JP2006122917A - Method for casting cast iron and cast iron product - Google Patents
Method for casting cast iron and cast iron product Download PDFInfo
- Publication number
- JP2006122917A JP2006122917A JP2004310779A JP2004310779A JP2006122917A JP 2006122917 A JP2006122917 A JP 2006122917A JP 2004310779 A JP2004310779 A JP 2004310779A JP 2004310779 A JP2004310779 A JP 2004310779A JP 2006122917 A JP2006122917 A JP 2006122917A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- mold
- product
- temperature
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
本発明は鋳鉄方法及び鋳鉄製品に関し、更に詳細は鉄合金の溶湯を金型内のキャビティに注湯して所望形状の鋳鉄製品を鋳造する鋳鉄方法及び鋳鉄製品に関する。 The present invention relates to a cast iron method and a cast iron product, and more particularly to a cast iron method and a cast iron product in which a molten iron alloy is poured into a cavity in a mold to cast a cast iron product having a desired shape.
フェライト量が多く靭性に優れた球状黒鉛鋳鉄から成る鋳鉄製品は、例えば下記特許文献1に知られている。かかる鋳鉄製品は、強靭性を有するため、自動車部品等の幅広い用途に用いられている。
かかる球状黒鉛鋳鉄から成る鋳鉄製品の鋳造では、樹脂製粘結剤(バインダー)をコーティングした砂等を用いて形成した砂型を使用している。
しかし、砂型を用いた鋳造では、砂型の造型機は勿論のこと、砂の回収、冷却、搬送、混錬再製等の砂処理設備が必要である。
しかも、鉄合金の溶湯を砂型に注湯して得た鋳鉄製品は、鉄合金の状態図において、オーステナイト相が晶出する温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以下の室温近傍にまで砂型内で冷却してから取り出すため、砂型に注湯してから取り出しまでの時間が著しく長く、その生産性が問題となりつつある。
一方、鋳鉄製品の生産性を向上させるべく、水冷構造又は銅等の高熱伝導材から成る金型に鉄合金の溶湯を注湯して得た鋳鉄製品を、金型内でA1変態温度以下の室温近傍まで急速冷却して取り出す鋳鉄方法も知られている。
In casting of cast iron products made of such spheroidal graphite cast iron, a sand mold formed using sand coated with a resin binder (binder) is used.
However, in casting using a sand mold, sand processing equipment such as sand collection, cooling, transport, kneading and remanufacturing is required as well as a sand mold making machine.
Moreover, cast iron products the iron alloy melt obtained by pouring the sand mold, in a state diagram of the iron alloy, A 1 transformation temperature or less of that and austenite phase at a temperature below the austenite phase crystallizes is transformed into pearlite Since it is taken out after being cooled in the sand mold to near room temperature, the time from pouring into the sand mold until taking it out is remarkably long, and its productivity is becoming a problem.
On the other hand, in order to improve the productivity of the cast iron products, cast iron products obtained by pouring the molten iron alloy into a mold made of a highly heat conductive material such as water-cooling structure or copper, A 1 transformation temperature or less in the mold There is also known a cast iron method in which the steel is rapidly cooled to near room temperature.
急速冷却可能な金型を用いた鋳鉄方法では、砂型を用いた鋳鉄方法に比較して、金型に注湯してから金型から鋳鉄製品を取し出すまでの時間を著しく短縮できる。
更に、金型は、再使用可能であるため、砂処理設備を不要にでき、そのプロセスを簡単化できる。
しかしながら、鉄合金の溶湯を金型に注湯して得た鋳鉄製品は、一般的に過冷された共晶黒鉛を有する低強度の片状黒鉛鋳鉄や、フェライト量が少なく靭性の低下した低グレードの球状黒鉛鋳鉄のものである。
かかる鋳鉄製品を、フェライト量が多く、靭性に優れた鋳鉄製品とするには、熱処理が不可欠である。このため、金型を用いた鋳鉄方法であっても、その生産性を著しく向上することは困難である。
唯、金型を用いた鋳鉄方法では、鋳鉄製品を金型から取り出すまでの時間を著しく短縮でき、且つ砂処理設備を不要化できる等の多くの利点を有する。
また、従来、同一金型から単一種の鋳鉄製品を鋳造しているが、複数種相当の鋳鉄製品を鋳造できれば、保有金型数の低減等の効率化を図ることができる。
そこで、本発明の課題は、同一金型から複数種相当の鋳鉄製品を得ることのできる鋳鉄方法、フェライト量が多く、靭性に優れた鋳鉄製品を、熱処理を施すことなく得ることのできる鋳鉄方法及び鋳鉄製品を提供することにある。
Compared with the cast iron method using a sand mold, the cast iron method using a rapidly coolable mold can significantly shorten the time from pouring into the mold until the cast iron product is taken out from the mold.
Furthermore, since the mold can be reused, sand processing equipment can be dispensed with and the process can be simplified.
However, cast iron products obtained by pouring molten iron alloy into the mold are generally low strength flake graphite cast iron having undercooled eutectic graphite and low toughness with low ferrite content. Grade spheroidal graphite cast iron.
Heat treatment is indispensable for making such a cast iron product having a high ferrite content and excellent toughness. For this reason, even if it is the cast iron method using a metal mold | die, it is difficult to improve the productivity remarkably.
However, the cast iron method using a metal mold has many advantages such as significantly shortening the time required to take out a cast iron product from the metal mold and eliminating the need for a sand treatment facility.
Conventionally, a single type of cast iron product is cast from the same mold. However, if cast iron products corresponding to a plurality of types can be cast, efficiency such as reduction in the number of held molds can be achieved.
Accordingly, an object of the present invention is to provide a cast iron method capable of obtaining cast iron products corresponding to a plurality of types from the same mold, and a cast iron method capable of obtaining a cast iron product having a large amount of ferrite and excellent in toughness without performing heat treatment. And to provide cast iron products.
本発明者等は、先ず、従来の金型を用いた鋳鉄方法について検討した。従来の金型を用いた鋳鉄方法では、金型に注湯された鉄合金の溶湯を急冷すべく、水冷構造又は銅等の高熱伝導材から成る金型を用い、金型から取り出される鋳鉄製品は充分に冷却されている。
このため、本発明者等は、従来の鋳鉄方法では、金型内で鋳鉄製品が急冷され過ぎるのではないかと考え、高温の鋳鉄製品を金型から取り出し、高温の鋳鉄製品を空冷によって冷却することを試みた。
かかる試みによれば、金型から取り出す鋳鉄製品の温度が異なれば、空冷による冷却が終了して得られる鋳鉄製品の品質が異なること、及び金型から取り出す鋳鉄製品の温度が高温であるほど、従来の金型内で室温近傍まで急冷した鋳鉄製品に比較して、フェライト量が多くなることを見出し、本発明に到達した。
The present inventors first examined a cast iron method using a conventional mold. In the conventional cast iron method using a mold, a cast iron product taken out from the mold using a water-cooled structure or a mold made of a high heat conductive material such as copper in order to rapidly cool the molten iron alloy poured into the mold. Is sufficiently cooled.
For this reason, the present inventors consider that the cast iron product is excessively cooled in the mold in the conventional cast iron method, take out the high temperature cast iron product from the mold, and cool the high temperature cast iron product by air cooling. I tried to do that.
According to such an attempt, if the temperature of the cast iron product taken out from the mold is different, the quality of the cast iron product obtained after cooling by air cooling is different, and the higher the temperature of the cast iron product taken out from the mold is, The present inventors have found that the amount of ferrite is increased as compared with a cast iron product rapidly cooled to near room temperature in a conventional mold, and have reached the present invention.
すなわち、本発明は、鉄合金の溶湯を金型内のキャビティに注湯して所望形状の鋳鉄製品を鋳造する際に、該金型に注湯した鉄合金の溶湯が凝固して得られた鋳鉄製品を冷却して、前記鋳鉄製品の温度が室温よりも高温の所定温度に到達したとき、前記金型を型開きして鋳鉄製品を取り出し、前記金型から取り出した鋳鉄製品を金型内での冷却速度よりも遅い冷却速度で徐冷することを特徴とする鋳鉄方法にある。
かかる本発明において、金型を型開きして鋳鉄製品を取り出す温度を、キャビティに注湯した鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つ前記オーステナイト相がパーライト相に変態するA1変態温度以上の温度、具体的には1147〜727℃とすることによって、フェライト量が多く、靭性に優れた鋳鉄製品を、熱処理を施すことなく得ることができる。
一方、金型を型開きして鋳鉄製品を取り出す温度を、キャビティに注湯した鉄合金の状態図において、オーステナイト相がパーライト相に変態するA1変態温度未満の温度、具体的には727℃未満とすることによって、フェライト量が低下するものの、抗張力及び耐力に優れた鋳鉄製品を得ることができる。
また、本発明は、鉄合金の溶湯を金型内のキャビティに注湯して得た、HRB硬度が80〜100の鋳鉄製品であって、前記鋳鉄製品の金属組織顕微鏡写真で測定したフェライト量が70%以上であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、且つ前記黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上であることを特徴とする鋳鉄製品でもある。
That is, according to the present invention, when a molten iron alloy is poured into a cavity in a mold to cast a cast iron product having a desired shape, the molten iron alloy poured into the mold is obtained by solidification. When the cast iron product is cooled and the temperature of the cast iron product reaches a predetermined temperature higher than room temperature, the mold is opened and the cast iron product is taken out, and the cast iron product taken out from the mold is placed in the mold. The cast iron method is characterized in that it is gradually cooled at a cooling rate slower than the cooling rate.
In the present invention, the temperature at which the mold is opened to take out the cast iron product is equal to or lower than the eutectic temperature at which the austenite phase and graphite crystallize in the phase diagram of the iron alloy poured into the cavity, and the austenite phase. When the temperature is higher than the A 1 transformation temperature at which the steel transforms into a pearlite phase, specifically 1147 to 727 ° C., a cast iron product having a large amount of ferrite and excellent in toughness can be obtained without heat treatment.
On the other hand, the temperature of the mold and mold opening takes out the cast iron products, in the state diagram of the iron alloy poured into the cavity, A 1 transformation temperature of less than the temperature at which austenite phase is transformed into pearlite phase, specifically 727 ° C. By making it less than this, although the amount of ferrite decreases, a cast iron product excellent in tensile strength and proof stress can be obtained.
The present invention also relates to a cast iron product having an HRB hardness of 80 to 100 obtained by pouring a molten iron alloy into a cavity in a mold, and the ferrite content measured with a metallographic micrograph of the cast iron product. 70% or more, the number of graphite particles having a particle size of 5 μm or more is 900 pieces / mm 2 or more, and among the graphite particles, the graphite spheroidization ratio occupied by the spherical graphite particles is 70% or more. It is also a featured cast iron product.
かかる本発明において、金型から取り出した室温以上の所定温度に冷却された鋳鉄製品を室温下で放冷することによって、金型から取り出した鋳鉄製品を金型内での冷却速度よりも容易に遅い冷却速度で冷却できる。
この金型を型開きして鋳鉄製品を取り出す時期は、鋳鉄製品の温度を金型への溶湯の注湯からの経過時間に置換して管理することが容易である。
更に、溶湯とする鉄合金として、鉄―炭素合金を用いることが好ましく、特に、炭素(C)3.1〜3.9重量%、珪素(Si)2.0〜3.0重量%、マンガン(Mn)0.3重量%以下、燐(P)0.03重量%以下、クロム(Cr)0.10重量%以下、マグネシウム(Mg)0.018〜0.060重量%、残余鉄及び不純物から成り、且つCE値(炭素当量)4.0〜4.7重量%の鉄合金を好適に用いることができる。
かかる溶湯を金型に注湯する際に、Si量で0.05〜0.225重量%のFe−Siを注湯接種することによって、黒鉛の微細化を図ることができる。
本発明で用いる金型としては、湯口から注湯された溶湯が重力によってキャビティ内に充填される重力鋳鉄用金型を好適に用いることができる。この金型としては、注湯した鉄合金の溶湯が凝固した鋳鉄製品の取出時期を制御し得る冷却特性を有する金型を用いることによって、鋳鉄製品の取出温度を一定とすることができ、一定品質の鋳鉄製品を得ることができる。かかる金型としては、炭素(C)が0.45重量%の鋼(S45C)から成る金型を好適に用いることができる。
In the present invention, the cast iron product taken out from the mold and cooled to a predetermined temperature equal to or higher than room temperature is allowed to cool at room temperature, so that the cast iron product taken out from the mold can be made easier than the cooling rate in the mold Cools at a slow cooling rate.
The time when the mold is opened and the cast iron product is taken out can be easily managed by replacing the temperature of the cast iron product with the elapsed time from the pouring of the molten metal into the mold.
Further, it is preferable to use an iron-carbon alloy as the iron alloy to be used as the molten metal, and in particular, carbon (C) 3.1 to 3.9% by weight, silicon (Si) 2.0 to 3.0% by weight, manganese (Mn) 0.3 wt% or less, phosphorus (P) 0.03 wt% or less, chromium (Cr) 0.10 wt% or less, magnesium (Mg) 0.018 to 0.060 wt%, residual iron and impurities An iron alloy having a CE value (carbon equivalent) of 4.0 to 4.7% by weight can be suitably used.
When pouring such a molten metal into a mold, it is possible to refine the graphite by pouring and injecting 0.05 to 0.225 wt% of Fe—Si in Si amount.
As the mold used in the present invention, a gravity cast iron mold in which the molten metal poured from the gate is filled in the cavity by gravity can be suitably used. As this mold, by using a mold having cooling characteristics that can control the time of taking out the cast iron product in which the molten iron alloy is solidified, the take-out temperature of the cast iron product can be made constant. Quality cast iron products can be obtained. As such a mold, a mold made of steel (S45C) containing 0.45% by weight of carbon (C) can be suitably used.
本発明によれば、室温以上の所定温度に冷却された鋳鉄製品を、冷却速度の速い金型から取り出して、金型内での冷却速度よりも遅い冷却速度で徐冷することによって、冷却が終了した鋳鉄製品に熱処理を施した場合と同等の効果を得ることができる。このため、金型から取り出す鋳鉄製品の温度を変更することによって、異なった種類(特性)の鋳造製品を得ることができる。
例えば、金型を型開きして鋳鉄製品を取り出す温度を、鉄合金の状態図において、オーステナイト相がパーライト相に変態するA1変態温度よりも低い温度まで冷却すると、冷却終了して得られた鋳鉄製品のパーライト化率が高くなり、フェライト量が低下するものの、抗張力及び耐力に優れた鋳鉄製品を得ることができる。
一方、金型内の鋳鉄製品が、鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以上の温度に到達したとき、金型から鋳鉄製品を取り出し、金型内での冷却速度よりも遅い冷却速度で徐冷すると、フェライト量及び黒鉛球状化率を向上でき、優れた靭性を呈する鋳鉄製品を、熱処理を施すことなく得ることができる。A1変態温度の近傍の鋳鉄製品を徐冷できたことによるものと考えられる。
According to the present invention, the cast iron product cooled to a predetermined temperature of room temperature or higher is taken out from the mold having a high cooling rate and gradually cooled at a cooling rate lower than the cooling rate in the die, thereby cooling. The same effect as when heat treatment is performed on the finished cast iron product can be obtained. For this reason, different types (characteristics) of cast products can be obtained by changing the temperature of the cast iron product taken out from the mold.
For example, the temperature of the mold and mold opening takes out the cast iron products, in the state diagram of iron alloy, the austenite phase is cooled to a temperature lower than the A 1 transformation temperature to transform into pearlite phase, obtained by completion of the cooling Although the pearlite ratio of the cast iron product increases and the ferrite content decreases, a cast iron product excellent in tensile strength and proof stress can be obtained.
On the other hand, cast iron products in the mold, in the state diagram of iron alloy, the austenite phase and graphite are both and austenite phase at eutectic temperature below the crystallisation reaches the A 1 transformation temperature above which the transformation to pearlite phase When the cast iron product is taken out from the mold and slowly cooled at a cooling rate slower than the cooling rate in the mold, the ferrite content and the graphite spheroidization rate can be improved, and the cast iron product exhibiting excellent toughness is subjected to heat treatment. Can be obtained without application. Presumably due to the possible slow cooling the cast iron products in the vicinity of A 1 transformation temperature.
本発明では、金型に注湯した鉄合金の溶湯が凝固して得られた鋳鉄製品を冷却し、その温度が室温以上の所定温度に到達したとき、金型を型開きして鋳鉄製品を取り出し、金型内での冷却速度よりも遅い冷却速度で徐冷することが大切である。
ここで、金型から取り出した鋳鉄製品の冷却速度を、金型内での冷却速度以上で冷却することは、得られた鋳造製品は金型内で急速冷却して得た鋳造製品と同等のものである。
この金型を型開きして鋳鉄製品を取り出す温度について、図1に示す鉄―炭素合金の状態図に基づいて説明する。図1に示す状態図において、鉄が3.5重量%の鉄合金の溶湯では、約1240℃で凝固を開始して、鉄に炭素が固溶したオーステナイト(γ)相が晶出する。溶湯の凝固は1147℃で完了し、凝固体にはオーステナイト相とセメンタイト(Fe3C)、或いは黒鉛とオーステナイト相とが同時に晶出する。
この凝固体が更に冷却されると、738〜727℃以下では、オーステナイト相がパーライト相に変態する。本発明では、このオーステナイト相がパーライト相に変態する温度をA1変態温度と称する。
In the present invention, the cast iron product obtained by solidification of the molten iron alloy poured into the mold is cooled, and when the temperature reaches a predetermined temperature of room temperature or higher, the mold is opened to remove the cast iron product. It is important to take out and slowly cool at a cooling rate slower than the cooling rate in the mold.
Here, the cooling rate of the cast iron product taken out from the mold is cooled more than the cooling rate in the mold. The obtained cast product is equivalent to the cast product obtained by rapid cooling in the mold. Is.
The temperature at which the mold is opened and the cast iron product is taken out will be described with reference to the iron-carbon alloy phase diagram shown in FIG. In the phase diagram shown in FIG. 1, in an iron alloy melt containing 3.5% by weight of iron, solidification starts at about 1240 ° C., and an austenite (γ) phase in which carbon is dissolved in iron crystallizes. Solidification of the molten metal is completed at 1147 ° C., and the austenite phase and cementite (Fe 3 C) or graphite and austenite phase are crystallized simultaneously in the solidified body.
When this solidified body is further cooled, the austenite phase is transformed into a pearlite phase at 738 to 727 ° C. or lower. In the present invention, it referred to the temperature at which the austenite phase is transformed into pearlite phase and the A 1 transformation temperature.
金型を型開きして鋳鉄製品を取り出す温度を、図1に示す鉄合金の状態図において、オーステナイト相と黒鉛とが共に晶出する共晶温度以下で且つオーステナイト相がパーライト相に変態するA1変態温度以上の温度とし、金型から取り出した鋳造製品を、金型内の冷却速度よりも遅い冷却速度で徐冷することによって、冷却が終了したとき、フェライト量及び黒鉛球状化率が多く、優れた靭性を呈する鋳鉄製品を、熱処理を施すことなく得ることができる。
この金型を型開きして鋳鉄製品を取り出す取出温度としては、具体的には、1147〜727℃とすることが好ましく、特に1147〜850℃とすることが、得られる鋳鉄製品のフェライト量を70%以上とすることができ好ましい。
かかる鋳鉄製品の取出温度を1147℃を越える温度とすると、金型内で溶湯の凝固が不完全となり易い傾向にある。
一方、鋳鉄製品を、金型内でA1変態温度、具体的には727℃よりも低温まで冷却すると、金型内の冷却速度よりも遅い冷却速度で徐冷して得られた鋳鉄製品は、その硬度は高くなり且つフェライト量が低下するものの、抗張力及び耐力に優れた鋳鉄製品を得ることができる。
The temperature at which the mold is opened and the cast iron product is taken out is equal to or lower than the eutectic temperature at which both the austenite phase and graphite crystallize in the phase diagram of the iron alloy shown in FIG. 1, and the austenite phase is transformed into a pearlite phase. (1 ) When the cooling is completed by slowly cooling the casting product taken out of the mold at a temperature higher than the transformation temperature at a cooling rate slower than the cooling rate in the mold, the ferrite content and the graphite spheroidization ratio are large. A cast iron product exhibiting excellent toughness can be obtained without heat treatment.
Specifically, the take-out temperature at which the mold is opened and the cast iron product is taken out is preferably 1147 to 727 ° C, and particularly 1147 to 850 ° C. 70% or more is preferable.
When the temperature at which such cast iron product is taken out exceeds 1147 ° C., the molten metal tends to be incompletely solidified in the mold.
On the other hand, when the cast iron product is cooled to a temperature lower than the A 1 transformation temperature, specifically 727 ° C., in the mold, the cast iron product obtained by slow cooling at a cooling rate slower than the cooling rate in the mold is Although the hardness increases and the ferrite content decreases, a cast iron product having excellent tensile strength and proof stress can be obtained.
金型から鋳鉄製品を取り出す時期は、原則として鋳鉄製品の温度で判断することが最適であるが、鋳造の都度、鋳鉄製品の温度を直接測定することは困難である。このため、金型内の鋳鉄製品の温度と溶湯を金型に注湯してからの経過時間との関係を測定し、金型への溶湯の注湯からの経過時間に基いて、金型からの鋳鉄製品の取出時期を管理することが容易である。
本発明において、金型に注湯する溶湯とする鉄合金は、鉄―炭素合金を用いることが好ましく、特に、炭素(C)3.1〜3.9重量%、珪素(Si)2.0〜3.0重量%、マンガン(Mn)0.3重量%以下、燐(P)0.03重量%以下、クロム(Cr)0.10重量%以下、マグネシウム(Mg)0.018〜0.060重量%、残余鉄及び不純物から成り、且つCE値(炭素当量)4.0〜4.7重量%の鉄合金を好適に用いることができる。
In principle, it is best to judge the time of taking out the cast iron product from the mold based on the temperature of the cast iron product. However, it is difficult to directly measure the temperature of the cast iron product at every casting. For this reason, the relationship between the temperature of the cast iron product in the mold and the elapsed time since the molten metal was poured into the mold was measured, and the mold was determined based on the elapsed time since the molten metal was poured into the mold. It is easy to manage the timing of removing cast iron products from
In the present invention, an iron-carbon alloy is preferably used as the molten iron to be poured into the mold. In particular, 3.1% to 3.9% by weight of carbon (C) and 2.0% of silicon (Si) are used. -3.0% by weight, manganese (Mn) 0.3% by weight or less, phosphorus (P) 0.03% by weight or less, chromium (Cr) 0.10% by weight or less, magnesium (Mg) 0.018-0. An iron alloy composed of 060% by weight, residual iron and impurities and having a CE value (carbon equivalent) of 4.0 to 4.7% by weight can be suitably used.
ここで、炭素(C)が3.1重量%未満では、炭化物が析出し易くパーライトが多くなり、鋳造性が低下する傾向がある。他方、炭素(C)が3.9重量%を越えると、キッシュ黒鉛が析出し、黒鉛が偏って析出して、鎖状黒鉛が析出され易い傾向にある。
珪素(Si)が2.0重量%未満では、炭化物が析出し易くパーライトが多くなる傾向があり、他方、3.0重量%を越えると、キッシュ黒鉛が析出し、黒鉛が偏って析出して、鎖状黒鉛が析出され易い傾向にある。
マンガン(Mn)が0.3重量%を越えると、パーライトが多くなる傾向にあり、燐(P)が0.03重量%を越える場合、クロム(Cr)が0.10重量%を越える場合には、ステダイトによって脆くなり易くなる傾向にある。
マグネシウム(Mg)が0.018重量%未満では、黒鉛が球状化しなくなる傾向にあり、他方、0.060重量%を越えると、引け巣の発生や炭化物が析出し易くなる傾向にある。
また、CE値(炭素当量)が4.0重量%未満では、炭化物が析出し易くパーライトが多くなり、鋳造性が低下する傾向がある。他方、CE値(炭素当量)が4.7重量%を越えると、キッシュ黒鉛が析出し、黒鉛が偏って析出して、鎖状黒鉛が析出され易い傾向にある。
かかる組成の溶湯を金型に注湯する際に、Si量で0.05〜0.225重量%のFe−Siを注湯接種することによって、黒鉛の微細化を図ることができる。Fe−Siの注湯接種量をSi量で0.05重量%未満とすると,黒鉛が微細化され難くなる傾向にあり、0.225重量%を越える量を注湯接種しても、黒鉛の微細化の程度は飽和に達しており、未溶解物が発生し易くなる傾向にある。
Here, if the carbon (C) is less than 3.1% by weight, carbides are likely to precipitate, pearlite increases, and castability tends to decrease. On the other hand, when the carbon (C) exceeds 3.9% by weight, quiche graphite is precipitated, the graphite is unevenly deposited, and the chain graphite tends to be precipitated.
When silicon (Si) is less than 2.0% by weight, carbide tends to precipitate and tends to increase pearlite. On the other hand, when it exceeds 3.0% by weight, quiche graphite is precipitated, and graphite is unevenly deposited. The chain graphite tends to be easily deposited.
When manganese (Mn) exceeds 0.3% by weight, pearlite tends to increase. When phosphorus (P) exceeds 0.03% by weight, chromium (Cr) exceeds 0.10% by weight. Tends to become brittle due to steadite.
If the magnesium (Mg) is less than 0.018% by weight, the graphite tends not to spheroidize. On the other hand, if it exceeds 0.060% by weight, shrinkage cavities and carbides tend to precipitate.
On the other hand, when the CE value (carbon equivalent) is less than 4.0% by weight, carbides are likely to be precipitated, pearlite is increased, and castability tends to be lowered. On the other hand, when the CE value (carbon equivalent) exceeds 4.7% by weight, quiche graphite is precipitated, graphite is unevenly deposited, and chain graphite tends to be precipitated.
When pouring a molten metal having such a composition into a mold, it is possible to refine the graphite by pouring and injecting 0.05 to 0.225% by weight of Fe—Si. When the amount of Fe-Si poured is less than 0.05% by weight, the graphite tends to be difficult to be refined. Even if the amount exceeding 0.225% by weight is poured, The degree of refinement has reached saturation, and undissolved products tend to be generated.
本発明で用いる金型としては、湯口から注湯された溶湯が重力によってキャビティ内に充填される重力鋳鉄用金型を、構造が簡単であるため好適に用いることができる。
ところで、従来の鋳鉄用金型としては、水冷構造又は銅等の高熱伝導材から成る金型が用いられている。かかる従来の鋳鉄用金型では、キャビティに充填された溶湯の冷却速度が著しく速く、金型に溶湯を注湯してから10秒程度でA1変態温度よりも充分に低温にまで冷却されるため、金型からの鋳鉄製品の取出時期を管理することは困難である。
このため、本発明で用いる金型としては、注湯した鉄合金の溶湯が凝固した鋳鉄製品の取出時期を制御し得る冷却特性、具体的には、水冷構造又は銅等の高熱伝導材から成る従来の金型の冷却速度よりも緩和された冷却速度の金型を用いる。
かかる金型としては、炭素(C)が0.45重量%の鋼(S45C)から成る金型を好適に用いることができる。この金型には、水冷構造を設けることを要しない。従って、従来の水冷構造を具備する金型よりも構造が簡単となり、製造コストも安価となる。
尚、本発明で用いる金型には、従来の金型に使用されていた塗型剤は用いることができる。
As the mold used in the present invention, a gravity cast iron mold in which the molten metal poured from the gate is filled into the cavity by gravity can be suitably used because of its simple structure.
By the way, as a conventional mold for cast iron, a mold made of a water-cooled structure or a high heat conductive material such as copper is used. In such conventional cast iron mold is sufficiently cooled to a temperature lower than the A 1 transformation temperature significantly faster cooling rate of the filled molten metal into the cavity, approximately 10 seconds after pouring the molten metal into a mold For this reason, it is difficult to control the timing of removing the cast iron product from the mold.
For this reason, as a metal mold used in the present invention, a cooling characteristic capable of controlling the take-out time of cast iron products in which a molten iron alloy is solidified, specifically, a water-cooled structure or a high heat conductive material such as copper is used. A mold having a cooling rate that is less than the cooling rate of a conventional mold is used.
As such a mold, a mold made of steel (S45C) containing 0.45% by weight of carbon (C) can be suitably used. This mold does not need to be provided with a water cooling structure. Therefore, the structure is simpler than the mold having the conventional water cooling structure, and the manufacturing cost is also reduced.
In addition, the mold agent used by the conventional metal mold | die can be used for the metal mold | die used by this invention.
本発明では、金型内で室温以上の所定温度まで冷却した鋳鉄製品を型開きして取り出した後、鋳鉄製品を金型内での冷却速度よりも遅い冷却速度で徐冷することが大切である。
この金型から取り出した鋳鉄製品の冷却速度を、鋳鉄製品を金型内での冷却速度と同等以上とすると、冷却された鋳鉄製品は、パーライト化率が高くなり、フェライト量が低下したものとなる。
かかる徐冷は、金型から取り出した鋳鉄製品を室温下で放冷することによって達成できる。
この様に、水冷構造を有しない金型内での鋳鉄製品の冷却速度を、室温下で鋳鉄製品を放冷する場合よりも速くできるのは以下のように考えられる。
本発明では、室温以上の所定温度で型開きするため、金型は注湯後短時間で型開きされて、冷却途中で高温状態にある鋳鉄製品を取り出される。このため、水冷構造を有しない金型でも、注湯された溶湯の凝固及び鋳鉄製品に因る型温度の上昇が抑制された状態で冷却されており、次に注湯される溶湯の凝固及び鋳鉄製品を取り出す取出温度までの熱量を充分に吸収し得る熱容量を有する。
また、溶湯及び鋳鉄製品から金型への伝熱は、鋳鉄製品から空気への伝熱に比較して良好である。
したがって、冷却状態の金型に注湯された溶湯が凝固された鋳鉄製品の冷却速度は、室温下で鋳鉄製品を放冷する場合よりも速くなる。
尚、金型での鋳鉄製品の冷却速度が、室温下で鋳鉄製品を放冷する場合と同等以下であるときは、溶湯を注湯した金型及び/又は鋳鉄製品を取り出した金型に冷風等を吹き付けて強制冷却を施してもよい。
In the present invention, it is important that after the cast iron product cooled to a predetermined temperature of room temperature or higher in the mold is opened and taken out, the cast iron product is gradually cooled at a cooling rate slower than the cooling rate in the mold. is there.
If the cooling rate of the cast iron product taken out from the mold is equal to or higher than the cooling rate of the cast iron product in the mold, the cooled cast iron product has a higher pearlite ratio and a reduced ferrite content. Become.
Such slow cooling can be achieved by allowing the cast iron product taken out from the mold to cool at room temperature.
In this way, it is considered that the cooling rate of the cast iron product in the mold having no water cooling structure can be made faster than the case where the cast iron product is allowed to cool at room temperature.
In the present invention, since the mold is opened at a predetermined temperature of room temperature or higher, the mold is opened in a short time after pouring, and a cast iron product in a high temperature state is taken out during cooling. For this reason, even in a mold that does not have a water cooling structure, the molten metal that has been poured is cooled in a state in which the solidification of the molten metal and the rise in the mold temperature caused by the cast iron product are suppressed. It has a heat capacity that can sufficiently absorb the amount of heat up to the extraction temperature at which the cast iron product is taken out.
In addition, heat transfer from the molten metal and cast iron product to the mold is better than heat transfer from the cast iron product to the air.
Therefore, the cooling rate of the cast iron product obtained by solidifying the molten metal poured into the mold in the cooled state is faster than when the cast iron product is allowed to cool at room temperature.
In addition, when the cooling rate of the cast iron product in the mold is equal to or less than that when the cast iron product is allowed to cool at room temperature, cold air is poured into the mold into which the molten metal has been poured and / or the mold from which the cast iron product has been taken out. Etc. may be used to perform forced cooling.
以上、説明してきた本発明に係る鋳鉄方法によれば、フェライト量が多く靭性に優れた、球状黒鉛鋳鉄から成る鋳鉄製品を迅速に得ることができる。
特に、金型を型開きして鋳鉄製品を取り出す鋳鉄製品の温度を、1147〜850℃とすることによって、鋳鉄製品の金属組織顕微鏡写真で測定したフェライト量が70%以上であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、且つ黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上である鋳鉄製品を得ることができる。この鋳鉄製品は、FCD450に相当するものであり、自動車部品等に用いられる。
ここで、金型を型開きして鋳鉄製品を取り出す鋳鉄製品の温度を、727℃〜850℃未満とした場合には、鋳鉄製品の金属組織顕微鏡写真で測定したフェライト量が60〜70%であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、且つ黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上である鋳鉄製品を得ることができる。この鋳鉄製品は、FCD550に相当するものである。
As described above, according to the cast iron method according to the present invention described above, a cast iron product made of spheroidal graphite cast iron having a large amount of ferrite and excellent toughness can be quickly obtained.
In particular, by setting the temperature of the cast iron product from which the mold is opened to take out the cast iron product to 1147 to 850 ° C., the ferrite content measured by the metallographic micrograph of the cast iron product is 70% or more, and the particle size A cast iron product can be obtained in which the number of graphite particles of 5 μm or more is 900 particles / mm 2 or more, and among the graphite particles, the graphite spheroidization ratio occupied by the spherical graphite particles is 70% or more. This cast iron product corresponds to FCD450 and is used for automobile parts and the like.
Here, when the temperature of the cast iron product from which the mold is opened and the cast iron product is taken out is 727 ° C. to less than 850 ° C., the ferrite content measured by the metallographic micrograph of the cast iron product is 60 to 70%. In addition, it is possible to obtain a cast iron product in which the number of graphite particles having a particle size of 5 μm or more is 900 particles / mm 2 or more and the graphite spheroidization ratio occupied by the spherical graphite particles is 70% or more. This cast iron product corresponds to FCD550.
後述する様に、FCD450に相当する2.5kg程度の鋳鉄製品を、水冷構造を具備しないS45C材の金型を用いて本発明に係る鋳鉄方法によって鋳造すると、金型に溶湯を注湯してから70秒程度で型開きして鋳鉄製品を取り出し放冷することによって得ることができる。
これに対し、FCD450に相当する2.5kg程度の鋳鉄製品を、従来の水冷構造の金型を用いた鋳鉄方法で得るには、水冷構造の金型から冷却された鋳鉄製品を取り出すまでの所要時間は約10秒程度であるが、取り出された鋳鉄製品に熱処理を施すことが必要であり、この熱処理に約45分程度必要である。
また、FCD450に相当する2.5kg程度の鋳鉄製品を従来の砂型を用いて鋳造すると、砂型に溶湯を注湯してから冷却された鋳鉄製品を取り出すまでに約45分程度必要である。
As described later, when a cast iron product of about 2.5 kg corresponding to FCD450 is cast by the cast iron method according to the present invention using a mold of S45C material that does not have a water cooling structure, a molten metal is poured into the mold. Then, the mold can be opened in about 70 seconds, and the cast iron product can be taken out and allowed to cool.
In contrast, in order to obtain a cast iron product of about 2.5 kg corresponding to FCD450 by a conventional cast iron method using a water-cooled mold, it is necessary to take out the cooled cast iron product from the water-cooled mold. Although the time is about 10 seconds, it is necessary to heat-treat the extracted cast iron product, and this heat treatment requires about 45 minutes.
Further, when a cast iron product of about 2.5 kg corresponding to FCD450 is cast using a conventional sand mold, it takes about 45 minutes from pouring the molten metal into the sand mold and taking out the cooled cast iron product.
この様に、本発明に係る鋳鉄方法によれば、従来の水冷構造又は銅等の高熱伝導材から成る金型を用いた鋳鉄方法や砂型を用いた鋳鉄方法に比較して、短時間でフェライト量が多く靭性に優れた、球状黒鉛鋳鉄から成る鋳鉄製品を迅速に得ることができる。
更に、本発明では、従来の水冷構造又は銅等の高熱伝導材から成る金型に比較して、金型での鋳鉄製品の冷却速度が緩和された金型を用いることができ、水冷構造等の特殊構造を不要にできるため、金型の構造を簡単化した安価な金型用いることができ、鋳鉄製品の製造コストの低減を図ることができる。
また、本発明に係る鋳鉄方法によれば、従来の砂型を用いる鋳鉄方法に比較して、砂型の造型機、砂の回収、冷却、搬送、混錬再製等の砂処理設備を不要化でき、鋳鉄プラントの設備投資を低減できる。
As described above, according to the cast iron method of the present invention, ferrite can be produced in a short time compared to the conventional cast iron method using a water-cooled structure or a mold made of a high heat conductive material such as copper or the cast iron method using a sand mold. A cast iron product made of spheroidal graphite cast iron having a large amount and excellent toughness can be obtained quickly.
Furthermore, in the present invention, compared with a conventional water-cooled structure or a mold made of a high heat conductive material such as copper, a mold in which the cooling rate of cast iron products in the mold is relaxed can be used. Since the special structure can be made unnecessary, an inexpensive mold with a simplified mold structure can be used, and the production cost of cast iron products can be reduced.
Further, according to the cast iron method according to the present invention, compared to the conventional cast iron method using a sand mold, a sand mold making machine, sand collection, cooling, transport, kneading remanufacturing and the like can be eliminated, Capital investment in cast iron plant can be reduced.
(1)金型:重力鋳鉄用金型として、炭素(C)が0.45重量%の鋼(S45C)から成る金型を作成した。この金型には、水冷構造を設けなかった。
かかる金型で鋳鉄できる鋳鉄製品は、重量2.5kgであって、直径40mmで長さ170mmのマスターシリンダーを構成する筒状部材である。
(2)溶湯:炭素(C)3.1〜3.9重量%、珪素(Si)2.0〜3.0重量%、マンガン(Mn)0.3重量%以下、燐(P)0.03重量%以下、クロム(Cr)0.10重量%以下、マグネシウム(Mg)0.018〜0.060重量%、微量の硫黄(S)、銅(Cu)から成り、且つCE値(炭素当量)4.0〜4.7重量%の鉄合金を溶融して溶湯とした。この鉄合金の凝固完了温度は1145℃であり、A1変態温度は730〜727℃である。
(3)金型内での鋳鉄製品の冷却曲線
作成した金型の湯口に溶湯を注湯し、その際に、Si量で0.20重量%のFe−Siを注湯接種した。
また、この金型に溶湯を注湯して鋳造製品を鋳造する捨て打ちを4回行なった後、金型の湯口に挿入した熱伝対によって、金型内の鋳鉄製品の温度を測定して冷却曲線を求めた。結果を図2のグラフとして示す。
図2に示すグラフは、金型の湯口に溶湯の注入開始からの経過時間と鋳鉄製品の温度との関係を示す。
図2に示すグラフから明らかな様に、金型の湯口から注湯された溶湯は、注湯開始から40秒後に凝固し、金型内の鋳鉄製品は600℃近傍まで経時時間に対して直線的に冷却されることを示しているため、金型内の鋳鉄製品は、その鉄合金のA1変態温度近傍においても、溶湯が凝固した直後と略同等の冷却速度で冷却される。
尚、鋳鉄製品が600℃に冷却されるまでの冷却曲線の直線の傾きから鋳鉄製品の金型内での冷却速度を求めると、4.5℃/秒(800℃まで)〜1.17℃/秒(800〜600℃)である。
(1) Mold: As a mold for gravity cast iron, a mold made of steel (S45C) with 0.45% by weight of carbon (C) was prepared. This mold was not provided with a water cooling structure.
A cast iron product that can be cast iron with such a mold is a cylindrical member that constitutes a master cylinder having a weight of 2.5 kg and a diameter of 40 mm and a length of 170 mm.
(2) Molten metal: 3.1 to 3.9% by weight of carbon (C), 2.0 to 3.0% by weight of silicon (Si), 0.3% by weight or less of manganese (Mn), 0.8% of phosphorus (P). 03 wt% or less, chromium (Cr) 0.10 wt% or less, magnesium (Mg) 0.018 to 0.060 wt%, trace amount of sulfur (S), copper (Cu), and CE value (carbon equivalent) ) 4.0 to 4.7% by weight of an iron alloy was melted to form a molten metal. The solidification completion temperature of this iron alloy is 1145 ° C., and the A 1 transformation temperature is 730 to 727 ° C.
(3) Cooling curve of the cast iron product in the mold The molten metal was poured into the pouring gate of the prepared mold, and at that time, 0.20% by weight of Fe—Si in terms of Si amount was poured and inoculated.
In addition, after casting the cast product by pouring the molten metal into this mold four times, the temperature of the cast iron product in the mold is measured by a thermocouple inserted into the mold gate. A cooling curve was determined. The results are shown as a graph in FIG.
The graph shown in FIG. 2 shows the relationship between the elapsed time from the start of pouring molten metal into the mold gate and the temperature of the cast iron product.
As is apparent from the graph shown in FIG. 2, the molten metal poured from the pouring gate of the mold solidifies after 40 seconds from the start of pouring, and the cast iron product in the mold is linear with respect to the elapsed time up to about 600 ° C. it indicates that an manner being cooled, the cast iron product in the mold, also in the a 1 transformation temperature near the iron alloy is cooled immediately after the melt has solidified substantially equal cooling rate.
When the cooling rate in the mold of the cast iron product is determined from the slope of the cooling curve until the cast iron product is cooled to 600 ° C., 4.5 ° C./second (up to 800 ° C.) to 1.17 ° C. / Sec (800 to 600 ° C.).
実施例1で作成した金型に溶湯を注湯して鋳造製品を鋳造する捨て打ちを4回行なった後、この金型の湯口に、炭素(C)3.47重量%、珪素(Si)2.71重量%、マンガン(Mn)0.21重量%以下、燐(P)0.02重量%、クロム(Cr)0.04重量%、硫黄(S)0.007重量%、マグネシウム(Mg)0.023重量%、銅(Cu)0.04重量%から成り、且つCE値(炭素当量)4.37重量%の鉄合金を溶融して得た溶湯を注湯した。その際に、Si量で0.20重量%のFe−Siを注湯接種した。Fe−Siを注湯接種した溶湯のオーステナイト相と黒鉛とが共に晶出する共晶温度は1148℃であり、オーステナイト相がパーライト相に変態するA1変態温度が727℃である。 After casting was performed four times by pouring molten metal into the mold created in Example 1 to cast a cast product, 3.47% by weight of carbon (C) and silicon (Si) were added to the mold gate. 2.71 wt%, manganese (Mn) 0.21 wt% or less, phosphorus (P) 0.02 wt%, chromium (Cr) 0.04 wt%, sulfur (S) 0.007 wt%, magnesium (Mg ) A molten metal obtained by melting an iron alloy composed of 0.023 wt%, copper (Cu) 0.04 wt% and having a CE value (carbon equivalent) of 4.37 wt% was poured. At that time, molten iron was inoculated with 0.20% by weight of Fe-Si. The eutectic temperature at which both the austenite phase and graphite of the molten metal infused with Fe—Si crystallize is 1148 ° C., and the A 1 transformation temperature at which the austenite phase transforms into a pearlite phase is 727 ° C.
金型の湯口に溶湯の注湯開始から109秒後に型開きして鋳鉄製品を取り出し、室温下で空冷した。この鋳鉄製品の金型からの取出温度は、図2に示すグラフから930℃である。また、空冷における鋳鉄製品の冷却速度は、2.17℃/秒(800℃まで)〜0.67℃/秒(800〜600℃)であって、金型内での鋳鉄製品の冷却速度[4.5℃/秒(800℃まで)〜1.17℃/秒(800〜600℃)]よりも遅い。
冷却された鋳鉄製品の筒状部材の先端部と中央部とについて、材料組織及び硬度について測定した。
材料組織については、筒状部材の先端部(A)と中央部(B)との各部位から採取したサンプルの表面を顕微鏡で100倍に拡大し、所定範囲に存在する5μm以上の黒鉛粒子数を数えると共に、5μm以上の黒鉛粒子数の総数に対する黒鉛球状化率を測定した。この黒鉛球状化率は、JIS G5502 12.6の黒鉛球状化率判定試験方法に準拠して行った。
得られた鋳鉄製品においては、その先端部(A)では、5μm以上の黒鉛粒子数の総数が1335個/mm2で且つ黒鉛球状化率は80.4%であり、その中央部(B)では、5μm以上の黒鉛粒子数の総数が1098個/mm2で且つ黒鉛球状化率は75.9%であった。
サンプルの表面を100倍に拡大した顕微鏡組織写真を図3に示す。図3に示すAは筒状部材の先端部のものであり、Bは中央部のものである。
After 109 seconds from the start of pouring the molten metal into the mold spout, the mold was opened and the cast iron product was taken out and air-cooled at room temperature. The temperature at which the cast iron product is taken out from the mold is 930 ° C. from the graph shown in FIG. Moreover, the cooling rate of the cast iron product in air cooling is 2.17 ° C./second (up to 800 ° C.) to 0.67 ° C./second (800 to 600 ° C.), and the cooling rate of the cast iron product in the mold [ 4.5 ° C./second (up to 800 ° C.) to 1.17 ° C./second (800 to 600 ° C.)].
About the front-end | tip part and center part of the cylindrical member of the cooled cast iron product, it measured about material structure and hardness.
Regarding the material structure, the surface of the sample collected from each part of the tip (A) and the central part (B) of the cylindrical member is magnified 100 times with a microscope, and the number of graphite particles of 5 μm or more existing in a predetermined range And the spheroidization ratio of graphite with respect to the total number of graphite particles of 5 μm or more was measured. This graphite spheroidization rate was carried out in accordance with the graphite spheroidization rate judgment test method of JIS G5502 12.6.
In the obtained cast iron product, at the tip (A), the total number of graphite particles of 5 μm or more is 1335 particles / mm 2 and the graphite spheroidization rate is 80.4%, and the center (B) Then, the total number of graphite particles of 5 μm or more was 1098 particles / mm 2 and the graphite spheroidization ratio was 75.9%.
A micrograph of the sample surface magnified 100 times is shown in FIG. A shown in FIG. 3 is the tip of the cylindrical member, and B is the center.
更に、筒状部材の先端部(A)と中央部(B)との各部位から採取したサンプルをナイタール液に浸漬してエッチング処理を施した後、サンプル表面を顕微鏡で100倍に拡大し、フェライト量(%)を調査した。このフェライト量は、JIS G5502 12.6の基地組織判定方法に準拠して測定した。
エッチング処理を施したサンプル表面を100倍に拡大した顕微鏡組織写真を図4に示す。図4に示すAは筒状部材の先端部のものであり、Bは中央部のものである。
図4に示す顕微鏡組織写真において、球状の黒い部分が黒鉛であり、その周囲を覆う白い部分がフェライト相である。フェライト量(%)は、視野の異なる5箇所で測定し、その測定値の平均値を採用した。
得られた鋳鉄製品においては、その先端部(A)では、フェライト量が77.8%であり、その中央部(B)では、フェライト量が90.6%であった。
Furthermore, after immersing the sample collected from each part of the tip part (A) and the central part (B) of the cylindrical member in the nital solution and performing the etching treatment, the sample surface is magnified 100 times with a microscope, The amount of ferrite (%) was investigated. This ferrite content was measured in accordance with the base structure judgment method of JIS G5502 12.6.
FIG. 4 shows a photomicrograph of the microstructure of the sample surface subjected to the etching treatment, enlarged 100 times. A shown in FIG. 4 is the tip of the cylindrical member, and B is the center.
In the micrograph shown in FIG. 4, the spherical black portion is graphite, and the white portion covering the periphery is the ferrite phase. The ferrite amount (%) was measured at five locations with different fields of view, and the average value of the measured values was adopted.
In the obtained cast iron product, the ferrite content was 77.8% at the tip (A), and the ferrite content was 90.6% at the center (B).
また、筒状部材の先端部(A)と中央部(B)との各部位から採取したサンプルについて、市販されている硬度計を用いてHRB硬度を測定した。得られた鋳鉄製品では、その先端部(A)のHRB硬度は90.0であり、その中央部(B)のHRB硬度は84.5であった。
この様に、得られた鋳鉄製品では、その先端部(A)と中央部(B)とは、材料組織及び硬度に若干の相違が認められるが、FCD450に相当する材料である。
Moreover, about the sample extract | collected from each site | part of the front-end | tip part (A) and center part (B) of a cylindrical member, HRB hardness was measured using the commercially available hardness meter. In the obtained cast iron product, the HRB hardness of the front end portion (A) was 90.0, and the HRB hardness of the central portion (B) was 84.5.
As described above, in the obtained cast iron product, the tip portion (A) and the center portion (B) are materials corresponding to FCD450, although a slight difference is observed in the material structure and hardness.
実施例2と同様にしてマスターシリンダー形状の鋳鉄製品を鋳鉄した。この鋳鉄の際に、金型の湯口に溶湯の注湯開始から金型の型開きするまでの離型時間を下記表1に示す様に、種々変更して行い、取り出した鋳鉄製品を室温下で空冷した。この金型の型開きした際の鋳鉄製品温度(離型製品温度)を表1に併せて示した。
冷却が終了した鋳鉄製品の先端部(A)及び中央部(B)の各々から採取したサンプルの各々について、実施例2と同様にして黒鉛粒数、HRB硬度、黒鉛球状化率、フェライト量を測定した結果を、下記表2に示す。
更に、鋳鉄製品の各々について、抗張力、耐力及び伸びについても測定し、下記表3に示す。
For each of the samples collected from the tip part (A) and the center part (B) of the cast iron product after cooling, the number of graphite grains, the HRB hardness, the graphite spheroidization ratio, and the ferrite content were determined in the same manner as in Example 2. The measured results are shown in Table 2 below.
Further, for each of the cast iron products, the tensile strength, proof stress and elongation were also measured and are shown in Table 3 below.
表1、表2及び表3から明らかな様に、No.2、No.3及びNo.4の水準では、金型に注湯する溶湯のA1変態温度以上である1060℃(No.2)、930℃(No。3)又は765℃(No.4)で金型から鋳鉄製品を取り出し、空冷することによって、先端部(A)及び中央部(B)において、フェライト量が60%以上であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、且つ黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上である鋳鉄製品を得ることができる。特に、鋳鉄製品の取出温度を850℃以上としたNo.2及びNo.3の水準では、中央部(B)において、フェライト量が90%以上の鋳鉄製品を得ることができ、就中、鋳鉄製品の取出温度を1000℃以上としたNo.2の水準では、先端部(A)及び中央部(B)においても、フェライト量が90%以上の鋳鉄製品を得ることができる。
これに対し、金型からの鋳鉄製品の取出温度を、溶湯のA1変態温度である727℃未満の温度としたNo.1及びNo.5の水準では、先端部(A)では、フェライト量が60%未満の鋳鉄製品であった。かかる鋳鉄製品では、No.2、No.3及びNo.4の水準に比較してHRB硬度が上昇するものの、フェライト量が低下する傾向にある。
As is clear from Tables 1, 2 and 3, No. 2, No. 2 At the levels of 3 and No. 4, the mold was at 1060 ° C. (No. 2), 930 ° C. (No. 3) or 765 ° C. (No. 4) which is higher than the A 1 transformation temperature of the molten metal poured into the mold. When the cast iron product is taken out of the product and air-cooled, the ferrite content is 60% or more and the number of graphite particles having a particle size of 5 μm or more is 900 pieces / mm 2 or more at the tip portion (A) and the center portion (B). Moreover, among the graphite particles, a cast iron product having a spheroidization ratio of 70% or more occupied by the spherical graphite particles can be obtained. In particular, No. 2 and No. 2 in which the extraction temperature of cast iron products was 850 ° C. or higher. 3 level, a cast iron product having a ferrite content of 90% or more can be obtained in the central portion (B). In particular, at the No. 2 level in which the temperature for taking out the cast iron product is 1000 ° C. or more, the tip portion Also in (A) and the center part (B), a cast iron product having a ferrite content of 90% or more can be obtained.
On the other hand, at the level of No. 1 and No. 5 where the temperature at which the cast iron product is taken out from the mold is less than 727 ° C., which is the A 1 transformation temperature of the molten metal, the amount of ferrite at the tip (A) Was cast iron products of less than 60%. In such cast iron products, No. 2, No. Although the HRB hardness increases as compared with the levels of 3 and No. 4, the ferrite content tends to decrease.
また、表3に示す抗張力、耐力及び伸びの各々について、離型製品温度で整理すると、図5〜図7に示すようになる。かかる図5〜図7において、図5は離型製品温度と得られた鋳造製品の抗張力との関係を示すグラフ、図6は離型製品温度と得られた鋳造製品の耐力との関係を示すグラフ、及び図7は離型製品温度と得られた鋳造製品の伸びとの関係を示すグラフを各々示すである。この図5〜図7には、共晶温度及びA1変態温度を表示すると共に、球状黒鉛鋳鉄JIS規格で定められているFCD450及びFCD500の下限値を表示した。
この球状黒鉛鋳鉄JIS規格で定められているのFCD450及びFCD500の規格値を下記表4に示す。
一方、離型製品温度がA1変態温度よりも低温とすると、得られた鋳造製品は、FCD450よりもフェライト量が低下するものの、硬度が高くなるFCD500相当の鋳造製品となる。
この様に、成形型から鋳造製品を取り出す離型製品温度を調整することによって、FCD450に相当する鋳造製品とFCD500に相当する鋳造製品とを得ることができる。
Moreover, about each of the tension | tensile_strength, yield strength, and elongation shown in Table 3, it will become as shown in FIGS. 5 to 7, FIG. 5 is a graph showing the relationship between the release product temperature and the tensile strength of the obtained cast product, and FIG. 6 shows the relationship between the release product temperature and the yield strength of the obtained cast product. The graph and FIG. 7 are graphs showing the relationship between the release product temperature and the elongation of the obtained cast product, respectively. 5 to 7, the eutectic temperature and the A 1 transformation temperature are displayed, and the lower limit values of FCD450 and FCD500 defined by the JIS standard for spheroidal graphite cast iron are displayed.
Table 4 below shows the standard values of FCD450 and FCD500 defined by the JIS standard for the spheroidal graphite cast iron.
On the other hand, when releasing the product temperature is the temperature lower than the A 1 transformation temperature, the resulting cast products, although the amount of ferrite becomes lower than FCD450, a cast product of equivalent FCD500 hardness is high.
In this way, by adjusting the temperature of the release product for taking out the cast product from the mold, it is possible to obtain a cast product corresponding to FCD450 and a cast product corresponding to FCD500.
Claims (16)
該金型に注湯した鉄合金の溶湯が凝固して得られた鋳鉄製品を冷却して、前記鋳鉄製品の温度が室温よりも高温の所定温度に到達したとき、前記金型を型開きして鋳鉄製品を取り出した後、
前記金型から取り出した鋳鉄製品を金型内での冷却速度よりも遅い冷却速度で徐冷することを特徴とする鋳鉄方法。 When casting a cast iron product of a desired shape by pouring a molten iron alloy into the cavity in the mold,
The cast iron product obtained by solidifying the molten iron alloy poured into the mold is cooled, and when the temperature of the cast iron product reaches a predetermined temperature higher than room temperature, the mold is opened. After removing the cast iron product,
A cast iron method characterized by gradually cooling a cast iron product taken out of the mold at a cooling rate slower than a cooling rate in the mold.
前記鋳鉄製品の金属組織顕微鏡写真で測定したフェライト量が70%以上であると共に、粒径5μm以上の黒鉛粒子数が900個/mm2以上であり、
且つ前記黒鉛粒子のうち、球状黒鉛粒子が占める黒鉛球状化率が70%以上であることを特徴とする鋳鉄製品。 A cast iron product having an HRB hardness of 80 to 100, obtained by pouring a molten iron alloy into a cavity in a mold,
The amount of ferrite measured by a metallographic micrograph of the cast iron product is 70% or more, and the number of graphite particles having a particle size of 5 μm or more is 900 pieces / mm 2 or more,
And the cast iron product characterized by the graphite spheroidization ratio which a spherical graphite particle accounts among the said graphite particles being 70% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004310779A JP2006122917A (en) | 2004-10-26 | 2004-10-26 | Method for casting cast iron and cast iron product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004310779A JP2006122917A (en) | 2004-10-26 | 2004-10-26 | Method for casting cast iron and cast iron product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006122917A true JP2006122917A (en) | 2006-05-18 |
Family
ID=36718143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004310779A Pending JP2006122917A (en) | 2004-10-26 | 2004-10-26 | Method for casting cast iron and cast iron product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006122917A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114289709A (en) * | 2021-12-27 | 2022-04-08 | 江苏海容科技有限公司 | Cast iron casting, method for casting same and casting device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61166944A (en) * | 1985-01-19 | 1986-07-28 | Mazda Motor Corp | Spheroidal graphite cast iron casting and its manufacture |
JPH08206778A (en) * | 1995-02-01 | 1996-08-13 | Kosei Aruminiyuumu Kogyo Kk | Casting die |
JPH0957414A (en) * | 1995-08-24 | 1997-03-04 | Toyota Motor Corp | Centrifugal forming method |
JP2000045011A (en) * | 1998-07-27 | 2000-02-15 | Izumi Kogyo Kk | Spheroidal graphite cast iron and production of spheroidal graphite cast iron |
JP2002192328A (en) * | 2000-12-22 | 2002-07-10 | Suzuki Motor Corp | Method for manufacturing spheroidal graphite cast iron member |
JP2002307150A (en) * | 2001-04-12 | 2002-10-22 | Kubota Corp | Method for producing cast iron tube |
JP2003286538A (en) * | 2002-03-28 | 2003-10-10 | Kurimoto Ltd | Tough, ductile cast iron and its manufacturing process |
JP2004257422A (en) * | 2003-02-24 | 2004-09-16 | Aisin Takaoka Ltd | Method of producing rotor for disk brake |
-
2004
- 2004-10-26 JP JP2004310779A patent/JP2006122917A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61166944A (en) * | 1985-01-19 | 1986-07-28 | Mazda Motor Corp | Spheroidal graphite cast iron casting and its manufacture |
JPH08206778A (en) * | 1995-02-01 | 1996-08-13 | Kosei Aruminiyuumu Kogyo Kk | Casting die |
JPH0957414A (en) * | 1995-08-24 | 1997-03-04 | Toyota Motor Corp | Centrifugal forming method |
JP2000045011A (en) * | 1998-07-27 | 2000-02-15 | Izumi Kogyo Kk | Spheroidal graphite cast iron and production of spheroidal graphite cast iron |
JP2002192328A (en) * | 2000-12-22 | 2002-07-10 | Suzuki Motor Corp | Method for manufacturing spheroidal graphite cast iron member |
JP2002307150A (en) * | 2001-04-12 | 2002-10-22 | Kubota Corp | Method for producing cast iron tube |
JP2003286538A (en) * | 2002-03-28 | 2003-10-10 | Kurimoto Ltd | Tough, ductile cast iron and its manufacturing process |
JP2004257422A (en) * | 2003-02-24 | 2004-09-16 | Aisin Takaoka Ltd | Method of producing rotor for disk brake |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114289709A (en) * | 2021-12-27 | 2022-04-08 | 江苏海容科技有限公司 | Cast iron casting, method for casting same and casting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4382152B1 (en) | Method for producing semi-solid slurry of iron alloy, method for producing cast iron casting using the method for producing semi-solid slurry, and cast iron casting | |
JP2014039958A (en) | Coagulation microstructure of molding mold molded by aggregate-using casting mold | |
JP6998015B2 (en) | Manufacturing method of mold casting of spheroidal graphite cast iron | |
CN113423853B (en) | Aluminum alloy for structural high pressure vacuum die casting applications | |
WO2011145194A1 (en) | Heat-resistant cast iron type metallic short fiber, and process for production thereof | |
JP4934321B2 (en) | Cast iron method and cast iron mold | |
JP2010131635A (en) | Die-cast molding method for iron and die-cast molded body | |
WO2010029564A1 (en) | Nodulizer for the production of spheroidal graphite iron | |
JP2008229640A (en) | Manufacturing method of spheroidal graphite cast iron casting | |
JP2007327083A (en) | Spheroidal graphite cast iron and its production method | |
JP2004099923A (en) | High strength ductile cast iron | |
JP2006122917A (en) | Method for casting cast iron and cast iron product | |
EP3434799B1 (en) | Method for manufacturing cast article comprising spherical graphite cast iron | |
JP4318761B2 (en) | Casting method for Fe-C-Si alloy castings | |
JP2634707B2 (en) | Manufacturing method of spheroidal graphite cast iron | |
JP6975421B2 (en) | Aluminum alloy manufacturing method | |
Massone et al. | Production of ADI by hot shake out—microstructure and mechanical properties | |
US11920205B2 (en) | Spherical graphite cast iron semi-solid casting method and semi-solid cast product | |
JP7220428B2 (en) | Method for manufacturing spheroidal graphite cast iron casting | |
KR20020082057A (en) | A composition for cast iron having high strength and the method of manufacturing thereof | |
JP6932737B2 (en) | Manufacturing method of spheroidal graphite cast iron and spheroidal graphite cast iron, and parts for automobile suspension | |
JP2021055146A (en) | Spheroidal graphite cast iron and method for producing the same | |
JPH0890191A (en) | Method for die-casting solid-liquid coexistence in spheroidal graphite cast iron | |
JP2001240934A (en) | Method for producing spheroidal graphite cast iron | |
RU2352671C1 (en) | Method of receiving products made of iron with carbon alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070830 |
|
A977 | Report on retrieval |
Effective date: 20100816 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100824 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20110118 Free format text: JAPANESE INTERMEDIATE CODE: A02 |