte membrane and the like are not cooled uniformly. Also, since the entire catalyst layer is cooled without being physically constrained, the amount of shrinkage when each layer stretched during heating is shrunk due to cooling differs due to the difference in elastic modulus of each layer, which may cause warping of the joined body. It was.

しかし、本実施形態に係る接合体製造装置1及び接合体製造方法により、触媒層担持フィルム26を用いた触媒層28及び30の電解質膜24への加熱加圧による転写、あるいは拡散層担持フィルム54を用いた拡散層52の触媒層担持電解質膜50への加熱加圧による転写等において、各触媒層または各拡散層の一面に対して面接触または複数線接触して加熱加圧及び冷却加圧することにより、加熱加圧及び冷却加圧を触媒層28及び30あるいは拡散層52の全面に対して均一に行うことができ、また触媒層28及び30あるいは拡散層52の面全体を物理的に拘束して冷却することができるため、得られる接合体の反りの発生を防止することができる。本実施形態に係る接合体製造装置1及び接合体製造方法によれば、図9に示すような接合体の反りの大きさXは、例えば、従来の熱間ローラ法で製造した場合の5mm〜30mmに比べて、1mm以下に抑制することができる。これにより、例えば、燃料電池における発電性能等の特性をより向上させることができ、また信頼性を向上させることができる。   However, the bonded body manufacturing apparatus 1 and the bonded body manufacturing method according to the present embodiment transfer the catalyst layers 28 and 30 to the electrolyte membrane 24 using the catalyst layer supporting film 26 by heating or pressing, or the diffusion layer supporting film 54. In the transfer or the like of the diffusion layer 52 to the catalyst layer-supported electrolyte membrane 50 using heat, the surface of the catalyst layer or one surface of the diffusion layer is contacted with the surface or a plurality of lines to perform heating and pressure and cooling. Thus, heating and pressure can be uniformly applied to the entire surfaces of the catalyst layers 28 and 30 or the diffusion layer 52, and the entire surfaces of the catalyst layers 28 and 30 or the diffusion layer 52 are physically constrained. Therefore, it is possible to prevent warpage of the obtained bonded body. According to the joined body manufacturing apparatus 1 and the joined body manufacturing method according to the present embodiment, the warped magnitude X of the joined body as shown in FIG. 9 is, for example, 5 mm to 5 mm when manufactured by the conventional hot roller method. Compared to 30 mm, it can be suppressed to 1 mm or less. Thereby, for example, characteristics such as power generation performance in the fuel cell can be further improved, and reliability can be improved.

また、従来の熱間プレス法では、プレスした状態で冷却すれば反りを防止することは可能であったが、1枚ずつプレスした状態で放冷するために、連続生産には不向きであった。本実施形態に係る接合体製造装置及び接合体製造方法によれば、従来の熱間プレス法に比べて連続生産が可能であるために製造時間を短縮することができ、得られる接合体の反りの発生を防止することができる上に生産性を向上することができる。   In addition, in the conventional hot pressing method, it was possible to prevent warping by cooling in the pressed state, but it was not suitable for continuous production because it was allowed to cool in the pressed state one by one. . According to the joined body manufacturing apparatus and the joined body manufacturing method according to the present embodiment, the production time can be reduced because continuous production is possible as compared with the conventional hot press method, and warpage of the obtained joined body. Can be prevented, and productivity can be improved.

本発明の実施形態に係る接合体製造装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the conjugate | zygote manufacturing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る触媒担持フィルムの構成の一例を示す図である。It is a figure which shows an example of a structure of the catalyst support film which concerns on embodiment of this invention. 本発明の実施形態に係る加熱加圧部の構成の一例を示す図である。It is a figure which shows an example of a structure of the heating-pressing part which concerns on embodiment of this invention. 本発明の実施形態に係る冷却加圧部の構成の一例を示す図である。It is a figure which shows an example of a structure of the cooling pressurization part which concerns on embodiment of this invention. 本発明の実施形態に係る接合体製造装置の使用方法の別の例を示す図である。It is a figure which shows another example of the usage method of the conjugate | zygote manufacturing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る接合体製造装置の構成の別の例を示す図である。It is a figure which shows another example of a structure of the conjugate | zygote manufacturing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る接合体製造装置の構成の別の例を示す図である。It is a figure which shows another example of a structure of the conjugate | zygote manufacturing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る接合体製造装置の構成の別の例を示す図である。It is a figure which shows another example of a structure of the conjugate | zygote manufacturing apparatus which concerns on embodiment of this invention. 本発明の実施形態において、接合体の反りの様子を示す図である。In embodiment of this invention, it is a figure which shows the mode of the curvature of a conjugate | zygote.

符号の説明Explanation of symbols

1 接合体製造装置、10 基材供給ローラ、12A,12B 担持基材供給ローラ、14A,14B ガイドローラ、16A,16B 加熱加圧部、18A,18B 冷却加圧部、20 接合体巻取ローラ、22A,22B フィルム巻取ローラ、24 電解質膜、26A,26B 触媒層担持フィルム、28 燃料極(アノード触媒層)、30 空気極(カソード触媒層)、32,68 フィルム、34,42 金属プレート、36,44 熱伝導性弾性体、38,46 ローラ、40 加熱部、48 冷却部、50 触媒層担持電解質膜、52A,52B 拡散層、54A,54B 拡散層担持フィルム、56,58 弾性体ベルト、60,62 大型変形弾性体ローラ、64,66 小型金属ローラ。
DESCRIPTION OF SYMBOLS 1 zygote manufacturing apparatus, 10 base material supply roller, 12A, 12B carrying base material supply roller, 14A, 14B guide roller, 16A, 16B heating pressurization part, 18A, 18B cooling pressurization part, 20 joined body winding roller, 22A, 22B film winding roller, 24 electrolyte membrane, 26A, 26B catalyst layer carrying film, 28 fuel electrode (anode catalyst layer), 30 air electrode (cathode catalyst layer), 32, 68 film, 34, 42 metal plate, 36 , 44 Thermal conductive elastic body, 38, 46 roller, 40 heating section, 48 cooling section, 50 catalyst layer carrying electrolyte membrane, 52A, 52B diffusion layer, 54A, 54B diffusion layer carrying film, 56, 58 elastic belt, 60 , 62 Large deformation elastic body roller, 64, 66 Small metal roller.

Claims (9)

触媒層と電解質膜との接合体または拡散層と触媒層担持電解質膜との接合体を製造する接合体製造装置であって、
前記触媒層及び前記拡散層のいずれかである複数の転写層を一面に担持させてなる担持基材と、前記電解質膜及び前記触媒層担持電解質膜のいずれかである被転写層からなる基材とを、前記転写層と前記被転写層とが接触する状態で加熱及び加圧して、連続的に前記転写層を前記基材に転写し接合体を形成する加熱加圧手段と、
前記接合体を連続的に冷却及び加圧する冷却加圧手段と、
を有し、
前記加熱加圧手段及び冷却加圧手段は、各前記転写層に対して面接触または複数線接触することを特徴とする接合体製造装置。
A joined body manufacturing apparatus for manufacturing a joined body of a catalyst layer and an electrolyte membrane or a joined body of a diffusion layer and a catalyst layer-supported electrolyte membrane,
A support substrate formed by supporting a plurality of transfer layers, which are either the catalyst layer or the diffusion layer, on one surface, and a substrate formed of a transfer layer, which is either the electrolyte membrane or the catalyst layer-supported electrolyte membrane And heating and pressurizing means for continuously transferring and transferring the transfer layer to the substrate to form a joined body in a state where the transfer layer and the transferred layer are in contact with each other,
Cooling and pressurizing means for continuously cooling and pressurizing the joined body;
Have
The joined body manufacturing apparatus, wherein the heating / pressurizing unit and the cooling / pressurizing unit are in surface contact or multiple line contact with each of the transfer layers.
請求項1に記載の接合体製造装置であって、
前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは熱伝導性弾性体を含んでなり、前記熱伝導性弾性体が面接触または複数線接触することを特徴とする接合体製造装置。
The joined body manufacturing apparatus according to claim 1,
At least one of the heating and pressing unit and the cooling and pressing unit includes a heat conductive elastic body, and the heat conductive elastic body is in surface contact or multiple line contact.
請求項1に記載の接合体製造装置であって、
前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは金属材料を含んでなり、前記金属材料が面接触または複数線接触することを特徴とする接合体製造装置。
The joined body manufacturing apparatus according to claim 1,
At least one of the heating and pressing unit and the cooling and pressing unit includes a metal material, and the metal material is in surface contact or multiple line contact.
請求項1〜3のいずれか1項に記載の接合体製造装置であって、
前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは、無限軌道方式であることを特徴とする接合体製造装置。
The joined body manufacturing apparatus according to any one of claims 1 to 3,
At least one of the heating and pressing unit and the cooling and pressing unit is an endless track system.
請求項1〜3のいずれか1項に記載の接合体製造装置であって、
前記加熱加圧手段及び冷却加圧手段の少なくともいずれかは複数のローラを含んでなり、前記複数のローラが複数線接触することを特徴とする接合体製造装置。
The joined body manufacturing apparatus according to any one of claims 1 to 3,
At least one of the heating and pressing unit and the cooling and pressing unit includes a plurality of rollers, and the plurality of rollers are in contact with each other by a plurality of lines.
請求項2に記載の接合体製造装置であって、
前記熱伝導性弾性体からなるプレートが面接触することを特徴とする接合体製造装置。
The joined body manufacturing apparatus according to claim 2,
The joined body manufacturing apparatus, wherein the plate made of the heat conductive elastic body is in surface contact.
請求項2に記載の接合体製造装置であって、
前記熱伝導性弾性体からなるベルトが面接触することを特徴とする接合体製造装置。
The joined body manufacturing apparatus according to claim 2,
A joined body manufacturing apparatus in which a belt made of the heat conductive elastic body is in surface contact.
請求項2に記載の接合体製造装置であって、
前記熱伝導性弾性体を加圧変形させて面接触することを特徴とする接合体製造装置。
The joined body manufacturing apparatus according to claim 2,
An apparatus for manufacturing a joined body, wherein the thermal conductive elastic body is subjected to pressure deformation and brought into surface contact.
触媒層と電解質膜との接合体または拡散層と触媒層担持電解質膜との接合体を製造する接合体製造方法であって、
前記触媒層及び前記拡散層のいずれかである複数の転写層を一面に担持させてなる担持基材と、前記電解質膜及び前記触媒層担持電解質膜のいずれかである被転写層からなる基材とを、前記転写層と前記被転写層とが接触する状態で加熱及び加圧して、連続的に前記転写層を前記基材に転写し接合体を形成する加熱加圧工程と、
前記接合体を連続的に冷却及び加圧する冷却加圧工程と、
を含み、
前記加熱加圧工程及び冷却加圧工程において、前記加熱及び加圧ならびに前記冷却及び加圧は、各前記転写層に対して面接触または複数線接触により行われることを特徴とする接合体製造方法。
A joined body production method for producing a joined body of a catalyst layer and an electrolyte membrane or a joined body of a diffusion layer and a catalyst layer-supported electrolyte membrane,
A support substrate formed by supporting a plurality of transfer layers, which are either the catalyst layer or the diffusion layer, on one surface, and a substrate formed of a transfer layer, which is either the electrolyte membrane or the catalyst layer-supported electrolyte membrane Heating and pressing in a state where the transfer layer and the transfer target layer are in contact with each other, and continuously transferring the transfer layer to the substrate to form a joined body,
A cooling and pressurizing step of continuously cooling and pressurizing the joined body;
Including
In the heating and pressing step and the cooling and pressing step, the heating and pressing, and the cooling and pressing are performed by surface contact or multi-line contact with respect to each transfer layer. .
JP2004319724A 2004-11-02 2004-11-02 Manufacturing device and manufacturing method of junction Pending JP2006134611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319724A JP2006134611A (en) 2004-11-02 2004-11-02 Manufacturing device and manufacturing method of junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319724A JP2006134611A (en) 2004-11-02 2004-11-02 Manufacturing device and manufacturing method of junction

Publications (1)

Publication Number Publication Date
JP2006134611A true JP2006134611A (en) 2006-05-25

Family

ID=36727964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319724A Pending JP2006134611A (en) 2004-11-02 2004-11-02 Manufacturing device and manufacturing method of junction

Country Status (1)

Country Link
JP (1) JP2006134611A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152993A1 (en) * 2007-06-13 2008-12-18 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus and method for fuel cell electrode material junction, and fuel cell
JP2009018949A (en) * 2007-07-10 2009-01-29 Fujikura Ltd Glass preform drawing apparatus
JP2009026772A (en) * 2008-10-20 2009-02-05 Toyota Motor Corp Manufacturing device and method of electrode-material assembly for fuel cell, electrode-material assembly for fuel cell and fuel cell
JP2009038040A (en) * 2008-10-20 2009-02-19 Toyota Motor Corp Manufacturing apparatus and manufacturing method of membrane electrode gas diffusion layer assembly for fuel cell, membrane electrode gas diffusion layer assembly for fuel cell, and fuel cell
JP2010073639A (en) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd Manufacturing method for membrane-electrode assembly
WO2011111419A1 (en) * 2010-03-08 2011-09-15 凸版印刷株式会社 Apparatus for manufacturing membrane electrode assembly, and method for manufacturing membrane electrode assembly
US8168025B2 (en) 2006-04-21 2012-05-01 Bdf Ip Holdings Ltd. Methods of making components for electrochemical cells
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
JP2012216379A (en) * 2011-03-31 2012-11-08 Eneos Celltech Co Ltd Manufacturing method of membrane electrode assembly, and manufacturing apparatus of membrane electrode assembly
US8790847B2 (en) 2006-11-23 2014-07-29 Technical University Of Denmark Method for the manufacture of reversible solid oxide cells
US9263758B2 (en) 2005-08-31 2016-02-16 Technical University Of Denmark Reversible solid oxide fuel cell stack and method for preparing same
JP2017037759A (en) * 2015-08-07 2017-02-16 日産自動車株式会社 Method for producing electrode sheet
WO2017086304A1 (en) * 2015-11-19 2017-05-26 東レ株式会社 Method and device for manufacturing assembly that includes polymer electrolyte membrane
JP2017117786A (en) * 2015-12-21 2017-06-29 東レ株式会社 Assembly manufacturing method and manufacturing device
CN111883786A (en) * 2020-08-31 2020-11-03 上海亿氢科技有限公司 Device and method for preparing membrane electrode CCM (continuous charge coupled device) by pattern format continuous transfer printing
DE102019118111A1 (en) * 2019-07-04 2021-01-07 Bayerische Motoren Werke Aktiengesellschaft Method of making an electrode
US10903479B2 (en) 2018-08-24 2021-01-26 Lg Chem, Ltd. Apparatus for manufacturing electrode or solid electrolyte for all-solid-state battery
US11108069B2 (en) 2016-09-30 2021-08-31 Kolon Industries, Inc. Method for manufacturing membrane electrode assembly including transferring electrode layer to electrolyte membrane by gas pressure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637931A (en) * 1986-06-30 1988-01-13 Meiko Denshi Kogyo Kk Overlay laminating apparatus
JPH0386546A (en) * 1989-08-30 1991-04-11 Yutaka Fujimoto Belt type pressure forming machine for laminated plate
JPH1064574A (en) * 1996-08-26 1998-03-06 Fuji Electric Co Ltd Manufacture of solid high polymer electrolyte type fuel cell
JPH1145729A (en) * 1997-07-25 1999-02-16 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell
JP2000182632A (en) * 1998-12-11 2000-06-30 Toshiba Corp Manufacture of electrode for solid polymer electrolyte fuel cell
JP2003257438A (en) * 2002-03-05 2003-09-12 Toyota Motor Corp Roll press device for catalyst layer transfer
JP2004528696A (en) * 2001-05-03 2004-09-16 バラード パワー システムズ インコーポレイティド Double belt bonding process and apparatus for manufacturing membrane electrode assemblies

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637931A (en) * 1986-06-30 1988-01-13 Meiko Denshi Kogyo Kk Overlay laminating apparatus
JPH0386546A (en) * 1989-08-30 1991-04-11 Yutaka Fujimoto Belt type pressure forming machine for laminated plate
JPH1064574A (en) * 1996-08-26 1998-03-06 Fuji Electric Co Ltd Manufacture of solid high polymer electrolyte type fuel cell
JPH1145729A (en) * 1997-07-25 1999-02-16 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell
JP2000182632A (en) * 1998-12-11 2000-06-30 Toshiba Corp Manufacture of electrode for solid polymer electrolyte fuel cell
JP2004528696A (en) * 2001-05-03 2004-09-16 バラード パワー システムズ インコーポレイティド Double belt bonding process and apparatus for manufacturing membrane electrode assemblies
JP2003257438A (en) * 2002-03-05 2003-09-12 Toyota Motor Corp Roll press device for catalyst layer transfer

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
US9263758B2 (en) 2005-08-31 2016-02-16 Technical University Of Denmark Reversible solid oxide fuel cell stack and method for preparing same
US8168025B2 (en) 2006-04-21 2012-05-01 Bdf Ip Holdings Ltd. Methods of making components for electrochemical cells
US8790847B2 (en) 2006-11-23 2014-07-29 Technical University Of Denmark Method for the manufacture of reversible solid oxide cells
JP2008311012A (en) * 2007-06-13 2008-12-25 Toyota Motor Corp Manufacturing device of electrode material junction for fuel cell, manufacturing method thereof, and fuel cell
WO2008152993A1 (en) * 2007-06-13 2008-12-18 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus and method for fuel cell electrode material junction, and fuel cell
JP2009018949A (en) * 2007-07-10 2009-01-29 Fujikura Ltd Glass preform drawing apparatus
JP2010073639A (en) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd Manufacturing method for membrane-electrode assembly
JP2009026772A (en) * 2008-10-20 2009-02-05 Toyota Motor Corp Manufacturing device and method of electrode-material assembly for fuel cell, electrode-material assembly for fuel cell and fuel cell
JP2009038040A (en) * 2008-10-20 2009-02-19 Toyota Motor Corp Manufacturing apparatus and manufacturing method of membrane electrode gas diffusion layer assembly for fuel cell, membrane electrode gas diffusion layer assembly for fuel cell, and fuel cell
CN102823041B (en) * 2010-03-08 2016-05-18 凸版印刷株式会社 The manufacture method of membrane electrode assembly manufacturing installation and membrane electrode assembly
CN102823041A (en) * 2010-03-08 2012-12-12 凸版印刷株式会社 Apparatus for manufacturing membrane electrode assembly, and method for manufacturing membrane electrode assembly
JP5751248B2 (en) * 2010-03-08 2015-07-22 凸版印刷株式会社 Membrane-electrode assembly manufacturing apparatus and method of manufacturing membrane-electrode assembly
WO2011111419A1 (en) * 2010-03-08 2011-09-15 凸版印刷株式会社 Apparatus for manufacturing membrane electrode assembly, and method for manufacturing membrane electrode assembly
JP2012216379A (en) * 2011-03-31 2012-11-08 Eneos Celltech Co Ltd Manufacturing method of membrane electrode assembly, and manufacturing apparatus of membrane electrode assembly
JP2017037759A (en) * 2015-08-07 2017-02-16 日産自動車株式会社 Method for producing electrode sheet
KR20180084731A (en) 2015-11-19 2018-07-25 도레이 카부시키가이샤 METHOD AND APPARATUS FOR MANUFACTURING JOINT CONTAINING POLYMER ELECTROLYTE MEMBRANE
CN108292760A (en) * 2015-11-19 2018-07-17 东丽株式会社 Include the manufacturing method and manufacturing device of the conjugant of polyelectrolyte membrane
WO2017086304A1 (en) * 2015-11-19 2017-05-26 東レ株式会社 Method and device for manufacturing assembly that includes polymer electrolyte membrane
US20180290441A1 (en) * 2015-11-19 2018-10-11 Toray Industries, Inc. Method and device for manufacturing assembly that includes polymer electrolyte membrane
TWI715673B (en) * 2015-11-19 2021-01-11 日商東麗股份有限公司 Manufacturing method and manufacturing device of joined body containing polymer electrolyte membrane
CN108292760B (en) * 2015-11-19 2021-09-10 东丽株式会社 Method and apparatus for producing joined body comprising polymer electrolyte membrane
KR102658614B1 (en) * 2015-11-19 2024-04-19 도레이 카부시키가이샤 Manufacturing method and manufacturing device for a conjugate containing a polymer electrolyte membrane
JP2017117786A (en) * 2015-12-21 2017-06-29 東レ株式会社 Assembly manufacturing method and manufacturing device
US11108069B2 (en) 2016-09-30 2021-08-31 Kolon Industries, Inc. Method for manufacturing membrane electrode assembly including transferring electrode layer to electrolyte membrane by gas pressure
US10903479B2 (en) 2018-08-24 2021-01-26 Lg Chem, Ltd. Apparatus for manufacturing electrode or solid electrolyte for all-solid-state battery
DE102019118111A1 (en) * 2019-07-04 2021-01-07 Bayerische Motoren Werke Aktiengesellschaft Method of making an electrode
CN111883786A (en) * 2020-08-31 2020-11-03 上海亿氢科技有限公司 Device and method for preparing membrane electrode CCM (continuous charge coupled device) by pattern format continuous transfer printing

Similar Documents

Publication Publication Date Title
KR101479627B1 (en) Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
JP2006134611A (en) Manufacturing device and manufacturing method of junction
US7732083B2 (en) Gas diffusion layer incorporating a gasket
KR101072829B1 (en) Method and system of preparing Membrane-electrode assembly of fuel cell
EP1766713A1 (en) Lamination process for manufacture of integrated membrane-electrode-assemblies
KR101072828B1 (en) Membrane-electrode assembly of fuel cell and fuel cell
JP2007103020A (en) Catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, and manufacturing method of them
JP4812331B2 (en) Manufacturing method for fuel cell assembly and manufacturing apparatus for fuel cell assembly
JP2009026493A (en) Membrane-electrode assembly and its manufacturing method
JP5849418B2 (en) Manufacturing method of membrane electrode assembly
JP2006339022A (en) Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP2004119065A (en) Manufacturing method of membrane electrode jointed assembly of solid polymer fuel cell
JP2007265733A (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, and manufacturing method of them
JP2012074315A (en) Membrane electrode assembly of solid polymer fuel cell, and manufacturing method of the same
JP4810841B2 (en) Method and apparatus for producing electrolyte membrane-catalyst layer assembly for polymer electrolyte fuel cell
JP2003303599A (en) Method of manufacturing electrolyte membrane/ electrode joint body for fuel cell
JP2010003470A (en) Fuel cell
JP2009004384A (en) Manufacturing method of membrane electrode assembly of polymer electrolyte fuel cell
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
JP5262893B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP2013109950A (en) Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP2002134134A (en) Solid polymer electrolyte membrane and fuel cell using the same
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP2005209402A (en) Manufacturing method of membrane-electrode assembly of solid polymer fuel cell
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601