[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006130004A - Method for manufacturing micro-catheter and micro-catheter - Google Patents

Method for manufacturing micro-catheter and micro-catheter Download PDF

Info

Publication number
JP2006130004A
JP2006130004A JP2004320996A JP2004320996A JP2006130004A JP 2006130004 A JP2006130004 A JP 2006130004A JP 2004320996 A JP2004320996 A JP 2004320996A JP 2004320996 A JP2004320996 A JP 2004320996A JP 2006130004 A JP2006130004 A JP 2006130004A
Authority
JP
Japan
Prior art keywords
resin
mfl
melting point
microcatheter
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004320996A
Other languages
Japanese (ja)
Other versions
JP4397319B2 (en
Inventor
Akitoshi Sakata
哲年 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004320996A priority Critical patent/JP4397319B2/en
Publication of JP2006130004A publication Critical patent/JP2006130004A/en
Application granted granted Critical
Publication of JP4397319B2 publication Critical patent/JP4397319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0012Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M2025/0042Microcatheters, cannula or the like having outside diameters around 1 mm or less

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a narrow micro-catheter consisting of an inner layer, a reinforcing layer and an outer layer, with excellent operability; and the micro-catheter manufactured by the method. <P>SOLUTION: In the method for manufacturing the micro-catheter consisting of the inner layer, the reinforcing layer and the outer layer, the reinforcing layer has a braiding structure consisting of strands made of materials with different fusion points. The method for stably manufacturing the narrow micro-catheter with excellent operability and the micro-catheter manufactured by the method can be obtained by heating and fusing at least one of the strands spiralled only in one direction of the micro-catheter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、脳、心臓、腹部等の血管や臓器の診断あるいは治療のために、細い末梢血管に挿入されるマイクロカテーテルの製造方法及びマイクロカテーテルに関するものである。   The present invention relates to a method for manufacturing a microcatheter inserted into a thin peripheral blood vessel and a microcatheter for the diagnosis or treatment of blood vessels and organs such as the brain, heart, and abdomen.

経皮的に血管内に挿入したカテーテルを脳や心臓、腹部等の臓器に導き、治療薬、塞栓物質、造影剤等を投与、注入する医療行為は従来から行われている。近年、医学の進歩により、更に細い末梢血管への治療薬、塞栓物質、造影剤等の注入が必要となり、これらの細い末梢血管に挿入できるマイクロカテーテルの開発が要望されている。マイクロカテーテルは曲がりくねった細い末梢血管を術者の操作により確実に進んでいく必要があるため、様々な操作性が要求される。この操作性には、術者の押込み力をマイクロカテーテルの先端まで確実に伝達する押込み性(プッシャビリティー)、術者により加えられた回転力をマイクロカテーテルの先端まで確実に伝達するトルク伝達性、マイクロカテーテルの内腔を通っているガイドワイヤーに沿って、曲がった血管内を進むガイドワイヤー追随性、そして血管の屈曲部や湾曲部でもマイクロカテーテルが折れ曲がりを生じない耐キンク性などがあげられる。これらの操作性を実現するためにマイクロカテーテルの先端部を柔軟な材料、其端側を硬質な材料で構成することがよく知られている。また耐キンク性やプッシャビリティーを確保するために、編組構造やコイル構造をとった補強層を構成することも多くのマイクロカテーテルで行われている。   Conventionally, a medical act of percutaneously inserting a catheter inserted into a blood vessel into an organ such as the brain, heart, or abdomen, and administering and injecting a therapeutic agent, an embolic substance, a contrast agent, or the like has been performed. In recent years, due to advances in medicine, it has become necessary to inject therapeutic agents, embolic substances, contrast agents and the like into finer peripheral blood vessels, and the development of microcatheters that can be inserted into these fine peripheral blood vessels has been desired. Since microcatheters need to be surely advanced by a surgeon's operation through a slender peripheral blood vessel, various operability is required. This operability includes pushability that reliably transmits the operator's pushing force to the tip of the microcatheter, and torque transmission that reliably transmits the rotational force applied by the operator to the tip of the microcatheter. The guide wire follows the guide wire that passes through the lumen of the microcatheter and travels in the bent blood vessel, and the kink resistance that does not cause the micro catheter to be bent even at the bent or curved portion of the blood vessel is raised. . In order to realize these operability, it is well known that the tip portion of the microcatheter is made of a flexible material and the end side thereof is made of a hard material. In order to secure kink resistance and pushability, a reinforcing layer having a braided structure or a coil structure is also used in many microcatheters.

しかしながら補強層を構成することで耐キンク性やプッシャビリティーは確保されるものの、例えば編組構造をとった場合は編組を構成する素線が重なり合うことからマイクロカテーテルの細径化が難しく、また先端の柔軟性が確保しにくい。コイル構造をとった場合はコイルが重なり合うことがないため編組構造より細径化が図りやすくまた先端の柔軟性も良好であるが、編組構造のように編まれていないのでコイルがはずれやすく、外層を被覆する際などの工程でのハンドリング性が悪いという欠点があった。また編組構造をもつチューブでは容易である連続生産がコイル構造をもつチューブでは困難であった。これらの問題を解決する方法として、例えば特許文献1では、機械的強度の大きく一方向のみに螺巻された螺巻線と、機械的強度の小さく前記一方の螺巻線と交差する他方向のみに螺巻された他方の螺巻線とからなる編組構造が開示されている。一方の螺巻された螺巻線の強度を下げることにより耐キンク性やトルク伝達性は増大できるが、螺巻線の交差している部分が肉厚となり、カテーテルの細径化が困難であった。また、特許文献2には右巻コイルと左巻コイルが積層された構造が開示されている。この方法によりトルク伝達性や押込み性(プッシャビリティー)が向上し工程でのハンドリングも改善されるが、コイル構造の利点であるカテーテルの細径化が困難である。
特許3184086号公報 特開平9−149938号公報
However, although the kink resistance and pushability can be ensured by configuring the reinforcing layer, for example, when the braided structure is taken, it is difficult to reduce the diameter of the microcatheter because the wires constituting the braid overlap. Flexibility is difficult to secure. When the coil structure is adopted, the coils do not overlap, making it easier to reduce the diameter than the braided structure and the flexibility of the tip is good. There was a drawback that the handling property in the process such as coating was poor. Also, continuous production, which is easy with a tube with a braided structure, was difficult with a tube with a coil structure. As a method for solving these problems, for example, in Patent Document 1, a spiral wound with high mechanical strength only in one direction, and only in the other direction intersecting with the one spiral with low mechanical strength. A braided structure is disclosed which is composed of the other spiral wound around. By reducing the strength of one of the wound windings, kink resistance and torque transmission can be increased, but the intersecting portions of the windings are thick, making it difficult to reduce the diameter of the catheter. It was. Patent Document 2 discloses a structure in which a right-handed coil and a left-handed coil are stacked. Although this method improves torque transmission and pushability and improves handling in the process, it is difficult to reduce the diameter of the catheter, which is an advantage of the coil structure.
Japanese Patent No. 3184086 Japanese Patent Laid-Open No. 9-149938

本発明の目的は、上記課題である操作性が良好で細径であるマイクロカテーテルを容易に安定して製造できる製造方法及びマイクロカテーテルを提供することにある。   An object of the present invention is to provide a manufacturing method and a microcatheter that can easily and stably manufacture a microcatheter having good operability and a small diameter, which is the above-mentioned problem.

本発明者は、上記課題を解決するための鋭意研究の結果、以下の製造方法により、操作性を大幅に改善でき、かつ細径のマイクロカテーテルを安定して製造できることを見出した。すなわち本発明は、
(1)内層、補強層、外層からなり、該補強層は編組構造をとり、該編組は異なる融点の材質の素線からなり、一方の方向に螺巻された素線の少なくとも1本は外層を構成する樹脂の融点Tmo(℃)を用いて式:
Tmfl < Tmo + 20
で表される融点Tmfl(℃)の樹脂からなり、前記樹脂からなる素線と同方向に巻かれた残りの素線及び前記一方の螺巻された素線と交差する他方向のみに螺巻された素線はTmo(℃)を用いて式:
Tmo ≦ Tmfh かつ Tmfl < Tmfh
で表される融点Tmfh(℃)の樹脂もしくは金属からなるマイクロカテーテルの製造方法であって、Tmfl(℃)以上Tmfh(℃)未満の温度で加熱することで、融点Tmfl(℃)の樹脂からなる素線の少なくとも一部を溶融させる工程を含むことを特徴とするマイクロカテーテルの製造方法。
(2)編組構造を構成する一方の方向に螺巻された素線のすべてが、式:
Tmfl < Tmo + 20
で表される融点Tmfl(℃)の樹脂からなることを特徴とするマイクロカテーテルの製造方法。
(3)外層樹脂を被覆する前に、内層及び補強層からなる中間チューブをTmfl(℃)以上Tmfh(℃)未満の温度で加熱し、その後外層を被覆することを特徴とするマイクロカテーテルの製造方法。
及びこれらの製造方法により製造されたマイクロカテーテルに関する。
As a result of intensive studies for solving the above problems, the present inventor has found that the operability can be greatly improved and a small-diameter microcatheter can be stably manufactured by the following manufacturing method. That is, the present invention
(1) An inner layer, a reinforcing layer, and an outer layer, the reinforcing layer has a braided structure, the braid is made of strands of materials having different melting points, and at least one of the strands wound in one direction is an outer layer Using the melting point T mo (° C) of the resin constituting the formula:
T mfl <T mo + 20
It is made of a resin having a melting point T mfl (° C.) represented by the following: a remaining wire wound in the same direction as the wire made of the resin and a screw only in the other direction intersecting with the one wound wire. The wound wire is expressed using T mo (℃):
T mo ≤ T mfh and T mfl <T mfh
A microcatheter manufacturing method comprising a resin or a metal in represented by a melting point T mfh (℃), by heating in T mfl below (℃) or T mfh (℃) temperature, the melting point T mfl (° C. And a step of melting at least a part of the strand made of resin.
(2) All of the strands wound in one direction constituting the braided structure have the formula:
T mfl <T mo + 20
A method for producing a microcatheter, comprising a resin having a melting point T mfl (° C.) represented by:
(3) microcatheter before coating the outer layer resin, an intermediate tube consisting of an inner layer and the reinforcing layer is heated at T mfl below (℃) or T mfh (℃) temperature, characterized by subsequently coating the outer layer Manufacturing method.
And a microcatheter manufactured by these manufacturing methods.

上述のごとく構成されることにより、良好な操作性を維持しつつ、細径で先端の柔軟性を付与しうるマイクロカテーテルの製造方法及びマイクロカテーテルを提供できる。また、編組構造のチューブでの切断面で問題となっていた編組の開きが抑制される効果も得られる。   By being configured as described above, it is possible to provide a method for manufacturing a microcatheter and a microcatheter capable of providing a flexible tip at a small diameter while maintaining good operability. In addition, an effect of suppressing the opening of the braid, which has been a problem with the cut surface of the braided tube, can be obtained.

以下、本発明のマイクロカテーテルの製造方法及びマイクロカテーテルについて添付図面を参照しつつ詳細に説明する。図1は本発明を適用したマイクロカテーテルの全体図を示す。本実施例のマイクロカテーテルは、内層、補強層、外層からなるカテーテル本体1と、該カテーテル先端部に取り付けられたマーカー2、該カテーテル本体の基端に設けられたハブ3を有する。
内層を構成する材料は特に限定されないが、例えばポリテトラフルオロエチレン、ポリテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、テトラフルオロエチレン・エチレン共重合体などのフッ素樹脂、ポリプロピレン、ポリエチレンなどのポリオレフィン類、ナイロン6、ナイロン66、ナイロン12、ポリアミドエラストマー等のポリアミド類、ポリエチレンテレフタレート、ポリエステル系エラストマー、ポリウレタン、ポリウレタンエラストマーなどがあげられる。
The microcatheter manufacturing method and microcatheter of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows an overall view of a microcatheter to which the present invention is applied. The microcatheter of this embodiment has a catheter body 1 composed of an inner layer, a reinforcing layer, and an outer layer, a marker 2 attached to the distal end portion of the catheter, and a hub 3 provided at the proximal end of the catheter body.
The material constituting the inner layer is not particularly limited. For example, polytetrafluoroethylene, polytetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, tetrafluoroethylene / ethylene copolymer and other fluororesin, polypropylene And polyolefins such as polyethylene, nylon 6, nylon 66, nylon 12, polyamides such as polyamide elastomer, polyethylene terephthalate, polyester elastomer, polyurethane, polyurethane elastomer and the like.

補強層である編組層は、螺巻された異なる融点の材質でできた素線で構成されている。構成する一方の素線は少なくとも1本は式:
Tmfl < Tmo + 20
で表される融点Tmfl(℃)の樹脂からなっており、残りの素線と、もう一方の螺巻されたすべての素線は、式:
Tmo ≦ Tmfh かつ Tmfl < Tmfh
で表される融点Tmfh(℃)の樹脂もしくは金属からなっている。融点Tmfl(℃)の樹脂の例としては、ポリプロピレン、ポリエチレンなどのポリオレフィン類、ナイロン6、ナイロン66、ナイロン12、ポリアミドエラストマー等のポリアミド類、ポリエチレンテレフタレート、ポリエステルエラストマー等のポリエステル類、ポリウレタン、ポリウレタンエラストマーなどがあげられ、望ましい機械特性によって、これらの材料を組み合わせてもよい。融点Tmfh(℃)の樹脂の例としては、ポリプロピレン、ポリエチレンなどのポリオレフィン類、ナイロン6、ナイロン66、ナイロン12、ポリアミドエラストマー等のポリアミド類、ポリエチレンテレフタレート、ポリエステルエラストマー等のポリエステル類、ポリウレタン、ポリウレタンエラストマー、アラミド、ポリアリレートなどがあげられ、金属の例としてはステンレス鋼、又は放射線不透過性が高い材料、例えばタングステン、白金、イリジウム、金などがあげられ、望ましい機械特性及び放射線不透過性によってこれらの材料を組み合わせてもよい。
The braided layer, which is a reinforcing layer, is composed of strands made of a material having different melting points that are wound. At least one of the constituent wires is an expression:
T mfl <T mo + 20
It is made of a resin having a melting point T mfl (° C) represented by the following formula:
T mo ≤ T mfh and T mfl <T mfh
It is made of a resin or metal having a melting point T mfh (° C.) represented by Examples of resins having a melting point T mfl (° C.) include polyolefins such as polypropylene and polyethylene, nylons 6, nylon 66, nylon 12, polyamides such as polyamide elastomer, polyesters such as polyethylene terephthalate and polyester elastomer, polyurethane, polyurethane Examples include elastomers, and these materials may be combined depending on the desired mechanical properties. Examples of resins having a melting point T mfh (° C.) include polyolefins such as polypropylene and polyethylene, nylons 6, nylon 66, nylon 12, polyamides such as polyamide elastomer, polyesters such as polyethylene terephthalate and polyester elastomer, polyurethane, polyurethane Elastomers, aramids, polyarylates, etc., examples of metals include stainless steel or highly radiopaque materials such as tungsten, platinum, iridium, gold, etc., depending on the desired mechanical properties and radiopacity. These materials may be combined.

外層を構成する材料は特に限定されないが、例えばナイロン6、ナイロン66、ナイロン12、ポリアミドエラストマー等のポリアミド類、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、変性ポリオレフィン等のオレフィン類、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエステルエラストマー等のポリエステル類、ポリウレタン、ポリウレタンエラストマー、あるいはこれらのポリマーブレンド、ポリマーアロイ等があげられる。   The material constituting the outer layer is not particularly limited. For example, nylon 6, nylon 66, nylon 12, polyamides such as polyamide elastomer, olefins such as polyethylene, polypropylene, polymethyl methacrylate, and modified polyolefin, polyethylene terephthalate, polybutylene terephthalate, Examples thereof include polyesters such as polyester elastomers, polyurethanes, polyurethane elastomers, polymer blends thereof, polymer alloys, and the like.

内層、補強層、外層の構成材料には、これらの樹脂及び金属材料中から任意の組み合わせで用いることができるが、補強層である編組層を構成する一方の方向に螺巻された素線の少なくとも1本は融点Tmfl(℃)の樹脂を選択する必要があり、もう一方の螺巻されたすべての素線は融点Tmfh(℃)の樹脂もしくは金属を選択する必要がある。なお、樹脂材料中には、重合時に使用される重合助剤のほかに造影剤、可塑剤、補強財、顔料等の各種添加剤が含まれていてもよい。 The constituent material of the inner layer, the reinforcing layer, and the outer layer can be used in any combination from these resins and metal materials, but the strands of the wire wound in one direction constituting the braided layer that is the reinforcing layer At least one must select a resin having a melting point T mfl (℃), all the wires that are other Nishimaki, it is necessary to select a resin or metal having a melting point T mfh (℃). The resin material may contain various additives such as a contrast agent, a plasticizer, a reinforcing article, and a pigment in addition to the polymerization aid used at the time of polymerization.

補強層の編組を構成する螺巻された素線の形状は、円形の断面を持つ丸線でも方形の断面をもつ平線でもかまわないが、1本で螺巻される場合は平線もしくは丸線が、2本以上で螺巻される場合は丸線が好ましい。丸線の直径は、0.10mm以下であればよいが、0.01mm以上0.05mm以下が好ましく、平線の厚みは0.1mm以下であればよいが、0.01mm以上0.05mm以下が好ましい。丸線の直径及び平線の厚みが0.10mm以上であれば、マイクロカテーテルが太くなり、また十分な柔軟性が得られない。また0.01mm未満であれば、編組工程において頻繁に切断してしまう場合があり、またマイクロカテーテルの耐キンク性、押込み性(プッシャビリティー)などの操作性が低下する場合がある。   The shape of the wound wire constituting the braid of the reinforcing layer may be a round wire having a circular cross section or a flat wire having a square cross section. A round wire is preferred when two or more wires are wound. The diameter of the round wire may be 0.10 mm or less, preferably 0.01 mm or more and 0.05 mm or less, and the thickness of the flat wire may be 0.1 mm or less, but is preferably 0.01 mm or more and 0.05 mm or less. If the diameter of the round wire and the thickness of the flat wire are 0.10 mm or more, the microcatheter becomes thick and sufficient flexibility cannot be obtained. If it is less than 0.01 mm, it may be frequently cut in the braiding process, and the operability such as kink resistance and pushability of the microcatheter may be lowered.

融点Tmfl(℃)の樹脂からなる素線は、少なくとも1本選択すればよい。編素のうち一方向が2本以上の素線で螺巻され、そのうち少なくとも1本が融点Tmfl(℃)の樹脂からなり、残りの素線ともう一方の螺巻された素線が融点Tmfh(℃)の樹脂もしくは金属からなる場合(図2、図3)、一般に行われる編組工程により編組構造をとった後、外層を被覆する。通常外層を被覆する際には、外層を十分溶融させて被覆する必要があるため、外層を構成する樹脂は融点Tmo(℃)より20℃以上高い温度に加熱され、押出成形やシュリンク成形される。外層を構成する樹脂の融点Tmo(℃)よりも20℃以上高い温度、すなわちTmfl(℃)以上でかつTmfh(℃)未満の加熱を外層を被覆する際に受けることにより、融点Tmfl(℃)の樹脂からなる素線の一部もしくは全部が溶融する。溶融した融点Tmfl(℃)の樹脂はもう一方の融点Tmfh(℃)の樹脂もしくは金属で構成された素線の隙間に埋め込まれる。編組構造を構成する素線が一部なくなることで、編組構造とコイル構造の特性を併せ持つ構造となるために、マイクロカテーテルに求められる操作性である押込み性(プッシャビリティー)、トルク伝達性などの操作性は確保しながら、先端の柔軟性及びカテーテルの細径化を付与することが可能となる。さらに、融点Tmfl(℃)の樹脂が溶融しもう一方の融点Tmfh(℃)の樹脂もしくは金属で構成された素線の隙間に埋め込まれることにより、従来編組構造のマイクロカテーテルの外層被覆では編組による表面凹凸から外層樹脂を平滑に薄く被覆することが困難であったという問題も同時に解消される。 At least one strand made of a resin having a melting point T mfl (° C.) may be selected. One direction of the braid is wound with two or more strands, at least one of which is made of a resin having a melting point T mfl (° C), and the remaining strand and the other spiral strand are melted. In the case of a resin or metal of T mfh (° C.) (FIGS. 2 and 3), the outer layer is covered after a braided structure is formed by a generally performed braiding process. Normally, when coating the outer layer, the outer layer must be sufficiently melted and coated, so the resin constituting the outer layer is heated to a temperature 20 ° C. higher than the melting point T mo (° C.) and extruded or shrink-molded. The When the outer layer is subjected to heating at a temperature higher than the melting point T mo (° C.) of the resin constituting the outer layer by 20 ° C. or more, that is, T mfl (° C.) or more and less than T mfh (° C.), the melting point T Part or all of the strand made of mfl (° C) resin melts. Resin of the molten melting point T mfl (° C.) is embedded in the gap of the wire made of a resin or a metal of the other melting T mfh (℃). By eliminating some of the strands that make up the braided structure, it becomes a structure that has both the characteristics of the braided structure and the coil structure, so pushability, torque transmission, etc. that are the operability required for microcatheter While ensuring the operability, it is possible to provide flexibility of the tip and a reduction in the diameter of the catheter. Furthermore, by resin melting point T mfl (° C.) is embedded in the gap of the resin or strands made of a metal of the molten other melting T mfh (° C.), the outer layer sheath of the microcatheter of the prior braided structure The problem that it was difficult to coat the outer layer resin smoothly and thinly from the surface irregularities due to the braiding is also solved at the same time.

本発明で取りうる別のマイクロカテーテルの形態として、一方がTmfl(℃)の樹脂からなる素線1本で螺巻される場合(図4)、もしくは2本以上の素線で螺巻されかつ一方の素線のすべてが融点Tmfl(℃)の樹脂で構成される場合(図5、図6)は、一般に行われる編組工程により編組構造をとった後、上述のようにTmfl(℃)以上Tmfh(℃)未満の加熱を外層を被覆する際に受けることにより、融点Tmfl(℃)の樹脂からなる素線の一部もしくは全部が溶融する。外層を被覆する温度が外層を構成する樹脂の融点Tmo(℃)よりも20℃以上高い温度以下である場合には、予め編組構造をとっている素線を加熱し溶融させてもよい。溶融した融点Tmfl(℃)の樹脂はもう一方の融点Tmfh(℃)の樹脂もしくは金属で構成された素線の隙間に埋め込まれる。同時に融点Tmfl(℃)の樹脂からなる素線が溶融することにより、もう一方の融点Tmfh(℃)の樹脂からなる素線が保有している巻き付け力により、素線が内層側に移動することができる。上記のように一方の素線が溶融し、もう一方の素線が内層側に移動することで、編組構造よりも細径化を実現することができる。さらに一方の素線がすべて溶融することにより、擬コイル構造をとりうるため、先端の柔軟性を向上させることができる。最初編組構造をとるために、外層を被覆する前のハンドリング性はコイル構造をとるものに比べ、ピッチずれなどもなく良好である。 As another form of the microcatheter that can be used in the present invention, one is wound with one strand made of a resin of T mfl (° C.) (FIG. 4), or is wound with two or more strands. And when all of one strand is comprised with resin of melting | fusing point Tmfl ( degreeC ) (FIG. 5, FIG. 6), after taking a braided structure by the generally performed braiding process, as mentioned above, Tmfl ( the heating of less ° C.) or higher T mfh (° C.) to receive in coating the outer layer, a part or all of the wire made of a resin melting T mfl (° C.) is melted. When the temperature for coating the outer layer is not higher than 20 ° C. higher than the melting point T mo (° C.) of the resin constituting the outer layer, the strands having a braided structure may be heated and melted in advance. Resin of the molten melting point T mfl (° C.) is embedded in the gap of the wire made of a resin or a metal of the other melting T mfh (℃). At the same time, the strand made of resin with melting point T mfl (° C) melts, and the strand moves to the inner layer by the winding force of the other strand made of resin with melting point T mfh (° C) can do. As described above, when one strand is melted and the other strand moves to the inner layer side, it is possible to realize a smaller diameter than the braided structure. Furthermore, since one of the strands is melted, a pseudo-coil structure can be formed, so that the flexibility of the tip can be improved. Since the first braided structure is adopted, the handling property before coating the outer layer is good with no pitch deviation as compared with the coil structure.

本発明ではさらに、溶融した融点Tmfl(℃)の樹脂がもう一方の融点Tmfh(℃)の樹脂もしくは金属で構成された素線の隙間に埋め込まれることで、溶融した樹脂が溶融しない螺巻線の隙間に埋め込まれるために、編組構造のチューブでの切断面で問題となっていた編組の開きが抑制される効果も得られる。 Further, in the present invention, it is embedded in the gap of the molten melting point T mfl resin (℃) are composed of a resin or a metal of the other melting T mfh (℃) wire, screw the molten resin is not melted Since it is embedded in the gap between the windings, the effect of suppressing the opening of the braid, which has been a problem with the cut surface of the braided tube, is also obtained.

上記では外層を被覆する際の外層を構成する樹脂の融点Tmo(℃)よりも20℃以上高い温度、すなわちTmfl(℃)以上の加熱で融点Tmfl(℃)の樹脂で構成された素線を溶融させているが、外層を被覆する際の加熱がTmfl以下の場合や、予め素線を溶融させる場合には、外層を被覆する前の内層及び補強層からなる中間チューブをTmfl(℃)以上Tmfh(℃)未満の温度で加熱し、その後外層を被覆することによっても同様の効果が得られる。
外層を被覆する際の外層を構成する樹脂の融点Tmo(℃)よりも高い温度の加熱で融点Tmfl(℃)の樹脂で構成された素線を溶融させているが、外層を被覆する前の内層及び補強層からなる中間チューブをTmfl(℃)以上Tmfh(℃)未満の温度で加熱し、その後外層を被覆することによっても同様の効果が得られる。
Composed of a resin having a melting point T mo of the resin constituting the outer layer when coating the outer layer (° C.) 20 ° C. or higher than a temperature, i.e. T mfl (° C.) or more heating at the melting point T mfl (° C.) in the above Although the strands are melted, if the heating when coating the outer layer is T mfl or less, or if the strands are melted in advance, the intermediate tube consisting of the inner layer and the reinforcing layer before coating the outer layer is made of T The same effect can be obtained by heating at a temperature of mfl (° C.) or higher and lower than T mfh (° C.) and then coating the outer layer.
When the outer layer is coated, the strand made of the resin having the melting point T mfl (° C.) is melted by heating at a temperature higher than the melting point T mo (° C.) of the resin constituting the outer layer, but the outer layer is covered. an intermediate tube of before the inner and the reinforcing layer is heated at T mfl below (℃) or T mfh (℃) temperature, the same effect can be obtained by subsequently coating the outer layer.

以上のように、融点Tmfl(℃)の樹脂からなる素線と融点Tmfh(℃)の樹脂もしくは金属からなる素線との比率を変えることで、種々の優れた操作性をもつマイクロカテーテルを得ることができる。 As described above, by changing the ratio of the resin or wire made of a metal having a melting point T mfl made of a resin (℃) strand and the melting point T mfh (℃), microcatheter having various excellent operability Can be obtained.

外層は押出成形で被覆してもいいし、熱収縮チューブを用いてシュリンクさせてもよい。以下内層、補強層、外層の成形方法を説明する。押出成形法としては、例えば、軟銅線に被覆されたフッ素樹脂製の内層の上に、一方は融点Tmfl(℃)の樹脂からなる素線、もう一方は融点Tmfh(℃)の樹脂もしくは金属からなる素線を編みこんで編組を構成し中間チューブを得る。さらにこの編組の上に外層を構成する樹脂を押出して外層を形成する。この押出成形では、切替押出によって長手方向に連続的に硬度傾斜をつけることがより好ましい。次に熱収縮チューブを用いてシュリンクさせる方法について説明する。上記押出成形法と同様に中間チューブを構成した後、別途押出成形により外層を形成する樹脂で成形された中空チューブを中間チューブに被せ、その上から熱収縮チューブをさらに被せる。被せたチューブを加熱炉にてシュリンクさせ、その後熱収縮チューブを除去して得られる。 The outer layer may be coated by extrusion or may be shrunk using a heat shrinkable tube. A method for forming the inner layer, the reinforcing layer, and the outer layer will be described below. As the extrusion molding method, for example, on the inner layer made of a fluororesin coated with an annealed copper wire, one is a strand made of a resin having a melting point T mfl (° C.), and the other is a resin having a melting point T mfh (° C.) or An intermediate tube is obtained by braiding metal wires to form a braid. Further, the outer layer is formed by extruding a resin constituting the outer layer on the braid. In this extrusion molding, it is more preferable to continuously give a hardness gradient in the longitudinal direction by switching extrusion. Next, a method of shrinking using a heat shrinkable tube will be described. After the intermediate tube is constructed in the same manner as the above extrusion molding method, a hollow tube molded from a resin that forms an outer layer by extrusion is separately covered with the intermediate tube, and a heat shrinkable tube is further covered thereon. It is obtained by shrinking the covered tube in a heating furnace and then removing the heat shrinkable tube.

以下、実施例に従って本発明を更に詳細に説明するが、本発明を以下の実施例に限定するものでない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail according to an Example, this invention is not limited to a following example.

(実施例1)
直径0.52mmの銀メッキ軟銅線にポリテトラフルオロエチレン(PTFE)を0.030mmの厚みで被覆させた芯材に、片側(左巻き)にはステンレス鋼細線(直径0.030mm)を5本横に並べた状態で巻き、もう片側(右巻き)にはポリプロピレン繊維(融点165℃、直径0.030mm)を4本と上記ステンレス鋼細線1本を5本横に並べた状態で巻き、中間チューブを作製した。その後、ショア硬度30D、55D、70Dのポリアミドエラストマー(融点160℃〜融点174℃)を使用し、クロスヘッドダイの手前で連結している三台の押出機にそれぞれのポリアミドエラストマーを供給し、溶融混合し、上記中間チューブに被覆押出した。クロスヘッドダイの温度を210℃に設定し、押出機の先端に取り付けられているギアポンプの回転数をコンピューター制御により連続的に変化させ、外径及び樹脂を変え、連続的に剛性が変化しているチューブを作製した。得られたチューブは外径が0.80mmから0.90mmで変化していた。最も軟らかい部分を先端側、最も硬い部分を手元側として、先端側にマーカーを取り付け、手元側にハブを取り付けることにより、マイクロカテーテルを作製した。得られたマイクロカテーテルは、編組構造を構成していたポリプロピレン繊維が溶融してステンレス鋼細線の隙間に満たされており、また外径が0.80mmと最小の部分でも編組構造由来の凹凸は見られず良好な外観を示した。先端は良好な柔軟性を示し、トルク伝達性に顕著な左右の差異はみられず、耐キンク性などの操作性も良好であった。
Example 1
A stainless steel wire (0.030 mm in diameter) was placed horizontally on one side (left-handed) on a core material coated with polytetrafluoroethylene (PTFE) at a thickness of 0.030 mm on a silver-plated annealed copper wire with a diameter of 0.52 mm. The intermediate tube was produced by winding the polypropylene fiber (melting point: 165 ° C., diameter: 0.030 mm) and five stainless steel fine wires side by side on the other side (right winding). Then, using polyamide elastomers (melting point 160 ° C-melting point 174 ° C) with Shore hardness 30D, 55D, 70D, each polyamide elastomer is supplied to three extruders connected before the crosshead die and melted. Mix and extrude into the intermediate tube. The temperature of the crosshead die is set to 210 ° C, the rotation speed of the gear pump attached to the tip of the extruder is continuously changed by computer control, the outer diameter and resin are changed, and the rigidity is continuously changed. A tube was prepared. The obtained tube had an outer diameter varying from 0.80 mm to 0.90 mm. A microcatheter was produced by attaching a marker to the distal end side and a hub to the proximal side, with the softest part being the distal side and the hardest part being the proximal side. In the obtained microcatheter, the polypropylene fibers constituting the braided structure are melted and filled in the gaps of the stainless steel fine wires, and the irregularities derived from the braided structure are seen even at the smallest outer diameter of 0.80 mm. It showed a good appearance. The tip showed good flexibility, and there was no significant difference between the left and right in torque transmission, and operability such as kink resistance was also good.

(実施例2)
編組構造として、片側(左巻き)にはステンレス鋼細線(直径0.030mm)を5本横に並べた状態で巻き、もう片側(右巻き)にはポリプロピレン繊維(融点165℃、直径0.030mm)を5本横に並べた状態で巻いた以外は実施例1と同様にして中間チューブを得た。外径が0.75mmから0.85mmのチューブを得た以外は、実施例1と同様の方法にて外層を被覆し、マイクロカテーテルを作製した。得られたマイクロカテーテルは、編組構造を構成していたポリプロピレン繊維がすべて溶融してステンレス鋼細線の隙間に満たされており、擬コイル構造をとっていた。また外径が0.75mmと最小の部分でも編組構造由来の凹凸は見られず良好な外観を示した。先端は良好な柔軟性を示し、耐キンク性などの操作性も良好であった。
(Example 2)
As a braided structure, 5 stainless steel wires (diameter 0.030mm) are wound side by side on one side (left-handed), and 5 polypropylene fibers (melting point 165 ° C, diameter 0.030mm) are placed on the other side (right-handed). An intermediate tube was obtained in the same manner as in Example 1 except that it was wound in a state of being arranged side by side. A microcatheter was produced by coating the outer layer in the same manner as in Example 1 except that a tube having an outer diameter of 0.75 mm to 0.85 mm was obtained. The obtained microcatheter had a pseudo-coil structure because all of the polypropylene fibers constituting the braided structure were melted and filled in the gaps between the stainless steel fine wires. In addition, the unevenness derived from the braided structure was not seen even at the smallest part with an outer diameter of 0.75 mm, and the appearance was good. The tip showed good flexibility and operability such as kink resistance was also good.

(実施例3)
実施例1と同様にして中間チューブを作製した後、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)製の熱収縮チューブを被せ、加熱炉にて180℃5分加熱した。熱収縮チューブを除去した後、実施例1と同様にしてマイクロカテーテルを作製した。得られたチューブの外径は実施例1と同様に0.80mmから0.90mmであった。得られたマイクロカテーテルは実施例1のマイクロカテーテルと同様に、外観、操作性とも良好であった。
(Example 3)
After producing an intermediate tube in the same manner as in Example 1, it was covered with a heat-shrinkable tube made of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and heated in a heating furnace at 180 ° C. for 5 minutes. After removing the heat-shrinkable tube, a microcatheter was produced in the same manner as in Example 1. The outer diameter of the obtained tube was 0.80 mm to 0.90 mm as in Example 1. The obtained microcatheter was good in appearance and operability like the microcatheter of Example 1.

(比較例1)
編組構造として、両側ともステンレス鋼細線(直径0.030mm)を5本横に並べた状態で巻いた以外は実施例1と同様にしてマイクロカテーテルを得た。得られたマイクロカテーテルの外径を実施例1と同様に0.80mmから0.90mmとしたが、外径の細い部分では、編組構造由来と思われる表面凹凸があり、外観は良好ではなかった。トルク伝達性や押込み性(プッシャビリティー)は良好であったが、先端は硬く柔軟性が不足していた。
(Comparative Example 1)
As a braided structure, a microcatheter was obtained in the same manner as in Example 1 except that five stainless steel wires (0.030 mm in diameter) were wound side by side on both sides. The outer diameter of the obtained microcatheter was changed from 0.80 mm to 0.90 mm in the same manner as in Example 1. However, the portion with a small outer diameter had surface irregularities that seem to be derived from the braided structure, and the appearance was not good. Torque transmission and pushability were good, but the tip was hard and lacked flexibility.

本発明のマイクロカテーテルの全体図である。1 is an overall view of a microcatheter of the present invention. 本発明の実施例における編組構造を示す概略図である。It is the schematic which shows the braiding structure in the Example of this invention. 本発明の実施例における編組構造を示す概略図である。It is the schematic which shows the braiding structure in the Example of this invention. 本発明の実施例における編組構造を示す概略図である。It is the schematic which shows the braiding structure in the Example of this invention. 本発明の実施例における編組構造を示す概略図である。It is the schematic which shows the braiding structure in the Example of this invention. 本発明の実施例における編組構造を示す概略図である。It is the schematic which shows the braiding structure in the Example of this invention.

符号の説明Explanation of symbols

1 カテーテル本体
2 マーカー
3 ハブ
11 融点Tmfl(℃)の樹脂からなる素線
12 融点Tmfh(℃)の樹脂もしくは金属からなる素線
1 Catheter body 2 Marker 3 Hub 11 Wire made of resin with melting point T mfl (° C) 12 Wire made of resin or metal with melting point T mfh (° C)

Claims (4)

内層、補強層、外層からなり、該補強層は編組構造をとり、該編組は異なる融点の材質の素線からなり、一方の方向に螺巻された素線の少なくとも1本は外層を構成する樹脂の融点Tmo(℃)を用いて式:
Tmfl < Tmo + 20
で表される融点Tmfl(℃)の樹脂からなり、前記樹脂からなる素線と同方向に巻かれた残りの素線及び前記一方の螺巻された素線と交差する他方向のみに螺巻された素線はTmo(℃)を用いて式:
Tmo ≦ Tmfh かつ Tmfl < Tmfh
で表される融点Tmfh(℃)の樹脂もしくは金属からなるマイクロカテーテルの製造方法であって、Tmfl(℃)以上Tmfh(℃)未満の温度で加熱することで、融点Tmfl(℃)の樹脂からなる素線の少なくとも一部を溶融させる工程を含むことを特徴とするマイクロカテーテルの製造方法。
It consists of an inner layer, a reinforcing layer, and an outer layer, and the reinforcing layer has a braided structure, the braid is made of strands of materials having different melting points, and at least one of the strands wound in one direction constitutes the outer layer Using the melting point T mo (° C) of the resin, the formula:
T mfl <T mo + 20
It is made of a resin having a melting point T mfl (° C.) represented by the following: a remaining wire wound in the same direction as the wire made of the resin and a screw only in the other direction intersecting with the one wound wire. The wound wire is expressed using T mo (℃):
T mo ≤ T mfh and T mfl <T mfh
A microcatheter manufacturing method comprising a resin or a metal in represented by a melting point T mfh (℃), by heating in T mfl below (℃) or T mfh (℃) temperature, the melting point T mfl (° C. And a step of melting at least a part of the strand made of resin.
編組構造を構成する一方の方向に螺巻された素線のすべてが、式:
Tmfl < Tmo + 20
で表される融点Tmfl(℃)の樹脂からなることを特徴とする請求項1記載のマイクロカテーテルの製造方法
All of the strands wound in one direction that make up the braided structure have the formula:
T mfl <T mo + 20
The method for producing a microcatheter according to claim 1, comprising a resin having a melting point T mfl (° C.) represented by:
外層樹脂を被覆する前に、内層及び補強層からなる中間チューブをTmfl(℃)以上Tmfh(℃)未満の温度で加熱し、その後外層を被覆することを特徴とする請求項1乃至2記載のマイクロカテーテルの製造方法。 3. The intermediate tube composed of the inner layer and the reinforcing layer is heated at a temperature of T mfl (° C.) or higher and lower than T mfh (° C.) before coating the outer layer resin, and then the outer layer is coated. The manufacturing method of the microcatheter of description. 前記請求項1乃至3に記載の製造方法により製造されたマイクロカテーテル。   A microcatheter manufactured by the manufacturing method according to claim 1.
JP2004320996A 2004-11-04 2004-11-04 Microcatheter manufacturing method and microcatheter Expired - Fee Related JP4397319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320996A JP4397319B2 (en) 2004-11-04 2004-11-04 Microcatheter manufacturing method and microcatheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320996A JP4397319B2 (en) 2004-11-04 2004-11-04 Microcatheter manufacturing method and microcatheter

Publications (2)

Publication Number Publication Date
JP2006130004A true JP2006130004A (en) 2006-05-25
JP4397319B2 JP4397319B2 (en) 2010-01-13

Family

ID=36724045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320996A Expired - Fee Related JP4397319B2 (en) 2004-11-04 2004-11-04 Microcatheter manufacturing method and microcatheter

Country Status (1)

Country Link
JP (1) JP4397319B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319533A (en) * 2006-06-02 2007-12-13 Kaneka Corp Medical microcatheter
JP2008104579A (en) * 2006-10-24 2008-05-08 Kaneka Corp Microcatheter
WO2010038738A1 (en) * 2008-09-30 2010-04-08 富士フイルム株式会社 Multilayer coating equipment, and multilayer coating method
CN104853797A (en) * 2012-09-27 2015-08-19 斯瑞克公司 Method of manufacturing variably reinforced elongate medical device
JP5894658B1 (en) * 2014-12-04 2016-03-30 オーナンバ株式会社 Method for manufacturing medical catheter tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319533A (en) * 2006-06-02 2007-12-13 Kaneka Corp Medical microcatheter
JP2008104579A (en) * 2006-10-24 2008-05-08 Kaneka Corp Microcatheter
WO2010038738A1 (en) * 2008-09-30 2010-04-08 富士フイルム株式会社 Multilayer coating equipment, and multilayer coating method
CN102171021A (en) * 2008-09-30 2011-08-31 富士胶片株式会社 Multilayer coating equipment, and multilayer coating method
JPWO2010038738A1 (en) * 2008-09-30 2012-03-01 富士フイルム株式会社 Multilayer coating apparatus and multilayer coating method
JP5318112B2 (en) * 2008-09-30 2013-10-16 富士フイルム株式会社 Multilayer coating apparatus and multilayer coating method
CN102171021B (en) * 2008-09-30 2014-06-11 富士胶片株式会社 Multilayer coating equipment, and multilayer coating method
CN104853797A (en) * 2012-09-27 2015-08-19 斯瑞克公司 Method of manufacturing variably reinforced elongate medical device
JP5894658B1 (en) * 2014-12-04 2016-03-30 オーナンバ株式会社 Method for manufacturing medical catheter tube

Also Published As

Publication number Publication date
JP4397319B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
US20220331552A1 (en) Multi-layer Catheter Construction
US5599326A (en) Catheter with multi-layer section
JP4368678B2 (en) Integrated polymer and braid for intravascular catheters
US8377035B2 (en) Unbalanced reinforcement members for medical device
US5951539A (en) Optimized high performance multiple coil spiral-wound vascular catheter
US8702680B2 (en) Double helix reinforced catheter
US7674421B2 (en) Method of making a guide catheter
US20090240235A1 (en) Medical catheter tube and process for producing the same
JP6250051B2 (en) Catheter and method for manufacturing the same
JPH1066726A (en) Catheter and its manufacture
JPWO2007013545A1 (en) Medical catheter tube and manufacturing method thereof
JP5233156B2 (en) Medical catheter tube
JP4854458B2 (en) Medical multi-lumen tube
JPWO2008056625A1 (en) Medical catheter tube
JP4647299B2 (en) Medical catheter tube and manufacturing method thereof
JP4397319B2 (en) Microcatheter manufacturing method and microcatheter
JP5037030B2 (en) Catheter tube
JP2006181258A (en) Manufacturing method of microcatheter and microcatheter
JP2007082802A (en) Medical catheter tube
JP2006034347A (en) Catheter tube for medical use and manufacturing method therefor
JP2007089847A (en) Microcatheter and method for producing the same
JP2007029120A (en) Medical catheter tube and its manufacturing method
JP4274018B2 (en) Catheter tube, method for manufacturing the same, and catheter
JP2006288944A (en) Catheter tube for medical use, and its manufacturing method
JP2006034578A (en) Catheter tube for medical use and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4397319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees