[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006106363A - 光学装置及びプロジェクタ - Google Patents

光学装置及びプロジェクタ Download PDF

Info

Publication number
JP2006106363A
JP2006106363A JP2004292962A JP2004292962A JP2006106363A JP 2006106363 A JP2006106363 A JP 2006106363A JP 2004292962 A JP2004292962 A JP 2004292962A JP 2004292962 A JP2004292962 A JP 2004292962A JP 2006106363 A JP2006106363 A JP 2006106363A
Authority
JP
Japan
Prior art keywords
optical
light
exit
optical device
side polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004292962A
Other languages
English (en)
Inventor
Yoshiyuki Yanagisawa
佳幸 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004292962A priority Critical patent/JP2006106363A/ja
Publication of JP2006106363A publication Critical patent/JP2006106363A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract


【課題】光変調装置及びこの光変調装置近傍に配置された光学部品の冷却を効率よく行うことができ、また、水晶基板と偏光板に接続した場合であっても、偏光板の軸変形の発生を防止することができる光学装置及びプロジェクタを提供すること。
【解決手段】光学装置44は、光源から射出された光束を画像情報に応じて変調する光変調素子441R1を含む複数の光学素子を備え、前記光学素子のうち少なくとも一つと熱伝達可能に接続され、当該光学素子の熱を放熱する水晶基板443A1,443B1を備え、前記水晶基板443A1,443B1の結晶軸は接続された前記光学素子の有効光学領域の長辺方向に平行である。
【選択図】図8

Description

本発明は、光源から射出された光束を画像情報に応じて変調する光変調素子を含む複数の光学素子を備えた光学装置、及びこの光学装置を備えたプロジェクタに関する。
従来、会議、学会、展示会等でのプレゼンテーションや、家庭での映画鑑賞等にプロジ
ェクタが用いられている。このようなプロジェクタは、内部に光源と、この光源から射出
された光束を画像情報に変調する液晶パネル等の光変調装置と、入射される光束の光学変
換を行う複数の光学部品からなる光学装置を備え、この光学装置により光学像を形成して
拡大投写する。
このようなプロジェクタは、ダイクロイックミラー等の色分離光学系が、光源から射出された光束を三色の色光に分離し、液晶パネル等で構成される3枚の光変調装置は、色光毎に画像情報に応じて変調する。また、クロスダイクロイックプリズム等の色合成光学装置は、変調後の各色光を合成して光学像を形成しており、この形成された光学像を、投写レンズ等の投射光学装置によって拡大投射する、いわゆる三板式の構成を採用するものが広く知られている。
かかる三板式のプロジェクタでは、構造の簡素化及び組み立て工程の簡素化のため、3枚の光変調装置をクロスダイクロイックプリズムの光束入射側端面に取り付けた構成の光学装置が採用されている。このような構成の光学装置では、各液晶パネルの画素ずれにより生じる画質劣化を防止するため、色合成光学装置であるクロスダイクロイックプリズムの光束入射端面に、光変調装置である各液晶パネルの相対位置を調整しながら固定している。
一方、プロジェクタは、高輝度化および小型化が図られ、これに伴い、内部に配置された光学部品の効果的な冷却手段ないしは冷却方法が検討されてきた。特に、色合成光学装置の光束入射端面に配置される光学部品である偏光素子は、光源から射出された光束が集約して照射されるので発熱しやすく、かつ、熱に弱いため、光学像の形成を安定化させるには、偏光板等の光学部品を効率よく冷却する必要があった。
このため、光学装置を構成する光変調装置や、当該光変調装置の光束射出端面の前段または後段に配置されている偏光板等の光学部品(光学素子)については、これらと熱伝達可能に接続され、当該光学素子から発生される熱を放熱する水晶基板を備えるようにして、
光学部品などの冷却を効率よく実施するようにしていた(例えば、特許文献1〜特許文献3)。また、このような放熱用の水晶基板は、平面視で横長の矩形状のものが使用されるが、水晶の結晶軸方向(結晶の成長方向)を水晶基板の短辺方向(縦方向)としたものが適用されていた。
特開2003−121931号公報 特開2003−121937号公報 特開2003−262917号公報
ところで、水晶基板における熱伝導率は、面内で一様ではなく、結晶軸方向(結晶の成長方向)に向かうに従って高くなり、また、水晶基板の線膨張率も、同様に結晶軸方向に向かうに従って低くなり、よって高温時における水晶基板の歪みが起こりにくくなるものであった。
一方、従来の構成のように、放熱用の水晶基板について軸方向を短辺方向(縦方向)とした場合にあっては、距離が長い長辺方向が熱伝導率が低くなってしまうため、水晶基板中の面内温度のバラツキが大きくなり、中央部分の温度が下がりにくくなってしまうという問題があった。また、水晶基板と偏光板とを接続した場合にあっては、高温時における偏光板の軸変形が発生しやすくなってしまっていた。
本発明の目的は、前記の課題に鑑みてなされたものであり、光変調装置及びこの光変調装置近傍に配置された光学部品の冷却を効率よく行うことができ、また、水晶基板と偏光板に接続した場合であっても、偏光板の軸変形の発生を防止することができる光学装置及びプロジェクタを提供することである。
本発明の光学装置は、光源から射出された光束を画像情報に応じて変調する光変調素子を含む複数の光学素子を備えた光学装置であって、前記光学素子のうち少なくとも一つと熱伝達可能に接続され、当該光学素子の熱を放熱する水晶基板を備え、前記水晶基板の結晶軸は前記光学素子の有効光学領域の長辺方向に平行であることを特徴とする。
ここで、光学素子としては、例えば、射出側偏光板、入射側偏光板、位相差板、色補正板、視野角補償板(これらと同等の特性を備えた偏光膜などを含む)や、光変調素子と接続される防塵ガラス等を挙げることができ、また、複数の光学素子としては、位相差板、射出側偏光板のうち少なくとも2つ以上を含む構成のほか、同一の機能を有する光学素子、例えば2つの射出側偏光板を含む構成としてもよい。
本発明では、光学装置が、光変調素子を含む複数の光学素子を備え、この光学素子から発生される熱を放熱する水晶基板と熱伝達可能に接続されており、また、この水晶基板の
結晶軸は前記光学素子の有効光学領域の長辺方向に平行とする構成を採用しているので、結晶形成方向である水晶基板の長辺方向に対して熱伝導率が高くなることになり、水晶基板と熱伝達可能に接続された光学素子の面内温度分布を均一化することができ、光学素子により発生した熱を効率的に放熱することができる。
また、光学素子と熱伝達可能に接続される水晶基板の結晶軸が水晶基板の有効光学領域の長辺方向に平行な方向とした構成を採用しているので、水晶基板の線膨張率が低い方向が長辺方向、線膨張率が高い方向が短辺方向となるため、熱吸収における膨張変位量を抑制することができ、例えば偏光板などの接続された光学素子の軸変形の発生を防止することができる。
本発明の光学装置は、前記光学素子は、前記光変調素子の光路前段側に配設され、入射光束のうち所定の偏光光のみを透過する入射側偏光素子を含み、前記水晶基板は、当該入射側偏光素子と熱伝達可能に接続され、当該入射側偏光素子の熱を放熱することが好ましい。
この本発明によれば、水晶基板は入射側偏光素子と熱伝達可能に接続されるので、入射側偏光素子の面内温度分布を均一化することができ、この入射側偏光素子により発生した熱を効率的に放熱することができる。
本発明の光学装置は、前記光学素子は、前記光変調素子の光路後段側に配設され、入射光束のうち所定の偏光光のみを透過する射出側偏光素子を含み、前記水晶基板は、当該射出側偏光素子と熱伝達可能に接続され、当該射出側偏光素子の熱を放熱することが好ましい。
この本発明によれば、水晶基板は射出側偏光素子と熱伝達可能に接続されるので、射出側偏光素子の面内温度分布を均一化することができ、この射出側偏光素子により発生した熱を効率的に放熱することができる。
本発明の光学装置は、前記射出側偏光素子が第1射出側偏光素子と、前記第1射出側偏光素子の光束射出側に配設される第2射出側偏光素子からなり、前記水晶基板は、前記第1射出側偏光素子及び/または第2射出側偏光素子と熱伝達可能に接続され、接続された射出側偏光素子の熱を放熱することが好ましい。
この本発明によれば、射出側偏光素子を2枚とした構成とするため、光学素子を射出側偏光素子とした場合の前記した効果を好適に奏するほか、入射した偏光光を、第1射出側偏光素子、第2射出側偏光素子でそれぞれ割り振って吸収させることができるため、2つの偏光板それぞれでの過度の発熱を抑制することができる。
本発明の光学装置は、光学素子である複数の光変調素子で変調された各色光を合成する色合成光学装置を備え、前記第2射出側変更素子と接続された前記水晶基板が、前記色合成光学装置の光束入射側端面に貼付されていることが好ましい。
ここで、本発明の光学装置を構成する水晶基板は、前記したように、水晶基板の線膨張率が低い方向が長辺方向、線膨張率が高い方向が短辺方向となるため、熱吸収における膨張変位量を抑制することができるのであるが、第2射出側変更素子と接続された水晶基板が色合成光学装置の光束入射側端面に貼付することにより、例えば、第2射出側偏光素子と水晶基板を接続した射出側偏光板の軸変形も起こりにくくなる。また、光変調装置については、保持部材、棒状部材(ピンスペーサ)を介して水晶基板の上に載っているため、水晶基板の熱歪みから生じる位置ずれによる光学装置の画素ずれの発生防止に大きく寄与することができる。
本発明の光学装置は、前記水晶基板と接続される光学素子の有効光学領域の外側の横寸法(l)と有効光学領域の外側の縦寸法(l)と、前記水晶基板の、接続される当該光学素子の有効光学領域の長辺方向に平行な方向の熱伝導率(λ)と、当該平行な方向と垂直な方向の熱伝導率(λ)が下記式(I)を具備することが好ましい。
Figure 2006106363
この本発明によれば、水晶基板と接続される光学素子の有効光学領域の外側の横寸法(l)と有効光学領域の外側の縦寸法(l)と、前記水晶基板の、接続される当該光学素子の有効光学領域の長辺方向に平行な方向の熱伝導率(λ)と、当該平行な方向と垂直な方向の熱伝導率(λ)が前記式(I)を具備する関係にあるので、偏光板の有効エリア外の周辺部分の熱応力を均一にできX方向とY方向の引張力が均一になり、射出側偏光素子における偏光軸方向のひずみを抑制することができ、前記した効果をより効率的に発揮することができる。
本発明の光学装置は、前記射出側偏光素子に視野角補償素子が配設されていることが好ましい。
この本発明によれば、光変調装置の光路後段側に配設され、射出光束のうち所定の偏光光のみを透過する射出側偏光素子に視野角補償素子が配設されているので、投写画像の視野角が拡大され、かつ、投写画像のコントラストが大幅に向上することとなる。
また、本発明のプロジェクタは、光源から射出された光束を画像情報に応じて変調して
光学像を形成し、前記光学像を拡大投写するプロジェクタであって、前述の光学装置を備
えていることを特徴とする。
本発明によれば、前述の光学装置と略同じ効果を奏することができる。すなわち、前記した本発明の光学装置を備えているため、光変調装置及びこの光変調装置近傍に配置された光学部品の冷却を効率よく行い、また、高温時における偏光板の軸変形及び接続される光変調装置の位置ずれによる画素ずれの発生を防止することができ、投写画像の高画質化を図ることができるプロジェクタを好適に提供可能とする。
[第1実施形態]
以下、本発明の第1実施形態を図面に基づいて説明する。
(I)プロジェクタの外観構成:
図1および図2には、本発明の第1実施形態に係るプロジェクタ1が示されており、図1は上方前面側から見た斜視図であり、図2は下方背面側から見た斜視図である。
このプロジェクタ1は、光源から射出された光束を画像情報に応じて変調し、スクリーン等の投写面上に拡大投写する光学機器であり、後述する光学系を含む装置本体を内部に収納する外装ケース2および外装ケース2から露出する投写光学装置である投写レンズ3を備えている。
投写レンズ3は、後述する光変調装置としての液晶パネルにより光源から射出された光束を画像情報に応じて変調形成された光学像を拡大投写する投写光学系としての機能を具備するものであり、筒状体内部に複数のレンズが収納された組レンズとして構成される。
筐体としての外装ケース2は、投写方向に直交する幅方向の寸法が投写方向寸法よりも大きい幅広の直方体形状をなし、装置本体の上部を覆うアッパーケース21と、装置本体の下部を覆うロアーケース22と、装置本体の前面部分を覆うフロントケース23とを備えている。これら各ケース21〜23は、射出成形等によって成形された合成樹脂製の一体成形品である。
アッパーケース21は、装置本体の上部を覆う上面部21Aと、この上面部21Aの幅方向端部から略垂下する側面部21B、21Cと、上面部21Aの後端部から略垂下する背面部21Dとを備えている。
上面部21Aの投写方向前側には、プロジェクタ1の起動・調整操作を行うための操作パネル24が設けられている。この操作パネル24は、起動スイッチ、画像・音声等の調整スイッチを含む複数のスイッチを備え、プロジェクタ1による投写時には、操作パネル24中の調整スイッチ等を操作することにより、画質・音量等の調整を行うことができる。
また、上面部21Aの操作パネル24の隣には、複数の孔241が形成されていて、この内部には、図示を略したが、音声出力用のスピーカが収納されている。
これら操作パネル24およびスピーカは、後述する装置本体を構成する制御基板と電気的に接続され、操作パネル24による操作信号はこの制御基板で処理される。
背面部21Dには、略中央部分に上面部21A側に切り欠かれた凹部が形成され、この凹部には、後述する制御基板に接続されたインターフェース基板上に設けられたコネクタ群25が露出する。
ロアーケース22は、アッパーケース21との係合面を中心として略対称に構成され、底面部22A、側面部22B、22C、および背面部22Dを備えている。そして、側面部22B、22C、および背面部22Dは、その上端部分でアッパーケース21の側面部21B、21C、および背面部21Dの下端部分と係合し、外装ケース2の側面部分および背面部分を構成する。
底面部22Aには、プロジェクタ1の後端側略中央に固定脚部26が設けられているとともに、先端側幅方向両端に調整脚部27が設けられている。
この調整脚部27は、底面部22Aから面外方向に進退自在に突出する軸状部材から構成され、軸状部材自体は、外装ケース2の内部に収納されている。このような調整脚部27は、プロジェクタ1の側面部分に設けられる調整ボタン271を操作することにより、底面部22Aからの進退量を調整することができる。
これにより、プロジェクタ1から射出された投写画像の上下位置を調整し、適切な位置に投写画像を形成することができるようになる。
また、底面部22Aには、外装ケース2の内部と連通する開口部28、29、30が形成されている。
開口部28は、プロジェクタ1の光源を含む光源装置を着脱する部分であり、通常は、ランプカバー281によって塞がれている。
開口部29、30は、スリット状の開口部として構成される。
開口部29は、光源ランプから射出された光束を画像情報に応じて変調する光変調装置としての液晶パネルを含む光学装置を冷却するための冷却空気取込用の吸気用開口部である。
開口部30は、プロジェクタ1の装置本体を構成する電源ユニット、光源駆動回路を冷却するための冷却空気取込用の吸気用開口部である。
尚、開口部29、30は、そのスリット状開口部分で常時プロジェクタ1内部と連通しているため、塵埃等が内部に侵入しないように、それぞれの内側に防塵フィルタが設けられている。
さらに、底面部22Aには、底面部22Aに対して外側にスライド自在に取り付けられた蓋部材31が設けられていて、この蓋部材31の内部には、プロジェクタ1を遠隔操作するためのリモートコントローラが収納されるようになっている。尚、図示しないリモートコントローラには、前述した操作パネル24に設けられる起動スイッチ、調整スイッチ等と同様のものが設けられていて、リモートコントローラを操作すると、この操作に応じた赤外線信号がリモートコントローラから出力され、赤外線信号は、外装ケース前面及び背面に設けられる受光部311を介して制御基板で処理される。
背面部22Dには、アッパーケース21の場合と同様に、略中央部分に底面部22A側に切り欠かれた凹部が形成され、前記インターフェース基板上に設けられたコネクタ群25が露出するとともに、端部近傍にもさらに開口部32が形成されていて、この開口部32からインレットコネクタ33が露出している。インレットコネクタ33は、外部電源からプロジェクタ1に電力を供給する端子であり、後述する電源ユニットと電気的に接続される。
フロントケース23は、前面部23Aおよび上面部23Bを備えて構成され、上面部23Bの投写方向後端側で前述したアッパーケース21およびロアーケース22の投写方向先端部分と係合する。
前面部23Aには、投写レンズ3を露出させるための略円形状の開口部34、およびその隣に形成された複数のスリットから構成される開口部35が形成されている。
開口部34は、その上面側がさらに開口され、投写レンズ3の鏡筒の一部が露出していて、鏡筒周囲に設けられたズーム・フォーカス調整用のつまみ3A、3Bを外部から操作することができるようになっている。
開口部35は、装置本体を冷却した空気を排出する排気用開口部として構成され、後述するプロジェクタ1の構成部材である光学系、制御系、および電源ユニット・ランプ駆動ユニットを冷却した空気は、この開口部35からプロジェクタ1の投写方向に排出される。
(II)光学系の構成:
図5には本実施形態のプロジェクタ1の光学系の模式図を示す。プロジェクタ1は、インテグレータ照明光学系41と、色分離光学系42と、リレー光学系43と、光変調光学装置および色合成光学装置を一体化した光学装置44と、投写光学装置としての投写レンズ3とを備えているものである。
光学系としての光学ユニット4は、光源装置から射出された光束を画像情報に応じて変調して光学像を形成し、投写レンズ3を介してスクリーン上に投写画像を形成するものであり、図4に示される光学部品用筐体40という光学部品用筐体内に、光源装置や、種々の光学部品等を組み込んだものとして構成される。
この光学部品用筐体40は、部品収納部材401、および図4では図示を略した蓋状部材から構成され、それぞれは、射出成形等による合成樹脂製品である。
部品収納部材401は、光学部品を収納する底面部401A及び側壁部401Bからなる上部が開口された容器状に形成され、側壁部401Bには、複数の溝部401Cが設けられている。この溝部401Cには、光学ユニット4を構成する種々の光学部品が装着され、これにより各光学部品は、光学部品用筐体40内に設定された照明光軸上に精度よく配置される。蓋状部材は、この部品収納部材401に応じた平面形状を有し、部品収納部材401の上面を塞ぐ。
また、部品収納部材401の底面部401Aの光束射出側端部には、円形状の開口部が形成された前面壁が設けられていて、この前面壁には、投写レンズ3の基端部分が接合固定される。
このような光学部品用筐体40内は、図5に示されるように、インテグレータ照明光学系41と、色分離光学系42と、リレー光学系43と、光変調光学系および色合成光学系を一体化した光学装置44とに機能的に大別される。尚、本例における光学ユニット4は、三板式のプロジェクタに採用されるものであり、光学部品用筐体40内で光源から射出された白色光を三色の色光に分離する空間色分離型の光学ユニットとして構成されている。
インテグレータ照明光学系41は、光源から射出された光束を照明光軸直交面内における照度を均一にするための光学系であり、光源装置411、第1レンズアレイ412、第2レンズアレイ413、偏光変換素子414、および重畳レンズ415を備えて構成される。
光源装置411は、放射光源としての光源ランプ416およびリフレクタ417を備え、光源ランプ416から射出された放射状の光線をリフレクタ417で反射して略平行光線とし、外部へと射出する。本例では、光源ランプ416として高圧水銀ランプを採用しているが、これ以外にメタルハライドランプやハロゲンランプを採用することもある。また、本例では、リフレクタ417として放物面鏡を採用しているが、楕円面鏡からなるリフレクタの射出面に平行化凹レンズを配置した構成も採用することもできる。
第1レンズアレイ412は、照明光軸方向から見てほぼ矩形状の輪郭を有する小レンズがマトリクス状に配列された構成を具備している。各小レンズは、光源ランプ416から射出された光束を部分光束に分割し、照明光軸方向に射出する。各小レンズの輪郭形状は、後述する光変調装置441の画像形成領域の形状とほぼ相似形をなすように設定される。
第2レンズアレイ413は、第1レンズアレイ412と略同様の構成であり、小レンズがマトリクス状に配列された構成を具備する。この第2レンズアレイ413は、重畳レンズ415とともに、第1レンズアレイ412の各小レンズの像を光変調装置441上に結像させる機能を有する。
偏光変換素子414は、第2レンズアレイ413からの光を1種類の偏光光に変換するものであり、これにより、光学装置44での光の利用率が高められている。
具体的には、偏光変換素子414によって1種類の偏光光に変換された各部分光束は、重畳レンズ415によって最終的に光学装置44の光変調装置441上にほぼ重畳される。偏光光を変調するタイプの光変調装置441を用いたプロジェクタでは、1種類の偏光光しか利用できないため、ランダムな偏光光を発する光源ランプ416からの光束の略半分が利用されない。このため、偏光変換素子414を用いることにより、光源ランプ416から射出された光束を全て1種類の偏光光に変換し、光学装置44における光の利用効率を高めている。なお。このような偏光変換素子414は、例えば、特開平8−304739号公報に紹介されている。
色分離光学系42は、2枚のダイクロイックミラー421、422と、反射ミラー423とを備え、ダイクロイックミラー421、422によりインテグレータ照明光学系41から射出された複数の部分光束を赤(R)、緑(G)、青(B)の3色の色光に分離する機能を有している。
リレー光学系43は、入射側レンズ431と、リレーレンズ433と、反射ミラー432、434とを備え、色分離光学系42で分離された色光である赤色光を光変調装置441Rまで導く機能を有している。
この際、色分離光学系42のダイクロイックミラー421では、インテグレータ照明光学系41から射出された光束のうち、赤色光成分と緑色光成分とは透過し、青色光成分は反射する。ダイクロイックミラー421によって反射した青色光は、反射ミラー423で反射し、フィールドレンズ418を通って、青色用の光変調装置441Bに到達する。このフィールドレンズ418は、第2レンズアレイ413から射出された各部分光束をその中心軸(主光線)に対して平行な光束に変換する平行化レンズである。他の光変調装置441G、441Rの光入射側に設けられたフィールドレンズ418も同様である。
また、ダイクロイックミラー421を透過した赤色光と緑色光のうちで、緑色光は、ダイクロイックミラー422によって反射し、フィールドレンズ418を通って、緑色用の光変調装置441Gに到達する。一方、赤色光は、ダイクロイックミラー422を透過してリレー光学系43を通り、さらにフィールドレンズ418を通って、赤色光用の光変調装置441Rに到達する。
なお、赤色光にリレー光学系43が用いられているのは、赤色光の光路の長さが他の色光の光路長さよりも長いため、光の発散等による光の利用効率の低下を防止するためである。
すなわち、入射側レンズ431に入射した部分光束をそのまま、フィールドレンズ418に伝えるためである。なお、リレー光学系43には、3つの色光のうちの赤色光を通す構成としたが、これに限らず、例えば、青色光を通す構成としてもよい。
光学装置44は、入射された光束を画像情報に応じて変調してカラー画像を形成するものであり、色分離光学系42で分離された各色光が入射される3つの入射側偏光板442と、各入射側偏光板442の後段に配置される光変調装置441R,441G,441Bと、各光変調装置441R、441G、441Bの後段に配置される射出側偏光板443と、色合成光学系としてのクロスダイクロイックプリズム444とを備える。
光変調装置441R、441G、441Bは、光変調素子となる液晶パネル441R1,441G1,441B1を備えている。この液晶パネル441R1,441G1,441B1は、例えば、ポリシリコンTFTをスイッチング素子として用いたものであり、図5では図示を略したが、対向配置される一対の透明基板内に液晶が密封封入されたパネル本体を、保持枠447A,447B(図8参照)内に収納されている。
光学装置44において、色分離光学系42で分離された各色光は、これら3つの光変調装置441R、441G、441B、入射側偏光板442、および射出側偏光板443によって画像情報に応じて変調されて光学像を形成する。
入射側偏光板442は、色分離光学系42で分離された各色光のうち、一定方向の偏光光のみ透過させ、その他の光束を吸収するものであり、水晶やサファイアガラス等の基板に偏光膜が貼付されたものである。また、基板を用いずに、偏光膜をフィールドレンズ418に貼り付ける構成としてもよい。
射出側偏光板443は、第1射出偏光板443B及び第2射出偏光板443Aから構成されている。
まず、第1射出側偏光板443Bは、前述の入射側偏光板442と略同様の機能を有し、光変調装置441(441R,441G,441B)から射出された光束のうち、所定方向の偏光光のみを透過させ、その他の光束を吸収するとともに、光変調装置441(441R,441G,441B)から射出された光束の視野角を拡大する。
この第1射出側偏光板443Bは、詳しくは後記するが、水晶基板443B1(図8参照)と、この水晶基板443B1の光束射出側端面に貼り付けられる偏光膜443B2(第1射出側偏光素子)(図8参照)と、水晶基板443B1の光束入射側端面に貼り付けられる視野角補償膜443B3(図8参照)とを備えている。偏光膜443B2は水晶基板443B1に貼付されることにより、水晶基板443B1と偏光膜443B2は熱伝達可能に接続されることになる。
第2射出側偏光板443Aは、詳しくは後記するが、第1射出側偏光板443Aと同様に、入射された光束のうち、所定方向の偏光光のみを透過させ、その他の光束を吸収するものである。
この第2射出側偏光板443Aに透過させる偏光光の偏光軸は、偏光板442における透過させる偏光光の偏光軸に対して直交するように設定されている。
このような第2射出側偏光板443Aは、これも詳しくは後記するが、水晶基板443A1(図8参照)と、偏光軸が所定方向とされた状態で、この水晶基板443A1の光束入射側端面に貼り付けられる偏光膜443A2(第2射出側偏光素子)(図8参照)とを備えている。偏光膜443A2は水晶基板443A1に貼付されることにより、水晶基板443A1と偏光膜443A2は熱伝達可能に接続されることになる。
なお、このように射出側偏光板443を2枚として構成すれば、入射する偏光光を、第1射出側偏光板443B、第2射出側偏光板443Aのそれぞれで按分させて吸収させることにより、偏光光で発生する熱を両偏光板443A,443Bで按分させ、それぞれの過熱を抑えることができる。
クロスダイクロイックプリズム444は、射出側偏光板443から射出され、各色光毎に変調された光学像を合成してカラー画像を形成するものである。
クロスダイクロイックプリズム444には、赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが、4つの直角プリズムの界面に沿って略X字状に設けられ、これらの誘電体多層膜により3つの色光が合成される。
そして、このような光学装置44は、ユニットとして構成され、前述した光学部品用筐体40の投写レンズ3の光路前段に配置され、部品収納部材401の底面部にねじ止め固定される。
(III)制御基板5の構造
制御基板5は、図3に示すように、光学ユニット4の上側を覆うように配置され、演算処理装置、液晶パネル駆動用ICが実装されたメイン基板51と、このメイン基板51の後端側で接続され、外装ケース2の背面部21D、22Dに起立するインターフェース基板52とを備えている。
インターフェース基板52の背面側には、前述したコネクタ群25が実装されていて、コネクタ群25から入力する画像情報は、このインターフェース基板52を介してメイン基板51に出力される。
メイン基板51上の演算処理装置は、入力した画像情報を演算処理した後、液晶パネル駆動用ICに制御指令を出力する。駆動用ICは、この制御指令に基づいて駆動信号を生成出力して光変調装置441R,441G,441Bの液晶パネル441R1,441G1,441B1を駆動させ、これにより、画像情報に応じて光変調を行って光学像が形成される。
このようなメイン基板51は、パンチングメタルを折り曲げ加工した板金53によって覆われ、この板金53は、メイン基板51上の回路素子等によるEMI(電磁障害)を防止するために設けられている。
(IV)電源ブロック6の構造:
電源ブロック6は、図示を略すが、電源と、この電源の下方に配置されたランプ駆動回路(バラスト)とを含んで構成される。
電源は、前記インレットコネクタに接続された図示しない電源ケーブルを通して外部から供給された電力を、前記ランプ駆動回路や制御基板5等に供給するものである。
ランプ駆動回路は、光学ユニット4を構成する光源ランプ416に、電源から供給された電力を供給するものであり、前記光源ランプと電気的に接続されている。このようなランプ駆動回路は、例えば、基板に配線することにより構成できる。
(V)冷却ユニット7の構造:
図3および図4に示すように、冷却手段としての冷却ユニット7は、投写レンズ3を挟んでそれぞれ対向配置される2つのシロッコファン71,72と、ダクト73および図示しない導風板とから構成されている。
シロッコファン71は、ロアーケース22の側面部22C側に配置され、シロッコファン72は、投写レンズ3を挟んで、ロアーケース22の前方側略中央に配置されている。これらシロッコファン71,72は、開口部29を介して吸入したプロジェクタ1外部の空気を、光学装置44の下方に配置されたダクト73および導風板74に送風して、光学装置44を下方から冷却する。
(VI)光学装置44の構造:
図6および図7には、光学装置44の斜視図が示されている。詳述すると、図6には、光変調装置441Bを上方から左手に見た光学装置44の斜視図が示されており、また、図7には、光変調装置441Bを下方から右手に見た光学装置44の斜視図が示されている。なお、図6及び図7では、投写レンズ3も示されており、図6ではこの投写レンズ3を2点鎖線で示している。
また、図8は、光学装置44の分解斜視図を示している。なお、図8では、説明を簡略化するために、赤色光が入射する光束入射面の構成のみを示し、他の光束入射面については説明および図示を省略するが、緑色光が入射する光束入射面および青色光が入射する光束入射面においても略同様の構成を備えている。
光学装置44は、図6ないし図8に示すように、クロスダイクロイックプリズム444を中心として、該クロスダイクロイックプリズム444の光束入射面である3面に、光変調装置441R,441G,441Bと、射出側偏光板443(図6および図7では図示を省略)とが取り付けられている。また、クロスダイクロイックプリズム444は、プリズム台座445に載置され、クロスダイクロイックプリズム444の上面には、放熱ブロック446が載置されている。このように、光学装置44は、これらを含めたユニットとして構成されている。
以下、光学装置44の構造を図8ないし図12に基づいて説明する。なお、これら図8
、図9及び図12中に示した矢印X,Y,Zは、それぞれ同一方向を示している。具体的
には、Z軸方向は照明光軸方向を示し、X軸方向は幅方向(水晶基板にあっては、結晶軸
方向も兼ねている)を示し、Y軸方向は高さ方向(水晶基板を示す場合にあっては、同様
に、結晶軸方向に垂直な方向も兼ねている)を示している。
なお、図8中、プリズム台座445は、前述のように、クロスダイクロイックプリズム444を支持するとともに、投写レンズ3を支持する部材である。この図8に示すように、プリズム台座445は、幅方向(X軸方向)から見て略L字状に形成されている。
また、プリズム台座445には、クロスダイクロイックプリズム444が載置される載置部4451と、投写レンズ3を支持するレンズ支持部4452とが形成されている。
このようなプリズム台座445により、クロスダイクロイックプリズム444および第1射出側偏光板443Bで発生して熱が伝導されて放熱されるほか、保持部材448およびピンスペーサ449を介して、第2射出側偏光板443Aおよび光変調装置441R(441G,441B)の熱が伝導されて放熱されるので、これらの光学部品の熱を効率よく冷却することができる。
図8に示すように、クロスダイクロイックプリズム444の赤色光入射面には、クロスダイクロイックプリズム444に近接する方から順に、偏光膜443A2(第2射出側光学素子)と水晶基板443A1とからなる第2射出側偏光板443Aと、熱伝導性の保持部材448と、第1射出側光学素子443B2、水晶基板443B1及び視野角補償素子である視野角補償膜443B3とからなる第1射出側偏光板と、光変調装置441Rが配置されている。
このうち、第2射出側偏光板443Aは、クロスダイクロイックプリズム444の光束入射面に、該第2射出側偏光板443Aの水晶基板443A1の光束射出側端面を対向させて、紫外線硬化性接着剤等により接着固定される。また、水晶基板443A1の光束入射側端面には、偏光膜443A2(第2射出側光学素子)を貼付して、射出側偏光板443A(第2射出側偏光板)を形成している。なお、本実施形態にあっては、この第2射出側偏光板443Aの外形寸法は、クロスダイクロイックプリズム444の光束入射面の寸法と略同一に形成されている。
更には、第2射出側偏光板443Aは、偏光膜443A2を貼付した光束入射側端面を、後記する保持部材448のZ軸方向と対向する面(取付面448D)と接着剤により貼り合わされ、この保持部材448に形成された開口部448A1(図12参照)から偏光膜443A2を露出するようにする。
図9は、水晶基板443A1の結晶軸方向を示した模式図である。図9に示すように、第2射出側偏光板443Aを構成し、第2射出側偏光素子443A2と熱伝達可能に接続された水晶基板443A1は、本実施形態では平面視で横長矩形状であり、結晶軸が後記する第2射出側偏光素子443A2の有効光学領域443AX(図10参照。以下同)の長辺方向(図9のX軸方向。図8も同様)と平行な方向に向いており、また、第2射出側偏光素子443A2の有効光学領域443AXの短辺方向(図9のY軸方向。図8も同様)が水晶基板443A1の結晶軸の方向と垂直方向とされている。
一方、水晶基板443A1の熱伝導率は、結晶軸方向(図9のX軸方向)に向かうに従って高くなるため、本発明の光学装置44を構成する水晶基板443A1においても、距離の長い基板の長辺方向の熱伝導率が高くなり、これにより水晶基板中の面内温度のバラツキを抑制することができる。
なお、水晶基板443A1における、配設される第2射出側偏光素子443A2の有効光学領域443AXの長辺方向の熱伝導率は、8〜12W・m−1・K−1程度であればよく、同様に、水晶基板443A1における配設される第2射出側偏光素子443A2の有効光学領域443AXの短辺方向の熱伝導率は、4〜8W・m−1・K−1程度であればよい。
また、水晶基板443A1の結晶軸が水晶基板443A1に配設される第2射出側偏光素子443A2の有効光学領域443AXの長辺方向に向いていることにより、水晶基板の443A1線膨張率が低い方向が当該長辺方向、線膨張率が高い方向が当該長辺方向と垂直な方向(配設される第2射出側偏光素子443A2の有効光学領域443AXの短辺方向)となるため、熱吸収における膨張変位量を少なくすることができ、接続する偏光膜443A2の軸変形の発生を抑制することができる。
なお、水晶基板443aに貼付される偏光膜443A2は、矩形状のフィルムであり、ポリビニルアルコール(PVA)にヨウ素を吸着・分散させてフィルム状とした後に、このフィルム状のものを一定方向に延伸し、その後、延伸されたフィルムの両面に、アセテートセルロース系のフィルムを接着剤で積層させることにより形成されている。
図10は、水晶基板443A1に偏光膜443A2を貼付した構成の第2射出側偏光板の443Aの有効光学領域443AXと熱伝導率との関係と示す模式図である。
ここで、偏光膜443A2の内側に形成され有効光学領域443AX(図10において2点鎖線で囲まれる領域)は、一般に、偏光膜443A2の外周(外形)から0.5〜2mm程度内側に入った寸法となるが、
水晶基板443A1と接続される光学素子である偏光膜443A2の有効光学領域の外側の横寸法(lx1)と有効光学領域の外側の縦寸法(ly1)と、水晶基板443A1の、接続される偏光膜443A2の有効光学領域の長辺方向(図10の水晶基板等の長辺方向)に平行な方向の熱伝導率(λx1)と、当該平行な方向と垂直な方向(図10の水晶基板等の短辺方向)の熱伝導率(λy1)が下記式(I’)を具備することが好ましい。
Figure 2006106363
このように、水晶基板443A1と接続される偏光膜443A2の有効光学領域の外側の横寸法(lx1)と有効光学領域の外側の縦寸法(ly1)と、水晶基板443A1の、接続される偏光膜443A2の有効光学領域の長辺方向に平行な方向の熱伝導率(λx1)と、当該平行な方向と垂直な方向の熱伝導率(λy1)が前記式(I’)を具備する関係にあるので、偏光板443Aの有効エリア外の周辺部分の熱応力を均一にできX方向とY方向の引張力が均一になり、第2射出側偏光板443Aにおける偏光軸方向のひずみを抑制することができることとなる。
なお、第2射出側偏光板443Aにおける前記縦寸法(ly1)と横寸法(lx1)は、偏光膜443A2の大きさにより決定される有効光学領域443AXや、使用される水晶基板443A1の熱伝導率(λx1)及び熱伝導率(λx1)により、前記式(I’)の関係を具備するように適宜決定すればよいが、概ね、縦寸法(ly1)を0.5〜2mm、横寸法(ly1)を0.5〜2mm程度としておけば、水晶基板443A1の軸変形を効率的に抑えることができる。
次に、第1射出側偏光板443Bは、偏光膜443B2(第1射出側光学素子)、水晶基板443B1及び視野角補償素子443B3とから構成される。
水晶基板443B1は、前記した第2射出側偏光板443Aを構成する水晶基板443A1と同様、平面視で横長矩形状であり、結晶軸が後記する第1射出側偏光素子443B2(偏光膜443B2)の有効光学領域443BXの長辺方向に平行な方向に向いており、また、第1射出側偏光素子443ABの有効光学領域443BXの短辺方向が水晶基板443A1の結晶軸の方向と垂直方向とされている。
ここで、水晶基板443B1において、配設される第1射出側偏光素子443B2(偏光膜443B2)の有効光学領域443BXの長辺方向の熱伝導率は、8〜12W・m−1・K−1程度であればよく、同様に、水晶基板443B1において、配設される第1射出側偏光素子443B2(偏光膜443B2)の有効光学領域443BXの短辺方向の熱伝導率は、4〜8W・m−1・K−1程度であればよい。
第1射出側偏光素子443B2(偏光膜443B2)は、前述した偏光膜443A2と同様のものであるが、光吸収特性が偏光膜443A2とは異なるものが適用され、また、この偏光膜443B2は、その偏光軸が偏光膜443A2と平行となる状態で基板443B1の光束射出側端面に貼り付けられる。
また、視野角補償膜443B3は、光変調装置441(441R,441G,441B)で生じる複屈折を補償し、光変調装置441(441R,441G,441B)で形成された光学像の視野角が拡大され、かつ投写画像のコントラストが向上する。
そして、図11は、図10と同様に、水晶基板443B1に偏光膜443B2及び視野角補償膜443B3を貼付した構成の第1射出側偏光板443Bの有効光学領域443BXと、熱伝導率との関係と示す模式図である。
前記した第2射出側偏光板443Aと同様、水晶基板443B1と接続される偏光膜443B2の有効光学領域443BX(図11において、2点鎖線で囲まれる領域)の外側の縦寸法(ly2)と有効光学領域443BXの外側の横寸法(lx2)と、水晶基板443B1の、接続される偏光膜443B2の有効光学領域の長辺方向(図11の水晶基板等の長辺方向)に平行な方向の熱伝導率(λx2)と、当該平行な方向と垂直な方向(図11の水晶基板等の短辺方向)の熱伝導率(λy2)が下記式(I’’)を具備することが好ましく、下記式(I’’)を具備するようにすれば、第2射出側偏光板443Bの有効エリア外の周辺部分の熱応力を均一にできX方向とY方向の引張力が均一になり、第2射出側偏光板443Bにおける偏光軸方向のひずみを抑制することができることとなる。
Figure 2006106363
そして、これら第1射出側偏光板443B及び第2射出側偏光板443Aは、保持部材448と接着されて(加えて、第2射出側偏光板443Aは、クロスダイクロイックプリズム444とも接着されて)保持固定されることになる。
図12には、これら第1射出側偏光板443B及び第2射出側偏光板443Aを接着して保持固定する保持部材448の斜視図が示されている。
この保持部材448は、図8および図12に示すように、照明光軸方向(Z軸方向)から見て略矩形を有し、アルミニウム等の金属平板を板金加工して形成されている。
この熱伝導性の保持部材448は、図12に示すように、略矩形の板状部448Aと、この板状部448Aの幅方向(X軸方向)両端部から面外方向に、それぞれが対向するように起立した側面部448Bと、これら側面部448Bの高さ方向(Y軸方向)両端から、保持部材448の略中央に向かって略垂直に延出する延出部448Cとを備える。
板状部448Aの略中央には、略矩形の開口部448A1が形成されている。この開口部448A1の寸法は、前記した第2射出側偏光板443Aの水晶基板443A1の外形寸法より小さく形成されており、かかる開口部から第2射出側偏光板443において水晶基板443A1に貼付された偏光膜(第2射出側偏光素子)が露出することになる。なお、この第2射出側偏光板443Bを構成する水晶基板443A1は、保持部材448のZ軸方向と対向する面(取付面448D)と接着剤により貼り合わされる。
なお、保持部材の開口部448A1を覆うように、第2射出側偏光板443Aを構成する水晶基板443A1が保持部材と接着された場合に、第2射出側偏光板443Aの光束入射側の面と、板状部448Aの光束入射側の面とは、同一平面となるように構成されている。すなわち、板状部448Aに対する第2射出側偏光板443Aの突出量は、板状部448Aの厚さ方向(Z軸方向)の寸法と略同じとされている。
また、板状部448Aの高さ方向両端部は、貼付部448A2,448A4が形成されている。これら貼付部448A2,448A4は、クロスダイクロイックプリズム444の下に配置されるプリズム台座445に、板状部448Aを熱伝導可能に貼り付ける部分である。これら貼付部448A2の上端および貼付部448A4の下端の略中央には、開口部448A1に向けて、熱間挙動差吸収用の切り欠き448A3,448A5が形成されている。
側面部448Bには、それぞれの側面部448Bが対向する面に、平面視略矩形の突出部448B1が2つずつ形成されている。この突出部448B1は、高さ方向における両端から延出して形成された延出部448Cよりも中心よりに形成されている。この突出部448B1の光束入射側の面には、延出部448Cに取り付けられる第1射出側偏光板443Bの光束射出側の面が当接される。これにより、保持部材448における第1射出側偏光板443Bの照明光軸方向(Z軸方向)の位置決めがされる。
延出部448Cは、照明光軸方向から保持部材448を見た場合の四隅部分にそれぞれ形成されている。
これら延出部448Cに形成された面のうち、高さ方向(Y軸方向)で互いに対向する面は、第1射出側偏光板443Bの水晶基板443B1が取り付けられる基板取付面448C1である。この基板取付面448C1には、第1射出側偏光板443Bの水晶基板443B1(図8参照)の高さ方向端部から起立する面が、熱伝導可能に接着固定される。ここで、板状部448Aに貼り合わされた第2射出側偏光板443Aにおける偏光膜443A2の偏光軸と、延出部448Cの基板取付面448C1に嵌合された第1射出側偏光板443Bにおける偏光膜443B2の偏光軸とが平行となるように、第1射出側偏光板443Bが取り付けられる。また、これら偏光膜443A2,443B2の偏光軸は、前述の入射側偏光板442における偏光膜の偏光軸と直交するように、射出側偏光板443A,443Bは配置される。
また、延出部448Cの光束入射側の面448C2には、光変調装置441R(441G,441B)を位置決めおよび保持するための棒状部材であるピンスペーサ449(図8参照)が、熱伝導可能に接着固定される。
このような保持部材448によれば、第1射出側偏光板443Aおよび第2射出側偏光板443Bの熱(水晶基板443A1,443B1により吸収された偏光膜443A2,443B2で発生した熱)をが、該保持部材448に伝導され放熱されるので、射出側偏光板443A,443Bの冷却効率を向上できる。
また、板状部448Aの開口部448A1を覆うように接着される第2射出側偏光板443Aと、延出部448Cに保持される第1射出側偏光板443Bとの間には、所定の間隔が生じており、また、この空間の幅方向は、保持部材448の側面部448Bによって囲まれることになる。これによれば、第1射出側偏光板443Bの光束入射面および第2射出側偏光板443Aの光束射出面を冷却する冷却空気の筒状の流路を形成することができる。従って、これら第1射出側偏光板443Bおよび第2射出側偏光板443Aを効果的に冷却することができる。
なお、保持部材448は、アルミニウムのほか、電気亜鉛メッキ鋼板等にて構成してもよく、熱伝導率の高い合成樹脂を用いて射出成形等により成形される合成樹脂成形品や、インバー等の鉄−ニッケル合金、マグネシウム合金、アルミニウム合金等を加工することにより形成するようにしてもよい。
また、ピンスペーサ449は、図8に示すように、熱伝導性の合成樹脂によって構成された棒状部材である。このピンスペーサ449は、前述のように、保持部材448に形成された延出部448Cの光束入射側の面448C2に取り付けられる。また、このピンスペーサ449は、光変調装置441R(441G,441B)に形成された孔447B3に挿通され、該光変調装置441を保持する。
なお、ピンスペーサ449は、熱伝導性の合成樹脂に限らず、光学ガラス、水晶、サフ
ァイア、石英、または蛍石等で構成してもよい。また、金属等の熱伝導率の高い部材で構
成してもよい。
光変調装置441R(441G,441B)は、光変調素子としての液晶パネル441
R1(441G1,441B1)と、この液晶パネル441R1(441G1,441B
1)を光束入射側および光束射出側から挟持する保持枠447とを備えている。
液晶パネル441R1(441G1,441B1)は、ガラスなどからなる一対の透明基板441R11、441R12を備える。この一対の透明基板441R11、441R12は、シール材(図示省略)を介して所定間隔を空けて貼り合わせられている。
また、透明基板441R11、441R12の内側には、TFT素子などのスイッチング素子、ITO(Indium Tin Oxide)などの透明導電体からなる画素電極、配線、配向膜などが形成されている。そして、透明基板441R11、441R12の内側面には、前記画素電極に対応する対向電極、配向膜などが形成されている。これにより、アクティブマトリクス型の液晶パネルが構成されている。なお、透明基板441R11の外径寸法は、透明基板441R12の外径寸法よりも大きく設定されている。
液晶パネル441R1(441G1,441B1)は、前述のように、入射光束を画像情報に応じて変調するものである。この液晶パネル441R1には、上方(Y軸方向)に延出する制御用ケーブル441R2(441G2,441B2は図6および図7参照)が設けられており、該制御用ケーブル441R2(441G2,441B2)を介して、前述の制御基板5に接続される。
保持枠447は、液晶パネル441R1(441G1,441B1)を光束入射側から
保持する第1保持枠447Aと、光束射出側から保持する第2保持枠447Bとから構成
されている。
第1保持枠447Aは、照明光軸方向(Z軸方向)から見て略凸型に形成されるとともに、断面略コ字状に形成され、内部に形成された図示しない収納部に、液晶パネル441R1(441G1,441B1)の光束入射側の面を収納する部材である。
この第1保持枠447Aには、略矩形の開口部447A1と、フィン447A2と、フック447A3とが形成されている。
開口部447A1は、第1保持枠447Aの略中央に形成されている。この開口部447A1の形成位置は、液晶パネル441R1(441G1,441B1)のパネル面に対応しており、この開口部447A1から、液晶パネル441R1(441G1,441B1)が露出する。液晶パネル441R1(441G1,441B1)には、前述の色分離光学系で分離した赤色光(緑色光,青色光)が開口部447A1を介して入射されるので、この部分が画像形成領域となる。
フィン447A2は、開口部447A1の上方略中央に、該開口部447A1から上方に向かって凹状に複数形成されている。このフィン447A2は、内部に収納する液晶パネル441R1(441G1,441B1)で発生した熱が、第1保持枠447Aに伝導された際に、空気との接触面積を大きくして、放熱するための部分である。
フック447A3は、第1保持枠447Aの光束入射側の面における幅方向(X軸方向)両端部から、照明光軸方向(Z軸方向)に起立する面の略中央に形成されている。このフック447A3には、略中央に凸型の突出部が形成されており、この突出部が第2保持枠447Bに形成されたフック嵌合部447B2に嵌合される。
第2保持枠447Bは、平面視略矩形状に形成されている。この第2保持枠447Bには、開口部447B1と、フック嵌合部447B2と、孔447B3とが形成されている。開口部447B1は、第1保持枠447Aと同様に、第2保持枠447Bの略中央で、光変調装置441(441G,441B)の液晶パネル441R1(441G1,441
B1)のパネル面に対応する位置に形成されている。
フック嵌合部447B2は、第2保持枠447Bの幅方向(X軸方向)両端部の略中央部から照明光軸方向(Z軸方向)とは反対方向に起立して形成されている。このフック嵌合部447B2の略中央には、矩形状の開口が形成されており、この開口に前述の第1保持枠447Aのフック447A3に形成された突出部が嵌合され、第1保持枠447Aおよび第2保持枠447Bを固定する。
孔447B3は、第2保持枠447Bの照明光軸方向から見て四隅部分に形成されている。これらの孔447B3は、その内周縁が照明光軸方向(Z軸方向)とは反対方向に向けて突出するように形成されたバーリング孔である。これら孔447B3にピンスペーサ449が挿通され、位置調整がされた後に、第2保持枠447Bは、接着剤等によりピンスペーサ449に固定される。
このような光変調装置441Rにより、液晶パネル441R1(441G1,441B1)で発生した熱が、第1保持枠447Aおよび第2保持枠447Bから構成される保持枠447に伝導される。また、保持枠447に伝導された熱は、保持枠447で放熱されるとともに、ピンスペーサ449を介して保持部材448に伝導されて放熱される。これにより、液晶パネル441R1(441G1,441B1)の熱を放熱する面積を拡大することができる。従って、該液晶パネル441R1(441G1,441B1)を効果的に冷却することができ、破損、劣化等を抑えて製品寿命を延ばすことができるとともに、
光学像形成の安定化を図ることができる。
なお、前述の保持枠447は、成形または板金加工により形成できる。また、その材料としては、熱伝導率の高い部材、例えば、インバーおよび42Ni−Fe等のニッケル−鉄合金、マグネシウム合金、アルミニウム合金、炭素鋼、ステンレス等の金属、または、カーボンファイバー、カーボンナノチューブ等のカーボンフィラーを混入させた樹脂(ポリカーボネート、ポリフェニレンサルファイド、液晶樹脂等)等を採用できる。
(VII)第1実施形態の効果:
前記した第1実施形態によれば、下記の効果を好適に奏することができる。
すなわち、光学装置44が、射出側偏光素子である偏光膜443A2,443B2から発生される熱を放熱する水晶基板443A1,443B1と熱伝達可能に接続されており、また、この水晶基板443A1,443B1の結晶軸は光学素子である偏光膜443A2,443B2の有効光学領域の長辺方向に平行な方向とする構成を採用しているので、結晶形成方向である水晶基板の長辺方向に対して熱伝導率が高くなることになり、水晶基板と熱伝達可能に接続された偏光膜443A2,443B2の面内温度分布を均一化することができ、偏光膜443A2,443B2により発生した熱を効率的に放熱することができ、偏光板443A,443Bの性能を良好な状態に保持することができる。
また、光学素子である偏光膜443A2,443B2と熱伝達可能に接続される水晶基板443A1,443B1の結晶軸が偏光膜443A2,443B2の有効光学領域の長辺方向に平行な方向とする構成を採用しているので、水晶基板443A1,443B1の線膨張率が低い方向が長辺方向、線膨張率が高い方向が短辺方向となるため、熱吸収における膨張変位量を抑制することができ、接続された偏光膜443A2,443B2(射出側偏光素子)の軸変形の発生を防止することができる。
また、プロジェクタ1がかかる光学装置44を備えているため、偏光膜443A2,443B2(射出側偏光素子)の冷却を効率よく行い、また、高温時における射出側偏光板443A,443Bの軸変形及び接続される光変調装置441の位置ずれによる画素ずれの発生を防止することができる。これにより、投写画像の高画質化を図ることができるプロジェクタ1となる。
(VIII)第2実施形態:
次に、本発明に係る第2実施形態を図面に基づいて説明する。なお、以下の説明では、前記第1実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
前記した第1実施形態にあっては、平面視で横長矩形状であり、結晶軸が長辺方向に向いている水晶基板443A1,443B1を、光学素子である偏光膜443A2,443B2と接続させ、射出側偏光板443A,443Bの構成部材として適用した例を示すものであった。
これに対して第2実施形態では、水晶基板を、射出側偏光板443A,443Bの構成部材とともに、光変調装置441Rを構成する防塵レンズ441R111,441R121として適用している。
図13は、第2実施形態の光学装置を構成する光変調装置の構造を示す分解斜視図である。この光変調装置441R(441G,441B)は、光変調装置である液晶パネル441R1(441G1,441B1)と、この液晶パネル441R1(441G1,441B1)を光束入射側および光束射出側から挟持する保持枠447とを備えているという点においては前記した第1実施形態の光学装置を構成する光変調装置441Rと共通するものである。
これに加えて、本実施形態にあっては、液晶パネル441R1(441G1,441B1)を構成するガラスなどからなる一対の透明基板441R11、441R12には、光束射出側および光束入射側に塵埃付着を防止するための防塵ガラス441R111、441R121がそれぞれ密着状態で貼り付けられている。
防塵ガラス441R111、441R121は、一対の透明基板441R11、441R12の外面を被覆して塵埃の付着を防止するものであり、このような防塵ガラス441R111、441R121の外面に塵埃が付着しても、フォーカス状態とならないため、投写画像上の表示の影となることはない。
ここで、透明基板441R11、441R12に貼り付けられる防塵ガラス441R111の外径寸法は、透明基板441R11の外径寸法と略同じである。また、透明基板441R11、441R12に貼り付けられる防塵ガラス441R121の外径寸法は、透明基板441R12の外径寸法と略同じである。
そして、本実施形態にあっては、防塵ガラス441R111、441R121として、図9に示す水晶基板443B1と同様に、平面視で横長矩形状であり、結晶軸が長辺方向に向いており、また、水晶基板の短辺方向が結晶軸の方向と垂直方向とされる水晶基板が使用されている。ここで、防塵ガラス441R111、441R121となる水晶基板の長辺方向の熱伝導率は、8〜12W・m−1・K−1程度であればよく、同様に、水晶基板の短辺方向の熱伝導率は、4〜8W・m−1・K−1程度であればよい。
この本実施形態によれば、前記した第1実施形態の光学装置44及びプロジェクタ1が奏する効果のほか、光変調装置に搭載される液晶パネル441Rの冷却が効率よく行われることになり、投写画像の高画質化を図ることができるプロジェクタ1を提供することができる。
(IX)実施形態の変形:
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。
例えば、前記した実施形態では、平面視で横長矩形状であり、結晶軸が偏光膜443A2,443B2の有効光学領域の長辺方向に平行に向いている水晶基板を、射出側偏光板443A,443B(第1実施形態)や光変調装置441Rの防塵レンズ441R111,441R121(第2実施形態)として適用した例を示したが、これには限定されず、かかる水晶基板を入射側偏光板442(図5参照)の構成部材として適用するようにしてもよい。これにより、入射側偏光素子の面内温度分布を均一化することができ、この入射側偏光素子により発生した熱を効率的に放熱することができる。
前記各実施形態では、3つの光変調装置441R,441G,441Bを用いたプロジ
ェクタの例のみを挙げたが、4つ以上の光変調装置を用いたプロジェクタにも適用するようにしてもよい。
また、前記各実施形態では、光変調装置441(441R,441G,441B)は、
光変調素子として液晶パネル441R1,441G1,441B1を用いたが、マイクロ
ミラーを用いたデバイスなど、液晶以外の光変調素子を用いてもよい。
さらに、前記各実施形態では、液晶パネルに、光入射面と光射出面とが異なる透過型の
液晶パネルを用いていたが、光入射面と光射出面とが同一となる反射型の液晶パネルを用
いてもよい。
加えて、前記各実施形態では、スクリーンを観察する方向から投写を行なうフロントタ
イプのプロジェクタの例のみを挙げたが、本発明は、スクリーンを観察する方向とは反対
側から投写を行なうリアタイプのプロジェクタにも適用可能である。
以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は実施例等の内容に何ら限定されるものではない。
前記した第1実施形態のプロジェクタ1を用いて、当該プロジェクタ1を構成する光学装置44の第1射出側偏光板443Bを構成する水晶基板443B1として、下記仕様の水晶基板を使用してプロジェクタ1を運転させ、発熱温度の低減効果を確認した。
具体的には、結晶軸が接続される偏光膜443B2の長辺方向に平行な方向に向いている実施例1の水晶基板と、結晶軸が水晶基板の短辺方向(長辺方向に垂直な方向)に向いている下記仕様の参考例1の水晶基板を適用した第1実施形態のプロジェクタを同条件で運転させて、発熱温度の差異を確認した。
(実施例1の水晶基板の仕様)
サイズ :縦(短辺)16mm×横(長辺)×23.5mm×厚さ1.4mm
熱伝導率(長辺方向) :10.7W・m−1・K−1
熱伝導率(短辺方向) : 6.2W・m−1・K−1
(参考例1の水晶基板の仕様)
サイズ :縦(短辺)16mm×横(長辺)×23.5mm×厚さ1.4mm
熱伝導率(長辺方向) : 6.2W・m−1・K−1
熱伝導率(短辺方向) :10.7W・m−1・K−1
なお、水晶基板に貼付される偏光膜443B2のサイズは、縦15mm×横21mmとして、水晶基板443B1(第1射出側偏光板)は、両側部を保持部材に接着剤(SE4486:東レ・ダウコーニング・シリコーン株式会社製)にて接着固定した。
前記の水晶基板を用いて、光源の光束の明るさを1930lm、2000lm、及び2300lmとした場合の水晶基板の温度(℃)の測定結果を表1に示す。
(結 果)
Figure 2006106363
表1の結果からわかるように、いずれの明るさにおいても、結晶軸が偏光膜の有効光学領域の長辺方向に平行に向いている実施例1の水晶基板は、結晶軸が偏光膜の有効光学領域の短辺方向に平行(長辺方向に垂直な方向)に向いている参考例1の水晶基板より発熱温度が低く、当該発熱温度の低減効果が認められた。
このように、実施例1の水晶基板をプロジェクタに適用することにより、高温時の発熱量も少なく、偏光板として適用した場合にあっても、高温時における偏光板の軸変形の発生を抑制することができる。
本発明の光学装置及びプロジェクタは、例えば、会議、学会、展示会等でのマルチメディアプレゼンテーションに適用される光学装置及びプロジェクタとして多目的に利用することができる。
本発明の第1実施形態に係るプロジェクタを上方から見た斜視図。 前記実施形態におけるプロジェクタを下方から見た斜視図。 前記実施形態におけるプロジェクタの内部構成を表す斜視図。 前記実施形態におけるプロジェクタの内部構成を表す斜視図。 前記実施形態におけるプロジェクタの光学系の構造を表す模式図。 前記実施形態における光学装置を上方から見た斜視図。 前記実施形態における光学装置を下方から見た斜視図。 前記実施形態における光学装置の構造を示す分解斜視図。 前記実施形態における光学装置を構成する水晶基板の結晶軸方向を示した模式図。 前記実施形態における、第2射出側偏光板の有効光学領域と熱伝導率との関係と示す模式図。 前記実施形態における、第1射出側偏光板の有効光学領域と熱伝導率との関係と示す模式図。 前記実施形態における保持部材を光束入射側から見た斜視図。 本発明の第2実施形態の光学装置を構成する光変調装置の構造を示す分解斜視図。
符号の説明
1…プロジェクタ、3…投写レンズ(投写光学装置)、4…光学ユニット、44…光学装置、411…光源装置、441(441R,441G,441B)…光変調装置、441R1,441G1,441B1…液晶パネル(光変調素子)、442…入射側偏光板(光学素子)、443…射出側偏光板、443A…第2射出側偏光板、443A1…水晶基板、443A2…偏光膜(第2射出側偏光素子:光学素子)、443B…第1射出側偏光板、443B1…水晶基板、443B2…偏光膜(第1射出側偏光素子:光学素子)、443B3…視野角補償膜(視野角補償素子)444…クロスダイクロイックプリズム、448…保持部材、449…ピンスペーサ(棒状部材)

Claims (8)

  1. 光源から射出された光束を画像情報に応じて変調する光変調素子を含む複数の光学素子を備えた光学装置であって、
    前記光学素子のうち少なくとも一つと熱伝達可能に接続され、当該光学素子の熱を放熱する水晶基板を備え、
    前記水晶基板の結晶軸は接続された前記光学素子の有効光学領域の長辺方向に平行であることを特徴とする光学装置。
  2. 請求項1に記載の光学装置において、
    前記光学素子は、前記光変調素子の光路前段側に配設され、入射光束のうち所定の偏光光のみを透過する入射側偏光素子を含み、
    前記水晶基板は、当該入射側偏光素子と熱伝達可能に接続され、当該入射側偏光素子の熱を放熱することを特徴とする光学装置。
  3. 請求項1に記載の光学装置において、
    前記光学素子は、前記光変調素子の光路後段側に配設され、入射光束のうち所定の偏光光のみを透過する射出側偏光素子を含み、
    前記水晶基板は、当該射出側偏光素子と熱伝達可能に接続され、当該射出側偏光素子の熱を放熱することを特徴とする光学装置。
  4. 請求項3に記載の光学装置において、
    前記射出側偏光素子が第1射出側偏光素子と、前記第1射出側偏光素子の光束射出側に配設される第2射出側偏光素子からなり、
    前記水晶基板は、前記第1射出側偏光素子及び/または第2射出側偏光素子と熱伝達可能に接続され、接続された射出側偏光素子の熱を放熱することを特徴とする光学装置。
  5. 請求項4に記載の光学装置において、
    光学素子である複数の光変調素子で変調された各色光を合成する色合成光学装置を備え、
    前記第2射出側変更素子と接続された前記水晶基板が、前記色合成光学装置の光束入射側端面に貼付されていることを特徴とする光学装置。
  6. 請求項2ないし請求項5のいずれかに記載の光学装置において、
    前記水晶基板と接続される光学素子の有効光学領域の外側の横寸法(l)と有効光学領域の外側の縦寸法(l)と、
    前記水晶基板の、接続される当該光学素子の有効光学領域の長辺方向に平行な方向の熱伝導率(λ)と、当該平行な方向と垂直な方向の熱伝導率(λ)が下記式(I)を具備することを特徴とする光学装置。
    Figure 2006106363
  7. 請求項3ないし請求項6のいずれかに記載の光学装置において、
    前記射出側偏光素子に視野角補償素子が配設されていることを特徴とする光学装置。
  8. 光源から射出された光束を画像情報に応じて変調して光学像を形成し、前記光学像を拡
    大投写するプロジェクタであって、
    前記請求項1ないし請求項7のいずれかに記載の光学装置を備えていることを特徴とするプロジェクタ。
JP2004292962A 2004-10-05 2004-10-05 光学装置及びプロジェクタ Withdrawn JP2006106363A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292962A JP2006106363A (ja) 2004-10-05 2004-10-05 光学装置及びプロジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292962A JP2006106363A (ja) 2004-10-05 2004-10-05 光学装置及びプロジェクタ

Publications (1)

Publication Number Publication Date
JP2006106363A true JP2006106363A (ja) 2006-04-20

Family

ID=36376180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292962A Withdrawn JP2006106363A (ja) 2004-10-05 2004-10-05 光学装置及びプロジェクタ

Country Status (1)

Country Link
JP (1) JP2006106363A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080957A (ja) * 2014-10-21 2016-05-16 セイコーエプソン株式会社 プロジェクター
WO2024171280A1 (ja) * 2023-02-14 2024-08-22 シャープNecディスプレイソリューションズ株式会社 投写型表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080957A (ja) * 2014-10-21 2016-05-16 セイコーエプソン株式会社 プロジェクター
WO2024171280A1 (ja) * 2023-02-14 2024-08-22 シャープNecディスプレイソリューションズ株式会社 投写型表示装置

Similar Documents

Publication Publication Date Title
JP4042474B2 (ja) 光学装置、およびプロジェクタ
JP3758622B2 (ja) 光学装置、光学ユニット、および、プロジェクタ
KR100643977B1 (ko) 광학 장치 및 이 광학 장치를 구비한 프로젝터
JPWO2004099871A1 (ja) 光学装置、およびプロジェクタ
TW200401939A (en) Optical modulator, optical device and projector
US7073912B2 (en) Optical parts casing and projector
JP2005134858A (ja) 光学装置及びリアプロジェクタ
JP3953067B2 (ja) 光変調装置保持体、光学装置、および、プロジェクタ
JPWO2004036307A1 (ja) 光学装置、および、プロジェクタ
JP4033210B2 (ja) 光学装置及びこれを備えたプロジェクタ
US7210796B2 (en) Optical apparatus and projector
JP4127047B2 (ja) プロジェクタ用筐体及びこの筐体を備えたプロジェクタ
JP4466147B2 (ja) 光学装置およびプロジェクタ
JP4561289B2 (ja) 光学装置及びプロジェクタ
JP2004138913A (ja) 光学部品用筐体、光学ユニットおよびプロジェクタ
JP2003262917A (ja) 光学装置、およびこの光学装置を備えたプロジェクタ
JP2006106363A (ja) 光学装置及びプロジェクタ
JP2004170512A (ja) 光学装置、光学ユニット、およびプロジェクタ
JP2004240024A (ja) 光学装置、およびプロジェクタ
JP4492168B2 (ja) 光学装置およびプロジェクタ
JP2005114997A (ja) 光学装置、およびリアプロジェクタ
JP4042766B2 (ja) 光学装置、およびプロジェクタ
JP2012022118A (ja) プロジェクター
JP2004078164A (ja) 光学装置、および、この光学装置を備えるプロジェクタ
JP4042765B2 (ja) 光学装置、およびプロジェクタ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108