[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006120508A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2006120508A
JP2006120508A JP2004308124A JP2004308124A JP2006120508A JP 2006120508 A JP2006120508 A JP 2006120508A JP 2004308124 A JP2004308124 A JP 2004308124A JP 2004308124 A JP2004308124 A JP 2004308124A JP 2006120508 A JP2006120508 A JP 2006120508A
Authority
JP
Japan
Prior art keywords
layer
gas diffusion
diffusion layer
fuel cell
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004308124A
Other languages
Japanese (ja)
Other versions
JP4180556B2 (en
Inventor
Yoichi Asano
洋一 浅野
Hiroshi Shinkai
洋 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004308124A priority Critical patent/JP4180556B2/en
Publication of JP2006120508A publication Critical patent/JP2006120508A/en
Application granted granted Critical
Publication of JP4180556B2 publication Critical patent/JP4180556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell improving the diffusion in the surface direction of an MEA in a gas passage and satisfactorily supplying fuel gas to an electrode corresponding to a passage crest part of a separator. <P>SOLUTION: In the solid polymer fuel cell formed by stacking an anode side gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane, a cathode catalyst layer, and a cathode side gas diffusion layer in this order, a microporous layer comprising a mixture of at least an electron conductive material, water repellent resin, and a pore forming agent is formed on the interface between the catalyst layer and the gas diffusion layer, and a differential pressure ratio in the thickness direction of the gas diffusion layer to a stacking body comprising the gas diffusion layer and the micrroporous layer is prescribed to 20-90. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に係り、特に、固体高分子型燃料電池スタックMEA(膜電極構造体)の改良に関するものである。   The present invention relates to a polymer electrolyte fuel cell, and more particularly to improvement of a polymer electrolyte fuel cell stack MEA (membrane electrode structure).

固体高分子型燃料電池は、水素などの燃料ガスと酸素などの酸化剤ガスを電気化学的に反応させて発電することができる。このような固体高分子型燃料電池は、平板状のスタックMEAの両側にセパレータが積層されて構成されている。   The polymer electrolyte fuel cell can generate electricity by electrochemically reacting a fuel gas such as hydrogen and an oxidant gas such as oxygen. Such a polymer electrolyte fuel cell is configured by stacking separators on both sides of a flat stack MEA.

このスタックMEAは、スルホン基を有する樹脂からなる高分子電解質膜の両面に、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒層が密着して形成されている。さらに、触媒層への反応ガスの供給及び反応生成水の排出を円滑に行うために、触媒層の外側には高いガス拡散と電子伝導を有するガス拡散層が設けられている。   In this stack MEA, catalyst layers mainly composed of carbon powder carrying a platinum-based metal catalyst are formed in close contact with both surfaces of a polymer electrolyte membrane made of a resin having a sulfone group. Further, in order to smoothly supply the reaction gas to the catalyst layer and discharge the reaction product water, a gas diffusion layer having high gas diffusion and electron conduction is provided outside the catalyst layer.

これらの高分子電解質膜、触媒層及びガス拡散層の接合体を機械的に固定するとともに、隣接する接合体を電気的に直列に接続するために、接合体の両側に導電性のセパレーター板が配されている。また、セパレーターのガス拡散層に対向する面には、ガス拡散層に均一にガスを供給するための溝状の流路が設けられている。高分子電解質膜は、水分を失うと導電性が著しく低下するため、通常は燃料ガス及び酸化剤ガスを反応前に予め加湿してセル内に送り込んでいる(例えば、特許文献1参照。)。   In order to mechanically fix the joined body of the polymer electrolyte membrane, the catalyst layer, and the gas diffusion layer, and to electrically connect adjacent joined bodies in series, conductive separator plates are provided on both sides of the joined body. It is arranged. Further, a groove-like flow path for uniformly supplying gas to the gas diffusion layer is provided on the surface of the separator facing the gas diffusion layer. Since the conductivity of the polymer electrolyte membrane is remarkably lowered when water is lost, the fuel gas and the oxidant gas are usually humidified before the reaction and sent into the cell (see, for example, Patent Document 1).

また、固体高分子型燃料電池の製造方法としては、電解質膜と触媒層をまず接合して電解質膜−触媒層積層体(CCM:Catalyst Coated Membren)としてから、その両面にガス拡散層を接合して膜MEAとする方法が知られている。この製法で作製したMEAにおいては、電解質膜のプロトン伝導性、触媒の活性、燃料ガスの供給性(拡散性)、電極/拡散層の電子伝導性が発電性能に影響を与えることが知られている。また、従来のMEAにおいては、拡散層上にカーボンと撥水剤の微多孔層を形成することにより拡散層の凹凸を低減し、フラッディングを抑制することで性能向上をさせることは知られている(例えば、特許文献2参照。)。   In addition, as a method for producing a polymer electrolyte fuel cell, an electrolyte membrane and a catalyst layer are first joined to form an electrolyte membrane-catalyst layer stack (CCM), and then a gas diffusion layer is joined to both surfaces thereof. A method of forming a membrane MEA is known. In the MEA produced by this manufacturing method, it is known that the proton conductivity of the electrolyte membrane, the activity of the catalyst, the fuel gas supply property (diffusibility), and the electron conductivity of the electrode / diffusion layer affect the power generation performance. Yes. Further, in the conventional MEA, it is known to improve the performance by reducing the unevenness of the diffusion layer by forming a microporous layer of carbon and water repellent on the diffusion layer and suppressing flooding. (For example, refer to Patent Document 2).

特開平7−57742号公報JP-A-7-57742 特開2004−214173号公報JP 2004-214173 A

しかしながら、上記のような、拡散層の表面にカーボン、撥水剤の混合層(微多孔層)を形成した従来のMEAでは、ガス流路におけるMEAの厚み方向の拡散性に対して面方向の拡散性が小さく、セパレータの流路山部に対応する電極に燃料ガスが供給され難いため、発電性能は低くなってしまうという問題を有していた。したがって、本発明は、ガス流路におけるMEAの面方向の拡散性を改善し、セパレータの流路山部に対応する電極に燃料ガスを良好に供給し得る固体高分子型燃料電池を提供することを目的としている。   However, in the conventional MEA in which the mixed layer (microporous layer) of carbon and water repellent is formed on the surface of the diffusion layer as described above, the surface direction is different from the diffusivity in the thickness direction of the MEA in the gas flow path. Since the diffusibility is small and it is difficult for the fuel gas to be supplied to the electrode corresponding to the crest portion of the separator, there is a problem that the power generation performance is lowered. Accordingly, the present invention provides a polymer electrolyte fuel cell that can improve the diffusibility of the MEA in the surface direction in the gas flow path and can satisfactorily supply fuel gas to the electrode corresponding to the flow path peak of the separator. It is an object.

本発明の固体高分子型燃料電池用電極は、アノード側ガス拡散層、アノード触媒層、高分子電解質膜、カソード触媒層、カソード側ガス拡散層がこの順に積層された固体高分子型燃料電池において、前記触媒層と前記ガス拡散層との界面に、少なくとも電子伝導性物質、撥水性樹脂及び造孔剤の混合物からなる微多孔層が形成され、ガス拡散層と微多孔層とからなる積層体に対するガス拡散層のみの厚み方向の差圧比が20以上90以下であることを特徴としている。   The electrode for a polymer electrolyte fuel cell of the present invention is a polymer electrolyte fuel cell in which an anode side gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane, a cathode catalyst layer, and a cathode side gas diffusion layer are laminated in this order. A laminate comprising a gas diffusion layer and a microporous layer, wherein a microporous layer made of a mixture of at least an electron conductive substance, a water repellent resin and a pore former is formed at the interface between the catalyst layer and the gas diffusion layer. The differential pressure ratio in the thickness direction of only the gas diffusion layer is 20 or more and 90 or less.

また、本発明の固体高分子型燃料電池においては、撥水性樹脂がポリテトラフルオロエチレン又はテトラフルオロエチレンヘキサフルオロプロピレン共重合体であることが好適な態様である。   In the polymer electrolyte fuel cell of the present invention, it is preferable that the water-repellent resin is polytetrafluoroethylene or a tetrafluoroethylene hexafluoropropylene copolymer.

本発明によれば、触媒層とガス拡散層との界面に、少なくとも電子伝導性物質、撥水性樹脂及び造孔剤の混合物からなる微多孔層を形成することにより、ガス流路におけるMEAの面方向の拡散性が改善され、セパレータの流路山部に対応する電極に燃料ガスを良好に供給し得る固体高分子型燃料電池を提供することができる。   According to the present invention, the surface of the MEA in the gas flow path is formed by forming a microporous layer comprising at least a mixture of an electron conductive substance, a water repellent resin and a pore former at the interface between the catalyst layer and the gas diffusion layer. It is possible to provide a polymer electrolyte fuel cell with improved directional diffusibility and capable of satisfactorily supplying fuel gas to the electrode corresponding to the crest portion of the separator.

本発明の固体高分子型燃料電池は、アノード側ガス拡散層、アノード触媒層、高分子電解質膜、カソード触媒層、カソード側ガス拡散層がこの順に積層された構成であり、さらに、触媒層とガス拡散層との界面に、少なくとも電子伝導性物質、撥水性樹脂及び造孔剤の混合物からなる微多孔層が形成された構成である。そして、ガス拡散層と微多孔層とからなる積層体に対するガス拡散層のみの厚み方向の差圧比を特定な範囲に制御したものである。本発明においては、微多孔層以外の構成要素は特に限定されるものではないので、以下、微多孔層について詳細に説明する。また、本発明の固体高分子型燃料電池は、従来の方法を用いて製造することができる。   The solid polymer fuel cell of the present invention has a configuration in which an anode side gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane, a cathode catalyst layer, and a cathode side gas diffusion layer are laminated in this order. In this configuration, a microporous layer made of a mixture of at least an electron conductive substance, a water repellent resin, and a pore former is formed at the interface with the gas diffusion layer. And the differential pressure ratio of the thickness direction of only the gas diffusion layer with respect to the laminated body which consists of a gas diffusion layer and a microporous layer is controlled to the specific range. In the present invention, components other than the microporous layer are not particularly limited, and therefore the microporous layer will be described in detail below. The polymer electrolyte fuel cell of the present invention can be manufactured using a conventional method.

本発明における微多孔層は、ガス拡散層との積層体に対するガス拡散層のみの厚み方向の差圧比が20以上90以下であるものに限定しているが、これは、ガス拡散層の厚み方向の差圧を小さく、微多孔層の厚み方向の差圧を大きく制御することとなるため、積極的に面方向に燃料ガスを供給できるようにするためである。その結果、セパレータの流路山部に対応する電極にも燃料ガスを良好に供給することで発電性能が大幅に向上する。   The microporous layer in the present invention is limited to those in which the differential pressure ratio in the thickness direction of only the gas diffusion layer with respect to the laminate with the gas diffusion layer is 20 or more and 90 or less. This is the thickness direction of the gas diffusion layer. This is because the differential pressure in the thickness direction of the microporous layer is controlled to be large and the fuel gas can be positively supplied in the plane direction. As a result, the power generation performance is greatly improved by supplying the fuel gas well to the electrodes corresponding to the crest portions of the separator.

本発明に規定する上記差圧比が20未満である場合には、MEAの面方向へのガスの拡散が十分に行われず、セパレータの流路山部に対応する電極へのガス供給性が低くなる。一方、上記差圧比が70超である場合には、MEAの面方向へは相対的にガスが拡散し易くなるものの、透過量自体が低くなり電極へのガス供給量が低下する。   When the differential pressure ratio defined in the present invention is less than 20, the gas is not sufficiently diffused in the MEA plane direction, and the gas supply performance to the electrode corresponding to the channel crest portion of the separator is lowered. . On the other hand, when the differential pressure ratio is more than 70, the gas is relatively easily diffused in the MEA plane direction, but the permeation amount itself is lowered and the gas supply amount to the electrode is reduced.

また、本発明における微多孔層は、少なくとも電子伝導性物質、撥水性樹脂及び造孔剤の混合物からなる。本発明における電子伝導性物質としては、例えばカーボンブラック粒子を用いることができ、後述の造孔剤として電子伝導性の材料からなるものを用いることにより、電子伝導性物質と造孔剤とを兼用することもできる。本発明における撥水性樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ペルフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)を用いることができ、これらの中でも、PTFE及びFEPが好ましい。これらは、水との接触角が大きく、熱水に安定だからである。   Further, the microporous layer in the present invention is composed of a mixture of at least an electron conductive substance, a water repellent resin and a pore former. As the electron conductive material in the present invention, for example, carbon black particles can be used. By using a material made of an electron conductive material as a pore forming agent described later, the electron conductive material and the pore forming agent can be used together. You can also Examples of the water-repellent resin in the present invention include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. A copolymer (ETFE) and polyvinylidene fluoride (PVDF) can be used, and among these, PTFE and FEP are preferable. This is because the contact angle with water is large and stable to hot water.

本発明における造孔剤は、繊維径が0.4μm以下の繊維状物質であることが好ましい。このような微細な繊維状物質を造孔剤として触媒ペーストに添加することにより、繊維がピラーとなってプレス時の荷重を受け持ち、カーボンや固体高分子電解膜に必要以上の圧縮加重が作用することなく、ガスチャンネルが潰されずに保持されるため、発電効率が向上される。さらに、このような繊維状物質を用いる利点としては、プレス工程後の触媒層の空孔率を繊維状物質の添加量により自在に制御することが可能となる。   The pore former in the present invention is preferably a fibrous material having a fiber diameter of 0.4 μm or less. By adding such a fine fibrous material to the catalyst paste as a pore-forming agent, the fibers become pillars and take the load during pressing, and the compression load more than necessary acts on the carbon and the polymer electrolyte membrane. Since the gas channel is held without being crushed, the power generation efficiency is improved. Furthermore, as an advantage of using such a fibrous substance, the porosity of the catalyst layer after the pressing step can be freely controlled by the amount of the fibrous substance added.

上記の繊維状物質としては、アルミナウィスカー、シリカウィスカー等の無機繊維、結晶性炭素繊維(気相成長カーボンや炭素ウィスカーとも呼ばれる)等の炭素繊維、ナイロンやポリイミド等の高分子繊維が挙げられるが、本発明においては、これらの中でも、結晶性炭素繊維が好ましく用いられる。結晶性炭素繊維は、繊維径が大きく、細孔を制御し易いとともに、電子伝導性が高いからである。すなわち、結晶性炭素繊維は、上記したように、造孔剤と電子伝導性物質とを兼用することができる。なお、本発明における結晶性炭素繊維とは、[002]面の平均格子面間隔d002が0.345nm未満、繊維径が0.1〜0.5μm、繊維長が10〜40μm、嵩密度が0.02〜0.10g/cm、真密度が1.8g/cm以上、比表面積が5〜20m/g、吸湿性が0.5%未満、揮発分が0.3%未満、灰分が0.05%未満、pHが7、酸化開始温度が550℃超のものをいう。 Examples of the fibrous material include inorganic fibers such as alumina whiskers and silica whiskers, carbon fibers such as crystalline carbon fibers (also called vapor-grown carbon and carbon whiskers), and polymer fibers such as nylon and polyimide. In the present invention, among these, crystalline carbon fibers are preferably used. This is because crystalline carbon fibers have a large fiber diameter, are easy to control pores, and have high electron conductivity. That is, as described above, the crystalline carbon fiber can be used both as a pore former and an electron conductive material. In the present invention, the crystalline carbon fiber means that the average lattice spacing d 002 of [002] plane is less than 0.345 nm, the fiber diameter is 0.1 to 0.5 μm, the fiber length is 10 to 40 μm, and the bulk density is. 0.02 to 0.10 g / cm 3 , true density is 1.8 g / cm 3 or more, specific surface area is 5 to 20 m 2 / g, hygroscopicity is less than 0.5%, volatile content is less than 0.3%, An ash content of less than 0.05%, a pH of 7, and an oxidation start temperature of more than 550 ° C.

次に、具体的な実施例により本発明の効果を詳細に説明する。
1.固体高分子型燃料電池の作製
<実施例1>
白金担持カーボン(商品名:TEC10E50E、田中貴金属社製)9gと、イオン導伝性ポリマー溶液(商品名:Nafion DE2020、Dupont社製)35gとをボールミル攪拌し、カソード触媒ペーストを調製した。また、白金−ルテニウム担持カーボン(商品名:TEC61E54、田中貴金属社製)10gと、イオン導伝性ポリマー溶液(商品名:Nafion DE2021、Dupont社製)40gとをボールミル攪拌し、アノード触媒ペーストを調製した。
Next, the effects of the present invention will be described in detail by way of specific examples.
1. Preparation of polymer electrolyte fuel cell <Example 1>
9 g of platinum-supporting carbon (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) and 35 g of ion conductive polymer solution (trade name: Nafion DE2020, manufactured by Dupont) were ball-milled to prepare a cathode catalyst paste. Further, 10 g of platinum-ruthenium-supported carbon (trade name: TEC61E54, manufactured by Tanaka Kikinzoku) and 40 g of ion-conducting polymer solution (trade name: Nafion DE2021, manufactured by Dupont) were ball-milled to prepare an anode catalyst paste. did.

次に、これらの触媒ペーストを、それぞれ、ポリテトラフルオロエチレン(PTFE)製シート上に、白金重量が0.5mg/cmとなるようにスクリーン印刷により塗布し、その後、120℃60分の熱処理により乾燥し、カソード及びアノード電解触媒シートを作製した。次いで、上記のカソード及びアノード電極触媒シートを、デカール法にて高分子電解質膜(商品名:Nafion 112、Dupont社製)のそれぞれの面に転写し、高分子電解質上に電解触媒層を形成した。なお、デカール法による転写とは、電解触媒シートの触媒層側を高分子電解質膜に熱圧着した後にPTFEシートを剥離することをいう。 Next, each of these catalyst pastes was applied onto a polytetrafluoroethylene (PTFE) sheet by screen printing so that the platinum weight was 0.5 mg / cm 2, and then heat-treated at 120 ° C. for 60 minutes. To prepare cathode and anode electrocatalyst sheets. Next, the cathode and anode electrode catalyst sheets were transferred to respective surfaces of a polymer electrolyte membrane (trade name: Nafion 112, manufactured by Dupont) by a decal method to form an electrocatalyst layer on the polymer electrolyte. . The transfer by the decal method means that the PTFE sheet is peeled after the catalyst layer side of the electrocatalyst sheet is thermocompression bonded to the polymer electrolyte membrane.

また、表1に示したように、カーボンペーパー(商品名:TGP−H−060、東レ社製)上に、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)の10wt%溶液を含浸させ、その後、380℃30分の熱処理により乾燥し、カーボンペーパーを撥水処理してのガス拡散層を作製した。   Moreover, as shown in Table 1, carbon paper (trade name: TGP-H-060, manufactured by Toray Industries, Inc.) was impregnated with a 10 wt% solution of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Then, it dried by heat processing for 30 minutes at 380 degreeC, and produced the gas diffusion layer which water-repellent-treated carbon paper.

Figure 2006120508
Figure 2006120508

一方、表1に示したように、電子伝導性と造孔性を兼ね備えた結晶性炭素繊維(商品名:VGCF、昭和電工社製)10gと、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10gと、エチレングリコール180gとをボールミルにより混合攪拌し、微多孔層ペーストを調製した。次に、上記の撥水処理されたガス拡散層上に、この微多孔層ペーストを、乾燥重量が2mg/cmとなるようにスクリーン印刷により塗布し、次いで、再度同条件のスクリーン印刷により微多孔層ペーストを塗布し、その後、380℃30分の熱処理により乾燥し、微多孔層を作製した。 On the other hand, as shown in Table 1, 10 g of crystalline carbon fiber (trade name: VGCF, manufactured by Showa Denko KK) having both electronic conductivity and pore-forming property, and water-repellent resin (trade name: PTFE powder fullon L170J, Asahi Glass Co., Ltd. 10 g) and ethylene glycol 180 g were mixed and stirred by a ball mill to prepare a microporous layer paste. Next, this microporous layer paste is applied on the gas diffusion layer subjected to the water repellent treatment by screen printing so that the dry weight becomes 2 mg / cm 2, and then again by screen printing under the same conditions. The porous layer paste was applied, and then dried by heat treatment at 380 ° C. for 30 minutes to produce a microporous layer.

次に、上記の微多孔層の形成されたカーボンペーパーと、電解触媒層の転写されたイオン交換膜とを、140℃、面圧30kgf/cmで熱圧着し、スタックMEAを作製した。次いで、上記のスタックMEAの両面に、直線溝が形成されたカーボンセパレーターを狭持させて、実施例1の固体高分子型燃料電池を作製した。 Next, the carbon paper on which the microporous layer was formed and the ion exchange membrane to which the electrocatalyst layer was transferred were thermocompression bonded at 140 ° C. and a surface pressure of 30 kgf / cm 2 to produce a stack MEA. Next, a solid polymer fuel cell of Example 1 was produced by sandwiching carbon separators with straight grooves formed on both sides of the above-described stack MEA.

<実施例2>
実施例1のガス拡散層の形成工程において、表1に示したように、カーボンペーパー(商品名:GDL20AA、SGLカーボン社製)を用いた以外は、実施例1と同様にして実施例2の固体高分子型燃料電池を作製した。
<Example 2>
In the gas diffusion layer forming step of Example 1, as shown in Table 1, Example 2 was performed in the same manner as Example 1 except that carbon paper (trade name: GDL20AA, manufactured by SGL Carbon Co.) was used. A polymer electrolyte fuel cell was produced.

<実施例3>
実施例1の微多孔層の形成工程において、微多孔層ペーストの組成を、表1に示したように、結晶性炭素繊維(商品名:VGCF、昭和電工社製)6g、粒状カーボン(商品名:Vulcan XC−72、Cabot社製)4g、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして実施例3の固体高分子型燃料電池を作製した。
<Example 3>
In the formation process of the microporous layer of Example 1, the composition of the microporous layer paste was as shown in Table 1. : Vulcan XC-72, manufactured by Cabot) 4 g, water-repellent resin (trade name: PTFE powder full-on L170J, manufactured by Asahi Glass Co., Ltd.) 10 g, and ethylene glycol 180 g Example 3 A solid polymer fuel cell was prepared.

<実施例4>
実施例1の微多孔層の形成工程において、微多孔層ペーストの組成を、表1に示したように、結晶性炭素繊維(商品名:VGCF、昭和電工社製)3g、粒状カーボン(商品名:Vulcan XC−72、Cabot社製)7g、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして実施例4の固体高分子型燃料電池を作製した。
<Example 4>
In the microporous layer forming step of Example 1, the composition of the microporous layer paste was as shown in Table 1, 3 g of crystalline carbon fiber (trade name: VGCF, manufactured by Showa Denko KK), granular carbon (trade name) Example 4 in the same manner as in Example 1 except that 7 g of Vulcan XC-72, manufactured by Cabot), 10 g of water-repellent resin (trade name: PTFE powder full-on L170J, manufactured by Asahi Glass Co., Ltd.), and 180 g of ethylene glycol were used. A solid polymer fuel cell was prepared.

<実施例5>
実施例1の微多孔層の形成工程において、微多孔層ペーストの組成を、表1に示したように、結晶性炭素繊維(商品名:VGCF、昭和電工社製)10g、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)3g、及び、エチレングリコール180gとした以外は、実施例1と同様にして実施例5の固体高分子型燃料電池を作製した。
<Example 5>
In the microporous layer forming step of Example 1, the composition of the microporous layer paste was as shown in Table 1, with 10 g of crystalline carbon fiber (trade name: VGCF, manufactured by Showa Denko KK), water repellent resin (product) Name: PTFE powder fulon L170J, manufactured by Asahi Glass Co., Ltd.) A solid polymer fuel cell of Example 5 was produced in the same manner as in Example 1 except that 3 g and 180 g of ethylene glycol were used.

<比較例1>
実施例1のガス拡散層の形成工程において、表1に示したように、カーボンペーパー(商品名:MFG070、三菱レーヨン社製)を用いた以外は、実施例1と同様にして比較例1の固体高分子型燃料電池を作製した。
<Comparative Example 1>
In the step of forming the gas diffusion layer of Example 1, as shown in Table 1, except that carbon paper (trade name: MFG070, manufactured by Mitsubishi Rayon Co., Ltd.) was used, Comparative Example 1 was the same as Example 1. A polymer electrolyte fuel cell was produced.

<比較例2>
実施例1の微多孔層の形成工程において、微多孔層ペーストの組成を、表1に示したように、粒状カーボン(商品名:BP3500、Cabot社製)10g、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして比較例2の固体高分子型燃料電池を作製した。
<Comparative example 2>
In the microporous layer forming step of Example 1, the composition of the microporous layer paste was as shown in Table 1, 10 g of granular carbon (trade name: BP3500, manufactured by Cabot), water repellent resin (trade name: PTFE). A polymer electrolyte fuel cell of Comparative Example 2 was produced in the same manner as in Example 1 except that 10 g of Powder Fullon L170J (manufactured by Asahi Glass Co., Ltd.) and 180 g of ethylene glycol were used.

<比較例3>
実施例1の微多孔層の形成工程において、微多孔層ペーストの組成を、表1に示したように、粒状カーボン(商品名:Vulcan XC−72、Cabot社製)10g、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして比較例3の固体高分子型燃料電池を作製した。
<Comparative Example 3>
In the microporous layer forming step of Example 1, the composition of the microporous layer paste was as shown in Table 1 and 10 g of granular carbon (trade name: Vulcan XC-72, manufactured by Cabot), water-repellent resin (product) Name: PTFE powder full-on L170J, manufactured by Asahi Glass Co., Ltd.) A polymer electrolyte fuel cell of Comparative Example 3 was produced in the same manner as in Example 1 except that 10 g and ethylene glycol 180 g were used.

<比較例4>
実施例1のガス拡散層の形成工程において、表1に示したように、カーボンペーパー(商品名:TGP−H−030、東レ社製)を用いた以外は、実施例1と同様にして比較例4の固体高分子型燃料電池を作製した。
<Comparative example 4>
In the gas diffusion layer forming process of Example 1, as shown in Table 1, comparison was made in the same manner as in Example 1 except that carbon paper (trade name: TGP-H-030, manufactured by Toray Industries, Inc.) was used. The polymer electrolyte fuel cell of Example 4 was produced.

2.差圧比
上記工程において、実施例1〜5及び比較例1〜4の固体高分子型燃料電池に用いられる、ガス拡散層のみ、及び、ガス拡散層と微多孔層とからなる積層体の構成部分を作製し、これらの差圧を測定し、ガス拡散層と微多孔層とからなる積層体に対するガス拡散層のみの差圧比を求めた。差圧は、ガス拡散層のみ、又は、ガス拡散層と微多孔層とからなる積層体を、透過面積:2.2cmのガス流路が設けられた押圧板に厚み方向から拘束面圧:12kgf/cmで狭持させ、上記ガス流路内に、流量:500cc/min/cmで窒素ガスを通過させることにより測定した。これらの結果を表2に示した。
2. Differential pressure ratio In the above process, only the gas diffusion layer used in the polymer electrolyte fuel cells of Examples 1 to 5 and Comparative Examples 1 to 4, and the constituent parts of the laminate composed of the gas diffusion layer and the microporous layer These were measured for differential pressure, and the differential pressure ratio of only the gas diffusion layer to the laminate comprising the gas diffusion layer and the microporous layer was determined. The differential pressure is a restricted surface pressure from the thickness direction on a pressing plate provided with a gas flow path having a permeation area of 2.2 cm 2 in a laminate composed of only a gas diffusion layer or a gas diffusion layer and a microporous layer. The measurement was performed by sandwiching at 12 kgf / cm 2 and passing nitrogen gas through the gas flow path at a flow rate of 500 cc / min / cm 2 . These results are shown in Table 2.

3.発電性能評価
上記のようにして作製された実施例1〜5及び比較例1〜4の固体高分子型燃料電池について、アノード側に水素ガスを、また、カソード側に空気を供給し、セル温度:72℃、Stoich:アノード5.7/カソード7.3、相対湿度:アノード/カソード=50/50%RHの条件下で、電流密度:1A/cmの発電を行い、この時の端子電圧を測定した。なお、MEA電極部の面積は36cmであった。これらの結果を表2及び図1に示した。
3. Electricity generation performance evaluation For the polymer electrolyte fuel cells of Examples 1 to 5 and Comparative Examples 1 to 4 produced as described above, hydrogen gas was supplied to the anode side and air was supplied to the cathode side, and the cell temperature : 72 ° C, Stoich: Anode 5.7 / Cathode 7.3, Relative humidity: Anode / Cathode = 50/50% RH, current density: 1 A / cm 2 , and terminal voltage at this time Was measured. The area of the MEA electrode part was 36 cm 2 . These results are shown in Table 2 and FIG.

Figure 2006120508
Figure 2006120508

表2及び図1に示すように、ガス拡散層と微多孔層とからなる積層体に対するガス拡散層のみの差圧比が20以上90以下である実施例1〜5の固体高分子型燃料電池用電極では、微多孔層における面方向への拡散性が改善され、端子電圧が高く、発電性能に優れることが示された。これに対し、上記差圧比が本発明の範囲を逸脱する比較例1〜4では、微多孔層における面方向への拡散性が非常に低く、端子電圧が低く、発電性能が劣ることが示された。   As shown in Table 2 and FIG. 1, for the polymer electrolyte fuel cells of Examples 1 to 5, the differential pressure ratio of only the gas diffusion layer to the laminate composed of the gas diffusion layer and the microporous layer is 20 or more and 90 or less. In the electrode, it was shown that the diffusibility in the surface direction in the microporous layer was improved, the terminal voltage was high, and the power generation performance was excellent. On the other hand, in Comparative Examples 1 to 4 where the differential pressure ratio deviates from the scope of the present invention, it is shown that the diffusibility in the surface direction in the microporous layer is very low, the terminal voltage is low, and the power generation performance is inferior. It was.

ガス拡散層と微多孔層とからなる積層体に対するガス拡散層のみの差圧比と端子電圧との相関を示す線図である。It is a diagram which shows the correlation with the differential pressure ratio of only the gas diffusion layer with respect to the laminated body which consists of a gas diffusion layer and a microporous layer, and a terminal voltage.

Claims (2)

アノード側ガス拡散層、アノード触媒層、高分子電解質膜、カソード触媒層、カソード側ガス拡散層がこの順に積層された固体高分子型燃料電池において、前記触媒層と前記ガス拡散層との界面に、少なくとも電子伝導性物質、撥水性樹脂及び造孔剤の混合物からなる微多孔層が形成され、ガス拡散層と微多孔層とからなる積層体に対するガス拡散層のみの厚み方向の差圧比が20以上90以下であることを特徴とする固体高分子型燃料電池。   In a polymer electrolyte fuel cell in which an anode side gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane, a cathode catalyst layer, and a cathode side gas diffusion layer are laminated in this order, at the interface between the catalyst layer and the gas diffusion layer A microporous layer made of a mixture of at least an electron conductive substance, a water repellent resin, and a pore former is formed, and the differential pressure ratio in the thickness direction of only the gas diffusion layer with respect to the laminate composed of the gas diffusion layer and the microporous layer is 20 A solid polymer fuel cell characterized by being 90 or less. 前記撥水性樹脂は、ポリテトラフルオロエチレン又はテトラフルオロエチレンヘキサフルオロプロピレン共重合体であることを特徴とする請求項1に記載の固体高分子型燃料電池。   2. The polymer electrolyte fuel cell according to claim 1, wherein the water-repellent resin is polytetrafluoroethylene or a tetrafluoroethylene hexafluoropropylene copolymer.
JP2004308124A 2004-10-22 2004-10-22 Polymer electrolyte fuel cell Expired - Fee Related JP4180556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308124A JP4180556B2 (en) 2004-10-22 2004-10-22 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308124A JP4180556B2 (en) 2004-10-22 2004-10-22 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2006120508A true JP2006120508A (en) 2006-05-11
JP4180556B2 JP4180556B2 (en) 2008-11-12

Family

ID=36538199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308124A Expired - Fee Related JP4180556B2 (en) 2004-10-22 2004-10-22 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4180556B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159573A (en) * 2006-11-08 2008-07-10 Gm Global Technology Operations Inc Fuel cell substrate with overcoat
JP2008186728A (en) * 2007-01-30 2008-08-14 Aisin Chem Co Ltd Water repellent paste for fuel cell electrode
JP2010192425A (en) * 2009-01-20 2010-09-02 Dainippon Printing Co Ltd Gas diffusion layer, and solid polymer fuel cell using the same
KR101008155B1 (en) * 2007-02-07 2011-01-13 주식회사 엘지화학 Membrane-electrode assembly of fuel cell and fuel cell
JP2013206717A (en) * 2012-03-28 2013-10-07 Honda Motor Co Ltd Diffusion layer structure of fuel cell
KR20160125366A (en) 2014-02-24 2016-10-31 도레이 카부시키가이샤 Gas diffusion electrode substrate
JP2020077585A (en) * 2018-11-09 2020-05-21 本田技研工業株式会社 Method for forming gas diffusion layer on carbon paper used for fuel cell, and carbon paper on which gas diffusion layer used for fuel cell is formed

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159573A (en) * 2006-11-08 2008-07-10 Gm Global Technology Operations Inc Fuel cell substrate with overcoat
JP2008186728A (en) * 2007-01-30 2008-08-14 Aisin Chem Co Ltd Water repellent paste for fuel cell electrode
KR101008155B1 (en) * 2007-02-07 2011-01-13 주식회사 엘지화학 Membrane-electrode assembly of fuel cell and fuel cell
JP2010192425A (en) * 2009-01-20 2010-09-02 Dainippon Printing Co Ltd Gas diffusion layer, and solid polymer fuel cell using the same
JP2013206717A (en) * 2012-03-28 2013-10-07 Honda Motor Co Ltd Diffusion layer structure of fuel cell
KR20160125366A (en) 2014-02-24 2016-10-31 도레이 카부시키가이샤 Gas diffusion electrode substrate
JP2020077585A (en) * 2018-11-09 2020-05-21 本田技研工業株式会社 Method for forming gas diffusion layer on carbon paper used for fuel cell, and carbon paper on which gas diffusion layer used for fuel cell is formed

Also Published As

Publication number Publication date
JP4180556B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4691914B2 (en) Gas diffusion electrode and solid polymer electrolyte fuel cell
US9793550B2 (en) Gas diffusion layer for fuel cell
JP4190478B2 (en) Polymer electrolyte fuel cell
US20190280307A1 (en) Composite electrode layer for polymer electrolyte fuel cell
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
JP4133654B2 (en) Polymer electrolyte fuel cell
JP2007250279A (en) Membrane-electrode structural body for solid polymer fuel cell
JP5260009B2 (en) Membrane electrode assembly and fuel cell
JP5153130B2 (en) Membrane electrode assembly
JP5064679B2 (en) Direct methanol fuel cell
JP2009238388A (en) Paste for micropore layer, membrane electrode assembly, and fuel cell
KR101957820B1 (en) Catalyst for fuel cell, and electrode for fuel cell, membrane-electrode assembly for fuel cell and fuel cell system using same
JP2008204664A (en) Membrane-electrode assembly for fuel cell, and fuel cell using it
EP1721355B1 (en) Membrane electrode unit
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP5219571B2 (en) Membrane electrode assembly and fuel cell
JP4180556B2 (en) Polymer electrolyte fuel cell
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
JP2004186049A (en) Electrode structure for solid polymer fuel cell and its manufacturing method
JP2011171182A (en) Membrane electrode assembly and fuel cell
KR101326190B1 (en) Membrane Electrode Assembly for fuel cell and fuel cell using the same
JP3500086B2 (en) Fuel cell and fuel cell using the same
JP2008123728A (en) Membrane catalyst layer assembly, membrane electrode assembly, and polymer electrolyte fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
KR101909709B1 (en) Membrane-Electrode Assembly with Improved Durability, Manufacturing Method Thereof and Fuel Cell Containing the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Ref document number: 4180556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees