[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006130718A - Mold for synthetic resin in-mold foam molding and synthetic resin in-mold foamed molded product molded using it - Google Patents

Mold for synthetic resin in-mold foam molding and synthetic resin in-mold foamed molded product molded using it Download PDF

Info

Publication number
JP2006130718A
JP2006130718A JP2004320333A JP2004320333A JP2006130718A JP 2006130718 A JP2006130718 A JP 2006130718A JP 2004320333 A JP2004320333 A JP 2004320333A JP 2004320333 A JP2004320333 A JP 2004320333A JP 2006130718 A JP2006130718 A JP 2006130718A
Authority
JP
Japan
Prior art keywords
mold
plate
synthetic resin
molding
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320333A
Other languages
Japanese (ja)
Inventor
Masahiko Samejima
昌彦 鮫島
Kenji Yamada
憲司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004320333A priority Critical patent/JP2006130718A/en
Publication of JP2006130718A publication Critical patent/JP2006130718A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold capable of easily imparting a sound absorbing capacity without modifying prefoamed particles or requiring the post processing of a molded product, in a manufacturing method of a thermoplastic foamed resin molded product molded by in-mold foam molding. <P>SOLUTION: In the mold constituted for synthetic resin in-mold foam molding so that the molding space, which is demarcated by one set of molds composed of a core mold and a cavity mold, is filled with prefoamed particles and the prefoamed particles are heated by a heating medium to be foamed and welded to obtain a foamed molded product, a plurality of plate-like members for providing grooves to the molded product are arranged to at least one of one set of the molds. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、合成樹脂型内発泡成形体製造用の金型に関する。   The present invention relates to a mold for producing a foamed molded product in a synthetic resin mold.

金属、石膏ボード、セラミックなどの無機物に複数の貫通孔あるいは有底孔を配設することにより、ある特定周波数域での吸音効果を発現することは広く知られている。これを樹脂発泡体に応用した数種の例が開示されている。   It is widely known that a plurality of through holes or bottomed holes are provided in an inorganic material such as metal, gypsum board, and ceramic to exhibit a sound absorbing effect in a specific frequency range. Several examples in which this is applied to a resin foam are disclosed.

一つ目の例としては、針、ピン、スパイク、爪状の尖った鋭い対象物を成形品に刺すことで吸音孔を設ける方法が開示されている(特許文献1参照)。しかしながら、当該方法においては、針のピッチあるいは径によっては製品の変形あるいは製品の潰れが発生する課題、あるいは発泡製品の弾性回復により吸音孔が閉塞する問題があった。ドリル、レーザー、高圧流体、空気銃などを用いる方法では、多数の穴あけが煩雑になる、あるいは高価な装置が必要となり量産実用化が困難とされていた。   As a first example, a method is disclosed in which a sound absorbing hole is provided by piercing a molded product with a sharp object having a needle, pin, spike, or nail shape (see Patent Document 1). However, in this method, there is a problem that the product is deformed or the product is crushed depending on the needle pitch or diameter, or the sound absorbing hole is blocked due to the elastic recovery of the foamed product. In the method using a drill, a laser, a high-pressure fluid, an air gun, etc., it has been difficult to make a large number of holes because complicated drilling is required or an expensive device is required.

二つ目の例としては、後加工での打ち抜きによる方法がある。EPDM(エチレン・プロピレン・ジエン三元共重合体)及び軟質ウレタンに打ち抜き成形にて、直径10mmの貫通孔を20mmピッチで形成したものが開示されている(特許文献2)。しかしながら、特許文献2記載の技術を、例えば独立気泡のみの構造体に適用した場合では、ピッチの変更、とりわけ小ピッチへの変更は困難であった。特に、吸音効率を高めるためにはより多くの孔が必要となるため、打ち抜き成形では、成形品厚みが厚くなるに従い孔加工が困難になる事は自明であり、さらに前述以上にピッチを狭めた場合に製品に潰れや変形が発生し、所望するピッチでの吸音孔を設けることが困難であった。   As a second example, there is a method by punching in post-processing. An EPDM (ethylene / propylene / diene terpolymer) and soft urethane formed by punching and forming through-holes having a diameter of 10 mm at a pitch of 20 mm is disclosed (Patent Document 2). However, when the technique described in Patent Document 2 is applied to, for example, a structure having only closed cells, it is difficult to change the pitch, particularly to a small pitch. In particular, since more holes are required to increase sound absorption efficiency, it is obvious that punching becomes difficult as the thickness of the molded product increases, and the pitch is narrowed more than the above. In some cases, the product is crushed or deformed, and it is difficult to provide sound absorbing holes at a desired pitch.

三つ目の例としては、後加工にて針状物、棒状物等を加熱し、樹脂を溶融させ吸音孔を形成する方法が開示されている(特許文献3)。このような方法を用いた場合には、良好な吸音効果を得るためには非常に多くの針状物を必要とすることから加工装置が複雑化すると共に、多数の針状物を均一に加熱することが難しく、良好な孔を同時に複数形成することは困難であった。さらに、コスト面からは、製造工程に後加工が加わることから加工費が増加することは言うまでもない。   As a third example, there is disclosed a method of heating a needle-like object, a rod-like object or the like in post-processing to melt a resin to form a sound absorbing hole (Patent Document 3). When such a method is used, a very large number of needles are required to obtain a good sound absorption effect, so that the processing apparatus becomes complicated and a large number of needles are heated uniformly. It was difficult to form a plurality of good holes at the same time. Furthermore, from a cost standpoint, it goes without saying that processing costs increase because post-processing is added to the manufacturing process.

四つ目の例としては、型内発泡成形用の金型に針状、棒状の突起物を有する部材を取り付けることで成形時に吸音孔を形成する方法が開示されている(特許文献3、特許文献4)。金型内にこのような複雑な部材を設けることは、金型構造が非常に複雑となることより、当然の事ながら金型費用が高くなる傾向にあった。また、吸音効果発現の観点から、多数の針状突起をより狭いピッチで配置する必要がある。このような場合、成形難、特に予備発泡粒子の充填の問題より狭いピッチの針状突起の間へ予備発泡粒子を充填することが困難となり良品が得られにくくなる問題や、金型からの製品の離型時に針状物部分の離型抵抗が増大することで製品の変形の問題が多々発生していた。
特表平6−507129号公報 特開2000−206976号公報 特開2003―335893号公報 特開2003−340858号公報
As a fourth example, a method is disclosed in which a sound absorbing hole is formed at the time of molding by attaching a member having needle-like or rod-like projections to a mold for in-mold foam molding (Patent Document 3, Patent) Reference 4). Providing such a complicated member in the mold tends to increase the mold cost, as a matter of course, because the mold structure becomes very complicated. In addition, from the viewpoint of the sound absorption effect, it is necessary to arrange a large number of needle-like projections at a narrower pitch. In such a case, it is difficult to form pre-expanded particles between needle-like projections with a narrow pitch than the problem of filling with pre-expanded particles, and it is difficult to obtain good products. Many problems of product deformation have occurred due to an increase in the mold release resistance of the needle-like part at the time of mold release.
Japanese translation of PCT publication No. 6-507129 JP 2000-206976 A JP 2003-335893 A JP 2003-340858 A

本発明の課題は、型内発泡成形によって成形される熱可塑性発泡樹脂成形体の製造方法において、予備発泡粒子の改質あるいは成形体への後加工を必要とせず、容易に吸音性能を付与することが可能な金型を提供することにある。   An object of the present invention is to provide a sound-absorbing performance easily without requiring modification of pre-foamed particles or post-processing to a molded body in a method for producing a thermoplastic foamed resin molded body molded by in-mold foam molding. It is to provide a mold that can be used.

本発明者らは、上記課題を解決するべく鋭意研究を重ねた結果、コア型とキャビティー型からなる1組の成形用金型の少なくとも一方の金型に板状部材を配置し、この金型を用いて、熱可塑性樹脂からなる予備発泡粒子を成形することで、成形体に所定形状の溝を形成することができ、かつ、この成形体表面に形成された溝により吸音性能を付与することは勿論、吸音周波数域の設計が可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have arranged a plate-like member on at least one mold of a set of molding molds including a core mold and a cavity mold. By molding pre-expanded particles made of thermoplastic resin using a mold, a groove having a predetermined shape can be formed in the molded body, and sound absorbing performance is imparted by the groove formed on the surface of the molded body. Of course, the present inventors have found that the sound absorption frequency range can be designed and completed the present invention.

即ち、本発明の第1は、コア型とキャビティー型とからなる1組の成形用金型により画成された成形空間内に予備発泡粒子を充填し、該予備発泡粒子を加熱媒体により加熱して発泡融着せしめることにより発泡成形体を得る成形用金型において、1組の金型のうちの少なくとも一方の金型に、成形体に溝を設けるための板状部材を複数配置することを特徴とする合成樹脂型内発泡成形用金型に関する。   That is, according to the first aspect of the present invention, pre-expanded particles are filled in a molding space defined by a set of molding dies including a core mold and a cavity mold, and the pre-expanded particles are heated by a heating medium. In a molding die for obtaining a foamed molded article by foaming and fusing, a plurality of plate-like members for providing grooves in the molded article are arranged in at least one mold of a set of molds. The present invention relates to a mold for foam molding in a synthetic resin mold.

好ましい実施態様としては、
(1)前記板状部材を、エジェクトピンを備えた第1金型に設けること、
(2)前記コア型とキャビティー型の両金型に板状部材を配し、エジェクトピンを備えた第1金型に配置した板状部材の表面積を、他方の金型に配置した板状部材の表面積よりも大きく設定すること、
(3)前記コア型とキャビティー型の両金型に板状部材を配し、エジェクトピンを備えた第1金型に配置した板状部材の抜きテーパー角度を、他方の金型に配置した板状部材の抜きテーパー角度以下に設定したこと、
(4)前記板状部材の厚みが1mm以上10mm以下であること、
(5)前記板状部材の配置間隔を3mm以上50mm以下に設定すること、
(6)前記板状部材の高さを少なくとも2つ以上設定すること、
(7)前記板状部材の厚みを少なくとも2つ以上設定すること、
(8)前記板状部材の配置を平行、格子状、放射状、同心円状に配置すること、
(9)前記板状部材を配置した一方の金型における発泡体の表面積に対して、同金型の前記板状部材の総断面積の比が1.5%以上15%以下であること、
を特徴とする前記記載の合成樹脂型内発泡成形用金型に関する。
As a preferred embodiment,
(1) providing the plate-like member in a first mold having an eject pin;
(2) A plate-like member in which a plate-like member is arranged in both the core die and the cavity die, and the surface area of the plate-like member arranged in the first die having the eject pin is arranged in the other die. Set larger than the surface area of the member,
(3) A plate-shaped member is arranged on both the core mold and the cavity mold, and the taper angle of the plate-shaped member disposed on the first mold having the eject pin is disposed on the other mold. That it was set below the taper angle of the plate-like member,
(4) The thickness of the plate member is 1 mm or more and 10 mm or less,
(5) The arrangement interval of the plate-like members is set to 3 mm or more and 50 mm or less,
(6) setting at least two heights of the plate-like member;
(7) Setting at least two or more thicknesses of the plate-like member;
(8) Arranging the plate members in parallel, lattice, radial, concentric circles,
(9) The ratio of the total cross-sectional area of the plate-shaped member of the mold to the surface area of the foam in one mold where the plate-shaped member is disposed is 1.5% or more and 15% or less,
The above-mentioned synthetic resin mold for foam molding is characterized by the above.

本発明の第2は、前記記載の合成樹脂型内発泡成形用金型にて製造された合成樹脂型内発泡成形体に関し、好ましい実施態様としては、前記合成樹脂型内発泡成形体が有する複数の溝が有底及び/又は貫通である前記記載の合成樹脂型内発泡成形体に関する。   A second aspect of the present invention relates to a synthetic resin in-mold foam-molded product manufactured using the above-mentioned synthetic resin mold in-mold foam molding, and as a preferred embodiment, the synthetic resin in-mold foam-molded product has a plurality of It is related with the said synthetic resin in-mold foam-molding body whose said groove | channel is bottomed and / or penetrated.

本発明の第3は、前記合成樹脂型内発泡成形体からなる車輌用内装材、床材、壁材に関する。   3rd of this invention is related with the interior material for vehicles, a floor material, and a wall material which consist of the said synthetic resin type | mold foaming molding.

本願発明の合成樹脂型内発泡成形用金型を用いることで、吸音性能を付与するために特別な原料の改質を行うことなく、さらにコスト高となる後加工を行うことなく、現行の予備発泡粒子、製造プロセスを使用して、吸音性能が付与された型内発泡成形体を容易に得ることができる。さらに、従来の金型内に針状部材を配置する方法では為し得なかった、金型改造費の低減、原料の充填性向上を図ることが可能となる。また成形体の溝の形状変更を行うことで、所望の吸音率並びに吸音周波数に変更することができ、良好な吸音効果を得ることができる。   By using the mold for foam molding in the synthetic resin mold of the present invention, the current spare is used without any special modification of raw materials to give sound absorption performance, and without post-processing that increases the cost. By using the expanded particles and the manufacturing process, an in-mold expanded molded article having a sound absorbing performance can be easily obtained. Furthermore, it is possible to reduce the cost of remodeling the mold and improve the filling property of the raw material, which cannot be achieved by the conventional method of arranging the needle-shaped member in the mold. Further, by changing the shape of the groove of the molded body, it is possible to change to a desired sound absorption rate and sound absorption frequency, and to obtain a good sound absorption effect.

本発明の金型によって得られた合成樹脂型内発泡成形体は、形状設計の自由度が高く、高い寸法精度と圧縮強度を十分有する発泡成形体であるため、フロアスペーサー、各種パッドに代表される車輌用内装材や、住宅等の建築物の床材、壁材等に好適に使用することが可能である。   The synthetic resin in-mold foam molded body obtained by the mold of the present invention is a foam molded body having a high degree of freedom in shape design and sufficient high dimensional accuracy and compressive strength. Therefore, it is represented by floor spacers and various pads. It can be suitably used for interior materials for vehicles, floor materials for buildings such as houses, and wall materials.

以下本発明に関し詳しく説明する。   The present invention will be described in detail below.

図1を用いて本発明の金型の構造並びに合成樹脂型内発泡成形体の成形手順について説明する。   The structure of the metal mold | die of this invention and the shaping | molding procedure of a synthetic resin in-mold foaming molding are demonstrated using FIG.

本発明の金型は、キャビティー型1とコア型2により画成された成形空間3を有し、この成形空間内に吸音性能を付与のための板状部材4を複数配してなる。この板状部材4は、キャビティー型1とコア型2の金型のうちの少なくとも一方の金型に複数配置され、吸音性能を要求される成形体面側に溝が付与されるように配置される。本発明においては、エジェクトピンを備えた金型を第1金型と称す場合があるが、一般的には、キャビティー型1にエジェクトピン5が配置されることが多く、金型からの成形体の安定離型の観点から、吸音性能を要求される面をエジェクトピン5が配置された第1金型に配置するように設計することが好ましい。このような配置とすることで、エジェクトピン側の成形体の離型抵抗を大きくすることができ、エジェクトピン5を配置した金型側に成形体を残すことが容易となる。要求される製品形状から板状部材4を第1金型側に配置できない場合には、図示はしていないが蒸気室7を真空吸引きできるような金型構造としてもよいし、蒸気室8を空気加圧することで製品をエジェクトピン側の金型側に押しつけるような金型構造としてもよい。さらに吸引と加圧の金型構造を併用してもよい。このような金型構造とすることでエジェクトピンが配置してある第1金型側に成形体を残すことができ、金型からの成形体離型が容易となる。   The mold of the present invention has a molding space 3 defined by a cavity mold 1 and a core mold 2, and a plurality of plate-like members 4 for imparting sound absorbing performance are arranged in the molding space. A plurality of the plate-like members 4 are arranged in at least one of the molds of the cavity mold 1 and the core mold 2, and are arranged so that a groove is provided on the side of the molded body that requires sound absorption performance. The In the present invention, a mold provided with an eject pin is sometimes referred to as a first mold, but generally, the eject pin 5 is often disposed in the cavity mold 1 and molding from the mold is performed. From the viewpoint of stable release of the body, it is preferable to design so that the surface requiring sound absorbing performance is disposed in the first mold in which the eject pin 5 is disposed. With such an arrangement, it is possible to increase the mold release resistance of the molded body on the eject pin side, and it is easy to leave the molded body on the mold side where the eject pin 5 is disposed. If the plate-like member 4 cannot be disposed on the first mold side due to the required product shape, the mold structure may be configured so that the vapor chamber 7 can be evacuated, although not shown, or the vapor chamber 8. It is good also as a metal mold | die structure which presses a product against the metal mold | die side by the side of an eject pin by pressurizing air. Further, a suction and pressure mold structure may be used in combination. By adopting such a mold structure, the molded body can be left on the first mold side where the eject pin is disposed, and the molded body can be easily released from the mold.

板状部材4はキャビティー型1とコア型2の両方に配置してもよい。このような構成とする事で、成形体の両面への吸音性能を付与することができる。但し、このような構成の場合、離型時にエジェクトピン5を有する第1金型側へ成形体を残す工夫を施すことが好ましく、例えば、エジェクトピン5を有する第1金型の成形体離型抵抗を大きくする工夫を行う方法が挙げられる。更に具体的には、キャビティー型1とコア型2に配置した板状部材4の形状あるいは設置間隔を両型で異とする手法がある。具体的には、エジェクトピン5を有する第1金型側の板状部材配置間隔を狭く、他方の金型側への板状部材の配置は所定吸音率が得られる範囲でできる限り板状部材の配置間隔を広く設定する、板状部材4の厚みを調整してエジェクトピン側の第1金型の離型抵抗を向上させる、エジェクトピンを備えた第1金型の板状部材4の表面積を他方の金型の板状部材4の表面積よりも大きく設定する、エジェクトピン5を備えた第1金型側の板状部材の抜きテーパー角度θ(図2)を他方の金型の板状部材4の抜きテーパー角度以下に設定する、板状部材4に表面処理を施し、表面粗さを変えることで成形体との滑り抵抗を変える、等の手法が挙げられる。さらに、これらの調整と真空吸引、あるいは空気加圧を組み合わせてもよい。但し、板状部材4の高さα(図2、成形体面での溝深さ)は吸音周波数と密接な関係があるため、板状部材4の高さαによる離型抵抗の調整は難しい場合がある。よって、エジェクトピン5を備えた第1金型の板状部材4の表面積を他方の金型の板状部材4の表面積よりも大きく設定する、あるいはエジェクトピン5を備えた第1金型の板状部材4の抜きテーパー角度θを他方の金型の板状部材4の抜きテーパー角度以下に設定する手法を用いることが吸音周波数に依存することなく設定可能であるため好ましい。   The plate-like member 4 may be disposed on both the cavity mold 1 and the core mold 2. By setting it as such a structure, the sound absorption performance to both surfaces of a molded object can be provided. However, in such a configuration, it is preferable to devise a method of leaving the molded body on the side of the first mold having the eject pin 5 at the time of mold release. For example, the molded body mold release of the first mold having the eject pin 5 is performed. There is a method of increasing the resistance. More specifically, there is a method in which the shape or installation interval of the plate-like members 4 arranged in the cavity mold 1 and the core mold 2 is different between the two molds. Specifically, the plate-shaped member arrangement interval on the first mold side having the eject pin 5 is narrow, and the plate-shaped member arrangement on the other mold side is as much as possible within a range where a predetermined sound absorption coefficient can be obtained. The surface area of the plate-like member 4 of the first mold provided with the eject pin is improved by adjusting the thickness of the plate-like member 4 to improve the mold release resistance of the first die on the eject pin side. Is set larger than the surface area of the plate member 4 of the other mold, and the taper angle θ (FIG. 2) of the plate member on the first mold side provided with the eject pin 5 is set to the plate shape of the other mold. Examples thereof include a method in which the plate member 4 is subjected to surface treatment and the sliding resistance with the molded body is changed by changing the surface roughness. Furthermore, these adjustments and vacuum suction or air pressurization may be combined. However, since the height α of the plate member 4 (FIG. 2, the groove depth on the surface of the molded body) is closely related to the sound absorption frequency, it is difficult to adjust the mold release resistance by the height α of the plate member 4. There is. Therefore, the surface area of the plate member 4 of the first mold having the eject pin 5 is set larger than the surface area of the plate member 4 of the other mold, or the plate of the first mold having the eject pin 5. It is preferable to use a method in which the taper angle θ of the plate-like member 4 is set to be equal to or smaller than the taper angle of the plate-like member 4 of the other mold because it can be set without depending on the sound absorption frequency.

次に板状部材4について説明する。ここで、本発明における板状部材4の高さα、幅β、厚みγは、図2に図示する寸法を指す。吸音性能を発現させるためには、板状部材4の厚みγは1mm以上10mm以下とすることが好ましい。より好ましくは、2mm以上7mm以下である。板状部材4の厚みγが1mm未満では成形後に成形体が収縮し、成形体表面の溝が閉塞してしまう、或いは、吸音付与に効果的な開口幅を確保できず、所望の吸音性能を得られない場合がある。一方、板状部材4の厚みγが10mm超えては、成形体に付与した溝中での空気の共振性能が低下するため、吸音率が低下する恐れがある。また、板状部材4の厚みを少なくとも2つ以上設定することで、板状部材4の配置バリエーションを増加でき、さらに板状部材4の数を変更することが可能となるため、高い吸音率を維持した状態で、様々な形状の成形品に容易に吸音性能を付与することが可能となるため、好ましい。   Next, the plate-like member 4 will be described. Here, the height α, the width β, and the thickness γ of the plate-like member 4 in the present invention indicate the dimensions shown in FIG. In order to develop sound absorption performance, the thickness γ of the plate-like member 4 is preferably 1 mm or more and 10 mm or less. More preferably, they are 2 mm or more and 7 mm or less. If the thickness γ of the plate-like member 4 is less than 1 mm, the molded body shrinks after molding, and the groove on the surface of the molded body is blocked, or an effective opening width for providing sound absorption cannot be secured, and a desired sound absorbing performance is obtained. It may not be obtained. On the other hand, if the thickness γ of the plate-like member 4 exceeds 10 mm, the resonance performance of air in the groove imparted to the molded body is lowered, so that the sound absorption rate may be lowered. In addition, by setting at least two thicknesses of the plate-like member 4, it is possible to increase the arrangement variation of the plate-like member 4 and further change the number of the plate-like members 4, so that a high sound absorption coefficient is obtained. It is preferable because sound absorbing performance can be easily imparted to molded products having various shapes in the maintained state.

板状部材4の幅βに関しては特に限定はないが、板状部材4の幅βを長く設定した場合には発泡体の剛性が低下するため、捻れや曲げなどの発生が懸念される。あるいは板状部材4の剛性を維持するために、板状部材4の幅βの上限は100mm程度であることが好ましく、更に50mm以下であることが好ましい。また、金型コストと成形性の観点から板状部材4の数を極力減らし、且つ高い吸音率を維持するためには、下限は15mmであることが好ましく、更には30mmであることが好ましい。板状部材4の高さαに関しては特に限定はなく、成形体に貫通した溝を付与してもよいし、成形体に有底溝を付与するために図1のように金型を形成してもよく、また両者の組合せであってもよい。金型製作上の容易性の面からは、有底溝を付与できるような高さとすることが好ましい。また、板状部材4の高さを2種以上に設定することで、異なる周波数の音を吸音するように設計できることが可能となるため好ましい。   The width β of the plate-like member 4 is not particularly limited. However, when the width β of the plate-like member 4 is set to be long, the rigidity of the foam is lowered, so that there is a concern about the occurrence of twisting or bending. Alternatively, in order to maintain the rigidity of the plate-like member 4, the upper limit of the width β of the plate-like member 4 is preferably about 100 mm, and more preferably 50 mm or less. Moreover, in order to reduce the number of the plate-like members 4 as much as possible and maintain a high sound absorption coefficient from the viewpoint of mold cost and moldability, the lower limit is preferably 15 mm, and more preferably 30 mm. The height α of the plate-like member 4 is not particularly limited, and a groove penetrating the molded body may be given, or a mold is formed as shown in FIG. 1 to give a bottomed groove to the molded body. Or a combination of both. From the viewpoint of ease of mold manufacture, it is preferable that the height be such that a bottomed groove can be provided. In addition, it is preferable to set the height of the plate-like member 4 to two or more because it can be designed to absorb sound of different frequencies.

板状部材4の形状については、図3の(a)に示すような長方形のような単純な板状でもよいが、(b)に示されるような高さ方向に凹凸のある形状にすることで、充填性と成形体の強度を向上させることができることから好ましい。(c)のように一つの板状部材4で数種の高さを有するように構成する、あるいは断面形状の一部を変更してもよい。このような板状部材4とすることで、一つの板状部材4であっても数種の溝深さ、溝形状を形成できることから、多彩な吸音周波数設計が容易となる。さらに、高さ方向の各位置における断面の形状・大きさは必ずしも同じである必要はなく、成形体中心部に近づくほど連続的に細くなる、あるいは逆に太くなるものや、段階的に断面形状が変化するものなど任意の形状のものを採用できる。板状部材4の高さ、ピッチ、形状は吸音特性を発現する形状範囲、圧縮特性を満足する範囲であれば、適宜自由に選択し、組み合わせることが可能である。   The shape of the plate-like member 4 may be a simple plate-like shape such as a rectangle as shown in FIG. 3 (a), but should have a shape with irregularities in the height direction as shown in (b). Therefore, it is preferable because the filling property and the strength of the molded body can be improved. As shown in (c), one plate-like member 4 may be configured to have several heights, or a part of the cross-sectional shape may be changed. By using such a plate-like member 4, several types of groove depths and groove shapes can be formed even with a single plate-like member 4, so that various sound absorption frequency designs are facilitated. Furthermore, the shape and size of the cross section at each position in the height direction do not necessarily have to be the same, and the cross-sectional shape gradually becomes thinner or thinner gradually as it approaches the center of the molded body. Arbitrary shapes such as those that change can be adopted. The height, pitch, and shape of the plate-like member 4 can be appropriately selected and combined as long as they are within a shape range that exhibits sound absorption characteristics and a range that satisfies compression characteristics.

板状部材4の断面形状についても特に限定はない。例えば、板状部材4の断面形状としては、図4に示す直線上、十字状等の直線、Sの字、正弦波状、波状、円などの曲線、直線の組合せ表現されるくの字、コの字状等のジグザグ線、直線とこれら曲線の組合せで表現される形状などが挙げられる。   There is no particular limitation on the cross-sectional shape of the plate-like member 4. For example, the cross-sectional shape of the plate-like member 4 may be a straight line shown in FIG. 4, a straight line such as a cross, a letter S, a curve such as a sine wave, a wave, or a circle, And a zigzag line such as a letter shape, a shape represented by a combination of a straight line and these curves.

複数の板状部材4の配置についても自由に設定可能である。成形体面で端を有する板状部材4の配置としては、図5に示すように平行、格子状、千鳥状、渦巻き状、放射線状等が挙げられ、端を有さない形状としては円形状、多角形状が挙げられ、これを一つ以上使用することが可能である。中でも、平行、格子状、放射状、同心円状に配置することが好ましい。   The arrangement of the plurality of plate-like members 4 can also be set freely. As the arrangement of the plate-like member 4 having an end on the surface of the molded body, as shown in FIG. 5, parallel, grid-like, zigzag, spiral, radial, and the like can be mentioned, and the shape having no end is circular, Polygonal shapes are listed, and one or more of them can be used. Among them, it is preferable to arrange them in parallel, lattice, radial or concentric circles.

複数の板状部材4の配置間隔は、良好な吸音率を維持できる吸音溝を発泡成形体に形成できれば特に限定はないが、通常、好ましくは3mm以上50mm以下に設定され、吸音面の全体で均一に吸音するようにするために、更に好ましくは5mm以上30mm以下に設定される。成形加工の観点、特に予備発泡粒子の充填、発泡成形体の離型の観点からも板状部材4の配置間隔を前記範囲に設定することが好ましい。ここで、板状部材4の配置間隔とは、板状部材4の厚み方向における板状部材4と板状部材4の間隔をいう。   The arrangement interval of the plurality of plate-like members 4 is not particularly limited as long as the sound absorption groove capable of maintaining a good sound absorption rate can be formed in the foamed molded product, but is usually preferably set to 3 mm or more and 50 mm or less, and the entire sound absorption surface. In order to absorb sound uniformly, it is more preferably set to 5 mm or more and 30 mm or less. It is preferable to set the arrangement interval of the plate-like members 4 within the above range from the viewpoint of molding processing, particularly from the viewpoint of filling pre-expanded particles and releasing the molded foam. Here, the arrangement interval of the plate-like members 4 refers to the interval between the plate-like members 4 and the plate-like members 4 in the thickness direction of the plate-like member 4.

また、前記板状部材4を配置した一方の金型における成形体の表面積に対して、同金型の前記板状部材4の総断面積の比は、好ましくは1.5%以上15%以下であり、更に好ましくは2%以上10%以下である。この範囲であれば、良好な吸音率と良好な圧縮特性の両立が図れる。なおここでいう「成形体の表面積」とは、成形体に溝を付与していないと仮定した場合の成形体の表面積を指し、溝を付与することによって生じた溝側壁等の面積は含まない。また、「板状部材4の総断面積」とは、板状部材4によって成形体表面に付与された開溝部の面積の総和を言う。   In addition, the ratio of the total cross-sectional area of the plate-like member 4 of the same mold to the surface area of the molded body in one mold where the plate-like member 4 is arranged is preferably 1.5% or more and 15% or less. More preferably, it is 2% or more and 10% or less. Within this range, both good sound absorption and good compression characteristics can be achieved. The “surface area of the molded product” here refers to the surface area of the molded product when it is assumed that no groove is provided to the molded product, and does not include the area of the groove side wall or the like generated by providing the groove. . The “total cross-sectional area of the plate-like member 4” refers to the total area of the open groove portions provided to the surface of the molded body by the plate-like member 4.

板状部材4の金型への取り付け方法は、図6に示すように板状部材4を台座18で挟み込み、この台座18を金型1に固定する形式(d)、図7に示すように金型表面に板状部材4を固定する形式(g)、金型1に板状部材4が通り抜けできる貫通溝を設け、この部分から板状部材4を成形空間3に突出しさせ、金型背面で固定する方式(h)が挙げられるが、これに限定されるものではない。板状部材4のメンテナンスの容易性からは、成形機に金型が取り付けられた状態であっても板状部材4を交換することが可能なことより、(d)(g)であることが好ましい。板状部材4の取り付けの強度の観点からは、より強固に金型に板状部材4を固定することが可能となることより(d)(h)が好ましい。また、バリの発生抑制の観点から、(d)(g)の構造が好ましい。(h)の構造においても、22のような突起を金型表面に設けることで成形体表面は凹となるためバリ発生を抑制することが可能となるため、このような形状とすることが好ましい。   As shown in FIG. 7, the plate member 4 is attached to the mold by sandwiching the plate member 4 with a pedestal 18 and fixing the pedestal 18 to the mold 1 as shown in FIG. Form (g) for fixing the plate-like member 4 on the mold surface, a through groove through which the plate-like member 4 can pass is provided in the mold 1, and the plate-like member 4 protrudes into the molding space 3 from this portion, and the back of the mold The method (h) of fixing with is not limited to this. From the viewpoint of ease of maintenance of the plate-like member 4, it is possible to replace the plate-like member 4 even when a mold is attached to the molding machine. preferable. From the viewpoint of the strength of attachment of the plate-like member 4, (d) and (h) are preferable because the plate-like member 4 can be more firmly fixed to the mold. From the viewpoint of suppressing the generation of burrs, the structures (d) and (g) are preferable. Also in the structure of (h), it is preferable to provide such a shape because it is possible to suppress the generation of burrs because the surface of the molded body becomes concave by providing projections such as 22 on the mold surface. .

板状部材4の材質は成形時あるいは離型時の変形を抑制できる強度を有すれば良く、特に限定される物ではないが、例えば、ステンレス鋼、アルミ材、真鍮、バネ鋼、チタン合金、セラミック、耐熱性樹脂が好適に使用される。これら板状部材4にテフロン(登録商標)コーティング処理、アルマイト処理など滑り性を高める、あるいは板状部材4の表面強度を高めるための表面処理を施してもよい。   The material of the plate-like member 4 is not particularly limited as long as it has strength capable of suppressing deformation at the time of molding or mold release. For example, stainless steel, aluminum material, brass, spring steel, titanium alloy, Ceramics and heat resistant resins are preferably used. These plate-like members 4 may be subjected to a surface treatment such as a Teflon (registered trademark) coating treatment or an alumite treatment to improve the slipperiness or to increase the surface strength of the plate-like member 4.

本発明に好適に使用できる予備発泡粒子としては、熱可塑性樹脂からなることが好ましく、熱可塑性樹脂としては、例えば、ポリメチルメタアクリル酸系樹脂;ポリスチレン、ポリα―メチルスチレン、スチレン−ポリエチレン系樹脂、スチレン無水マレイン酸コポリマー、ポリフェニレンオキサイドとポリスチレンとのブレンドまたはグランドコポリマー、スチレン−アクリロニトリルコポリマー、アクリロニトリル−ブタジエン−スチレン樹脂、スチレン−ブタジエンコポリマー、ハイインパクトポリスチレン等のスチレン系樹脂;ポリ塩化ビニル、塩化ビニル−酢酸ビニルコポリマー、エチレンまたはプロピレンと塩化ビニルのコポリマー等の塩化ビニル系樹脂;ポリアミド系樹脂;ポリエステル系樹脂;ポリカーボネート系樹脂;塩化ポリエチレン及び塩素化ポリプロピレン等の塩素化された樹脂;ポリオレフィン系樹脂等が挙げられる。成形体の物性を考慮すればポリオレフィン系樹脂を使用することが好ましい。ポリオレフィン系樹脂としては、ポリプロピレン、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテン3元共重合体等のポリプロピレン系樹脂や、低密度ポリエチレン、直鎖状超低密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、アイオノマー等のポリエチレン系樹脂がそれぞれ単独であるいは混合して用いられる。また、これらのポリオレフィン系樹脂は無架橋のものが好適に使用されるが、架橋したものも使用できる。また、配合剤としては、酸化防止剤、紫外線吸収剤、難燃剤、帯電防止材、顔料などの着色剤、可塑剤、滑剤、結晶化核剤、タルク、炭酸カルシウム等の無機充填剤を含んだものでもよい。本発明においては合成樹脂からなる発泡成形体は、その気泡形態が、独立気泡のものでも連続気泡のものでも良く、またこれらが混在しているものでもよい。中でも、独立気泡率が90%以上のものが、自動車部材の衝撃エネルギー吸収材としても、フロア材としても高い圧縮強度を維持できるため、本発明に好適に用いることができる。さらに、衝撃吸収性、耐熱性、耐薬品性、耐久性の観点から、ポリプロピレンあるいはポリエチレンを基材樹脂とし、予め所定倍率に予備発泡させた予備発泡粒子を金型内に充填し、加熱蒸気により発泡、融着させた、冷却固化した後に成形体を取り出す方法によって得られた合成樹脂型内発泡成形体に本発明を適用することが好適である。さらに、発泡成形体の発泡倍率は2倍以上100倍以下が好ましく、さらには3倍以上60倍以下が好適である。   The pre-expanded particles that can be suitably used in the present invention are preferably made of a thermoplastic resin. Examples of the thermoplastic resin include polymethyl methacrylic resin; polystyrene, poly α-methyl styrene, styrene-polyethylene. Resins, styrene maleic anhydride copolymers, blends or ground copolymers of polyphenylene oxide and polystyrene, styrene resins such as styrene-acrylonitrile copolymers, acrylonitrile-butadiene-styrene resins, styrene-butadiene copolymers, high impact polystyrene; polyvinyl chloride, chloride Vinyl chloride resins such as vinyl-vinyl acetate copolymers, copolymers of ethylene or propylene and vinyl chloride; polyamide resins; polyester resins; polycarbonate resins; Chlorinated resins such as polyethylene and chlorinated polypropylene; polyolefin resins. In view of the physical properties of the molded article, it is preferable to use a polyolefin resin. Polyolefin resins include polypropylene resins such as polypropylene, ethylene-propylene random copolymers, propylene-butene random copolymers, ethylene-propylene-butene terpolymers, low-density polyethylene, linear ultra-low Polyethylene resins such as density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and ionomer are used alone or in combination. In addition, these polyolefin-based resins are preferably non-crosslinked, but crosslinked resins can also be used. In addition, as a compounding agent, an antioxidant, an ultraviolet absorber, a flame retardant, an antistatic material, a colorant such as a pigment, a plasticizer, a lubricant, a crystallization nucleating agent, an inorganic filler such as talc, calcium carbonate, etc. It may be a thing. In the present invention, the foam molded body made of a synthetic resin may have a closed cell shape or open cell shape, or a mixture of these. Among them, those having a closed cell ratio of 90% or more can be preferably used in the present invention because they can maintain high compressive strength as both an impact energy absorbing material for automobile members and a floor material. Furthermore, from the viewpoints of shock absorption, heat resistance, chemical resistance, and durability, polypropylene or polyethylene is used as a base resin, pre-expanded particles pre-expanded at a predetermined magnification are filled in a mold, and heated steam is used. It is preferable to apply the present invention to a synthetic resin in-mold foam molded product obtained by a method of taking out a molded product after being cooled and solidified after being foamed and fused. Furthermore, the foaming ratio of the foamed molded product is preferably 2 to 100 times, and more preferably 3 to 60 times.

次に成形装置について説明する。   Next, the molding apparatus will be described.

型内発泡成形装置は対向配置した1組の金型としてのキャビティー型1及びコア型2と、キャビティー型とコア型とを型閉して画成される成形空間3に、空気の流れに乗せて予備発泡粒子を充填するための充填器6と、成形空間を減圧する減圧手段(図示していない)と、成形空間内へ圧縮空気を導入する圧縮空気供給手段(図示していない)と、成形空間内に充填された予備発泡粒子を蒸気により加熱し、発泡融着させる蒸気供給手段9,10と、成形した成形体を離型するためのエジェクタピン5とを備えている。キャビティー型1及びコア型2は、枠状フレーム11,12と裏板13,14とを有するハウジングにそれぞれ取り付けられ、キャビティー型1及びコア型2の背面には蒸気室7,8が形成されている。キャビティー型1及びコア型2には、成形空間3と蒸気室7,8とを連通するコアベント15やコアベントホールなどからなる通気孔が形成されている。各蒸気室7,8には用役弁を介して蒸気供給手段9,10及び圧縮空気供給手段にそれぞれ接続されている。また、各蒸気室7,8にはキャビティー型1とコア型2の背面に対して冷却水を噴霧する図示外のユニットが設けられている。図1においては、エジェクトピン5を備えたキャビティー型1に吸音性能を付与するための溝を形成するための前記複数の板状部材4が成形空間内3に突出状に形成されている。   The in-mold foam molding apparatus includes a cavity mold 1 and a core mold 2 as a pair of opposed molds, and a flow of air in a molding space 3 defined by closing the cavity mold and the core mold. A filling device 6 for filling the pre-expanded particles on the surface, a decompression means (not shown) for decompressing the molding space, and a compressed air supply means (not shown) for introducing the compressed air into the molding space. And vapor supply means 9 and 10 for heating and foaming the pre-expanded particles filled in the molding space, and an ejector pin 5 for releasing the molded product. The cavity mold 1 and the core mold 2 are respectively attached to housings having frame-shaped frames 11 and 12 and back plates 13 and 14, and vapor chambers 7 and 8 are formed on the back surfaces of the cavity mold 1 and the core mold 2. Has been. The cavity mold 1 and the core mold 2 are formed with vent holes including a core vent 15 and a core vent hole that communicate the molding space 3 with the steam chambers 7 and 8. Each of the steam chambers 7 and 8 is connected to steam supply means 9 and 10 and compressed air supply means via a service valve. Each of the steam chambers 7 and 8 is provided with a unit (not shown) for spraying cooling water onto the back surfaces of the cavity mold 1 and the core mold 2. In FIG. 1, the plurality of plate-like members 4 for forming grooves for imparting sound absorption performance to the cavity mold 1 having the eject pins 5 are formed in a protruding shape in the molding space 3.

次に本発明の型内発泡成形用金型を備えた装置を用いた発泡成形体の成形方法について説明する。この成形方法は、成形空間3に予備発泡粒子を充填する充填工程と、成形空間に充填された予備発泡粒子を加熱、発泡融着させる加熱工程と、成形された発泡成形体を冷却する冷却工程と、発泡成形体を金型から離型する離型工程の4つの工程に大別される。   Next, a method for molding a foam molded body using an apparatus including the mold for in-mold foam molding of the present invention will be described. This molding method includes a filling step of filling the molding space 3 with pre-expanded particles, a heating step of heating and foam-fusing the pre-foamed particles filled in the molding space, and a cooling step of cooling the molded foam molded body. And, it is divided roughly into four processes of the mold release process which releases a foaming molding from a metal mold | die.

充填工程では、キャビティー型1とコア型2を型閉めするとともに、成形空間3内に供給される空気をコアベント15から成形空間外へ排出しながら、充填器6から成形空間3に対して予備発泡粒子を空気の流れに乗せて供給し、成形空間内に予備発泡粒子を充填する。尚、予備発泡粒子として、成形前に粒子内に大気圧以上の空気を圧入し、発泡力を付与した粒子、所謂、成含粒子を用いることも可能である。具体的な充填方法としては、クラッキング充填法、加圧充填法、圧縮充填法などを採用できる。ここで、クラッキング充填法では、充填時にキャビティー型1とコア型2とを完全に型閉めせず、例えば発泡成形体の底肉厚の10%程度を開けておき、両金型の隙間から充填時に使用する空気を排出しながら予備発泡粒子を充填する。加圧充填法では、予備発泡粒子を収容した原料タンク内(図示外)を0.02〜0.15MPa程度加圧し、成形空間内を大気圧に開放した状態で、原料タンクと成形空間との差圧を利用して、成形空間内に予備発泡粒子を搬送して充填する。圧縮充填法では、原料タンク内の圧力を0.01〜0.50MPa程度に加圧し、成形空間3を原料タンク圧よりも低い状態で加圧し、差圧を維持した状態で予備発泡粒子を搬送して充填する方法である。   In the filling step, the cavity mold 1 and the core mold 2 are closed, and the air supplied into the molding space 3 is discharged from the core vent 15 to the outside of the molding space, while being reserved for the molding space 3 from the filler 6. The expanded particles are supplied on the air flow, and the pre-expanded particles are filled in the molding space. In addition, as the pre-expanded particles, it is possible to use so-called component-containing particles, in which air having a pressure equal to or higher than atmospheric pressure is press-fitted into the particles before molding to give foaming force. As a specific filling method, a cracking filling method, a pressure filling method, a compression filling method, or the like can be adopted. Here, in the cracking filling method, the cavity mold 1 and the core mold 2 are not completely closed at the time of filling. For example, about 10% of the bottom thickness of the foamed molded body is opened and the gap between both molds is opened. The pre-expanded particles are filled while discharging the air used for filling. In the pressure filling method, the inside of the raw material tank (not shown) containing the pre-expanded particles is pressurized by about 0.02 to 0.15 MPa, and the forming space is opened to atmospheric pressure. Using the differential pressure, the pre-expanded particles are conveyed and filled into the molding space. In the compression filling method, the pressure in the raw material tank is increased to about 0.01 to 0.50 MPa, the molding space 3 is pressurized in a state lower than the raw material tank pressure, and the pre-expanded particles are conveyed while maintaining the differential pressure. And filling.

次に加熱工程について説明する。キャビティー型1及びコア型2のドレンライン16,17を開放にした状態で蒸気供給手段9,10から両蒸気室に蒸気を供給することで、2つの蒸気室内の空気を系外に排出する。次に、一方の蒸気室に蒸気を供給して、他方の蒸気室から排出することで、成形空間の空気を排出するとともに、予備発泡粒子及び金型を予熱する。次に両ドレンライン16,17を閉塞した状態で、両蒸気室7,8に蒸気を供給して、予備発泡粒子を加熱、発泡融着させる。   Next, the heating process will be described. By supplying steam to the steam chambers from the steam supply means 9 and 10 with the drain lines 16 and 17 of the cavity mold 1 and the core mold 2 being opened, the air in the two steam chambers is discharged out of the system. . Next, steam is supplied to one steam chamber and discharged from the other steam chamber, whereby the air in the molding space is discharged and the pre-expanded particles and the mold are preheated. Next, in a state where both drain lines 16 and 17 are closed, steam is supplied to both the steam chambers 7 and 8 to heat and foam the pre-expanded particles.

次の冷却工程では、キャビティー型及びコア型に向けて図示外のノズルユニットから冷却水を噴霧し、キャビティー型1及びコア型2を介して成形空間3の発泡成形体を離型可能な製品の硬度まで冷却・固化させる。   In the next cooling step, cooling water is sprayed from a nozzle unit (not shown) toward the cavity mold and the core mold, and the foam molded body in the molding space 3 can be released through the cavity mold 1 and the core mold 2. Cool and solidify to product hardness.

離型工程ではキャビティー型1とコア型2とを型開きするが、一般的にはエジェクトピン5を有するキャビティー型1には板状部材4が形成されて、その分離型抵抗がコア型2よりも大きくなっているので、発泡成形体はキャビティー型側に残ることになる。但し、コア型2の背面側から圧縮空気を供給して、発泡成形体がコア型から離れやすくなるように構成したり、キャビティー型1の蒸気室を減圧して、キャビティー型1側に発泡成形体を吸着させながら型開きしてもよい。このように発泡成形体をキャビティー型1側に残すことが可能となるので、発泡成形体の離型不良を効果的に防止できる。こうして、キャビティー型1に発泡成形体を残した状態で、エジェクトピン5で発泡成形体を突き出して金型から離型することになる。   In the mold release process, the cavity mold 1 and the core mold 2 are opened. In general, a plate-like member 4 is formed on the cavity mold 1 having the eject pin 5, and the separated mold resistance is the core mold. Since it is larger than 2, the foamed molded product remains on the cavity mold side. However, compressed air is supplied from the back side of the core mold 2 so that the foamed molded product can be easily separated from the core mold, or the vapor chamber of the cavity mold 1 is decompressed to the cavity mold 1 side. The mold may be opened while adsorbing the foamed molded product. Thus, since it becomes possible to leave a foaming molding on the cavity type | mold 1 side, the mold release defect of a foaming molding can be prevented effectively. Thus, in a state where the foam molded body remains in the cavity mold 1, the foam molded body is protruded by the eject pin 5 and released from the mold.

離型直後の発泡成形体は水分を多く含むため、常温乾燥あるいは高温乾燥を行う。特に、成形直後に収縮が見られる場合には、吸音の為の溝が閉塞する為、高温乾燥を行うことにより形状が回復をおこなうことが好ましい。   Since the foamed molded product immediately after release contains a lot of moisture, it is dried at room temperature or at high temperature. In particular, when shrinkage is observed immediately after molding, since the groove for absorbing sound is closed, it is preferable that the shape is recovered by high-temperature drying.

以上のようにして得られる発泡成形体の厚みは、10mm以上が好ましく、より好ましくは20mm以上であり、これ以上であれば特に限定するものではない。発泡成形体の厚みが薄いと、吸音用に発泡成形体表面に設けた溝が浅くなり、音エネルギーを熱エネルギーや振動エネルギーに変換しうる空気層が減少するため、音波を成形体内部に伝播する十分な空気層を確保することができず、空気の粘性摩擦が生じにくくなり、吸音率の低下が生じる。さらに、吸音周波数域は溝の深さを変更することで設計可能である。よって、成形体厚みが厚いほど吸音周波数の設計自由度が増すため好ましい。   The thickness of the foamed molded article obtained as described above is preferably 10 mm or more, more preferably 20 mm or more, and is not particularly limited as long as it is more than this. If the thickness of the foam molded product is thin, the groove provided on the surface of the foam molded product for sound absorption becomes shallow, and the air layer that can convert sound energy into thermal energy or vibration energy decreases, so sound waves propagate inside the molded product. A sufficient air layer cannot be secured, and viscous friction of air is less likely to occur, resulting in a decrease in sound absorption coefficient. Furthermore, the sound absorption frequency range can be designed by changing the depth of the groove. Therefore, the thicker the molded body, the greater the degree of freedom in designing the sound absorption frequency, which is preferable.

また本発明の金型によって得られた合成樹脂型内発泡成形体は、優れた吸音効果を有し、かつ成形加工性が容易であるため、吸音目的に様々な用途に使用することが可能である。例えば、フロアスペーサー、ティビアパッド、ピラー内部の衝撃吸収材、ドアリム内部の衝撃吸収材、等の車両用内装材、コンサートホール、一般住宅等の建築物の床材(床材を構成する芯材も含む)や壁材(壁材を構成する芯材も含む)に好適に使用することができる。   In addition, the synthetic resin in-mold foam molded article obtained by the mold of the present invention has an excellent sound absorption effect and easy molding processability, so it can be used for various purposes for sound absorption. is there. For example, interior materials for vehicles such as floor spacers, tibia pads, shock absorbers inside pillars, shock absorbers inside door rims, etc., floor materials for buildings such as concert halls and ordinary houses (including core materials that make up floor materials) ) And wall material (including the core material constituting the wall material).

以下、本発明を実施例にてさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
成形体の大きさが300×400×60t(mm)となる金型を用い、その内側に厚み3mm、幅50mm、高さ50mm(溝深さが50mm)の板状部材を、3列・平行に配置間隔30mmとなるように配置した。予備発泡粒子はポリプロピレンを主原料とする(株)カネカ製のエペランPP30倍を、発泡力を付与するために粒子内の空気圧力が2.0atmとなるように調整した原料を使用し、加熱蒸気圧圧力を0.32Mpaで成形を行った。ここで得られた成形体は成形後75℃、16時間の乾燥を行った後に乾燥室から取り出し、さらに24時間以上常温で放置してから23℃の環境下で吸音測定あるいは圧縮測定を行った。
(実施例2)
実施例1と同金型内に、厚み3mm、幅50mm、高さ40mmの板状部材を配置間隔30mmとなるように3列・平行に配置した。ポリプロピレンを主原料とする予備発泡粒子((株)カネカ製、エペランPP発泡倍率30倍)を用いて型内成形を行った。
(実施例3)
実施例1と同金型内に、厚み5mm、幅50mm、高さ50mmの板状部材を、配置間隔30mmとなるように3列・平行に配置した。ポリプロピレンを主原料とする予備発泡粒子((株)カネカ製、エペランPP発泡倍率30倍)を用いて型内成形を行った。
(実施例4)
実施例1と同金型内に、厚み3mm、幅50mm、高さ50mmの板状部材を、配置間隔20mmとなるように3列・平行に配置した。ポリプロピレンを主原料とする予備発泡粒子((株)カネカ製、エペランPP発泡倍率30倍)を用いて型内成形を行った。
(実施例5)
実施例1と同金型内に、厚み3mm、幅50mm、高さ40mmと50mmの板状部材を同数、配置間隔が30mmとなるように3列・平行に配置(短手方向:同高さの板状部材を3列に配置、長手方向:高さ40mmと50mmの板状部材を交互に配置)した。ポリプロピレンを主原料とする予備発泡粒子((株)カネカ製、エペランPP発泡倍率30倍)を用いて型内成形を行った。
(参考例)
板状部材を配置しないで実施例1と同金型を用いて、ポリプロピレンを主原料とする予備発泡粒子((株)カネカ製、エペランPP発泡倍率30倍)を用いて型内成形を行った。
(比較例1)
ポリプロピレンを主原料とする型内発泡成形体(発泡倍率30倍、(株)カネカ)に、針状部材先端を300℃に加熱し、後加工により孔径2mm、ピッチ8mm、穴深さ40mmの吸音孔を1700個形成した。
(比較例2)
金型に孔径2mm、長さ50mmの針状部材をピッチ8mmで配置し、ポリプロピレンを主原料とする予備発泡粒子(発泡倍率30倍(株)カネカ製エペランPP)を、発泡力を付与するために予備発泡粒子内の空気圧力が2.0atmとなるように調整した後、実施例1と同成形条件にて型内成形を行った。しかしながら、針と針の間の一部で予備発泡粒子が充填できない部分があり、良好な発泡成形体が得られない結果となった。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.
Example 1
A mold having a size of 300 × 400 × 60 t (mm) is used, and plate-like members having a thickness of 3 mm, a width of 50 mm, and a height of 50 mm (groove depth of 50 mm) are arranged in three rows and in parallel. It arrange | positioned so that it might become 30 mm of arrangement | positioning space | interval. The pre-expanded particles are made of 30-times Eperan PP manufactured by Kaneka Co., Ltd., which uses polypropylene as the main raw material, and the raw steam is adjusted so that the air pressure in the particles becomes 2.0 atm to give foaming power. Molding was performed at a pressure of 0.32 Mpa. The molded body obtained here was dried at 75 ° C. for 16 hours after molding and then taken out of the drying chamber, left to stand at room temperature for 24 hours or more, and then subjected to sound absorption measurement or compression measurement in an environment at 23 ° C. .
(Example 2)
In the same mold as in Example 1, plate-like members having a thickness of 3 mm, a width of 50 mm, and a height of 40 mm were arranged in three rows and in parallel so as to have an arrangement interval of 30 mm. In-mold molding was performed using pre-expanded particles mainly made of polypropylene (manufactured by Kaneka Corp., Eperan PP expansion ratio of 30 times).
(Example 3)
In the same mold as in Example 1, plate members having a thickness of 5 mm, a width of 50 mm, and a height of 50 mm were arranged in three rows and in parallel so as to have an arrangement interval of 30 mm. In-mold molding was performed using pre-expanded particles mainly made of polypropylene (manufactured by Kaneka Corp., Eperan PP expansion ratio of 30 times).
Example 4
In the same mold as in Example 1, plate-like members having a thickness of 3 mm, a width of 50 mm, and a height of 50 mm were arranged in three rows and in parallel so as to have an arrangement interval of 20 mm. In-mold molding was performed using pre-expanded particles mainly made of polypropylene (manufactured by Kaneka Corp., Eperan PP expansion ratio of 30 times).
(Example 5)
In the same mold as in Example 1, the same number of plate members having a thickness of 3 mm, a width of 50 mm, a height of 40 mm and a height of 50 mm are arranged in three rows and in parallel so that the arrangement interval is 30 mm (short direction: the same height). The plate-like members were arranged in three rows, and the longitudinal direction: plate-like members having a height of 40 mm and 50 mm were alternately arranged). In-mold molding was performed using pre-expanded particles mainly made of polypropylene (manufactured by Kaneka Corp., Eperan PP expansion ratio of 30 times).
(Reference example)
In-mold molding was performed using pre-expanded particles (manufactured by Kaneka Co., Ltd., Eperan PP expansion ratio of 30 times) using polypropylene as the main raw material, using the same mold as in Example 1 without arranging a plate-like member. .
(Comparative Example 1)
Heat absorption at 300 ° C at the tip of the needle-shaped member in an in-mold foam molded body (30 times expansion ratio, Kaneka Co., Ltd.) made of polypropylene as the main raw material, and post-processed with a hole diameter of 2 mm, a pitch of 8 mm, and a hole depth of 40 mm 1700 holes were formed.
(Comparative Example 2)
In order to impart foaming power to pre-expanded particles (eperan PP manufactured by Kaneka Co., Ltd.) with polypropylene as the main raw material, needle-shaped members having a hole diameter of 2 mm and a length of 50 mm are arranged in the mold at a pitch of 8 mm. After adjusting the air pressure in the pre-expanded particles to 2.0 atm, in-mold molding was performed under the same molding conditions as in Example 1. However, there was a portion where the pre-expanded particles could not be filled in part between the needles, and a good foamed molded product could not be obtained.

前記の各発泡成形体の吸音率の測定は、700mm×700mmとなるように発泡成形体を加工し、9m3の残響室を用いた残響吸音測定法により算出した。結果を図8に示す。 The sound absorption coefficient of each foamed molded product was calculated by a reverberant sound absorption measurement method using a 9 m 3 reverberation chamber after processing the foamed molded product so as to be 700 mm × 700 mm. The results are shown in FIG.

また、圧縮強度はJIS−K6767に基づいて測定した。結果を表1に示す。また、表1中には実施例での溝部の開口率、圧縮強度を記す。ここで、溝部の開口率は、板状部材を配置した一方の金型における製品表面積に対して、同金型の前記板状部材の総断面積の比である。   Moreover, the compressive strength was measured based on JIS-K6767. The results are shown in Table 1. In Table 1, the opening ratio and compressive strength of the grooves in the examples are shown. Here, the opening ratio of the groove portion is the ratio of the total cross-sectional area of the plate-shaped member of the mold to the product surface area of the one mold where the plate-shaped member is disposed.

Figure 2006130718
Figure 2006130718

以上説明したように、本発明の合成樹脂型内発泡成形用金型により製造された合成樹脂型内発泡成形体によれば、型内発泡において特殊で異形の樹脂粒子を使用しなくとも、吸音率の高い成形体を容易に得ることが可能である。さらに、吸音用の溝を有しない合成樹脂発泡体との比較においても圧縮特性を大きく低下させることがない。さらに、溝深さを変えることで吸音周波数域の設計が可能となり、これらの吸音率効果を成形体の表面と裏面で異にすることも可能となる。特に、細孔を有する吸音材の製法との比較においては、吸音に寄与する溝数(孔数)を大幅に低減することが可能となり、この効果により金型内への予備発泡粒子の充填性が格段に向上すると共に、吸音性付与に伴う金型コスト増を極力低減することができる。   As described above, according to the synthetic resin in-mold foam-molded article produced by the synthetic resin in-mold foam molding mold of the present invention, sound absorption is possible without using special and irregular shaped resin particles in the in-mold foam. It is possible to easily obtain a molded body having a high rate. Furthermore, the compression characteristics are not greatly deteriorated even in comparison with a synthetic resin foam having no sound absorbing groove. Furthermore, it is possible to design the sound absorption frequency range by changing the groove depth, and to make these sound absorption coefficient effects different between the front surface and the back surface of the molded body. In particular, in comparison with a method for producing a sound absorbing material having pores, the number of grooves (number of holes) contributing to sound absorption can be greatly reduced, and this effect enables filling of pre-expanded particles into the mold. As a result, the cost of the mold associated with the sound absorption can be reduced as much as possible.

金型成形装置の概略図であり、板部材の一部を例示。It is the schematic of a metal mold forming apparatus, and illustrates a part of board member. 板状部材の各部位の名称を示した図である。It is the figure which showed the name of each site | part of a plate-shaped member. 板状部材の形状例の一つを示した図である。It is the figure which showed one of the shape examples of a plate-shaped member. 板状部材の断面形状例を示した図である。It is the figure which showed the cross-sectional example of the plate-shaped member. 板状部材の配置例を示した図である。It is the figure which showed the example of arrangement | positioning of a plate-shaped member. 板状部材の取り付け例を示した図である。It is the figure which showed the example of attachment of a plate-shaped member. 別の板状部材の取り付け例を示した図である。It is the figure which showed the example of attachment of another plate-shaped member. 吸音率の測定結果を示した図である。It is the figure which showed the measurement result of the sound absorption coefficient.

符号の説明Explanation of symbols

1 キャビティー型
2 コア型
3 成形空間
4 板状部材
5 エジェクトピン
6 充填器
7 キャビティー型蒸気室
8 コア型蒸気室
9 キャビティー型蒸気供給口
10 コア型蒸気供給口
11 キャビティー型フレーム
12 コア型フレーム
13 キャビティー型裏板
14 コア型裏板
15 コアベント
16 キャビティー型ドレン口
17 コア型ドレン口
18 板状部材固定台座
19 板状部材と固定台座の固定ボルト
20 板状部材固定台座の固定ボルト
21 板状部材固定ボルト
22 バリ防止金型突起
DESCRIPTION OF SYMBOLS 1 Cavity type 2 Core type 3 Molding space 4 Plate-shaped member 5 Eject pin 6 Filler 7 Cavity type vapor chamber 8 Core type vapor chamber 9 Cavity type vapor supply port 10 Core type vapor supply port 11 Cavity type frame 12 Core type frame 13 Cavity type back plate 14 Core type back plate 15 Core vent 16 Cavity type drain port 17 Core type drain port 18 Plate-shaped member fixing base 19 Plate-shaped member and fixing base fixing bolt 20 Plate-shaped member fixing base Fixing bolt 21 Plate-shaped member fixing bolt 22 Burr prevention mold protrusion

Claims (15)

コア型とキャビティー型とからなる1組の成形用金型により画成された成形空間内に予備発泡粒子を充填し、該予備発泡粒子を加熱媒体により加熱して発泡融着せしめることにより発泡成形体を得る成形用金型において、1組の金型のうちの少なくとも一方の金型に、成形体に溝を設けるための板状部材を複数配置することを特徴とする合成樹脂型内発泡成形用金型。   Foaming is performed by filling pre-expanded particles into a molding space defined by a pair of molding dies composed of a core mold and a cavity mold, and heating the pre-expanded particles with a heating medium to cause foam fusion. In a molding die for obtaining a molded body, foaming in a synthetic resin mold is characterized in that a plurality of plate-like members for providing grooves in the molded body are arranged in at least one of a set of molds. Mold for molding. 前記板状部材を、エジェクトピンを備えた第1金型に設けることを特徴とする請求項1記載の合成樹脂型内発泡成形用金型。   2. The synthetic resin in-mold foam molding die according to claim 1, wherein the plate-like member is provided in a first die having an eject pin. 前記コア型とキャビティー型の両金型に板状部材を配し、エジェクトピンを備えた第1金型に配置した板状部材の表面積を、他方の金型に配置した板状部材の表面積よりも大きく設定することを特徴とする請求項1記載の合成樹脂型内発泡成形用金型。   The plate-shaped member is arranged on both the core mold and the cavity mold, and the surface area of the plate-shaped member disposed on the first mold having the eject pin is set to the surface area of the plate-shaped member disposed on the other mold. 2. The synthetic resin in-mold foam molding die according to claim 1, wherein the mold is set to be larger. 前記コア型とキャビティー型の両金型に板状部材を配し、エジェクトピンを備えた第1金型に配置した板状部材の抜きテーパー角度を、他方の金型に配置した板状部材の抜きテーパー角度以下に設定したことを特徴とする請求項1又は2記載の合成樹脂型内発泡成形用金型。   A plate-like member is arranged in the other die, with a plate-like member arranged on both the core die and the cavity die, and the taper angle of the plate-like member arranged in the first die provided with the eject pin. The mold for foam molding in a synthetic resin mold according to claim 1 or 2, characterized in that it is set to be equal to or smaller than the taper angle of the above. 前記板状部材の厚みが1mm以上10mm以下であることを特徴とする請求項1〜4のいずれか一項に記載の合成樹脂型内発泡成形用金型。   The thickness of the said plate-shaped member is 1 mm or more and 10 mm or less, The synthetic resin mold for foam molding as described in any one of Claims 1-4 characterized by the above-mentioned. 前記板状部材の配置間隔を3mm以上50mm以下に設定することを特徴とする請求項1〜5のいずれか一項に記載の合成樹脂型内発泡成形用金型。   The synthetic resin in-mold foam molding die according to any one of claims 1 to 5, wherein an interval between the plate-like members is set to 3 mm or more and 50 mm or less. 前記板状部材の高さを少なくとも2つ以上設定することを特徴とする請求項1〜6のいずれか一項に記載の合成樹脂型内発泡成形用金型。   The height of the said plate-shaped member is set at least 2 or more, The synthetic resin mold for foam molding as described in any one of Claims 1-6 characterized by the above-mentioned. 前記板状部材の厚みを少なくとも2つ以上設定することを特徴とする請求項1〜7のいずれか一項に記載の合成樹脂型内発泡成形用金型。   The synthetic resin in-mold foam molding die according to any one of claims 1 to 7, wherein at least two or more thicknesses of the plate-like member are set. 前記板状部材の配置を平行、格子状、放射状、同心円状に配置することを特徴とする請求項1〜8のいずれか一項に記載の合成樹脂型内発泡成形用金型。   The synthetic resin in-mold foam molding die according to any one of claims 1 to 8, wherein the plate members are arranged in parallel, lattice, radial, and concentric circles. 前記板状部材を配置した一方の金型における発泡体の表面積に対して、同金型の前記板状部材の総断面積の比が1.5%以上15%以下であることを特徴とする請求項1〜9のいずれか1記載の合成樹脂型内発泡成形用金型。   The ratio of the total cross-sectional area of the plate-shaped member of the same mold to the surface area of the foam in one mold on which the plate-shaped member is disposed is 1.5% or more and 15% or less. The synthetic resin mold for foam molding according to any one of claims 1 to 9. 請求項1〜10のいずれか一項に記載の合成樹脂型内発泡成形用金型にて製造された合成樹脂型内発泡成形体。   A synthetic resin in-mold foam-molded article manufactured with the synthetic resin in-mold foam molding mold according to any one of claims 1 to 10. 前記合成樹脂型内発泡成形体が有する複数の溝が有底及び/又は貫通である請求項11記載の合成樹脂型内発泡成形体。   The synthetic resin in-mold foam-molded article according to claim 11, wherein the plurality of grooves of the synthetic resin in-mold foam-molded body are bottomed and / or penetrated. 請求項11または12記載の合成樹脂型内発泡成形体からなる車輌用内装材。   The vehicle interior material which consists of a synthetic resin in-mold foaming molding of Claim 11 or 12. 請求項11または12記載の合成樹脂型内発泡成形体からなる床材。   The floor material which consists of a synthetic resin in-mold foaming molding of Claim 11 or 12. 請求項11または12記載の合成樹脂型内発泡成形体からなる壁材。   The wall material which consists of a synthetic resin in-mold expansion-molding body of Claim 11 or 12.
JP2004320333A 2004-11-04 2004-11-04 Mold for synthetic resin in-mold foam molding and synthetic resin in-mold foamed molded product molded using it Pending JP2006130718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320333A JP2006130718A (en) 2004-11-04 2004-11-04 Mold for synthetic resin in-mold foam molding and synthetic resin in-mold foamed molded product molded using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320333A JP2006130718A (en) 2004-11-04 2004-11-04 Mold for synthetic resin in-mold foam molding and synthetic resin in-mold foamed molded product molded using it

Publications (1)

Publication Number Publication Date
JP2006130718A true JP2006130718A (en) 2006-05-25

Family

ID=36724688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320333A Pending JP2006130718A (en) 2004-11-04 2004-11-04 Mold for synthetic resin in-mold foam molding and synthetic resin in-mold foamed molded product molded using it

Country Status (1)

Country Link
JP (1) JP2006130718A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125706U (en) * 1975-04-02 1976-10-12
JPH1030288A (en) * 1996-07-16 1998-02-03 Isolite Kogyo Kk Ceramic sound absorption material
JP2003340858A (en) * 2002-05-24 2003-12-02 Kanegafuchi Chem Ind Co Ltd In-mold foam molding apparatus and molding method
JP2005212112A (en) * 2004-01-27 2005-08-11 Kaneka Corp Synthetic resin foam molded product having narrow grooves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125706U (en) * 1975-04-02 1976-10-12
JPH1030288A (en) * 1996-07-16 1998-02-03 Isolite Kogyo Kk Ceramic sound absorption material
JP2003340858A (en) * 2002-05-24 2003-12-02 Kanegafuchi Chem Ind Co Ltd In-mold foam molding apparatus and molding method
JP2005212112A (en) * 2004-01-27 2005-08-11 Kaneka Corp Synthetic resin foam molded product having narrow grooves

Similar Documents

Publication Publication Date Title
US7300612B2 (en) Hollow strandfoam and preparation thereof
JP5912544B2 (en) Method for producing foamed article with skin
JP7228334B2 (en) Foamed resin particles and foamed resin products
TWI807071B (en) Laminated article
Yoo et al. A study on a new 3D porous polymer printing based on EPP beads containing CO2 gas
JP2007083717A (en) Multilayer foam molded body and its manufacturing method
MXPA02005427A (en) Hollow-strand foam and preparation thereof.
JP2007106021A (en) Resin foamed molding and its manufacturing process
JP2006130718A (en) Mold for synthetic resin in-mold foam molding and synthetic resin in-mold foamed molded product molded using it
JP2010158866A (en) Molded body and method of manufacturing molded body
JP2007320092A (en) Method for producing molding foamed in mold using preliminarily foamed polypropylene particles
JP2005119257A (en) Manufacturing method for expandable sound-absorbing material, and expandable sound-absorbing material manufactured by the method
JP7328353B2 (en) Multi-layer sound absorbing material
JP2018158556A (en) Method for producing porous foamed resin
JP4393880B2 (en) Synthetic resin foam molding having a thin groove
JP2008207763A (en) Sound absorption material and its molding method
JP4837356B2 (en) Thermoplastic resin in-mold foam molding and production method
JP4278088B2 (en) Foam molded body with skin and method for producing the same
KR20220137936A (en) Polypropylene-based resin expanded particles, and polypropylene-based resin expanded particle molded article
WO2014155521A1 (en) Polyolefin resin foam sheet, sound absorbing material, and automotive parts, and method for producing polyolefin resin foam sheet
JP5326583B2 (en) Method for producing polyolefin resin block-like foam molded article
JP6898725B2 (en) Foam particle moldings and cushions for soles
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
JP7417179B1 (en) Method for manufacturing thermoplastic resin expanded particle molded product
JP2008179064A (en) Molding machine for porous molding and method for manufacturing porous molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005