[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006131433A - Method of producing silicon carbide single crystal - Google Patents

Method of producing silicon carbide single crystal Download PDF

Info

Publication number
JP2006131433A
JP2006131433A JP2004319136A JP2004319136A JP2006131433A JP 2006131433 A JP2006131433 A JP 2006131433A JP 2004319136 A JP2004319136 A JP 2004319136A JP 2004319136 A JP2004319136 A JP 2004319136A JP 2006131433 A JP2006131433 A JP 2006131433A
Authority
JP
Japan
Prior art keywords
melt
single crystal
seed
sic single
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004319136A
Other languages
Japanese (ja)
Other versions
JP4736401B2 (en
Inventor
Kazuhiko Kusunoki
一彦 楠
Masanari Yashiro
将斉 矢代
Kazuto Kamei
一人 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004319136A priority Critical patent/JP4736401B2/en
Publication of JP2006131433A publication Critical patent/JP2006131433A/en
Application granted granted Critical
Publication of JP4736401B2 publication Critical patent/JP4736401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fulfill both suppressing occurrence of polycrystal SiC and promoting growth of SiC single crystal having high quality onto the seed crystal in a method of growing SiC single crystal by a solution growth method. <P>SOLUTION: The in-plane temperature difference of the free surface of a molten liquid 1 within a crucible 2 in which Si and C and further Ti and Mn as the case may be are included and SiC is dissolved is allowed to be 40°C or lower by arranging a thermally insulating structure 20 into the free space above the molten liquid within the crucible 2 when growing a SiC single crystal layer onto a seed crystal 4 by immersing the seed crystal 4 that is composed of a SiC single crystal supported on a seed shaft 3 capable of ascending or descending into the molten liquid 1. Upon thermally insulating at least a part of the side surface of the seed shaft and/or upon enhancing heat release by forced-cooling at least a part of the seed shaft, the crystal growing speed is further increased. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光デバイスや電子デバイスの材料として好適な、炭化珪素の良質な単結晶の製造方法に関し、特に溶液成長法により良質な炭化珪素単結晶を安定して製造することができる方法に関する。   The present invention relates to a method for producing a high-quality silicon carbide single crystal suitable as a material for an optical device or an electronic device, and more particularly to a method capable of stably producing a high-quality silicon carbide single crystal by a solution growth method.

炭化珪素 (SiC) は、熱的及び化学的に安定な化合物半導体の1種であり、シリコン (Si) に比べて、バンドギャップが約3倍、絶縁破壊電圧が約10倍、電子飽和速度が約2倍、熱伝導率が約3倍大きいという、Siより有利な物性上の特徴を有している。このような優れた特性から、SiCは、Siデバイスの物理的な限界を打破するパワーデバイスや、高温で動作する耐環境デバイス、といった電子デバイス材料としての応用が期待されている。   Silicon carbide (SiC) is one of the thermally and chemically stable compound semiconductors. Compared to silicon (Si), the band gap is about 3 times, the breakdown voltage is about 10 times, and the electron saturation rate is about. It has characteristics that are more advantageous than Si, about twice as much and about three times as large in thermal conductivity. Due to such excellent characteristics, SiC is expected to be applied as an electronic device material such as a power device that breaks the physical limits of Si devices and an environment-resistant device that operates at high temperatures.

一方、光デバイスにおいては短波長化を目指した窒化物系材料 (GaN、AlN) の開発が行われている。SiCは、窒化物系材料に対する格子不整合が他の化合物半導体材料に比べて格段に小さいので、窒化物系材料のエピタキシャル成長用の基板材料としても注目されている。   On the other hand, for optical devices, nitride-based materials (GaN, AlN) aiming at shorter wavelengths are being developed. SiC is attracting attention as a substrate material for epitaxial growth of nitride-based materials, since the lattice mismatch with respect to nitride-based materials is much smaller than other compound semiconductor materials.

しかし、SiCは結晶多形 (ポリタイプ) を呈する物質としても有名である。結晶多形とは、化学量論的には同じ組成でありながら原子の積層様式がC軸方向にのみ異なる多くの結晶構造を取りうる現象である。SiCの代表的な結晶多形としては、6H型 (6分子を1周期とする六方晶系)、4H型 (4分子を1周期とする六方晶系)、3C型 (3分子を1周期とする立方晶系)などがある。2種以上の結晶形の混在はデバイスへの応用上好ましくない。   However, SiC is also famous as a substance exhibiting a crystalline polymorph (polytype). Crystal polymorphism is a phenomenon that can take many crystal structures in which the stacking mode of atoms differs only in the C-axis direction while having the same stoichiometric composition. Typical crystal polymorphs of SiC are 6H type (hexagonal system with 6 molecules as one period), 4H type (hexagonal system with 4 molecules as 1 period), and 3C type (3 molecules as 1 period). Cubic system). Mixing two or more crystal forms is not preferable for application to a device.

SiCを電子デバイスや光デバイスに応用するには、結晶形が単一で (結晶多形の混在がなく)、かつ欠陥が皆無または非常に少ない、SiCの良質のバルク単結晶または薄膜単結晶が必要となる。   In order to apply SiC to electronic devices and optical devices, high-quality bulk single crystals or thin film single crystals of SiC that have a single crystal form (no intermingling of crystal polymorphs) and no or very few defects are available. Necessary.

従来より知られているSiCの製造方法として、気相成長に属する昇華法および化学気相成長(CVD法)と、液相成長である溶液成長法とが挙げられる。
昇華法では、原料のSiC粉末を2200〜2500℃の高温で昇華させ、低温部に配置したSiC単結晶からなる種(シード)結晶上にSiCの単結晶を再結晶化させる。
Conventionally known methods for producing SiC include a sublimation method and chemical vapor deposition (CVD method) that belong to vapor phase growth, and a solution growth method that is liquid phase growth.
In the sublimation method, a raw material SiC powder is sublimated at a high temperature of 2200 to 2500 ° C., and a SiC single crystal is recrystallized on a seed crystal composed of a SiC single crystal arranged in a low temperature part.

CVD法では、原料としてシラン系ガスと炭化水素系ガスとを用い、シリコンまたはSiC単結晶からなる基板上にSiC単結晶をエピタキシャル成長させる。
溶液成長法では、シリコンまたはシリコン合金の融液中にカーボンを溶解させて、該融液中にSiCが溶解している溶液を調製する。この融液状態のSiC溶液にSiC種結晶を浸漬し、少なくとも種結晶近傍の溶液を過冷却状態にすることによってSiCの過飽和状態を作り出し、SiC単結晶を種結晶上に成長させる。
In the CVD method, a silane-based gas and a hydrocarbon-based gas are used as raw materials, and a SiC single crystal is epitaxially grown on a substrate made of silicon or a SiC single crystal.
In the solution growth method, carbon is dissolved in a silicon or silicon alloy melt to prepare a solution in which SiC is dissolved in the melt. An SiC seed crystal is immersed in this melted SiC solution, and at least a solution in the vicinity of the seed crystal is brought into a supercooled state to create a supersaturated state of SiC, and an SiC single crystal is grown on the seed crystal.

溶液成長法には、融液(SiC溶液)に種結晶近傍の融液温度が他の部分の融液温度より低温になるように温度勾配を設ける、いわゆる温度差法 (種結晶近傍の溶液だけが過飽和となる)と、種結晶を漬けた融液全体を冷却によりSiCの過飽和溶液とする、いわゆる徐冷法とがある。徐冷法はバッチ式であるため、薄膜の単結晶を得る方法として好ましく、一方、バルク単結晶を得るには連続成長である前者の温度差法が好ましい。   In the solution growth method, a so-called temperature difference method (only the solution in the vicinity of the seed crystal is provided) is provided with a temperature gradient in the melt (SiC solution) so that the melt temperature in the vicinity of the seed crystal is lower than the melt temperature in other parts. Is supersaturated), there is a so-called slow cooling method in which the entire melt immersed in the seed crystal is cooled to form a supersaturated solution of SiC. Since the slow cooling method is a batch method, it is preferable as a method for obtaining a single crystal of a thin film. On the other hand, the former temperature difference method which is continuous growth is preferred for obtaining a bulk single crystal.

昇華法では大型のバルク結晶を得られやすいことから、現在、SiCの単結晶ウエーハの工業的な生産は昇華法によって行われている。しかし、昇華法により成長させたSiC単結晶では、マイクロパイプ欠陥と呼ばれる中空貫通欠陥やらせん転位、積層欠陥などの結晶欠陥が生じやすく、結晶の品質に問題がある。   Since it is easy to obtain large bulk crystals by the sublimation method, industrial production of SiC single crystal wafers is currently performed by the sublimation method. However, SiC single crystals grown by the sublimation method tend to cause crystal defects such as hollow through defects, screw dislocations, and stacking faults, which are called micropipe defects, and have a problem in crystal quality.

CVD法は、比較的成長速度が遅いことから、主に薄膜のSiC結晶の成長に利用されている。薄膜のSiC単結晶は基板の影響を受けるが、主に昇華法で作製されるSiC基板の品質に問題があるため、薄膜の高品質化には制約がある。   Since the CVD method has a relatively slow growth rate, it is mainly used for the growth of thin-film SiC crystals. Although the thin film SiC single crystal is affected by the substrate, there is a problem in improving the quality of the thin film because there is a problem in the quality of the SiC substrate manufactured mainly by the sublimation method.

液相成長である溶液成長法では、熱的平衡状態に近い状態で結晶成長が起こるために、気相成長に比べて格段に結晶性の良好な (異なる結晶形の混入がない) 単結晶を得ることができる。SiC溶液の溶媒としては、前述したように、Siの融液またはSi合金の融液が用いられる。   In the solution growth method, which is liquid phase growth, crystal growth occurs in a state close to thermal equilibrium, so a single crystal with significantly better crystallinity (no mixing of different crystal forms) is formed compared to vapor phase growth. Obtainable. As described above, as the solvent for the SiC solution, a Si melt or a Si alloy melt is used.

しかし、溶液成長法では、炭化珪素の成長界面の温度より低温になる部分が溶液内に存在すると、そこで多結晶SiC結晶が発生し、SiC単結晶の成長を阻害する。このような多結晶の発生は、溶質であるSiCが種結晶以外の場所で消費されることを意味し、単結晶の成長速度を遅くするのみならず、単結晶の結晶性にも悪影響を生ずる。   However, in the solution growth method, if a portion having a temperature lower than the temperature of the growth interface of silicon carbide exists in the solution, a polycrystalline SiC crystal is generated there and inhibits the growth of the SiC single crystal. Such polycrystal generation means that SiC as a solute is consumed in a place other than the seed crystal, which not only slows the growth rate of the single crystal but also adversely affects the crystallinity of the single crystal. .

この問題に対して、特開平7−172998号公報には、融液の上方に設置した加熱手段により融液面の温度を調整しながら、融液面に接触させた種結晶にSiC単結晶を成長させることが開示されている。   In order to solve this problem, Japanese Patent Application Laid-Open No. 7-172998 discloses that a SiC single crystal is applied to a seed crystal brought into contact with a melt surface while adjusting the temperature of the melt surface by a heating means installed above the melt. It is disclosed to grow.

しかし、この公報に開示された技術では、種結晶も同時に均熱加熱されてしまうため、肝心な種結晶上での結晶成長が抑制され、種結晶上へのSiC単結晶の成長がほとんど進行せず、インゴット形状の単結晶を得ることが困難になることが確かめられた。
特開平7−172998号公報
However, in the technique disclosed in this publication, since the seed crystal is heated at the same time, crystal growth on the important seed crystal is suppressed, and the growth of the SiC single crystal on the seed crystal hardly proceeds. It was confirmed that it was difficult to obtain an ingot-shaped single crystal.
JP-A-7-172998

本発明は、高品質なSiC単結晶を安定して製造するための技術を開発することを課題とする。具体的には、SiとCと場合によりさらに1種類以上の金属とを含み、SiCが溶解している融液に、種結晶となるSiC単結晶を浸漬し、このSiC種結晶上に新たなSiC単結晶層を成長させることからなる溶液成長法によるSiC単結晶の成長方法において、多結晶SiCの生成抑制と種結晶上への高品質結晶の成長促進とを両立させ、高品質なSiC単結晶を実用に十分な成長速度で安定して製造するための方法と、それに用いる結晶成長装置とを提供することが本発明の課題である。   An object of the present invention is to develop a technique for stably producing a high-quality SiC single crystal. Specifically, a SiC single crystal serving as a seed crystal is immersed in a melt containing Si and C and optionally one or more kinds of metals, and SiC is dissolved, and a new crystal is formed on the SiC seed crystal. In a method for growing a SiC single crystal by a solution growth method comprising growing a SiC single crystal layer, a high-quality SiC single crystal is achieved by simultaneously suppressing the generation of polycrystalline SiC and promoting the growth of a high-quality crystal on a seed crystal. It is an object of the present invention to provide a method for stably producing a crystal at a growth rate sufficient for practical use and a crystal growth apparatus used therefor.

本発明は、坩堝に収容された、SiとCまたはSiとCと1種類以上の金属Mとを含む、SiCが融解している融液に、昇降可能なシード軸に保持されたSiC単結晶からなる種結晶を浸漬し、この種結晶上にSiC単結晶層を成長させるSiC単結晶の製造方法において、坩堝内の融液上の自由空間に断熱性構造物を配置した状態でSiC単結晶層を成長させることを特徴とするSiC単結晶の製造方法である。   The present invention relates to a SiC single crystal held on a seed shaft that can be moved up and down in a melt containing SiC and containing Si and C or Si and C and one or more kinds of metal M, which is contained in a crucible. In a method for producing a SiC single crystal in which a seed crystal consisting of the above is immersed and a SiC single crystal layer is grown on the seed crystal, the SiC single crystal is placed in a free space above the melt in the crucible with a heat insulating structure disposed. A method for producing a SiC single crystal, comprising growing a layer.

上記方法において、断熱性構造物は坩堝内の融液上の自由空間を実質的に閉鎖するように配置することが好ましく、さらに好ましくは、融液自由表面の面内温度差が40℃以下となるようにする。融液がSiとCと金属Mとを含む場合、金属MはTiまたはMnであることが好ましい。   In the above method, the heat insulating structure is preferably arranged so as to substantially close the free space on the melt in the crucible, and more preferably, the in-plane temperature difference on the free surface of the melt is 40 ° C. or less. To be. When the melt contains Si, C, and metal M, the metal M is preferably Ti or Mn.

別の面からは、本発明は、SiCが溶解した融液を収容する坩堝、前記融液を加熱する手段、および前記融液への種結晶の浸漬と引き上げを行うための、先端に種結晶を保持することができる昇降可能なシード軸を備えた、SiC単結晶の製造装置において、坩堝内の融液上の自由空間に配置可能な断熱性構造物をさらに備えることを特徴とするSiC単結晶の製造装置である。   From another aspect, the present invention provides a crucible for storing a melt in which SiC is dissolved, a means for heating the melt, and a seed crystal at the tip for immersing and pulling the seed crystal into the melt. A SiC single crystal manufacturing apparatus comprising a seed shaft that can be moved up and down, and further comprising a heat insulating structure that can be placed in a free space above the melt in the crucible. This is a crystal manufacturing apparatus.

上記方法および装置において、前記シード軸の側面の少なくとも一部が断熱されているか、および/または前記シード軸の少なくとも一部が冷却されるようにすることが好ましい。   In the above method and apparatus, it is preferable that at least a part of a side surface of the seed shaft is insulated and / or at least a part of the seed shaft is cooled.

本発明において、坩堝内の融液上の「自由空間」とは、坩堝内の融液上の空間のうち、シード軸ならびにその下端に存在するSiC結晶 (種結晶およびその上に新たに成長した結晶層) が占める空間を除いた部分を意味する。融液自由表面とは、気体と融液の境界面を指し、SiC単結晶層の成長域は含まれない。融液自由表面の面内温度差とは、融液自由表面の水平方向の温度差を意味する。また、自由空間を「実質的に閉鎖する」とは、一般に回転させるシード軸の回転や断熱性構造物の坩堝への挿入が可能となる最小限の隙間を残して坩堝内部の自由空間を閉鎖することを意味している。   In the present invention, the “free space” on the melt in the crucible refers to the SiC crystal (seed crystal and newly grown on the seed axis) at the lower end of the seed axis in the space on the melt in the crucible. It means the part excluding the space occupied by the crystal layer. The melt free surface refers to the interface between the gas and the melt, and does not include the growth region of the SiC single crystal layer. The in-plane temperature difference of the melt free surface means a temperature difference in the horizontal direction of the melt free surface. Also, “substantially closing the free space” means that the free space inside the crucible is closed, leaving a minimum gap that allows rotation of the rotating seed shaft and insertion of a heat-insulating structure into the crucible. Is meant to do.

本発明によれば、溶液成長法によるSiC単結晶の成長において、多結晶SiCの生成抑制と、種結晶上への高品質のSiC単結晶の成長促進を両立させることができるので、SiC単結晶を十分な成長速度で安定して製造することが可能となる。   According to the present invention, in the growth of a SiC single crystal by the solution growth method, it is possible to achieve both the suppression of the formation of polycrystalline SiC and the promotion of the growth of a high-quality SiC single crystal on the seed crystal. Can be stably produced at a sufficient growth rate.

本発明者らは、坩堝内に収容されたSiとC、またはSiとCと1種類以上の金属Mとを含み、SiCが溶解している融液に、昇降可能なシード軸に保持されたSiC単結晶を種結晶として浸漬し、種結晶上に新たなSiC単結晶層を成長させる溶液成長法におけるSiC単結晶の成長において、多結晶成長の抑制と、種結晶上への高品質SiC単結晶の成長促進とを両立させることができる手段について検討を重ねた。   The present inventors held Si and C contained in a crucible, or Si and C, and one or more kinds of metals M, and were held on a seed shaft capable of moving up and down in a melt in which SiC was dissolved. In the growth of a SiC single crystal in a solution growth method in which a SiC single crystal is immersed as a seed crystal and a new SiC single crystal layer is grown on the seed crystal, the growth of the single crystal is suppressed and the high-quality SiC single crystal on the seed crystal is suppressed. The means for achieving both the growth promotion of crystals was studied repeatedly.

その結果、坩堝内の融液上の自由空間に融液と対向するように断熱性構造物を配置すると、多結晶成長の抑制と単結晶成長の促進を両立させながらSiC単結晶を成長させることが可能になることが判明した。   As a result, when a heat insulating structure is arranged in the free space above the melt in the crucible so as to face the melt, it is possible to grow a SiC single crystal while achieving both the suppression of the polycrystalline growth and the promotion of the single crystal growth. Turned out to be possible.

融液の自由表面の温度は、シード軸を通して抜熱される種結晶近傍が最も低く、加熱されている坩堝の壁面に近づくほど(つまり周辺に向かって)高くなる。この自由表面の面内温度勾配により種結晶上での結晶成長が進行する。従来、融液自由表面の面内温度差は45℃前後もの大きさになっていた。この結果、温度の低い部位でSiC結晶が融液から自発的に晶出し始め、(自由核生成SiC結晶)、種結晶上に成長するSiC単結晶に多結晶が混入する、SiCが無駄に消費されるなどの不具合が発生していた。   The temperature of the free surface of the melt is lowest in the vicinity of the seed crystal that is extracted through the seed shaft, and increases as it approaches the wall surface of the heated crucible (that is, toward the periphery). Crystal growth on the seed crystal proceeds by the in-plane temperature gradient of the free surface. Conventionally, the in-plane temperature difference on the free surface of the melt has been as large as around 45 ° C. As a result, the SiC crystal starts to spontaneously crystallize from the melt at a low temperature site (free nucleation SiC crystal), polycrystals are mixed into the SiC single crystal growing on the seed crystal, and SiC is consumed wastefully. There was a problem that occurred.

本発明に従って、断熱性構造物を融液上部の自由空間に配置すると、この自由空間が保温され、融液自由表面からの輻射による抜熱が小さくなって、融液自由表面の温度分布の均一化が図られ、その面内温度差を40℃以下と小さくすることができる。それにより、融液の表面近傍での多結晶の析出を解消または最小限にすることができ、多結晶の混入がないSiC単結晶を成長させることが可能になる。   According to the present invention, when the heat insulating structure is arranged in the free space above the melt, the free space is kept warm, the heat removal due to radiation from the free surface of the melt is reduced, and the temperature distribution on the free surface of the melt is uniform. The in-plane temperature difference can be reduced to 40 ° C. or less. Thereby, the precipitation of the polycrystal near the surface of the melt can be eliminated or minimized, and it becomes possible to grow the SiC single crystal free from the polycrystal.

溶液成長法によるSiC単結晶の製造に使用される単結晶製造装置の1例を図1に模式的に示す。図示の単結晶製造装置は、融液1を収容した坩堝2を備え、融液1には、昇降可能なシード軸3の先端に保持された種結晶4が浸漬されている。融液1はSiとCと場合によりさらに1種類以上の金属Mとを含み、この融液にSiCが溶解している。従って、融液1はSiCの溶液である。図示のように、坩堝2とシード軸3は、互いに逆方向に回転させることが好ましい。   An example of a single crystal manufacturing apparatus used for manufacturing a SiC single crystal by a solution growth method is schematically shown in FIG. The illustrated single crystal manufacturing apparatus includes a crucible 2 containing a melt 1, and a seed crystal 4 held at the tip of a seed shaft 3 that can be raised and lowered is immersed in the melt 1. The melt 1 contains Si and C and optionally one or more kinds of metals M, and SiC is dissolved in the melt. Therefore, the melt 1 is a SiC solution. As shown, the crucible 2 and the seed shaft 3 are preferably rotated in opposite directions.

坩堝2はシード軸が貫通する坩堝蓋5により実質的に閉鎖され、保温のために坩堝2の外周は断熱材6で覆われている。断熱材6の外周には、坩堝及び融液を誘導加熱するための高周波コイル7が配置されている。結晶成長を温度差法により行う場合には、高周波コイルの巻き数や間隔を調節することによって、融液に上下方向に温度差 (温度勾配) を形成することができる。   The crucible 2 is substantially closed by a crucible lid 5 through which the seed shaft passes, and the outer periphery of the crucible 2 is covered with a heat insulating material 6 for heat insulation. A high frequency coil 7 for induction heating of the crucible and the melt is disposed on the outer periphery of the heat insulating material 6. When crystal growth is performed by the temperature difference method, a temperature difference (temperature gradient) can be formed in the melt in the vertical direction by adjusting the number of turns and the interval of the high-frequency coil.

これらの坩堝2、断熱材6、高周波コイル7は高温になるので、水冷チャンバー8の内部に配置される。水冷チャンバー8は、装置内の雰囲気を調整可能にするために、ガス導入口9とガス排気口10とを備える。図示していないが、高周波コイルの隙間を通り、断熱材6を貫通して複数のパイロメータ (高温計) を設置し、坩堝2の複数の高さ地点での側面温度を測定できるようにしてもよい。坩堝の側面温度は実質的に融液温度に等しいので、温度の測定値により高周波コイル7による加熱を調節することができる。   Since the crucible 2, the heat insulating material 6, and the high frequency coil 7 become high temperature, they are arranged inside the water cooling chamber 8. The water cooling chamber 8 includes a gas introduction port 9 and a gas exhaust port 10 so that the atmosphere in the apparatus can be adjusted. Although not shown, a plurality of pyrometers (pyrometers) are installed through the gap between the high frequency coils and through the heat insulating material 6 so that the side surface temperature at a plurality of height points of the crucible 2 can be measured. Good. Since the side temperature of the crucible is substantially equal to the melt temperature, the heating by the high frequency coil 7 can be adjusted by the measured temperature value.

図1に示すように、従来のSiC単結晶製造装置においても、坩堝2の融液1上面の自由空間は、シード軸3が貫通する貫通穴を有する坩堝蓋5により実質的に閉鎖されている。これは、坩堝2の融液1の上部の自由空間には、融液から蒸発した蒸気が混入するので、そのような蒸気が坩堝外部に逃散して付着し、装置を汚染するのを極力防止するためである。しかし、従来の装置では、坩堝蓋5は、通常は坩堝と同じ材料または他の耐火物から構成され、断熱性を有していない。   As shown in FIG. 1, also in the conventional SiC single crystal manufacturing apparatus, the free space on the upper surface of the melt 1 of the crucible 2 is substantially closed by a crucible lid 5 having a through hole through which the seed shaft 3 passes. . This is because the vapor evaporated from the melt is mixed in the free space above the melt 1 of the crucible 2 so that such vapor escapes and adheres to the outside of the crucible and prevents contamination of the apparatus as much as possible. It is to do. However, in the conventional apparatus, the crucible lid 5 is usually made of the same material or other refractory material as the crucible and does not have heat insulation.

本発明においては、図2に示すように、坩堝蓋5の代わりに、断熱性構造物20を坩堝2の内部の融液1の上部に配置する。断熱性構造物20の上に、さらに坩堝蓋5を配置してもよい。断熱性構造物20は、図示のように、融液1の上部の自由空間を実質的に閉鎖するように配置することが好ましいが、その上に別に坩堝蓋5も配置する場合には、上記の自由空間を実質的に閉鎖する必要性はない。   In the present invention, instead of the crucible lid 5, a heat insulating structure 20 is disposed above the melt 1 inside the crucible 2 as shown in FIG. 2. A crucible lid 5 may be further disposed on the heat insulating structure 20. As shown in the drawing, the heat insulating structure 20 is preferably arranged so as to substantially close the free space above the melt 1, but when the crucible lid 5 is also arranged on the top, There is no need to substantially close the free space.

融液1はSiとCまたはSiとCと1種類以上の金属Mとを含む。Cは、坩堝2を黒鉛坩堝等の炭素質坩堝とし、坩堝の溶解によって融液中に供給してもよく、或いは、SiまたはSiおよび金属Mと一緒に外部から添加してもよい。もちろん、その両者の手法を併用してもよい。   The melt 1 contains Si and C or Si and C and one or more kinds of metals M. C may be a carbonaceous crucible such as a graphite crucible, and may be supplied into the melt by melting the crucible, or may be added together with Si or Si and metal M from the outside. Of course, both methods may be used in combination.

融液1がSiとCと1種類以上の金属Mを含有する場合、金属Mの種類は、SiC(固相)と熱力学的に平衡状態となる液相 (融液) を形成できれば特に制限されない。好ましくは、SiC溶解量が大きく、かつ液相線の傾きが急峻となる融液が形成でできるようにする。このような融液は、SiC結晶を効率的に液相から成長させることができるからである。金属Mの好ましい例はTiおよびMnであり、その原子比は、Si1−x で表して、MがTiの場合は0.1≦x≦0.25、MがMnの場合は0.1≦x≦0.7とすることが好ましい。 When melt 1 contains Si, C, and one or more types of metal M, the type of metal M is particularly limited as long as it can form a liquid phase (melt) in thermodynamic equilibrium with SiC (solid phase). Not. Preferably, a melt having a large SiC dissolution amount and a steep liquidus is formed. This is because such a melt can efficiently grow SiC crystals from the liquid phase. Preferable examples of the metal M are Ti and Mn, and the atomic ratio is expressed by Si 1-x M x . When M is Ti, 0.1 ≦ x ≦ 0.25, and when M is Mn, 0.1 ≦ x ≦ 0.7 It is preferable that

坩堝2は、Cを坩堝の溶解により供給する場合には、黒鉛坩堝等の炭素質坩堝とする。坩堝の溶解が必要ない場合には、高純度多結晶SiC焼結体、SiCを表面コートした高純度黒鉛など、高温下で安定して存在することが可能な任意の材質の坩堝を使用することができる。   The crucible 2 is a carbonaceous crucible such as a graphite crucible when C is supplied by melting the crucible. If melting of the crucible is not necessary, use a crucible of any material that can exist stably at high temperatures, such as high-purity polycrystalline SiC sintered body, high-purity graphite coated with SiC. Can do.

断熱性構造物20は、図2に示すように、断熱材21の周囲を、坩堝と同一または異なる材質の耐火材で包囲した複合材料から構成することができる。断熱性構造物の形状や構造は、融液1の自由表面の面内温度差が40℃以下、好ましくは30℃以下、となるように設計すればよい。それにより、種結晶上に析出したSiC単結晶に多結晶が混入するのを防止することができる。融液自由表面の面内温度差が10℃以下になると、融液表面近傍における融液内でのSiC多結晶の析出を実質的に完全に防止することができるので、より好ましい。   As shown in FIG. 2, the heat insulating structure 20 can be made of a composite material in which the periphery of the heat insulating material 21 is surrounded by a refractory material made of the same material as or different from that of the crucible. The shape and structure of the heat insulating structure may be designed so that the in-plane temperature difference of the free surface of the melt 1 is 40 ° C. or less, preferably 30 ° C. or less. Thereby, it is possible to prevent polycrystals from being mixed into the SiC single crystal deposited on the seed crystal. It is more preferable that the in-plane temperature difference on the free surface of the melt is 10 ° C. or less because precipitation of SiC polycrystal in the melt near the melt surface can be substantially completely prevented.

断熱性構造物20の例としては、例えば黒鉛その他の耐熱性の容器に繊維系もしくは非繊維系の成形断熱材を収容したものが使用できる。成形断熱材を直接、使用することも可能であるが、成形断熱材からの剥離物などが融液へ混入し、融液を汚染する恐れがあることから、耐熱性容器に収容した方が好ましい。   As an example of the heat-insulating structure 20, for example, a graphite or other heat-resistant container containing a fiber-based or non-fiber-based formed heat insulating material can be used. Although it is possible to use the molded heat insulating material directly, it is preferable that the molded heat insulating material is housed in a heat-resistant container because the peeled material from the molded heat insulating material may enter the melt and contaminate the melt. .

断熱性構造物20と融液1の表面との距離は、融液表面と接触しなければ、断熱効果を高める上では近いほど好ましい。しかし、実際には、断熱性構造物の融液表面との接触を避けるために、15 mm程度は断熱性構造物と融液面との距離を設けるのがよい。   If the distance between the heat insulating structure 20 and the surface of the melt 1 is not in contact with the melt surface, the closer the heat insulating effect is, the better. However, in practice, in order to avoid contact with the melt surface of the heat insulating structure, it is preferable to provide a distance of about 15 mm between the heat insulating structure and the melt surface.

本発明においては、多結晶化を抑制しつつ、種結晶上への結晶成長は促進するという、相反する目的を共に実現するため、種結晶4を保持しているシード軸3の側面 (外表面) の少なくとも一部、例えば、シード軸上部の黒鉛坩堝の外部に出ている部分を断熱することが好ましい。シード軸3の側面を断熱することにより、結晶が成長する際に放出される結晶化潜熱を、シード軸を通じて上方に抜熱することが可能となり、成長界面での蓄熱が起こりにくく、そこでの結晶成長が促進される。この断熱は、例えば、シード軸の外面を断熱材で被覆することにより実施することができる。   In the present invention, in order to achieve both of the conflicting purposes of suppressing the crystallization and promoting the crystal growth on the seed crystal, the side surface (outer surface) of the seed shaft 3 holding the seed crystal 4 is achieved. It is preferable to insulate at least a part of the graphite crucible above the seed shaft, for example. By insulating the side surface of the seed shaft 3, the latent heat of crystallization released when the crystal grows can be extracted upward through the seed shaft, and heat storage at the growth interface hardly occurs. Growth is promoted. This heat insulation can be implemented, for example, by covering the outer surface of the seed shaft with a heat insulating material.

さらに、図3に示すように、シード軸3の少なくとも一部が、強制的に冷却 (例、ガス冷却または水冷)されていると、シード軸を介した結晶化潜熱の抜熱がより高まり、種結晶上の結晶成長のより一層の促進が可能となるので、有利である。   Further, as shown in FIG. 3, when at least a part of the seed shaft 3 is forcibly cooled (eg, gas cooling or water cooling), the heat of crystallization latent heat through the seed shaft is further increased, This is advantageous because it allows further promotion of crystal growth on the seed crystal.

本発明の溶液成長法によるSiC単結晶の製造方法および製造装置は、上述した徐冷法と温度差法のいずれの方法にも適用可能である。前述したように、坩堝蓋に代えてまたは加えて、断熱性構造物を坩堝内の融液上部に配置し、好ましくはさらにシード軸に側面断熱手段および/または内部冷却手段を設けることを除けば、従来の溶液成長法に準じた条件および手法でSiC単結晶を成長させればよい。   The method and apparatus for producing an SiC single crystal by the solution growth method of the present invention can be applied to any of the slow cooling method and the temperature difference method described above. As described above, in place of or in addition to the crucible lid, the heat insulating structure is disposed on the upper part of the melt in the crucible, and preferably the seed shaft is further provided with side heat insulating means and / or internal cooling means. The SiC single crystal may be grown under conditions and techniques according to the conventional solution growth method.

種結晶上でのSiC単結晶の成長を開始する前に、SiCが結晶成長に十分な濃度で融液中に溶解するように融液の加熱を続ける。即ち、Cを炭素質坩堝の溶解により融液に供給する場合にはこの溶解が十分に起こるように、またCを外部から添加する場合には、添加したCが実質的に完全に溶解するように、予め融液の加熱を行う。   Before starting the growth of the SiC single crystal on the seed crystal, heating of the melt is continued so that SiC is dissolved in the melt at a concentration sufficient for crystal growth. That is, when C is supplied to the melt by melting the carbonaceous crucible, this melting occurs sufficiently, and when C is added from the outside, the added C is substantially completely dissolved. In addition, the melt is heated in advance.

以下に示す実施例では、図1に示した単結晶製造装置を用いて、溶液成長法 (温度差法) によるSiC単結晶の成長実験を行った。種結晶の近傍はシード軸を通じた抜熱により局所的に低温になっていて、種結晶近傍に温度勾配が形成されているため、結晶成長は進行する。   In the following examples, an experiment for growing a SiC single crystal by a solution growth method (temperature difference method) was performed using the single crystal manufacturing apparatus shown in FIG. In the vicinity of the seed crystal, the temperature is locally lowered by heat removal through the seed axis, and a temperature gradient is formed in the vicinity of the seed crystal, so that crystal growth proceeds.

この単結晶製造装置は、融液1を収容した内径80mm、高さ150mmの高純度黒鉛坩堝2を備え、坩堝2は水冷ステンレスチャンバー8内に配置されていた。黒鉛坩堝の外周は断熱材6により保温されており、さらにその外周に誘導加熱用の高周波コイル7が設けられていた。単結晶製造装置内の雰囲気は、ガス導入口9とガス排気口10を利用して、調整された。   This single crystal manufacturing apparatus was provided with a high-purity graphite crucible 2 having an inner diameter of 80 mm and a height of 150 mm containing the melt 1, and the crucible 2 was placed in a water-cooled stainless steel chamber 8. The outer periphery of the graphite crucible was kept warm by a heat insulating material 6, and a high frequency coil 7 for induction heating was further provided on the outer periphery. The atmosphere in the single crystal manufacturing apparatus was adjusted using the gas inlet 9 and the gas outlet 10.

高純度黒鉛坩堝2に、SiまたはSiと各種添加元素Mとを仕込み、高周波コイル7に通電して誘導加熱により坩堝内の原料を融解した。Cは、容器である黒鉛坩堝の溶解によって融液に供給した。従って、単結晶の成長を行う前に、十分な量のCが溶解するよう、所定温度で1時間の加熱を続けた。融液内の高さ方向の温度分布は、黒鉛坩堝と高周波コイルの相対的な位置関係を調整することによって、数℃の温度差に抑えることができた。   Si or Si and various additive elements M were charged into the high-purity graphite crucible 2, and the high-frequency coil 7 was energized to melt the raw material in the crucible by induction heating. C was supplied to the melt by melting a graphite crucible as a container. Therefore, before the single crystal was grown, heating was continued at a predetermined temperature for 1 hour so that a sufficient amount of C was dissolved. The temperature distribution in the height direction in the melt could be suppressed to a temperature difference of several degrees C. by adjusting the relative positional relationship between the graphite crucible and the high-frequency coil.

従来技術のように、融液表面の上に断熱性構造物20が存在しないと (即ち、図1に示すように、坩堝蓋5だけが配置されていると)、融液表面からの輻射による不均一な抜熱のため、融液自由表面の面内温度差が大きくなる。   If the heat insulating structure 20 does not exist on the surface of the melt as in the prior art (that is, if only the crucible lid 5 is arranged as shown in FIG. 1), the radiation from the surface of the melt Due to non-uniform heat removal, the in-plane temperature difference on the free surface of the melt increases.

黒鉛坩堝2から融液中に十分なCが溶解して、SiCが溶解した融液1が坩堝内に形成された後、シード軸3の先端に保持された種結晶4を融液1の表層付近に浸漬して、所定時間浸漬状態を保持し、温度差法によるSiC単結晶の成長を行った。坩堝2とシード軸3は、互いに逆方向に回転させた。実施例では、坩堝2の内部の融液上部の自由空間に配置した断熱性構造物20の構成、シード軸3からの抜熱を促進させるためのシード軸3の側面断熱の有無、シード軸3の強制冷却の有無を変動因子とした。   After sufficient C is dissolved in the melt from the graphite crucible 2 and the melt 1 in which SiC is dissolved is formed in the crucible, the seed crystal 4 held at the tip of the seed shaft 3 is used as the surface layer of the melt 1. It was immersed in the vicinity, the immersion state was maintained for a predetermined time, and a SiC single crystal was grown by a temperature difference method. The crucible 2 and the seed shaft 3 were rotated in opposite directions. In the embodiment, the structure of the heat insulating structure 20 disposed in the free space above the melt inside the crucible 2, the presence or absence of side heat insulation of the seed shaft 3 for promoting heat removal from the seed shaft 3, the seed shaft 3 The presence or absence of forced cooling was used as a variable factor.

成長実験の終了後、シード軸3を上昇させて、種結晶4を融液1から回収した。坩堝内の融液は室温まで放冷して凝固させた。この種結晶をフッ硝酸で洗浄して、付着している融液の凝固物を除去した。種結晶上に新たに溶液成長した単結晶の成長厚み (mm) を断面の光学顕微鏡観察により求めた。この成長厚みと成長時間 (浸漬保持時間、hr) とから結晶成長速度 (mm/hr) を求めた。   After completion of the growth experiment, the seed shaft 3 was raised and the seed crystal 4 was recovered from the melt 1. The melt in the crucible was allowed to cool to room temperature and solidified. The seed crystal was washed with hydrofluoric acid to remove the adhering melt coagulum. The growth thickness (mm) of a single crystal newly grown on the seed crystal was determined by observing the cross section with an optical microscope. The crystal growth rate (mm / hr) was determined from this growth thickness and growth time (immersion holding time, hr).

また、得られた単結晶の結晶性に関して、多結晶の混在の有無をTEMおよびラマン分光法により調べた。さらに、坩堝に残る融液についても、融液が凝固した後、黒鉛坩堝を高さ方向に切断して、断面の融液表層部における多結晶SiCの発生状況を同様に調べた。種結晶近傍の温度および融液自由表面の面内温度差は、成長実験とは別に、成長実験と同じ条件で融液を加熱し、加熱した融液の表面に熱電対を挿入し、温度測定を行って、融液自由表面の面内の温度分布を測定することにより求めた。   Moreover, regarding the crystallinity of the obtained single crystal, the presence or absence of polycrystals was examined by TEM and Raman spectroscopy. Further, for the melt remaining in the crucible, after the melt was solidified, the graphite crucible was cut in the height direction, and the occurrence of polycrystalline SiC in the melt surface layer portion in the cross section was similarly examined. The temperature difference between the temperature in the vicinity of the seed crystal and the in-plane temperature of the free surface of the melt is measured separately by heating the melt under the same conditions as in the growth experiment and inserting a thermocouple on the surface of the heated melt. And the temperature distribution in the surface of the free surface of the melt was measured.

以上の測定結果を表1にまとめて示す。表1における判定は、
(1) 種結晶上への多結晶SiCの混在無し
(2) 融液表層での多結晶SiCの発生無し
(3) 成長速度が0.1 mm/hr以上
を基準にして、上記(1)〜(3)の全てを満たすものを◎、少なくとも1つを満たすものを○、1つも満たさないものを×とした。
[実施例1]
The above measurement results are summarized in Table 1. The determination in Table 1 is
(1) No mixing of polycrystalline SiC on the seed crystal
(2) No generation of polycrystalline SiC on the melt surface
(3) Based on a growth rate of 0.1 mm / hr or more, ◎ indicates that all of the above (1) to (3) are satisfied, ○ indicates that at least one is satisfied, and ○ indicates that none is satisfied. .
[Example 1]

断熱性構造物20として、図2に示すドーナツ形状の (シード軸3が貫通する穴を有し、坩堝2の内面に嵌合する外形を有する) のものを配置した。この断熱性構造物20は、高純度黒鉛からなる容器の内部にカーボンフェルト系の成形断熱材21を収容した厚さ20mmのものであった。この断熱性構造物20は、この構造物と融液表面との距離が15mmになるように、シード軸3に取り付けて使用した (図2を参照)。   As the heat insulating structure 20, a donut-shaped structure (having a hole through which the seed shaft 3 penetrates and having an outer shape fitted to the inner surface of the crucible 2) shown in FIG. This heat insulating structure 20 had a thickness of 20 mm in which a carbon felt-based molded heat insulating material 21 was housed in a container made of high purity graphite. The heat insulating structure 20 was used by being attached to the seed shaft 3 so that the distance between the structure and the melt surface was 15 mm (see FIG. 2).

黒鉛坩堝2にSi0.8Ti0.2となる組成の合金原料を装入し、融解した。融解後の融液高さが50mmとなるように装入量を調整した。高周波コイル7と黒鉛坩堝2との相対的な位置調整により、融液の深さ (高さ) 方向に数℃以下の温度差を形成した。一方、融液自由表面の面内温度差は、上記のように断熱性構造物20を坩堝内に配置することにより、約30℃(最高温度1670℃、最低温度1640℃)となった。ここで、融液自由表面の最高温度はシード軸と接する中央部の温度であり、最低温度は坩堝と接する周辺部の温度であった。 The graphite crucible 2 was charged with an alloy material having a composition of Si 0.8 Ti 0.2 and melted. The charging amount was adjusted so that the melt height after melting was 50 mm. By adjusting the relative positions of the high-frequency coil 7 and the graphite crucible 2, a temperature difference of several degrees C or less was formed in the depth (height) direction of the melt. On the other hand, the in-plane temperature difference of the melt free surface was about 30 ° C. (maximum temperature 1670 ° C., minimum temperature 1640 ° C.) by placing the heat insulating structure 20 in the crucible as described above. Here, the maximum temperature of the free surface of the melt was the temperature of the central part in contact with the seed shaft, and the minimum temperature was the temperature of the peripheral part in contact with the crucible.

シード軸3に保持したSiC種結晶4 (20 mm×20 mm、6H−SiC) を融液表面から2 mm深さに浸漬した。種結晶浸漬後、20時間経過したところでシード軸3を上昇させて、種結晶4を融液1から引き上げた。本例では、シード軸3の側面の断熱とシード軸内部の強制冷却はいずれも実施しなかった。
[実施例2]
A SiC seed crystal 4 (20 mm × 20 mm, 6H—SiC) held on the seed shaft 3 was immersed to a depth of 2 mm from the melt surface. After 20 hours from the seed crystal immersion, the seed shaft 3 was raised and the seed crystal 4 was pulled up from the melt 1. In this example, neither heat insulation of the side surface of the seed shaft 3 nor forced cooling inside the seed shaft was performed.
[Example 2]

厚さ40 mmの断熱性構造物20を設置することにより、融液1の自由表面の面内温度差が約5℃(最高温度1670℃、最低温度1665℃)になるようにした以外は、実施例1と同様にして種結晶4上にSiC単結晶を成長させた。
[実施例3]
Except that the in-plane temperature difference of the free surface of the melt 1 is about 5 ° C (maximum temperature 1670 ° C, minimum temperature 1665 ° C) by installing a heat insulating structure 20 with a thickness of 40 mm. In the same manner as in Example 1, a SiC single crystal was grown on the seed crystal 4.
[Example 3]

黒鉛坩堝2にSiのみを装入した以外は、融液自由表面の面内温度差を含めて実施例1と同様の条件で種結晶上にSiC単結晶を製造した。
[実施例4]
A SiC single crystal was produced on the seed crystal under the same conditions as in Example 1 including the in-plane temperature difference on the free surface of the melt, except that only Si was charged into the graphite crucible 2.
[Example 4]

黒鉛坩堝2にSi0.4Mn0.6となる組成の合金原料を装入した以外は、融液自由表面の面内温度差を含めて実施例1と同様の条件で種結晶4上にSiC単結晶を成長させた。
[実施例5]
An SiC single crystal was formed on the seed crystal 4 under the same conditions as in Example 1 including the in-plane temperature difference on the free surface of the melt, except that an alloy material having a composition of Si 0.4 Mn 0.6 was charged into the graphite crucible 2. Grown up.
[Example 5]

黒鉛坩堝2の上端より上方に50 mmまでの部分のシード軸3の側面の外面を、断熱性構造物に使用したのと同じ断熱材の被覆により断熱した以外は、融液自由表面の面内温度差を含めて実施例1と同様の条件で種結晶4上にSiC単結晶を成長させた。
[実施例6]
In the plane of the melt free surface except that the outer surface of the side surface of the seed shaft 3 up to 50 mm above the upper end of the graphite crucible 2 is insulated with the same insulation material used for the heat insulating structure. A SiC single crystal was grown on the seed crystal 4 under the same conditions as in Example 1 including the temperature difference.
[Example 6]

図3に示すように、シード軸3を中空軸にして、その内部に不活性ガス (Heガス) を流入して、種結晶の背面をガス冷却した以外は、融液自由表面の面内温度差を含めて実施例1と同様の条件で種結晶4上にSiC単結晶を成長させた。
[実施例7]
As shown in FIG. 3, the in-plane temperature of the free surface of the melt, except that the seed shaft 3 is a hollow shaft, an inert gas (He gas) is introduced into the shaft, and the back surface of the seed crystal is gas-cooled. A SiC single crystal was grown on the seed crystal 4 under the same conditions as in Example 1 including the difference.
[Example 7]

シード軸3のうち、黒鉛坩堝の上端から50 mmの位置より上部の部分をタングステン製の水冷管に変えた以外は、融液自由表面の面内温度差を含めて実施例1と同様の条件で種結晶4上にSiC単結晶を成長させた。   The same conditions as in Example 1, including the in-plane temperature difference on the free surface of the melt, except that the portion of the seed shaft 3 above the position of 50 mm from the upper end of the graphite crucible was changed to a water-cooled tube made of tungsten. A SiC single crystal was grown on the seed crystal 4.

[比較例1]
断熱性構造物20を設置せず、代わりに、図1に示すように、黒鉛製の坩堝蓋5で黒鉛を閉鎖した以外は、実施例1と同様にして種結晶4上にSiC単結晶を成長させた。この場合の融液自由表面の面内温度差は、約45℃(最高温度1670℃、最低温度1625℃)であった。
[Comparative Example 1]
As shown in FIG. 1, instead of installing the heat insulating structure 20, an SiC single crystal was formed on the seed crystal 4 in the same manner as in Example 1 except that the graphite was closed with a graphite crucible lid 5. Grown up. In this case, the in-plane temperature difference of the melt free surface was about 45 ° C. (maximum temperature 1670 ° C., minimum temperature 1625 ° C.).

Figure 2006131433
Figure 2006131433

実施例1〜4および比較例1の結果から、本発明に従って融液上部の坩堝内の自由空間に断熱性構造物を設置して、融液自由表面の面内温度差を40℃以下に抑制すると、SiC単結晶の成長速度を保持したまま、SiC単結晶への多結晶の混入を防止できることが分かる。   From the results of Examples 1 to 4 and Comparative Example 1, according to the present invention, a heat insulating structure is installed in the free space in the crucible above the melt, and the in-plane temperature difference on the free surface of the melt is suppressed to 40 ° C. or less. Then, it can be seen that polycrystals can be prevented from being mixed into the SiC single crystal while maintaining the growth rate of the SiC single crystal.

実施例5〜7に示すように、融液自由表面の面内温度差を小さくした上で、シード軸からの抜熱を強化することにより、成長速度がさらに増大することが分かる。
以上に本発明を好適態様および実施例に関して説明したが、以上の説明はすべての点で例示であって、制限的なものではないことは当然である。本発明の範囲は、特許請求の範囲によってのみ制限される。
As shown in Examples 5 to 7, it can be seen that the growth rate is further increased by reducing the in-plane temperature difference of the melt free surface and enhancing the heat removal from the seed shaft.
Although the present invention has been described above with reference to preferred embodiments and examples, it is to be understood that the above description is illustrative in all respects and not restrictive. The scope of the invention is limited only by the claims.

本発明の実施例において使用した結晶成長装置 (SiC単結晶製造装置) の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of the crystal growth apparatus (SiC single crystal manufacturing apparatus) used in the Example of this invention. 本発明に従って坩堝内に配置される断熱性構造物を示す説明図である。It is explanatory drawing which shows the heat insulation structure arrange | positioned in a crucible according to this invention. 種結晶の背面から抜熱するために冷却手段を設けたシード軸を示す説明図である。It is explanatory drawing which shows the seed axis | shaft which provided the cooling means in order to extract heat from the back surface of a seed crystal.

符号の説明Explanation of symbols

1:融液、2:坩堝、3:シード軸、4:単結晶、5:坩堝蓋、6:断熱材、7:高周波コイル、8:水冷チャンバー、9:ガス導入口、10:ガス排気口、20:断熱性構造物、21:断熱材 1: melt, 2: crucible, 3: seed shaft, 4: single crystal, 5: crucible lid, 6: heat insulating material, 7: high-frequency coil, 8: water-cooled chamber, 9: gas inlet, 10: gas outlet , 20: heat insulating structure, 21: heat insulating material

Claims (10)

坩堝に収容された、SiとCまたはSiとCと1種類以上の金属Mとを含む、SiCが融解している融液に、昇降可能なシード軸に保持されたSiC単結晶からなる種結晶を浸漬し、この種結晶上にSiC単結晶層を成長させるSiC単結晶の製造方法において、
坩堝内の融液上の自由空間に断熱性構造物を配置した状態でSiC単結晶層を成長させることを特徴とするSiC単結晶の製造方法。
Seed crystal composed of a SiC single crystal held on a seed shaft that can be moved up and down in a melt containing SiC and containing Si and C or Si and C and one or more types of metal M, contained in a crucible. In the method for producing a SiC single crystal, in which a SiC single crystal layer is grown on the seed crystal,
A method for producing a SiC single crystal, comprising growing a SiC single crystal layer in a state where a heat insulating structure is arranged in a free space on a melt in a crucible.
前記断熱性構造物が坩堝内の融液上の自由空間を実質的に閉鎖するように配置されている、請求項1に記載のSiC単結晶の製造方法。   The manufacturing method of the SiC single crystal of Claim 1 arrange | positioned so that the said heat insulation structure may substantially close the free space on the melt in a crucible. 融液自由表面の面内温度差が40℃以下である、請求項1または2記載のSiC単結晶の製造方法。   The manufacturing method of the SiC single crystal of Claim 1 or 2 whose in-plane temperature difference of a melt free surface is 40 degrees C or less. 前記シード軸の側面の少なくとも一部が断熱されている、請求項1〜3のいずれか1項に記載のSiC単結晶の製造方法。   The manufacturing method of the SiC single crystal of any one of Claims 1-3 with which at least one part of the side surface of the said seed axis | shaft is thermally insulated. 前記シード軸の少なくとも一部が冷却されている、請求項1〜4のいずれか1項に記載のSiC単結晶の製造方法。   The manufacturing method of the SiC single crystal of any one of Claims 1-4 with which at least one part of the said seed axis | shaft is cooled. 前記融液がSiとCと金属Mとを含み、MがTiまたはMnである、請求項1〜5のいずれか1項に記載のSiC単結晶の製造方法。   The manufacturing method of the SiC single crystal of any one of Claims 1-5 in which the said melt contains Si, C, and the metal M, and M is Ti or Mn. SiCが溶解した融液を収容する坩堝、前記融液を加熱する手段、および前記融液への種結晶の浸漬と引き上げを行うための、先端に種結晶を保持することができる昇降可能なシード軸を備えた、SiC単結晶の製造装置において、坩堝内の融液上に配置可能な断熱性構造物をさらに備えることを特徴とするSiC単結晶の製造装置。   A crucible containing a melt in which SiC is dissolved, a means for heating the melt, and a seed that can be moved up and down that can hold a seed crystal at the tip for immersing and pulling the seed crystal into the melt The SiC single crystal manufacturing apparatus provided with the axis | shaft, The heat insulating structure which can be arrange | positioned on the melt in a crucible is further provided. 前記断熱性構造物が坩堝内の融液上の自由空間を実質的に閉鎖するように配置可能である、請求項7に記載のSiC単結晶の製造装置。   The SiC single crystal manufacturing apparatus according to claim 7, wherein the heat insulating structure can be disposed so as to substantially close a free space on the melt in the crucible. 前記シード軸の側面の少なくとも一部が断熱されている、請求項7または8に記載のSiC単結晶の製造装置。   The SiC single crystal manufacturing apparatus according to claim 7 or 8, wherein at least a part of a side surface of the seed shaft is thermally insulated. 前記シード軸が冷却手段を備えている、請求項7〜9のいずれか1項に記載のSiC単結晶の製造装置。   The SiC single crystal manufacturing apparatus according to any one of claims 7 to 9, wherein the seed shaft includes a cooling unit.
JP2004319136A 2004-11-02 2004-11-02 Method for producing silicon carbide single crystal Expired - Lifetime JP4736401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319136A JP4736401B2 (en) 2004-11-02 2004-11-02 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319136A JP4736401B2 (en) 2004-11-02 2004-11-02 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2006131433A true JP2006131433A (en) 2006-05-25
JP4736401B2 JP4736401B2 (en) 2011-07-27

Family

ID=36725312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319136A Expired - Lifetime JP4736401B2 (en) 2004-11-02 2004-11-02 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4736401B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007377A (en) * 2006-06-29 2008-01-17 Kyoto Institute Of Technology Method and apparatus for producing single crystal thin film of material
JP2010064914A (en) * 2008-09-09 2010-03-25 Toyota Motor Corp Apparatus and method for manufacturing silicon carbide single crystal
JP2010184838A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL BY SOLUTION GROWTH TECHNIQUE
WO2010114008A1 (en) * 2009-04-03 2010-10-07 株式会社ブリヂストン Device for producing single crystal of silicon carbide
JP2011068515A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2011098871A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp Method for producing single crystal by solution method
US8048221B2 (en) 2006-01-20 2011-11-01 Stoddard Nathan G Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
JP2012140267A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2012184120A (en) * 2011-03-03 2012-09-27 Toyota Motor Corp APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
WO2012176647A1 (en) 2011-06-20 2012-12-27 住友金属工業株式会社 Apparatus for producing sic single crystal by solution growth method, method for producing sic single crystal using apparatus for producing sic single crystal by solution growth method, and crucible used in apparatus for producing sic single crystal by solution growth method
CN102965725A (en) * 2012-12-19 2013-03-13 苏州巍迩光电科技有限公司 Upper insulating screen for sapphire growth kyropoulos furnace
US8440157B2 (en) 2007-07-20 2013-05-14 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing cast silicon from seed crystals
WO2013161999A1 (en) * 2012-04-26 2013-10-31 京セラ株式会社 Holding body, crystal growing method, and crystal growing apparatus
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials
US20140116324A1 (en) * 2011-06-17 2014-05-01 Toyota Jidosha Kabushiki Kaisha PRODUCTION APPARATUS AND PRODUCTION METHOD OF SiC SINGLE CRYSTAL
JP2015212207A (en) * 2014-05-02 2015-11-26 新日鐵住金株式会社 Method for manufacturing silicon carbide single crystal ingot
CN105220230A (en) * 2014-07-02 2016-01-06 王博仲 For molten soup surface velocity measuring method and the long brilliant equipment of people section chief's crystalline substance
JP2016079070A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Silicon carbide single crystal manufacturing device using solution-growth technique and silicon carbide single crystal manufacturing method
US9388508B2 (en) 2010-12-27 2016-07-12 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus of SiC single crystal, jig for use in the manufacturing apparatus, and method for manufacturing SiC single crystal
EP3243935A1 (en) 2016-05-10 2017-11-15 Toyota Jidosha Kabushiki Kaisha Sic single crystal and method for producing same
KR101856963B1 (en) * 2016-10-25 2018-05-14 주식회사 악셀 Manufacturing apparatus for sic single crystal
KR20200099408A (en) * 2019-02-14 2020-08-24 한국세라믹기술원 Variable reflector for crystal growth device
CN113322510A (en) * 2021-05-27 2021-08-31 天津理工大学 SiC single crystal growth device and liquid phase epitaxial SiC single crystal growth method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158196A (en) * 1979-05-29 1980-12-09 Toshiba Corp Manufacture of single crystal
JPS63315589A (en) * 1987-06-16 1988-12-23 Osaka Titanium Seizo Kk Single crystal production apparatus
JPH02243727A (en) * 1989-03-17 1990-09-27 Chiyoda Corp Method for refining metallic gallium
JPH0365592A (en) * 1989-08-02 1991-03-20 Nippon Mining Co Ltd Production of compound semiconductor single crystal
JPH05279172A (en) * 1991-04-20 1993-10-26 Komatsu Denshi Kinzoku Kk Method and apparatus for growing crystal
JPH05339098A (en) * 1992-06-05 1993-12-21 Sumitomo Electric Ind Ltd Production of compound semiconductor single crystal
JPH07172998A (en) * 1993-12-21 1995-07-11 Toshiba Corp Production of single crystal of silicon carbide
JPH1192272A (en) * 1997-09-22 1999-04-06 Komatsu Electron Metals Co Ltd Single crystal production apparatus and production of single crystal
JPH11255577A (en) * 1998-03-11 1999-09-21 Mitsubishi Materials Silicon Corp Apparatus for pulling silicon single crystal and pulling up thereof
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP2002356397A (en) * 2001-05-31 2002-12-13 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide
JP2004002173A (en) * 2002-04-15 2004-01-08 Sumitomo Metal Ind Ltd Silicon carbide single crystal and its manufacturing method
JP2004323247A (en) * 2003-04-21 2004-11-18 Toyota Motor Corp FURNACE FOR MANUFACTURING SiC SINGLE CRYSTAL

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158196A (en) * 1979-05-29 1980-12-09 Toshiba Corp Manufacture of single crystal
JPS63315589A (en) * 1987-06-16 1988-12-23 Osaka Titanium Seizo Kk Single crystal production apparatus
JPH02243727A (en) * 1989-03-17 1990-09-27 Chiyoda Corp Method for refining metallic gallium
JPH0365592A (en) * 1989-08-02 1991-03-20 Nippon Mining Co Ltd Production of compound semiconductor single crystal
JPH05279172A (en) * 1991-04-20 1993-10-26 Komatsu Denshi Kinzoku Kk Method and apparatus for growing crystal
JPH05339098A (en) * 1992-06-05 1993-12-21 Sumitomo Electric Ind Ltd Production of compound semiconductor single crystal
JPH07172998A (en) * 1993-12-21 1995-07-11 Toshiba Corp Production of single crystal of silicon carbide
JPH1192272A (en) * 1997-09-22 1999-04-06 Komatsu Electron Metals Co Ltd Single crystal production apparatus and production of single crystal
JPH11255577A (en) * 1998-03-11 1999-09-21 Mitsubishi Materials Silicon Corp Apparatus for pulling silicon single crystal and pulling up thereof
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal
JP2002356397A (en) * 2001-05-31 2002-12-13 Sumitomo Metal Ind Ltd Manufacturing method of silicon carbide
JP2004002173A (en) * 2002-04-15 2004-01-08 Sumitomo Metal Ind Ltd Silicon carbide single crystal and its manufacturing method
JP2004323247A (en) * 2003-04-21 2004-11-18 Toyota Motor Corp FURNACE FOR MANUFACTURING SiC SINGLE CRYSTAL

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951344B2 (en) 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
US8628614B2 (en) 2006-01-20 2014-01-14 Amg Idealcast Solar Corporation Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US8048221B2 (en) 2006-01-20 2011-11-01 Stoddard Nathan G Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
JP2008007377A (en) * 2006-06-29 2008-01-17 Kyoto Institute Of Technology Method and apparatus for producing single crystal thin film of material
US8440157B2 (en) 2007-07-20 2013-05-14 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing cast silicon from seed crystals
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials
JP2010064914A (en) * 2008-09-09 2010-03-25 Toyota Motor Corp Apparatus and method for manufacturing silicon carbide single crystal
JP2010184838A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL BY SOLUTION GROWTH TECHNIQUE
WO2010114008A1 (en) * 2009-04-03 2010-10-07 株式会社ブリヂストン Device for producing single crystal of silicon carbide
JP2010241628A (en) * 2009-04-03 2010-10-28 Bridgestone Corp Apparatus for producing silicon carbide single crystal
JP2011068515A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2011098871A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp Method for producing single crystal by solution method
US9388508B2 (en) 2010-12-27 2016-07-12 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus of SiC single crystal, jig for use in the manufacturing apparatus, and method for manufacturing SiC single crystal
JP2012140267A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2012184120A (en) * 2011-03-03 2012-09-27 Toyota Motor Corp APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL
US20140116324A1 (en) * 2011-06-17 2014-05-01 Toyota Jidosha Kabushiki Kaisha PRODUCTION APPARATUS AND PRODUCTION METHOD OF SiC SINGLE CRYSTAL
US9732441B2 (en) * 2011-06-17 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Production apparatus and production method of SiC single crystal
WO2012176647A1 (en) 2011-06-20 2012-12-27 住友金属工業株式会社 Apparatus for producing sic single crystal by solution growth method, method for producing sic single crystal using apparatus for producing sic single crystal by solution growth method, and crucible used in apparatus for producing sic single crystal by solution growth method
US9702056B2 (en) 2011-06-20 2017-07-11 Nippon Steel & Sumitomo Metal Corporation Production apparatus of SiC single crystal by solution growth method, method for producing SiC single crystal using the production apparatus, and crucible used in the production apparatus
JP2016130211A (en) * 2012-04-26 2016-07-21 京セラ株式会社 Retainer
WO2013161999A1 (en) * 2012-04-26 2013-10-31 京セラ株式会社 Holding body, crystal growing method, and crystal growing apparatus
JPWO2013161999A1 (en) * 2012-04-26 2015-12-24 京セラ株式会社 Holder, crystal growth method and crystal growth apparatus
CN102965725A (en) * 2012-12-19 2013-03-13 苏州巍迩光电科技有限公司 Upper insulating screen for sapphire growth kyropoulos furnace
CN102965725B (en) * 2012-12-19 2016-04-27 江苏国晶光电科技有限公司 The upper screen of a kind of sapphire growth bubble raw stove insulation
JP2015212207A (en) * 2014-05-02 2015-11-26 新日鐵住金株式会社 Method for manufacturing silicon carbide single crystal ingot
CN105220230A (en) * 2014-07-02 2016-01-06 王博仲 For molten soup surface velocity measuring method and the long brilliant equipment of people section chief's crystalline substance
JP2016079070A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Silicon carbide single crystal manufacturing device using solution-growth technique and silicon carbide single crystal manufacturing method
EP3243935A1 (en) 2016-05-10 2017-11-15 Toyota Jidosha Kabushiki Kaisha Sic single crystal and method for producing same
US20170327968A1 (en) * 2016-05-10 2017-11-16 Toyota Jidosha Kabushiki Kaisha SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME
CN107354510A (en) * 2016-05-10 2017-11-17 丰田自动车株式会社 SiC monocrystalline and its manufacture method
KR101856963B1 (en) * 2016-10-25 2018-05-14 주식회사 악셀 Manufacturing apparatus for sic single crystal
KR20200099408A (en) * 2019-02-14 2020-08-24 한국세라믹기술원 Variable reflector for crystal growth device
KR102227148B1 (en) 2019-02-14 2021-03-15 한국세라믹기술원 Variable reflector for crystal growth device
CN113322510A (en) * 2021-05-27 2021-08-31 天津理工大学 SiC single crystal growth device and liquid phase epitaxial SiC single crystal growth method

Also Published As

Publication number Publication date
JP4736401B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4736401B2 (en) Method for producing silicon carbide single crystal
EP2881498B1 (en) Method for growing silicon carbide crystal
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
JP5304793B2 (en) Method for producing silicon carbide single crystal
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
JP5304792B2 (en) Method and apparatus for producing SiC single crystal film
JP2008100890A (en) Method for producing sic single crystal
JP5983772B2 (en) Method for producing n-type SiC single crystal
JP2007261844A (en) Manufacturing method of silicon carbide single crystal
JP4475091B2 (en) Method for producing silicon carbide single crystal
JP4645499B2 (en) Method for producing silicon carbide single crystal
JP2011051857A (en) Method for manufacturing silicon carbide single crystal
WO2017022535A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP4934958B2 (en) Method for producing silicon carbide single crystal
JP6181534B2 (en) Crystal growth method of silicon carbide
JP6177676B2 (en) Crystal growth method of silicon carbide
JP6784220B2 (en) Method for manufacturing SiC single crystal
JP6129064B2 (en) Crystal growth method of silicon carbide
JP6129065B2 (en) Crystal growth method of silicon carbide
JP4466293B2 (en) Method for producing silicon carbide single crystal
JP6178227B2 (en) Crystal growth method of silicon carbide
JP6180910B2 (en) Crystal growth method of silicon carbide
WO2003087440A1 (en) Silicon carbide single crystal and method for preparation thereof
CN107532328B (en) Method for producing SiC single crystal
WO2017086449A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD AND SiC SINGLE CRYSTAL INGOT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350