[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006114414A - Gas diffusion supply member for fuel cell - Google Patents

Gas diffusion supply member for fuel cell Download PDF

Info

Publication number
JP2006114414A
JP2006114414A JP2004302442A JP2004302442A JP2006114414A JP 2006114414 A JP2006114414 A JP 2006114414A JP 2004302442 A JP2004302442 A JP 2004302442A JP 2004302442 A JP2004302442 A JP 2004302442A JP 2006114414 A JP2006114414 A JP 2006114414A
Authority
JP
Japan
Prior art keywords
gas
flow path
gas flow
fuel cell
supply member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004302442A
Other languages
Japanese (ja)
Inventor
Tatsuya Yaguchi
竜也 矢口
Makoto Uchiyama
誠 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004302442A priority Critical patent/JP2006114414A/en
Publication of JP2006114414A publication Critical patent/JP2006114414A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas diffusion supply member for a fuel cell excellent in mechanical strength in which gas is sufficiently supplied to an electrode for efficient power generation. <P>SOLUTION: The member faces a power generation element 100 of a fuel cell to diffuse and supply oxidizing gas and reducing gas. It comprises a flow path board 1 on which a plurality of gas flow paths 2 and 3 are provided side by side, with one end as an open end while the other end as a closed end. At least two pairs, a pair composed of gas flow paths of one for flow-in and the other for flow-out, are provided. The gas flow paths 2 and 3 of one of the pairs are formed with gas communication openings 4 and 5 which open at one surface of the flow path board 1, and the gas flow paths 2 and 3 of the remaining pairs are formed with the gas communication openings 4 and 5 which open at the other surface of the flow path board 1. Porous bodies 6 and 7 allow gas to transmit between the gas flow paths 2 and 3 and the power generation element 100. They supply gas toward the electrode surface of the power generation element 100, and allow the gas to remain for an extended period so that it is sufficiently supplied to the electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用のガス拡散供給部材に関し、より詳細には、燃料電池を構成する発電要素へのガス供給を充分なものにして効率的な発電を実現し得るガス拡散供給部材に関するものである。   The present invention relates to a gas diffusion supply member for a fuel cell, and more particularly to a gas diffusion supply member capable of realizing efficient power generation by sufficient gas supply to power generation elements constituting the fuel cell. It is.

燃料電池用のガス拡散供給部材としては、内部に多数のガス流路を形成した中空平板状の電極基板が知られている(例えば、特許文献1参照)。この電極基板は、ガス透過性を有する多孔質材料から成るものであって、その厚み方向において気孔径及び気孔率を異ならせることにより、電極、電解質及び反応ガスの三相界面を増大させて、燃料電池の出力向上を図ったものである。
特開平9−50812号公報
As a gas diffusion supply member for a fuel cell, a hollow plate-like electrode substrate in which a large number of gas flow paths are formed is known (for example, see Patent Document 1). This electrode substrate is made of a porous material having gas permeability, and by varying the pore diameter and porosity in the thickness direction, the three-phase interface between the electrode, the electrolyte and the reaction gas is increased, This is intended to improve the output of the fuel cell.
JP-A-9-50812

しかしながら、上記したような従来の電極基板にあっては、ガス流路におけるガス流の方向が電極部分の面に沿う方向となるため、電極部分に充分なガスが透過せず、燃料電池の発電効率が必ずしも充分になるとは言えなかった。また、基板自体が多孔質材料で形成してあるため、その内部にガス流路を設けると、基板の機械的強度が低下するおそれがあり、自動車などの振動を伴う装置・機械に搭載する場合には、破損を防止するために基板の厚みを大きくする必要があるので、燃料電池を構成するべくスタック化した際の積層密度が低くなるという問題点があった。   However, in the conventional electrode substrate as described above, since the gas flow direction in the gas flow path is along the surface of the electrode portion, sufficient gas does not permeate the electrode portion, and the power generation of the fuel cell The efficiency was not always sufficient. In addition, since the substrate itself is made of a porous material, if a gas flow path is provided inside the substrate, the mechanical strength of the substrate may decrease. However, since it is necessary to increase the thickness of the substrate in order to prevent breakage, there has been a problem that the stacking density when the fuel cell is stacked is reduced.

本発明は、上記従来の課題に着目して成されたものであり、その目的とするところは、燃料電池を構成する発電要素へのガス供給を充分に行うことが可能であって、燃料電池の発電効率の向上を実現することができ、また、機械的強度に優れると共に、燃料電池を構成した際のスタックの積層密度を高めることができる燃料電池用のガス拡散供給部材を提供することにある。   The present invention has been made by paying attention to the above-described conventional problems, and the object of the present invention is to sufficiently supply gas to the power generation elements constituting the fuel cell, It is possible to provide a gas diffusion supply member for a fuel cell that can improve the power generation efficiency of the fuel cell, has excellent mechanical strength, and can increase the stacking density of the stack when the fuel cell is configured. is there.

本発明の燃料電池用のガス拡散供給部材は、燃料電池の発電要素に対向して酸化ガスや還元ガスを拡散供給する部材であって、一端を開放端とし且つ他端を閉塞端とした複数のガス流路を並設して成る流路基板を備えている。この流路基板は、実質的にガス透過性の無い材料で形成してあると共に、機械的な強度部材としても機能し得る。また、複数のガス流路は、流入用ガス流路と流出用ガス流路を一組として、少なくとも二組を構成する数だけ設けてある。   A gas diffusion supply member for a fuel cell according to the present invention is a member that diffusely supplies an oxidizing gas or a reducing gas facing a power generation element of a fuel cell, and has a plurality of ends with an open end and the other end closed. The gas flow path substrate is provided. The flow path substrate is formed of a material that is substantially non-gas permeable and can also function as a mechanical strength member. In addition, the plurality of gas flow paths are provided in a number that constitutes at least two sets, with the inflow gas flow path and the outflow gas flow path as a set.

そして、全組のうちの一部の組のガス流路に、流路基板の一方の面で開口するガス流通口を設けると共に、残る組のガス流路に、流路基板の他方の面で開口するガス流通口を設け、これにより発電要素の電極面に向けてガスを拡散供給するようにし、さらに、ガス流路と発電要素の間でガスを透過させる多孔質体を備えることにより、当該ガス拡散供給部材と発電要素との間におけるガスの滞留時間を長くする。   Then, a gas flow port that opens on one surface of the flow path substrate is provided in a part of the gas flow paths of the entire set, and the remaining gas flow path is formed on the other surface of the flow path substrate. By providing a gas flow port that opens, thereby diffusing and supplying gas toward the electrode surface of the power generation element, and further including a porous body that allows gas to pass between the gas flow path and the power generation element, The residence time of the gas between the gas diffusion supply member and the power generation element is increased.

本発明の燃料電池用のガス拡散供給部材によれば、燃料電池を構成する発電要素へのガス供給を充分に行うことができ、燃料電池の発電効率の向上を実現することができる。また、流路基板により機械的強度が得られると共に、流路基板の両面側にガスを拡散供給することから、当該ガス拡散供給部材と発電要素とを交互に積層して燃料電池を構成した際に、スタックの積層密度を高めることができ、これにより燃料電池の小型化や高出力化を実現することができる。   According to the gas diffusion supply member for a fuel cell of the present invention, it is possible to sufficiently supply gas to the power generation element constituting the fuel cell, and to improve the power generation efficiency of the fuel cell. In addition, since the mechanical strength is obtained by the flow path substrate and the gas is diffused and supplied to both sides of the flow path substrate, the fuel cell is configured by alternately stacking the gas diffusion supply member and the power generation element. In addition, the stacking density of the stack can be increased, and thereby the fuel cell can be reduced in size and output.

以下、図面に基づいて、本発明に係わる燃料電池用のガス拡散供給部材の実施形態を説明する。図1(a)(b)に示すガス拡散供給部材は、燃料電池の発電要素に対向して酸化ガスや還元ガスを拡散供給する部材であって、一端を開放端とし且つ他端を閉塞端とした複数のガス流路を並設して成る流路基板1を備えている。   Hereinafter, an embodiment of a gas diffusion supply member for a fuel cell according to the present invention will be described based on the drawings. The gas diffusion supply member shown in FIGS. 1 (a) and 1 (b) is a member that diffuses and supplies an oxidizing gas and a reducing gas facing the power generation element of the fuel cell, and has one end as an open end and the other end as a closed end. And a plurality of gas flow paths arranged in parallel.

流路基板1は、片側を閉塞した断面矩形の筒体1aを複数本用い、これらの筒体1aを並列に配置して気密的に接合することで全体を一体化したものであり、各筒体1aによりガス流路を形成している。この流路基板1は、実質的にガス透過性の無い金属等の材料で形成してあって、機械的な強度部材としての機能をも有している。また、複数の筒体1aから成る構成とすることで、ガス流路の数や長さの変更に対処することが容易であり、製造し易いといった利点がある。   The flow path substrate 1 uses a plurality of cylindrical bodies 1a having a rectangular cross-section closed on one side, and these cylinders 1a are arranged in parallel and are hermetically bonded to each other, and each cylinder is integrated. A gas flow path is formed by the body 1a. The flow path substrate 1 is formed of a material such as a metal that is substantially not gas permeable, and also has a function as a mechanical strength member. In addition, the configuration composed of a plurality of cylinders 1a is advantageous in that it is easy to deal with changes in the number and length of the gas flow paths and is easy to manufacture.

複数のガス流路は、流入用ガス流路2と流出用ガス流路3を一組として、少なくとも二組を構成する数だけ設けてあり、この実施形態では四組すなわち八本である。そして、各ガス流路2,3は、流路基板1において以下の(1)〜(3)の構成としている。
(1)各ガス流路は、図1(a)において左側となる流路基板1の一端側に、流入用ガス流路2の開放端を向けると共に、図1(a)において右側となる流路基板1の他端側に、流出用ガス流路3の開放端を向けた配置にしてある。
(2)各ガス流路は、四組のうちの二組のガス流路に、流路基板1の一方の面(図1において上面)で開口する流入用及び流出用のガス流通口4,5が設けてあると共に、残る二組のガス流路に、流路基板1の他方の面(図1において下面)で開口する流入用及び流出用のガス流通口4,5が設けてある。
(3)各ガス流路は、流路基板1の一方の面(図1において上面)で開口するガス流通口4,5を有するガス流路と、流路基板1の他方の面(図1において下面)で開口するガス流通口4,5を有するガス流路とが交互に配列してある。
The plurality of gas flow paths are provided as many as at least two sets, with the inflow gas flow path 2 and the outflow gas flow path 3 as a set. In this embodiment, there are four sets, that is, eight. The gas flow paths 2 and 3 have the following configurations (1) to (3) in the flow path substrate 1.
(1) Each gas flow path has the open end of the inflow gas flow path 2 directed to one end side of the flow path substrate 1 on the left side in FIG. 1 (a) and the flow on the right side in FIG. 1 (a). The open end of the outflow gas flow path 3 is arranged on the other end side of the road substrate 1.
(2) Each gas flow path has gas flow ports 4 for inflow and outflow that are opened in one of the four surfaces of the flow path substrate 1 (upper surface in FIG. 1) in two of the four gas flow paths. 5 and the remaining two sets of gas flow paths are provided with inflow and outflow gas circulation ports 4 and 5 that open on the other surface (lower surface in FIG. 1) of the flow path substrate 1.
(3) Each gas flow path includes a gas flow path having gas flow ports 4 and 5 that open on one surface (the upper surface in FIG. 1) of the flow path substrate 1, and the other surface of the flow path substrate 1 (FIG. 1). Gas flow passages having gas flow ports 4 and 5 that open on the lower surface are alternately arranged.

すなわち、各ガス流路は、図1(b)において、左側から一番目の流入用ガス流路2と三番目の流出用ガス流路3が第一組、二番目の流入用ガス流路2と四番目の流出用ガス流路3が第二組、五番目の流入用ガス流路2と七番目の流出用ガス流路3が第三組、六番目の流入用ガス流路2と八番目の流出用ガス流路3が第四組であって、第一組及び第三組の各ガス流路2,3に、上向きの流入用及び流出用のガス流通口4,5が形成してあり、第二組及び第四組の各ガス流路2,3に、下向きの流入用及び流出用のガス流通口4,5が形成してある。   That is, in FIG. 1B, each gas flow path includes a first inflow gas flow path 2 and a third outflow gas flow path 3 from the left side, and a second inflow gas flow path 2. And the fourth outflow gas flow path 3 are the second set, the fifth inflow gas flow path 2 and the seventh outflow gas flow path 3 are the third set, the sixth inflow gas flow path 2 and the eighth set. The fourth outflow gas flow path 3 is a fourth set, and upward and downward gas flow ports 4 and 5 are formed in the first and third set gas flow paths 2 and 3, respectively. Downward inflow and outflow gas circulation ports 4 and 5 are formed in the second and fourth gas passages 2 and 3, respectively.

なお、この実施形態では、便宜上、二本一組として四組のガス流路を示しているが、本発明のガス拡散供給部材におけるガス流路の数は、流入用と流出用を一組として、少なくともガス流通口4,5の向きが異なる二組を構成する数であって、この際、同一組における流入用及び流出用のガス流路の数を何ら限定していないことから、図示の構成の場合には、第一組と第三組を同一組(四本一組)とし、同じく第二組と第四組を同一組と解釈しても良く、このほか、同一組における流入用ガス流路2の数と流出用ガス流路3の数とを異ならせたり、断面積が異なるガス流路を組合わせたりすることも可能である。   In this embodiment, for convenience, four gas channels are shown as a set of two, but the number of gas channels in the gas diffusion supply member of the present invention is one set for inflow and outflow. In this case, the number of gas flow ports 4 and 5 is different from each other, and the number of gas flow paths for inflow and outflow in the same group is not limited at all. In the case of the configuration, the first group and the third group may be the same group (one set of four), and the second group and the fourth group may be interpreted as the same group. It is also possible to make the number of gas flow paths 2 different from the number of outflow gas flow paths 3 or to combine gas flow paths having different cross-sectional areas.

流入用及び流出用のガス流通口4,5は、ガス流路2,3の長手方向において所定間隔で複数個(図示例では三個)形成してあると共に、ガス流路2,3の長手方向に細長いスリット状を成しており、上記した各ガス流路2,3の配列により、流路基板1の一方の面及び他方の面において、偏在することなく全体にほぼ均等に配置されている。   A plurality of (three in the illustrated example) inflow and outflow gas distribution ports 4 and 5 are formed at predetermined intervals in the longitudinal direction of the gas flow paths 2 and 3, and It is formed in a slit shape in the direction, and is arranged substantially evenly on the entire surface without uneven distribution on one surface and the other surface of the flow path substrate 1 by the arrangement of the gas flow paths 2 and 3 described above. Yes.

そして、流路基板1は、後記する燃料電池において、上向きの流入用ガス流通口4を有する第一組及び第三組の流入用ガス流路2に還元ガス(燃料)を供給すると共に、下向きの流入用ガス流通口4を有する第二組及び第四組の流入用ガス流路2に酸化ガス(空気)を供給することとし、さらに、ガス流路2,3と発電要素の間でガスを透過させる多孔質体6,7を備えている。   The flow path substrate 1 supplies a reducing gas (fuel) to the first set and the third set of inflow gas flow paths 2 having the upward inflow gas flow ports 4 in the fuel cell to be described later, and is directed downward. The oxidizing gas (air) is supplied to the second and fourth inflow gas passages 2 having the inflowing gas circulation ports 4, and further gas is supplied between the gas passages 2 and 3 and the power generation element. The porous body 6 and 7 which permeate | transmit.

多孔質体6,7は、図1(b)に示す如く平板状を成すものであって、流路基板1の上下の面に夫々積層した状態に設けてある。ここで、流路基板1の上面側すなわち発電要素の燃料極側となる多孔質体6には、発泡Ni、発泡銀及び発泡白金などの発泡金属や、Ni−YSG及びNi−SDCなどのサーメットを用いるのが望ましく、これにより耐還元性や耐水蒸気性に優れたものとなる。他方、流路基板1の下面側すなわち発電要素の空気極側となる多孔質体7には、発泡Ni、発泡銀及び発泡白金などの発泡金属や、LSMやLSCなどの空気極材料を焼結したものを用いるのが望ましく、これにより耐酸化性に優れたものとなる。   The porous bodies 6 and 7 have a flat plate shape as shown in FIG. 1 (b), and are provided on the upper and lower surfaces of the flow path substrate 1, respectively. Here, the porous body 6 on the upper surface side of the flow path substrate 1, that is, the fuel electrode side of the power generation element, has a foam metal such as foam Ni, foam silver and platinum, or a cermet such as Ni-YSG and Ni-SDC. It is desirable to use this, and this makes it excellent in reduction resistance and water vapor resistance. On the other hand, the porous body 7 on the lower surface side of the flow path substrate 1, that is, the air electrode side of the power generation element, is sintered with a foam metal such as foam Ni, foam silver and foam platinum, or an air electrode material such as LSM and LSC. It is desirable to use the above-mentioned one, which makes it excellent in oxidation resistance.

上記構成を備えたガス拡散供給部材は、図1(c)に示すように、発電要素とともに積層して燃料電池を構成し、発電要素間のセパレータとしての機能も有する。燃料電池は、固体電解質型燃料電池であって、電解質層101を空気極層(図中上側)102と燃料極層(図中下側)103とで挟持して成る従来既知の発電要素100を備えている。   As shown in FIG. 1C, the gas diffusion supply member having the above-described structure is stacked with the power generation elements to constitute a fuel cell, and also has a function as a separator between the power generation elements. The fuel cell is a solid oxide fuel cell, and includes a conventionally known power generation element 100 in which an electrolyte layer 101 is sandwiched between an air electrode layer (upper side in the figure) 102 and a fuel electrode layer (lower side in the figure) 103. I have.

燃料電池は、空気極層102及び燃料極層103と、各層に適した材料から成る多孔質体6,7とが対向するようにして、発電要素100の上下にガス拡散供給部材を配置し、上下のガス拡散供給部材の周縁部間及び発電要素100の外周部を含むようにガラスシールGを施すことにより、酸化ガスの空間と還元ガスの空間とを気密的に分離している。なお、図示の燃料電池は発電可能な最小限の構成であり、実際の燃料電池は発電要素100とガス拡散供給部材とを多段に積層する。   In the fuel cell, gas diffusion supply members are arranged above and below the power generation element 100 so that the air electrode layer 102 and the fuel electrode layer 103 and the porous bodies 6 and 7 made of a material suitable for each layer face each other. By applying the glass seal G so as to include the peripheral portions of the upper and lower gas diffusion supply members and the outer peripheral portion of the power generation element 100, the space of the oxidizing gas and the space of the reducing gas are hermetically separated. The illustrated fuel cell has a minimum configuration capable of generating electric power, and an actual fuel cell has a power generation element 100 and a gas diffusion supply member stacked in multiple stages.

上記の燃料電池において、ガス拡散供給装置の各流入用ガス流路2に酸化ガス及び還元ガスを供給すると、これらのガスは、図1(b)中の矢印で示すように、流入用ガス流通口4から多孔質体5,6を透過して各電極(102,103)に拡散供給され、その後、多孔質体5,6及び流出用ガス流通口5を透過して流出用ガス流路3に入り、電池外部へ排出される。   In the fuel cell described above, when the oxidizing gas and the reducing gas are supplied to each inflow gas passage 2 of the gas diffusion supply device, these gases are circulated as shown by the arrows in FIG. The porous body 5, 6 passes through the porous body 5, 6 and is diffused and supplied to each electrode (102, 103), and then passes through the porous body 5, 6 and the outflow gas flow port 5 and flows out. And discharged outside the battery.

このとき、ガス拡散供給部材は、発電要素100に対向するガス流通口4,5が均等に配置してあり、そのうちの流入用ガス流通口4からガスの流入を行うので、電極面に沿ってガスを流していた従来のものに対して、電極面に向けてガスを拡散供給することとなり、さらに、流入及び流出するガスを多孔質体5,6に透過させることから、発電要素100と当該ガス拡散供給部材との間でのガスの滞留時間を長くすることができる。   At this time, in the gas diffusion supply member, the gas circulation ports 4 and 5 facing the power generation element 100 are evenly arranged, and gas flows in from the inflow gas circulation port 4, and therefore, along the electrode surface Since the gas is diffused and supplied toward the electrode surface with respect to the conventional one in which the gas is flowing, and the inflowing and outflowing gas is permeated through the porous bodies 5 and 6, The residence time of the gas with the gas diffusion supply member can be increased.

これにより、ガス拡散供給部材を用いた燃料電池では、発電要素100の各電極の全面にわたって充分なガス供給が行われることとなり、ガスの利用率が高いものとなり、発電効率の向上を実現することができる。   As a result, in the fuel cell using the gas diffusion supply member, sufficient gas supply is performed over the entire surface of each electrode of the power generation element 100, the gas utilization rate is high, and improvement in power generation efficiency is realized. Can do.

また、ガス拡散供給部材は、ガス供給のみならず、機械的な強度部材とセパレータの機能を兼ね備えていると共に、単体でその両面側にガス供給を行うことができるので、機械的強度に優れるうえに、多段に積層して燃料電池を構成した際にスタックの積層密度が高いものとなり、これにより燃料電池の小型化や高出力化を実現することができ、自動車などのように振動を伴う装置・機械への搭載に極めて好適なものとなる。   In addition, the gas diffusion supply member has not only gas supply but also a mechanical strength member and a separator function and can supply gas to both sides of the gas singly, so that it has excellent mechanical strength. In addition, when a fuel cell is configured by stacking in multiple stages, the stack density of the stack becomes high, and this enables a reduction in the size and output of the fuel cell. -It is extremely suitable for mounting on machines.

さらに、ガス拡散供給部材は、より好ましい実施形態として、流路基板1を導電性材料で形成することができ、具体的な材料としてSUS系の材料やインコネルなどを用いることができる。   Further, as a more preferred embodiment, the gas diffusion supply member can form the flow path substrate 1 with a conductive material, and a SUS-based material, Inconel, or the like can be used as a specific material.

これにより、ガス拡散供給部材は、集電体としての機能をも備えたものとなり、燃料電池を構成した際のスタックの積層密度のさらなる向上を実現することができ、しかも、Niサーメット等の燃料極材料やLa1−×Sr×MnO 等の空気極材料である多孔質体を集電体として用いる場合に比べて、機械的強度に優れるとともに低コスト化なども実現し得る。 As a result, the gas diffusion supply member also has a function as a current collector, and can realize further improvement in the stack density of the stack when the fuel cell is configured, and also a fuel such as Ni cermet. in comparison with the case of using the electrode material or La1- × an air electrode material such as Sr × MnO 3 porous body as a current collector may be implemented well as cost reduction with excellent mechanical strength.

そしてさらに、ガス拡散供給部材は、より好ましい実施形態として、流路基板1の表面に貴金属被膜を有するものとすることができ、この場合、流路基板1の材料には、SUS系の材料やインコネル等の導電性材料だけでなく、アルミナなどの絶縁材料を用いることができる。また、貴金属としては、燃料極側に、ニッケル、銀及び白金等を用いることができ、空気極側には、銀や白金等を用いることができる。   Further, as a more preferred embodiment, the gas diffusion supply member can have a noble metal coating on the surface of the flow path substrate 1, and in this case, the material of the flow path substrate 1 includes a SUS-based material, Not only a conductive material such as Inconel but also an insulating material such as alumina can be used. As the noble metal, nickel, silver, platinum, or the like can be used on the fuel electrode side, and silver, platinum, or the like can be used on the air electrode side.

このように、流路基板1の表面に貴金属被膜を設けることにより、耐熱性、耐腐食性及び高い導電性を得ることができ、ガス拡散供給部材を集電体として用いることができると共に、燃料電池の出力向上や安全性(信頼性)の確保などに貢献することができる。   Thus, by providing the noble metal coating on the surface of the flow path substrate 1, heat resistance, corrosion resistance and high conductivity can be obtained, the gas diffusion supply member can be used as a current collector, and fuel This contributes to improving battery output and ensuring safety (reliability).

なお、上記の実施形態では、流路基板1の上面側を燃料極側とし、下面側を燃料極側として、還元ガス及び酸化ガスを上下に拡散供給する場合を説明したが、例えば、燃料電池において、上下の発電要素を同極同士が対向するように積層してある場合には、流路基板1に酸化ガス及び還元ガスのいずれか一方を供給して、その上下の同極に同じガスを拡散供給することができる。   In the above embodiment, the case where the upper surface side of the flow path substrate 1 is the fuel electrode side and the lower surface side is the fuel electrode side and the reducing gas and the oxidizing gas are supplied in a diffused manner has been described. In this case, when the upper and lower power generating elements are laminated so that the same poles face each other, either one of the oxidizing gas and the reducing gas is supplied to the flow path substrate 1, and the same gas is supplied to the upper and lower same poles. The diffusion can be supplied.

図2は、本発明に係わる燃料電池用のガス拡散供給部材の他の実施形態を説明する図である。図示のガス拡散供給部材は、先の実施形態では流路基板に平板状の多孔質体を積層していたのに対して、流路基板1において、各ガス流路2,3に長尺状のガス流通口4,5を一つ形成し、各ガス流通口4,5の内部に多孔質体6,7を設けている。   FIG. 2 is a view for explaining another embodiment of a gas diffusion supply member for a fuel cell according to the present invention. In the previous embodiment, the gas diffusion supply member shown in the figure has a plate-like porous body laminated on the flow path substrate. Gas flow ports 4 and 5 are formed, and porous bodies 6 and 7 are provided inside each gas flow port 4 and 5.

各ガス流通口4,5は、図2(b)に一部を拡大して示すように、ガス流路外側を長辺とする断面台形状に形成してあり、この形状に合致するように成形した多孔質体6,7を嵌合固定している。この場合、多孔質体6,7は、嵌合するだけでガス流通口4,5に接着しなくても良いし、セラミックスボンドやろう付けにより接着しても良く、また、ガス流通口4,5及び多孔質体6,7を上記の如く断面台形状にしたので、多孔質体6,7がガス流路2,3内に脱落する心配はない。   Each gas circulation port 4 and 5 is formed in a trapezoidal cross section with the outside of the gas flow path as a long side as shown in FIG. The molded porous bodies 6 and 7 are fitted and fixed. In this case, the porous bodies 6 and 7 do not have to be bonded to the gas flow ports 4 and 5 simply by fitting, may be bonded by ceramic bonding or brazing, 5 and the porous bodies 6 and 7 are trapezoidal in cross section as described above, there is no fear that the porous bodies 6 and 7 fall into the gas flow paths 2 and 3.

上記構成を備えたガス拡散供給部材は、先の実施形態のものと同様の効果を得ることができるうえに、図1(c)と図2(c)とを比較すれば明らかなように、多孔質体6,7の分だけ厚みを小さくすることができ、発電要素とともに多段に積層して燃料電池を構成した際のスタックの積層密度をより高めることができ、燃料電池のさらなる小型化や高出力化に貢献することができる。   The gas diffusion supply member having the above configuration can obtain the same effect as that of the previous embodiment, and as is clear by comparing FIG. 1 (c) and FIG. 2 (c), The thickness can be reduced by the amount of the porous bodies 6 and 7, and the stack density of the stack when the fuel cell is formed by stacking in multiple stages together with the power generation element can be further increased. It can contribute to higher output.

図3は、本発明に係わる燃料電池用のガス拡散供給部材のさらに他の実施形態を説明する図である。ガス拡散供給部材を構成する図示の流路基板1は、図の上下方向において、上向きの流入用ガス流通口4を有する流入用ガス流路2と、下向きの流入用ガス流通口4を有する流入用ガス流路2とを、閉塞端同士で連結して直線状に配置すると共に、上向きの流出用ガス流通口5を有する流出用ガス流路3と、下向きの流出用ガス流通口5を有する流出用ガス流路3とを、閉塞端同士で連結して直線状に配置している。   FIG. 3 is a view for explaining still another embodiment of a gas diffusion supply member for a fuel cell according to the present invention. The illustrated flow path substrate 1 constituting the gas diffusion supply member includes an inflow gas flow path 2 having an upward inflow gas circulation port 4 and an inflow having a downward inflow gas circulation port 4 in the vertical direction of the drawing. The gas flow path 2 is connected to the closed ends in a straight line, and has an outflow gas flow path 3 having an upward outflow gas circulation port 5 and a downward outflow gas circulation port 5. The outflow gas flow path 3 is connected linearly at the closed ends.

また、図の左右方向においては、上向きの流入用ガス流通口4を有する流入用ガス流路2と、下向きの流出用ガス流通口5を有する流出用ガス流路3の開放端同士が隣接する配置にすると共に、上向きの流出用ガス流通口5を有する流出用ガス流路2と、下向きの流入用ガス流通口4を有する流入用ガス流路3の開放端同士が隣接する配置にしてある。なお、流路基板1は図示しない多孔質体を備えている。   Further, in the left-right direction in the figure, the open ends of the inflow gas passage 2 having the upward inflow gas circulation port 4 and the outflow gas passage 3 having the downward outflow gas circulation port 5 are adjacent to each other. In addition to the arrangement, the outflow gas passage 2 having the upward outflow gas circulation port 5 and the open end of the inflow gas passage 3 having the downward inflow gas circulation port 4 are adjacent to each other. . The flow path substrate 1 includes a porous body (not shown).

流路基板1は、上記構成により、上向きのガス流通口4,5を有するガス流路2,3では、図中の矢印で示すように、例えば酸化ガスが図の上側から下側に流通し、また、下向きのガス流通口4,5を有するガス流路2,3では、同じく矢印で示すように、例えば還元ガスが図の下側から上側に流通する。   As shown by the arrows in the figure, for example, the oxidizing gas circulates from the upper side to the lower side of the flow path substrate 1 in the gas flow paths 2 and 3 having the upward gas flow ports 4 and 5 due to the above configuration. Further, in the gas flow paths 2 and 3 having the downward gas flow ports 4 and 5, for example, as indicated by the arrows, the reducing gas flows from the lower side to the upper side in the figure.

ここで、燃料電池内を流通するガスは、電気化学反応を生じる発電要素を経ることで、流入側に比べて流出側で温度が高くなる。そこで、当該ガス拡散供給部材では、上記したように、流入用ガス流路2と流出用ガス流路3の開放端同士が隣接する配列することで、低温ガスが流通する流入用ガス流路2と、高温ガスが流通する流出用ガス流路3との間で熱交換を行い、これにより全体の温度分布の均一化を図るようにしている。   Here, the gas flowing through the fuel cell has a higher temperature on the outflow side than the inflow side by passing through a power generation element that generates an electrochemical reaction. Therefore, in the gas diffusion supply member, as described above, the open ends of the inflow gas channel 2 and the outflow gas channel 3 are arranged adjacent to each other, so that the inflow gas channel 2 through which the low-temperature gas flows is arranged. Heat exchange with the outflow gas flow path 3 through which the high-temperature gas circulates, thereby making the entire temperature distribution uniform.

なお、上記構成では、上向きの流入用ガス流通口4を有する流入用ガス流路2と、下向きの流出用ガス流通口5を有する流出用ガス流路3の開放端同士が隣接する配置、すなわち低温の還元ガスと高温の酸化ガスとの間で熱交換を行う配置としたが、熱交換を行う構成としては、上向きのガス流通口4,5を有する流入用及び流出用のガス流路2,3の開放端同士が隣接する配置、すなわち同一のガスの間で熱交換を行う配置とすることも可能である。   In the above configuration, the inflow gas passage 2 having the upward inflow gas flow port 4 and the outflow gas flow channel 3 having the downward outflow gas flow port 5 are arranged adjacent to each other, that is, The heat exchange is performed between the low-temperature reducing gas and the high-temperature oxidizing gas. However, the heat exchange is configured such that the inflow and outflow gas flow paths 2 having upward gas flow ports 4 and 5 are provided. , 3 may be arranged adjacent to each other, that is, arranged to exchange heat between the same gases.

図4は、本発明に係わる燃料電池用のガス拡散供給部材のさらに他の実施形態を説明する図である。すなわち、ガス拡散供給部材における流路基板1のガス流路(筒体1a)2,3は、先の実施形態で説明した断面矩形状のほか、図4(a)に示すように断面台形状としたり、図4(b)に示すように断面三角形状にしたり、図4(c)に示すように断面円形状にしたりすることができ、それ以外の断面形状にすることも可能である。   FIG. 4 is a view for explaining still another embodiment of a gas diffusion supply member for a fuel cell according to the present invention. That is, the gas flow paths (tubular bodies 1a) 2 and 3 of the flow path substrate 1 in the gas diffusion supply member have a trapezoidal cross section as shown in FIG. 4A in addition to the rectangular cross section described in the previous embodiment. Or a triangular cross-section as shown in FIG. 4B, a circular cross-section as shown in FIG. 4C, or other cross-sectional shapes.

ガス流路2,3を断面台形状及び断面三角形状にした場合には、隣接する流路同士の形状が上下逆になるように配列してあり、この場合には、ガス流通口4,5の有効面積を大きくすることができ、とくに流入用ガス流通口4により発電要素へのガス供給をより充分なものにして、発電効率のさらなる向上に貢献し得る。   When the gas flow paths 2 and 3 have a trapezoidal cross section and a triangular cross section, the adjacent flow paths are arranged so that the shapes of the adjacent flow paths are upside down. The effective area can be increased, and in particular, the gas supply to the power generation element can be made more sufficient by the inflow gas circulation port 4 to contribute to further improvement in power generation efficiency.

また、ガス流路2,3を断面円形状にした場合には、熱膨張などの応力に対して耐久性がより高いものとなり、機械的強度のさらなる向上を実現することができ、さらに、流入用ガス流通口4と流出用ガス流通口5とを互いに相反する向きに形成することで、流路基板1と発電要素の間におけるガスの滞留時間をより長くすることができ、発電効率のさらなる向上に貢献し得る。   In addition, when the gas flow paths 2 and 3 are circular in cross section, they have higher durability against stress such as thermal expansion, and can further improve the mechanical strength. By forming the use gas flow port 4 and the outflow gas flow port 5 in directions opposite to each other, the residence time of the gas between the flow path substrate 1 and the power generation element can be further increased, and the power generation efficiency can be further increased. Can contribute to improvement.

図5は、本発明に係わる燃料電池用のガス拡散供給部材のさらに他の実施形態を説明する図である。図示のガス拡散供給部材は、先の実施形態では、全てのガス流路に同数のガス流通口を設けていたのに対して、流入用ガス流路2が、長手方向に所定間隔で複数の流入用ガス流通口4を有していると共に、この流入用ガス流路2と組を成す流出用ガス流路3が、隣接する二つの流入用ガス流通口4からほぼ等距離の位置に流出用ガス流通口5を有するものとなっている。   FIG. 5 is a view for explaining still another embodiment of a gas diffusion supply member for a fuel cell according to the present invention. In the gas diffusion supply member shown in the previous embodiment, the same number of gas flow ports are provided in all the gas flow paths, whereas the inflow gas flow paths 2 have a plurality of predetermined intervals in the longitudinal direction. The inflow gas passage 3 that has an inflow gas flow port 4 and that forms a pair with the inflow gas flow channel 2 flows out from the two adjacent inflow gas flow ports 4 at a substantially equal distance. It has a working gas distribution port 5.

すなわち、図示のように流入用ガス流路2に二つの流入用ガス流通口4が形成してある場合では、流出用ガス流路3には、二つの流入用ガス流通口4の中央に対応する位置に一つの流出用ガス流通口5が形成してある。したがって、流入用ガス流路2により多くの流入用ガス流通口4を形成する場合には、流出用ガス流路3には、それよりも一つ少ない数の流出用ガス流通口5が形成されることになり、流入用ガス流路2と流出用ガス流路3に対してガス流通口4,5を千鳥状に配置する。   That is, when two inflow gas flow ports 4 are formed in the inflow gas channel 2 as shown in the figure, the outflow gas flow channel 3 corresponds to the center of the two inflow gas flow ports 4. One outflow gas circulation port 5 is formed at a position where the gas flows. Therefore, when many inflow gas circulation ports 4 are formed in the inflow gas passage 2, the outflow gas passage 3 is formed with one fewer outflow gas circulation ports 5. Therefore, the gas circulation ports 4 and 5 are arranged in a staggered manner with respect to the inflow gas passage 2 and the outflow gas passage 3.

上記のガス拡散供給部材では、流路基板1において、流入用ガス流通口4から流出用ガス流通口5までの距離をできるだけ長くすることで、流路基板1と発電要素の間におけるガスの滞留時間をより長くして、ガスが流れない領域の発生を解消し、発電効率のさらなる向上に貢献し得る。   In the gas diffusion supply member described above, in the flow path substrate 1, the gas is retained between the flow path substrate 1 and the power generation element by making the distance from the inflow gas flow port 4 to the outflow gas flow port 5 as long as possible. The generation of a region where gas does not flow can be eliminated by extending the time, which can contribute to further improvement in power generation efficiency.

図6は、本発明に係わる燃料電池用のガス拡散供給部材のさらに他の実施形態を説明する図である。図示のガス拡散供給部材は、流路基板1の流入用ガス流路2が、開放端から長手方向に延在する仕切り板8を備えている。この仕切り板8は、流入用ガス流路2の開放端を、ガス流通口側(図中において上側)の閉塞部9aと、反ガス流通口側(図中において下側)の開放部9bに区画している。   FIG. 6 is a view for explaining still another embodiment of a gas diffusion supply member for a fuel cell according to the present invention. The illustrated gas diffusion supply member includes a partition plate 8 in which an inflow gas channel 2 of a channel substrate 1 extends in a longitudinal direction from an open end. The partition plate 8 has an open end of the inflow gas passage 2 at a closed portion 9a on the gas flow port side (upper side in the drawing) and an open portion 9b on the anti-gas flow port side (lower side in the drawing). It is partitioned.

上記のガス拡散供給部材では、流入用ガス流路2の開放部9bに対してガスを供給すると、仕切り板8により流れ規制されたガスが流入用ガス流路2の中間部を経て各流入用ガス流通口4に向かうこととなるので、各流入用ガス流通口4から均一にガスを吐出させることができ、これにより電極に対してガスをより均一に拡散供給することができ、燃料電池の発電効率のさらなる向上に貢献し得るものとなる。   In the gas diffusion supply member described above, when gas is supplied to the open portion 9b of the inflow gas flow path 2, the gas restricted by the partition plate 8 passes through the intermediate portion of the inflow gas flow path 2 for each inflow. Since the gas flows toward the gas flow port 4, the gas can be uniformly discharged from each inflow gas flow port 4, whereby the gas can be more uniformly diffused and supplied to the electrode. This can contribute to further improvement in power generation efficiency.

(実施例1)
ガス流路を形成する筒体として、断面が内辺5mm、外辺6mmの正方形状であり、長さが72mmであるSUS430製の角型パイプを使用した。この実施例では筒体を十二本用意し、各筒体は、片側の端部に同筒体と同材料の部材を溶接により固定し、一端を開放端とし且つ他方を閉塞端とした。また、各筒体の一つの面には、開放端から8mm、28mm及び48mmの位置に、夫々の位置を端部とする4mm×4mmのガス流通口を形成した。
Example 1
As the cylinder forming the gas flow path, a square pipe made of SUS430 having a square shape with a cross section of 5 mm inside and 6 mm outside and 72 mm in length was used. In this embodiment, twelve cylinders were prepared, and each cylinder was fixed to the end of one side by welding a member of the same material as that of the cylinder, with one end being an open end and the other being a closed end. In addition, on each surface of each cylinder, a 4 mm × 4 mm gas circulation port with each position as an end was formed at a position of 8 mm, 28 mm, and 48 mm from the open end.

次に、図1(a)(b)に示す配列に基づいて、十二本の筒体を溶接により接続してこれを流路基板とし、図1(b)に示すように、流路基板の燃料極側となる面に、発泡ニッケルから成る平板状の多孔質体(縦70mm×横70mm×厚み100μm)を積層すると共に、流路基板の空気極側となる面に、発泡銀から成る平板状の多孔質体(縦70mm×横70mm×厚み100μm)を積層して、ガス拡散供給部材を作成した。   Next, based on the arrangement shown in FIGS. 1A and 1B, twelve cylinders are connected by welding to form a flow path substrate. As shown in FIG. A flat porous body made of foamed nickel (length 70 mm × width 70 mm × thickness 100 μm) is laminated on the surface on the fuel electrode side, and the surface on the air electrode side of the flow path substrate is made of foamed silver. A plate-like porous body (length 70 mm × width 70 mm × thickness 100 μm) was laminated to prepare a gas diffusion supply member.

また、YSZ製の電解質層、LSC製の空気極層及びNiO−YSZ製の燃料極層から成る発電要素を作成し、この発電要素を二枚のガス拡散供給部材で挟持して、図1(c)に示す燃料電池を作成した。   Further, a power generation element composed of an electrolyte layer made of YSZ, an air electrode layer made of LSC, and a fuel electrode layer made of NiO-YSZ was created, and this power generation element was sandwiched between two gas diffusion supply members, and FIG. The fuel cell shown in c) was prepared.

そして、比較例として、ガス流路の両端を開放端とした以外は上記実施例と同一構成にしたガス拡散供給部材を作成し、発電要素とともに同様の燃料電池を作成し、この比較例の燃料電池と実施例1の燃料電池の発電実験を行った。   As a comparative example, a gas diffusion supply member having the same configuration as that of the above example except that both ends of the gas flow path are open ends is created, and a similar fuel cell is created together with a power generation element. A power generation experiment of the battery and the fuel cell of Example 1 was performed.

その結果、実施例1の燃料電池では、比較例に比べて、燃料極の還元時間が約半分になり、燃料還元後0.7Vの取り出し電圧でより高い燃料利用率となることが判明した。つまり、比較例では、ガス流路の両端が開放端であるため、電極へのガス供給が不充分なものとなり、これに対して、実施例1のガス拡散供給部材では、電極へのガス供給が充分に行われており、燃料電池の発電効率が高められることを確認した。   As a result, in the fuel cell of Example 1, it was found that the reduction time of the fuel electrode was about half that of the comparative example, and that a higher fuel utilization rate was obtained at a take-out voltage of 0.7 V after fuel reduction. That is, in the comparative example, since both ends of the gas flow path are open ends, the gas supply to the electrode is insufficient, whereas the gas diffusion supply member of Example 1 supplies the gas to the electrode. It was confirmed that the power generation efficiency of the fuel cell can be improved.

(実施例2)
筒体におけるガス流通口を一つとし、その大きさを4mm×56mmとした以外は、実施例1と同様にして図2(a)(b)に示す流路基板を形成した。このとき、ガス流通口は、図2(b)の拡大図に示すように断面台形状とした。そして、流路基板の燃料極側となるガス流通口に、発泡金属から成る多孔質体を嵌合してろう付けにより固定すると共に、流路基板の空気極側となるガス流通口に、サーメットから成る多孔質体を嵌合してセラミックボンドで固定して、ガス拡散供給部材を作成した。その後、実施例1と同様の発電要素を二枚のガス拡散供給部材で挟持して、図2(c)に示す燃料電池を作成した。
(Example 2)
A flow path substrate shown in FIGS. 2A and 2B was formed in the same manner as in Example 1 except that there was one gas circulation port in the cylinder and the size was 4 mm × 56 mm. At this time, the gas circulation port had a trapezoidal cross section as shown in the enlarged view of FIG. A porous body made of foam metal is fitted into the gas flow port on the fuel electrode side of the flow path substrate and fixed by brazing, and the cermet is connected to the gas flow port on the air electrode side of the flow path substrate. A porous body composed of the above was fitted and fixed with a ceramic bond to prepare a gas diffusion supply member. Thereafter, a power generation element similar to that in Example 1 was sandwiched between two gas diffusion supply members, and a fuel cell shown in FIG.

実施例2の燃料電池にあっても、実施例1と同様の効果を得ることができ、とくに、多孔質体の積層を行わないことから、燃料電池を作成する際のガスシールが容易であり、接触抵抗も低減し得ることを確認した。   Even in the fuel cell of Example 2, the same effect as that of Example 1 can be obtained, and in particular, since the porous body is not laminated, gas sealing when creating the fuel cell is easy. It was confirmed that the contact resistance could be reduced.

(実施例3)
流入用ガス流路には、開放端から8mm及び48mmの位置に、夫々の位置を端部とする4mm×4mmの流入用ガス流通口を形成し、流出用ガス流路には、開放端から28mmの位置に、同位置を端部とする4mm×4mmの流出用ガス流通口を形成した以外は、実施例1と同様にして図5に示す流路基板を形成した。そして、流路基板の両面に実施例1と同様の平面状の多孔質体を積層してガス拡散供給部材とした後、発電要素を二枚のガス拡散供給部材で挟持して燃料電池を作成した。
(Example 3)
The inflow gas flow channel is formed with 4 mm × 4 mm inflow gas flow ports with the respective ends as 8 mm and 48 mm from the open end, and the outflow gas flow channel from the open end. The flow path substrate shown in FIG. 5 was formed in the same manner as in Example 1 except that a 4 mm × 4 mm outflow gas circulation port having the end at the position was formed at a position of 28 mm. Then, a planar porous body similar to that in Example 1 is laminated on both surfaces of the flow path substrate to form a gas diffusion supply member, and then a power generation element is sandwiched between the two gas diffusion supply members to produce a fuel cell. did.

実施例3の燃料電池にあっては、実施例1と比べると、取り出し電圧0.7Vで燃料利用率が1.05倍になることが判明し、上記の如くガス流通口の位置を工夫することで、発電要素とガス拡散供給部材との間におけるガスの滞留時間がより長くなり、ガスの利用率が一層高められることを確認した。   In the fuel cell of Example 3, it was found that the fuel utilization rate was 1.05 times at the extraction voltage of 0.7 V compared to Example 1, and the position of the gas circulation port was devised as described above. As a result, it was confirmed that the residence time of the gas between the power generation element and the gas diffusion supply member becomes longer and the utilization rate of the gas is further increased.

(実施例4)
流入用ガス流路の内部に図6に示す仕切り板を設けた以外は、実施例1と同様にした。すなわち、流入用ガス流路を形成する筒体の両端に、同筒体と同じ材料から成る部材を溶接により固定した後、一方の部材の片側半分にドリルで縦1.9mm×横4mmの孔を形成してこれを開放部とし、残る片側半分を閉塞部とした。その後、筒体の端部において、開放部と閉塞部の間に切口を形成し、この切口に仕切り板(縦25mm×横5mm×厚み0.2mm)を嵌合して溶接で固定した。そして、流路基板の両面に実施例1と同様の平面状の多孔質体を積層してガス拡散供給部材とした後、発電要素を二枚のガス拡散供給部材で挟持して燃料電池を作成した。
Example 4
Example 1 was performed except that the partition plate shown in FIG. 6 was provided inside the inflow gas passage. That is, a member made of the same material as the cylinder is fixed to both ends of the cylinder forming the inflow gas flow path by welding, and then a hole of 1.9 mm in length × 4 mm in width is drilled in one half of one member Was formed as an open portion, and the remaining half on one side was defined as a closed portion. Then, a cut was formed between the open part and the closed part at the end of the cylinder, and a partition plate (vertical 25 mm × width 5 mm × thickness 0.2 mm) was fitted into this cut and fixed by welding. Then, a planar porous body similar to that in Example 1 is laminated on both surfaces of the flow path substrate to form a gas diffusion supply member, and then a power generation element is sandwiched between the two gas diffusion supply members to produce a fuel cell. did.

実施例4の燃料電池にあっては、実施例1に比べて、発電要素の温度分布がより均一になり、なお且つ取り出し電圧0.7Vで燃料利用率が1.06倍になることが判明し、流入用ガス流路に形成した三つのガス流通口からのガス供給がより均一になることを確認した。   In the fuel cell of Example 4, it was found that the temperature distribution of the power generation element was more uniform than that of Example 1, and the fuel utilization rate was 1.06 times at the extraction voltage of 0.7 V. Then, it was confirmed that the gas supply from the three gas circulation ports formed in the inflow gas flow path becomes more uniform.

本発明のガス拡散供給部材における流路基板の一例を示す斜視図(a)、ガス拡散供給部材の断面図(b)及び燃料電池の断面図(c)である。It is the perspective view (a) which shows an example of the flow-path board | substrate in the gas diffusion supply member of this invention, sectional drawing (b) of a gas diffusion supply member, and sectional drawing (c) of a fuel cell. 本発明のガス拡散供給部材における流路基板の他の例を示す斜視図(a)、ガス拡散供給部材の断面図(b)及び燃料電池の断面図(c)である。It is the perspective view (a) which shows the other example of the flow-path board | substrate in the gas diffusion supply member of this invention, sectional drawing (b) of a gas diffusion supply member, and sectional drawing (c) of a fuel cell. 本発明のガス拡散供給部材における流路基板の他の例を示す平面図である。It is a top view which shows the other example of the flow-path board | substrate in the gas diffusion supply member of this invention. 本発明のガス拡散供給部材における流路基板の他の例として、ガス流路の断面形状が異なる三例を示す斜視図である。It is a perspective view which shows three examples from which the cross-sectional shape of a gas flow path differs as another example of the flow-path board | substrate in the gas diffusion supply member of this invention. 本発明のガス拡散供給部材における流路基板の他の例を示す斜視図(a)及び平面図(b)である。It is the perspective view (a) and top view (b) which show the other example of the flow-path board | substrate in the gas diffusion supply member of this invention. 本発明のガス拡散供給部材における流路基板の他の例として、一部の流入用ガス流路を示す斜視図(a)及び断面図(b)である。As another example of the flow path substrate in the gas diffusion supply member of the present invention, there are a perspective view (a) and a cross-sectional view (b) showing some inflow gas flow paths.

符号の説明Explanation of symbols

1 流路基板
1a 筒体
2 流入用ガス流路
3 流出用ガス流路
4 流入用ガス流通口
5 流出用ガス流通口
6 燃料極側の多孔質体
7 空気極側の多孔質体
8 仕切り板
9a 開放部
9b 閉塞部
100 発電要素
101 電解質層
102 空気極層
103 燃料極層
DESCRIPTION OF SYMBOLS 1 Flow path board | substrate 1a Cylindrical body 2 Inflow gas flow path 3 Outflow gas flow path 4 Inflow gas distribution port 5 Outflow gas distribution port 6 Porous body by the side of a fuel electrode 7 Porous body by the side of an air electrode 8 Partition plate 9a Open part 9b Closed part 100 Power generation element 101 Electrolyte layer 102 Air electrode layer 103 Fuel electrode layer

Claims (11)

燃料電池の発電要素に対向して酸化ガスや還元ガスを拡散供給する部材であって、一端を開放端とし且つ他端を閉塞端とした複数のガス流路を並設して成る流路基板を備えると共に、複数のガス流路は流入用と流出用を一組として少なくとも二組を構成する数だけ設けてあり、一部の組のガス流路に流路基板の一方の面で開口するガス流通口を設けると共に、残る組のガス流路に流路基板の他方の面で開口するガス流通口を設け、ガス流路と発電要素の間でガスを透過させる多孔質体を備えたことを特徴とする燃料電池用のガス拡散供給部材。   A flow channel substrate that is a member that diffusely supplies an oxidizing gas or a reducing gas so as to face a power generation element of a fuel cell, and includes a plurality of gas flow channels having one end as an open end and the other end as a closed end. In addition, a plurality of gas flow paths are provided in a number corresponding to at least two sets, one for inflow and one for outflow, and open to one side of the flow path substrate in some sets of gas flow paths. In addition to providing a gas flow port, a gas flow port that opens on the other surface of the flow path substrate was provided in the remaining set of gas flow paths, and a porous body that allowed gas to pass between the gas flow path and the power generation element was provided. A gas diffusion supply member for a fuel cell. ガス流通口の内部に多孔質体を設けたことを特徴とする請求項1に記載の燃料電池用のガス拡散供給部材。   The gas diffusion supply member for a fuel cell according to claim 1, wherein a porous body is provided inside the gas flow port. ガス流路が、片側を閉塞した筒体により形成してあり、流路基板が、複数の筒体を一体化することで形成してあることを特徴とする請求項1又は2に記載の燃料電池用のガス拡散供給部材。   3. The fuel according to claim 1, wherein the gas flow path is formed by a cylindrical body closed on one side, and the flow path substrate is formed by integrating a plurality of cylindrical bodies. Gas diffusion supply member for battery. 流路基板の一方の面で開口するガス流通口を有するガス流路と、流路基板の他方の面で開口するガス流通口を有するガス流路とを交互に配列したことを特徴とする請求項1〜3のずれかに記載の燃料電池用のガス拡散供給部材。   A gas flow path having a gas flow opening opened on one surface of the flow path substrate and a gas flow path having a gas flow opening opened on the other surface of the flow path substrate are alternately arranged. The gas diffusion supply member for a fuel cell according to any one of Items 1 to 3. 流入用ガス流路と流出用ガス流路の開放端同士が隣接する配列にしたことを特徴とする請求項1〜4のいずれかに記載の燃料電池用のガス拡散供給部材。   The gas diffusion supply member for a fuel cell according to any one of claims 1 to 4, wherein the open ends of the inflow gas channel and the outflow gas channel are arranged adjacent to each other. ガス流路が、台形、三角形及び円形のうちのいずれかの断面形状を有していることを特徴とする請求項1〜5のいずれかに記載の燃料電池用のガス拡散供給部材。   The gas diffusion supply member for a fuel cell according to any one of claims 1 to 5, wherein the gas flow path has a cross-sectional shape of any one of a trapezoid, a triangle, and a circle. 流入用ガス流路が、長手方向に所定間隔で複数の流入用のガス流通口を有していると共に、この流入用ガス流路と組を成す流出用ガス流路が、隣接する二つの流入用のガス流通口からほぼ等距離の位置に流出用のガス流通口を有していることを特徴とする請求項1〜6のいずれかに記載の燃料電池用のガス拡散供給部材。   The inflow gas flow path has a plurality of inflow gas flow ports at predetermined intervals in the longitudinal direction, and the outflow gas flow path forming a pair with the inflow gas flow path has two adjacent inflow The gas diffusion supply member for a fuel cell according to any one of claims 1 to 6, further comprising an outflow gas distribution port at a position approximately equidistant from the gas distribution port for use. 流入用ガス流路が、開放端から長手方向に延在するとともに同開放端をガス流通口側の閉塞部と反ガス流通口側の開放部に区画する仕切り板を備えていることを特徴とする請求項1〜7のいずれかに記載の燃料電池用のガス拡散供給部材。   The inflow gas flow path includes a partition plate extending from the open end in the longitudinal direction and partitioning the open end into a closed portion on the gas flow port side and an open portion on the anti-gas flow port side. The gas diffusion supply member for a fuel cell according to any one of claims 1 to 7. 流路基板が、導電性材料で形成してあることを特徴とする請求項1〜8のいずれかに記載の燃料電池用のガス拡散供給部材。   The gas diffusion supply member for a fuel cell according to any one of claims 1 to 8, wherein the flow path substrate is formed of a conductive material. 流路基板が、表面に貴金属被膜を有することを特徴とする請求項1〜9のいずれかに記載の燃料電池用のガス拡散供給部材。   The gas diffusion supply member for a fuel cell according to any one of claims 1 to 9, wherein the flow path substrate has a noble metal coating on the surface. 請求項1〜10のいずれかに記載のガス拡散供給部材と、電解質層を空気極層と燃料極層で挟持して成る発電要素とを積層したことを特徴とする燃料電池。   11. A fuel cell comprising the gas diffusion supply member according to claim 1 and a power generation element formed by sandwiching an electrolyte layer between an air electrode layer and a fuel electrode layer.
JP2004302442A 2004-10-18 2004-10-18 Gas diffusion supply member for fuel cell Pending JP2006114414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302442A JP2006114414A (en) 2004-10-18 2004-10-18 Gas diffusion supply member for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302442A JP2006114414A (en) 2004-10-18 2004-10-18 Gas diffusion supply member for fuel cell

Publications (1)

Publication Number Publication Date
JP2006114414A true JP2006114414A (en) 2006-04-27

Family

ID=36382748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302442A Pending JP2006114414A (en) 2004-10-18 2004-10-18 Gas diffusion supply member for fuel cell

Country Status (1)

Country Link
JP (1) JP2006114414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084745A1 (en) * 2009-01-23 2010-07-29 トヨタ自動車株式会社 Fuel cell
CN110592415A (en) * 2019-10-21 2019-12-20 常德力元新材料有限责任公司 Three-dimensional porous foam nickel-silver composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084745A1 (en) * 2009-01-23 2010-07-29 トヨタ自動車株式会社 Fuel cell
JP2010170896A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Fuel cell
CN102292860A (en) * 2009-01-23 2011-12-21 丰田自动车株式会社 Fuel cell
US8221932B2 (en) 2009-01-23 2012-07-17 Toyota Jidosha Kabushiki Kaisha Fuel cell
CN110592415A (en) * 2019-10-21 2019-12-20 常德力元新材料有限责任公司 Three-dimensional porous foam nickel-silver composite material

Similar Documents

Publication Publication Date Title
US6296962B1 (en) Design for solid oxide fuel cell stacks
KR100976506B1 (en) Electrode Supports and Monolith Type Unit Cells for Solid Oxide Fuel Cells and Manufacturing Methods of Stacks Using the Same
JP4598287B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP5383051B2 (en) Fuel cell and fuel cell stack
JP5962847B2 (en) FUEL CELL, FUEL CELL DISTRIBUTION DEVICE, AND VEHICLE HAVING FUEL CELL
JP2002532855A (en) Volume efficient layered manifold assembly for electrochemical fuel cell stacks
WO2012007998A1 (en) Fuel cell
JPH04298965A (en) Solid electrolyte type fuel cell and manufacture thereof
JP4404331B2 (en) Fuel cell
JP2002319413A (en) Solid electrolyte fuel cell plate and stack
JP4419483B2 (en) Fuel cell
JP2011134542A (en) Cell stack device, fuel cell module, and fuel cell device
JP6228984B2 (en) Fuel cell
JP5207440B2 (en) Fuel cell
JP2005203255A (en) Manifold structure of fuel cell
JP2006114414A (en) Gas diffusion supply member for fuel cell
KR101174407B1 (en) Manufacturing method of solid oxide fuel cells
JP4999305B2 (en) Fuel cell and fuel cell
CA2909492C (en) Gas inlet for soec unit
JP5123824B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
KR20220107283A (en) Cell units and cell stacks
JPH10302818A (en) Fuel cell
JP2004288374A (en) Solid electrolyte fuel cell assembly
JP5840983B2 (en) Solid oxide fuel cell and fuel cell unit
JP4453081B2 (en) Fuel cell, fuel cell separator and a set of fuel cell separators