[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006105291A - Elastic bearing body, bolt joining method and damper structure - Google Patents

Elastic bearing body, bolt joining method and damper structure Download PDF

Info

Publication number
JP2006105291A
JP2006105291A JP2004293685A JP2004293685A JP2006105291A JP 2006105291 A JP2006105291 A JP 2006105291A JP 2004293685 A JP2004293685 A JP 2004293685A JP 2004293685 A JP2004293685 A JP 2004293685A JP 2006105291 A JP2006105291 A JP 2006105291A
Authority
JP
Japan
Prior art keywords
pressure receiving
bolt
elastic bearing
elastic
bearing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004293685A
Other languages
Japanese (ja)
Inventor
Takanori Sato
孝典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004293685A priority Critical patent/JP2006105291A/en
Publication of JP2006105291A publication Critical patent/JP2006105291A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing body free from generation of creeping and relaxation for a long period with high stress intensity. <P>SOLUTION: This elastic bearing body 1 is composed of a storage body 3 formed into the curved surface shape and having a pressure receiving body 2 made of rubber or resin inside, and compression force is acted on at least a pressure receiving surface 2a of the pressure receiving body 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、弾性支承体とそれによるボルト接合方法更に、弾性支承体を応用したダンパー構造に関するものである。   The present invention relates to, for example, an elastic bearing body, a bolt joining method using the elastic bearing body, and a damper structure to which the elastic bearing body is applied.

従来、例えば、橋梁の制振構造において、若しくは、建築構造物の免震装置において、エネルギー吸収させるために、図20に示すように、皿バネ37等による弾性部材が使用されるものが知られている(特許文献1,2参照)。また、建築構造、機械構造、車両構造等においてボルト締結部でプレストレスを保持したり、車両や建物等の重量構造物を弾性支持したりするために、前記皿バネを始めスプリングワッシャーやバネ座金等が使用されていることが知られている。
特開2004−197502号公報 特開2004−11318号公報
2. Description of the Related Art Conventionally, for example, in a vibration damping structure of a bridge or a seismic isolation device for a building structure, an elastic member using a disc spring 37 or the like is used as shown in FIG. 20 to absorb energy. (See Patent Documents 1 and 2). In addition, in order to maintain prestress at bolt fastening parts in building structures, mechanical structures, vehicle structures, etc., and to elastically support heavy structures such as vehicles and buildings, the above-mentioned disc springs, spring washers and spring washers Etc. are known to be used.
Japanese Patent Laid-Open No. 2004-197502 JP 2004-11318 A

しかし、従来の弾性支承体では、長期のクリープやレラクセーションが問題となる。また、高張力ボルトによる摩擦接合構造では、部材同士の接触が異種材料同士の接触であれば、イオン化傾向の差に伴う電食作用により、接触面に錆が発生するおそれがある。この錆の発生により、摩擦係数が変化し、所望の摩擦抵抗力や減衰作用が得られなくなるという課題がある。また、付勢手段としての皿バネが高コストであり、皿バネを積層すると厚さが厚くなり、直径が大きくなる等して現場で使用困難となるという課題がある。更に、他のスプリングワッシャー等では弾性限界エネルギーが小さいので適用範囲が限られてしまうという課題がある。   However, long-term creep and relaxation become a problem with conventional elastic bearings. Further, in the friction bonding structure using high tension bolts, if contact between members is contact between different materials, there is a possibility that rust is generated on the contact surface due to an electrolytic corrosion effect accompanying a difference in ionization tendency. Due to the occurrence of rust, there is a problem that the coefficient of friction changes and the desired frictional resistance and damping action cannot be obtained. Further, there is a problem that the disc spring as the urging means is expensive, and when the disc springs are stacked, the thickness increases and the diameter increases, making it difficult to use on site. Furthermore, other spring washers and the like have a problem that the range of application is limited because the elastic limit energy is small.

本発明に係る弾性支承体の上記課題を解決して目的を達成するための要旨は、内部にゴムまたは樹脂である受圧体を装着し、曲面形状の収納体で拘束し、前記受圧体の少なくとも受圧面に圧縮力が作用するようにすれば、受圧体は三軸圧縮応力状態となり、収納体が降伏しない限り、弾性挙動し続けることである。   The gist for achieving the object by solving the above-mentioned problems of the elastic bearing body according to the present invention is to mount a pressure receiving body made of rubber or resin inside and restrain it with a curved-shaped storage body, and at least the pressure receiving body If the compressive force is applied to the pressure receiving surface, the pressure receiving body is in a triaxial compressive stress state and continues to behave elastically unless the storage body yields.

前記受圧体の受圧面は、収納体の開口部の端面位置よりも低い位置にすれは、確実な三軸圧縮応力状態を保つことができる。   If the pressure receiving surface of the pressure receiving body is at a position lower than the end face position of the opening of the storage body, a reliable triaxial compressive stress state can be maintained.

本発明に係るボルト接合方法の要旨は、前記弾性支承体にボルト挿通用の貫通孔を設け、前記貫通孔にボルトを挿通して当該弾性支承体を介在させて定着させることである。   The gist of the bolt joining method according to the present invention is to provide a through hole for inserting a bolt in the elastic support body, insert a bolt into the through hole, and fix the elastic support body through the elastic support body.

本発明に係る摺動型ダンパー構造の要旨は、前記ボルト接合方法で少なくとも二つの部材を接合する際に、少なくとも一方の部材におけるボルト挿通用の取付孔を長孔に形成して当該一方の部材の摺動を可能にすることで滑り摩擦エネルギーを吸収することである。 また、本発明に係る回転型ダンパー構造の要旨は、前記ボルト接合方法で少なくとも二つの部材を接合する際に、一方の部材に対して他方の部材を回転可能にしてその回転時の摩擦エネルギーを吸収することである。   The gist of the sliding damper structure according to the present invention is that when at least two members are joined by the bolt joining method, an attachment hole for inserting a bolt in at least one member is formed into a long hole, and the one member It is possible to absorb the sliding friction energy by enabling the sliding. Further, the gist of the rotary damper structure according to the present invention is that when at least two members are joined by the bolt joining method, the other member can be rotated with respect to one member, and the frictional energy at the time of rotation can be obtained. To absorb.

本発明の弾性支承体により、弾性限界エネルギーが大きく高応力度で使用でき、構造が簡易で軽量化されており、取り扱いやすくコストが低減される。また、長期使用においてクリープやレラクセーションが生じず、弾性挙動において安定している。
アルミニウム薄板をサンドイッチすることで摩擦係数を従来の2倍程度に上げることができる。接合部において、ボルト本数が半減するだけではなく、滑りを生じた後も耐力低下しないので、塑性設計と同様の設計法が活用できる。
更に、ダンパー構造に使用することで、長期に亘って軸力の低下がわずかであり、安定して確実に、大きなエネルギーを吸収することができる。
The elastic bearing body of the present invention has a large elastic limit energy and can be used at a high degree of stress. The structure is simple and lightweight, and it is easy to handle and the cost is reduced. In addition, creep and relaxation do not occur during long-term use, and the elastic behavior is stable.
The friction coefficient can be increased to about twice that of the prior art by sandwiching aluminum thin plates. At the joint, the number of bolts is not only halved, but the proof stress does not decrease even after slipping, so the same design method as plastic design can be used.
Furthermore, by using it for a damper structure, the axial force decreases little over a long period of time, and large energy can be absorbed stably and reliably.

本発明に係る弾性支承体1は、図1に示すように、内部にゴムまたは樹脂である受圧体2を装着した曲面形状の収納体3で拘束され、前記受圧体2の少なくとも受圧面2aに圧縮力が作用するようにしたものである。更に、前記受圧体2の受圧面2aは、収納体3の開口部の端面位置3aよりも低い位置にある。   As shown in FIG. 1, the elastic bearing body 1 according to the present invention is restrained by a curved-shaped storage body 3 in which a pressure receiving body 2 made of rubber or resin is mounted, and is attached to at least the pressure receiving surface 2 a of the pressure receiving body 2. The compression force is applied. Further, the pressure receiving surface 2 a of the pressure receiving body 2 is at a position lower than the end surface position 3 a of the opening of the storage body 3.

前記受圧体2は、例えば、樹脂として、フッソ樹脂、ポリエチレン樹脂、ABS樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、アセタール樹脂、ポリプロピレン樹脂、等で形成されている。また、前記収納体3は、例えば、鋼管製、樹脂製、セラミック製等でリング状に形成されており、底板3bを有し、その形状においては、図1(B)に示すように平面視で円形状のほか、楕円状、円弧状等の曲面形状を含むものである。   The pressure receiving body 2 is formed of, for example, as a resin, a fluorine resin, a polyethylene resin, an ABS resin, an epoxy resin, a polyethylene resin, a polystyrene resin, a polyamide resin, a polyimide resin, a polycarbonate resin, an acetal resin, a polypropylene resin, or the like. . The storage body 3 is formed in a ring shape, for example, made of steel pipe, resin, ceramic, and the like, and has a bottom plate 3b. The shape of the storage body 3 is a plan view as shown in FIG. In addition to a circular shape, it includes a curved surface shape such as an elliptical shape or an arc shape.

前記受圧体2は、底板3b側の下半分だけが、前記収納体3に接着剤4を介して、接着されている。このような弾性支承体1は、例えば、車両や建物等の重量構造物を所定のバネ定数で弾性支持するものに使用される。   Only the lower half of the pressure receiving body 2 is bonded to the storage body 3 via an adhesive 4. Such an elastic support body 1 is used, for example, for elastically supporting a heavy structure such as a vehicle or a building with a predetermined spring constant.

図2に示すように、底板5に取付孔5aを有した弾性支承体6を両側に設けて、受圧体2の変形代の間隙を有するバネ構造とする。なお、底板5はリング状の収納体3に溶接で固着されている。   As shown in FIG. 2, an elastic support body 6 having a mounting hole 5 a in the bottom plate 5 is provided on both sides to form a spring structure having a clearance for deformation of the pressure receiving body 2. The bottom plate 5 is fixed to the ring-shaped storage body 3 by welding.

図3(A),(B)に示すように、弾性支承体7において、受圧体2と底板5とに、ボルト挿通用の貫通孔9を設け、前記貫通孔にボルトを挿通して当該弾性支承体を介在させて定着させるようにすることができる。また、図3(C),(D)に示すように、弾性支承体8において、収納体3に底板5を溶接することもできる。   As shown in FIGS. 3A and 3B, in the elastic support body 7, a through-hole 9 for inserting a bolt is provided in the pressure receiving body 2 and the bottom plate 5, and the bolt is inserted into the through-hole and the elastic support body 7. It can be fixed by interposing a support body. In addition, as shown in FIGS. 3C and 3D, the bottom plate 5 can be welded to the storage body 3 in the elastic bearing body 8.

図4に示すように、受圧体2の一部に薄鋼板11を間隙をおいて積層して埋設した弾性支承体10とすることができる。また、図5に示すように、受圧体2の一部に、布13を積層してこれを収納体3に収納して弾性支承体12を構成することができる。この布13としては、例えば、船の帆などに用いる帆布がある。   As shown in FIG. 4, an elastic support body 10 in which thin steel plates 11 are laminated and embedded in a part of the pressure receiving body 2 with a gap can be formed. Further, as shown in FIG. 5, the elastic support 12 can be configured by laminating a cloth 13 on a part of the pressure receiving body 2 and storing the cloth 13 in the storage 3. Examples of the cloth 13 include a canvas used for ship sails.

次に、粘性ダンパーとの組み合わせとして、図6に示すように、受圧体2を収納している筒状の収納体3の外側に、外筒14があり、その間隙に粘性体15が配設されてそこに上側から筒状の内筒16が配設されている。このような構造の弾性支承体17により、例えば、車両や建物等の重量物の支承材となり、上下方向の振動を低減させる。   Next, as a combination with the viscous damper, as shown in FIG. 6, an outer cylinder 14 is provided outside the cylindrical storage body 3 storing the pressure receiving body 2, and the viscous body 15 is disposed in the gap. A cylindrical inner cylinder 16 is disposed on the upper side. With the elastic bearing body 17 having such a structure, for example, it becomes a bearing material for heavy objects such as vehicles and buildings, and reduces vibrations in the vertical direction.

更に、重量物の免震支承材として、図7に示すように、転動自在なベアリング18と一体化させた弾性支承体19とすることができる。このほか、図8(A)に示すように、通常の免震装置との一体化を図ることもできる。図8(B)に示すように、金属板をゴムの中に積層して埋設した水平変形用の免震装置の下に受圧体2を配設した弾性支承体20aと、免震装置21と受圧体2及び収納体3とを交互に配設した弾性支承体20bとするものである。   Furthermore, as shown in FIG. 7, an elastic bearing 19 integrated with a rollable bearing 18 can be used as a heavy-weight seismic isolation bearing. In addition, as shown in FIG. 8A, integration with a normal seismic isolation device can be achieved. As shown in FIG. 8 (B), an elastic bearing body 20a in which a pressure receiving body 2 is disposed under a horizontal deformation seismic isolation device in which a metal plate is laminated and embedded in rubber, a seismic isolation device 21, and An elastic bearing body 20b is provided in which the pressure receiving body 2 and the storage body 3 are alternately arranged.

次に、図9に示すように、ボルト用の貫通孔9を有する本発明の弾性支承体7,8を、例えば、基礎アンカーボルトの定着に使用することができる。基礎部22に埋設したアンカーボルト23に、定着プレート25を載置して定着ナット24を締結する際に、弾性支承体1を用いて締結する。このようにして、本発明に係るボルトの接合方法とすることができる。このボルト接合方法によれば、図10に示すように、収納体3で拘束される受圧体2の、荷重−変位曲線の傾斜程度が緩く荷重に対して変位量が大きいので、長期に亘りクリープやレラクセーションが生じても定着力の低下が防止される構造となる。   Next, as shown in FIG. 9, the elastic bearing bodies 7 and 8 of the present invention having the through holes 9 for bolts can be used for fixing a basic anchor bolt, for example. When the fixing plate 25 is placed on the anchor bolt 23 embedded in the foundation portion 22 and the fixing nut 24 is fastened, the anchor bolt 23 is fastened using the elastic support body 1. In this way, the bolt joining method according to the present invention can be obtained. According to this bolt joining method, as shown in FIG. 10, the pressure-receiving body 2 restrained by the storage body 3 has a gentle slope of the load-displacement curve and a large displacement with respect to the load. Even if relaxation occurs, the fixing force is prevented from being lowered.

同様にして、図11に示すように、鉄道のレール26の連結部に前記弾性支承体7,8を使用することで、夏冬の温度変化による伸縮や長期的なボルトの緩みに対応して、ほとんど締結力が低下することが無く、健全な接合状態を維持するものである。更に、図12に示すように、例えば、プレキャスト鉄筋コンクリート構造の柱と梁等の接合部で、弾性支承体7,8を使用するものである。また、土木構造物の鉄筋コンクリート製のセグメント同士の接合部にも同様の目的で使用することができる。   Similarly, as shown in FIG. 11, by using the elastic bearing bodies 7 and 8 at the connecting portion of the rail 26 of the rail, it can cope with expansion and contraction due to temperature change in summer and winter and long-term loosening of the bolt. The fastening force is hardly reduced, and a healthy joined state is maintained. Furthermore, as shown in FIG. 12, for example, elastic bearing bodies 7 and 8 are used at the joints between columns and beams of a precast reinforced concrete structure. Moreover, it can be used for the same purpose also in the joint part of the reinforced concrete segments of a civil engineering structure.

図13に示すように、鉄骨構造において高張力ボルト接合する際に、鉄骨材27,28に摩擦係数を上げる摩擦材28aを挟んでボルト23,ナット24及び弾性支承体で締結するものである。前記摩擦材28aは、例えば、アルミニウム板、銅板、鉛板、真鍮板、チテン板、亜鉛板、ニケッル板、タリウム板、ステンレス板、銀板、金板、白金板、インジウム板、バリウム板、それらの合金板、それらのメッキ鋼板の非鉄金属板、または、アルミナ板、ジルコニア板、チタニア板、酸化亜鉛板、ムライト板、窒化珪素板、窒化硼素板、窒化アルミニウム板、サイアロン板、炭化珪素板、炭化チタン板、ほう化物板、硫化物板、それらの複合板のセラミックス板などである。   As shown in FIG. 13, when high-tensile bolts are joined in a steel structure, the steel members 27 and 28 are fastened with bolts 23, nuts 24, and elastic bearings with a friction material 28a that increases the friction coefficient interposed therebetween. The friction material 28a is, for example, an aluminum plate, a copper plate, a lead plate, a brass plate, a titanium plate, a zinc plate, a nickel plate, a thallium plate, a stainless plate, a silver plate, a gold plate, a platinum plate, an indium plate, a barium plate, or the like. Alloy plates, non-ferrous metal plates of those plated steel plates, or alumina plates, zirconia plates, titania plates, zinc oxide plates, mullite plates, silicon nitride plates, boron nitride plates, aluminum nitride plates, sialon plates, silicon carbide plates, Examples thereof include a titanium carbide plate, a boride plate, a sulfide plate, and a ceramic plate of a composite plate thereof.

そして、図14に示すように、少なくとも一方の鉄骨材27におけるボルト挿通用の取付孔を長孔27aに形成して当該一方の部材の摺動を可能にすることで滑り摩擦エネルギーを吸収する摺動型ダンパー構造において、ボルトの接合部に本発明に係る弾性支承体7,8を使用するものである。これにより、前記鉄骨材27と摩擦材28aの間において摩耗により板厚が減っても、弾性支承体7,8によりボルト23の軸力の低下が防止されるものである。   Then, as shown in FIG. 14, a bolt insertion mounting hole in at least one of the steel frames 27 is formed in the long hole 27a to allow sliding of the one member, thereby absorbing sliding friction energy. In the dynamic damper structure, the elastic bearing bodies 7 and 8 according to the present invention are used at the joint portion of the bolt. Thus, even if the plate thickness is reduced due to wear between the steel frame material 27 and the friction material 28a, the axial force of the bolt 23 is prevented from being lowered by the elastic bearing bodies 7 and 8.

前記鉄骨材27,28のうちの他方の鉄骨材28においてブラスト等の粗面処理を施して、前記摩擦板28aと鉄骨材27との界面で摺動する。また、前記鉄骨材27,28と摩擦材28aとが異種金属である場合には、電食が生じるので、図14に示すように、それを防ぐために摩擦材28aの周囲を粘弾性材29等でシールしている。更に、図15(A)に示すように、前記摩擦材28aにおける摩耗粉を巻き込まないように、当該摩擦材28aを摺動方向に分割したり、図15(B)に示すように、摩擦材表面にフェースライン28bを設けたりしている。   The other of the steel frames 27 and 28 is subjected to a rough surface treatment such as blasting and slides at the interface between the friction plate 28 a and the steel frame 27. Further, when the steel frames 27 and 28 and the friction material 28a are dissimilar metals, galvanic corrosion occurs. Therefore, as shown in FIG. 14, a viscoelastic material 29 or the like is provided around the friction material 28a to prevent it. It is sealed with. Furthermore, as shown in FIG. 15 (A), the friction material 28a is divided in the sliding direction so as not to entrain the wear powder in the friction material 28a, or as shown in FIG. 15 (B), the friction material A face line 28b is provided on the surface.

前記摺動型ダンパー構造を、図16に示すように、鉄骨構造のブレース端部の接合部に設けることで、制震構造においても適用することができる。また、図17に示すように、鉄骨構造における間柱30の両端部の接合に前記摺動型ダンパー構造を適用することで、ロッキング曲げ変形を利用してエネルギーを吸収する制震構造となる。   As shown in FIG. 16, the sliding damper structure can be applied to a vibration control structure by providing it at the joint portion of the brace end of the steel structure. In addition, as shown in FIG. 17, by applying the sliding damper structure to the joining of both ends of the stud 30 in the steel structure, a damping structure that absorbs energy using rocking bending deformation is obtained.

このほか、図18(A),(B),(C)に示すように、鉄筋コンクリート構造の耐震壁31において、その側面側には間隙を設け、上面と梁32下の空間に、互いにT型断面の鉄骨33、34をアンカーし、それらの水平方向の相対変形を利用した摺動型ダンパー構造とすることができる。また、同図(D)に示すように、固定側にも摩擦材を用いても良いし、滑り面から連続する一体の摩擦材35としてもよい。   In addition, as shown in FIGS. 18 (A), (B), and (C), in the seismic wall 31 of the reinforced concrete structure, a gap is provided on the side surface thereof, and a T-shape is formed between the upper surface and the space below the beam 32. The steel frames 33 and 34 having a cross section are anchored, and a sliding damper structure using the relative deformation in the horizontal direction can be obtained. Further, as shown in FIG. 4D, a friction material may be used on the fixed side, or an integrated friction material 35 continuous from the sliding surface.

図19に示すように、本発明の弾性支承体7,8を使用してボルト接合するにおいて、一方の部材に対して他方の部材を回転可能にして接合し、その回転時の摩擦エネルギーを吸収する用にした回転型ダンパー構造である。図19(A)に示すように、例えば、4枚の板36を互いに回転可能にして、且つ、ボルト23,ナット24でボルト接合し、ワッシャーの代わりに図19(C)に示すように、弾性支承体7,8を使用する。これにより、例えば、免震装置の一部に使用することで、図19(B)に示すように、±10cm〜±80cmぐらいの大変形の範囲の振動エネルギーを吸収させることができる。この弾性支承体7,8により、長期に亘り前記板36を挟装している前記ボルト23の軸力の低下が防止されて、安定して回転摩擦によるエネルギーを吸収する。   As shown in FIG. 19, when using the elastic bearing bodies 7 and 8 of the present invention to join the bolts, the other member can be rotated and joined to one member, and the frictional energy at the time of rotation can be absorbed. This is a rotary damper structure that is used for this purpose. As shown in FIG. 19A, for example, four plates 36 can be rotated with each other, and bolted with bolts 23 and nuts 24, and instead of the washer, as shown in FIG. 19C, Use elastic bearings 7,8. Thereby, for example, by using it for a part of a seismic isolation device, as shown in FIG. 19 (B), vibration energy in a large deformation range of about ± 10 cm to ± 80 cm can be absorbed. The elastic bearing members 7 and 8 prevent a decrease in the axial force of the bolt 23 that sandwiches the plate 36 over a long period of time, and stably absorbs energy due to rotational friction.

本発明に係る弾性支承体1の縦断面図(A)と、平面図(B)とである。It is the longitudinal cross-sectional view (A) of the elastic bearing body 1 which concerns on this invention, and a top view (B). 同本発明の他の態様の弾性支承体6の縦断面図(A)と、平面図(B)とである。They are the longitudinal cross-sectional view (A) of the elastic bearing body 6 of the other aspect of the same invention, and a top view (B). 同弾性支承体7の縦断面図(A)と平面図(B)、弾性支承体8の縦断面図(C)と平面図(D)とである。They are the longitudinal cross-sectional view (A) and top view (B) of the elastic support body 7, and the longitudinal cross-sectional view (C) and top view (D) of the elastic support body 8. 同弾性支承体10の縦断面図(A)と、底面図(B)とである。It is the longitudinal cross-sectional view (A) of the elastic bearing body 10, and a bottom view (B). 同弾性支承体12の縦断面図(A)と、平面図(B)とである。They are the longitudinal cross-sectional view (A) of the elastic support body 12, and a top view (B). 同弾性支承体17の縦断面図である。3 is a longitudinal sectional view of the elastic support body 17. FIG. 同弾性支承体19の縦断面図である。It is a longitudinal cross-sectional view of the elastic bearing body 19. 同弾性支承体20a,20bの縦断面図(A),(B)である。It is the longitudinal cross-sectional view (A) of the elastic bearing bodies 20a and 20b (B). 同本発明に係るボルト接合方法を示す断面図である。It is sectional drawing which shows the volt | bolt joining method which concerns on the same this invention. 本発明に係る弾性支承体6の荷重(N)と撓み(δ)との関係を示す線図である。It is a diagram which shows the relationship between the load (N) and bending ((delta)) of the elastic support body 6 which concerns on this invention. 同本発明に係る弾性支承体7,8によるボルト接合方法の例を示す説明図である。It is explanatory drawing which shows the example of the bolt joining method by the elastic bearing bodies 7 and 8 based on the same invention. 同本発明に係る弾性支承体7,8によるボルト接合方法の例を示す説明図である。It is explanatory drawing which shows the example of the bolt joining method by the elastic bearing bodies 7 and 8 based on the same invention. 本発明に係る弾性支承体7,8による摺動型ダンパー構造を示す断面図である。It is sectional drawing which shows the sliding damper structure by the elastic bearing bodies 7 and 8 which concern on this invention. 摩擦板27,28の平面図である。3 is a plan view of friction plates 27 and 28. FIG. 摩擦板28の変形例を示す平面図(A),(B)である。FIG. 6 is plan views (A) and (B) showing a modification of the friction plate 28. 本発明に係る摺動型ダンパー構造をブレースに適用した例を示す拡大説明図(A)と、A−A線に沿った断面図(B)と、その全体の位置を示す概略説明図(B)とである。An enlarged explanatory view (A) showing an example in which the sliding damper structure according to the present invention is applied to a brace, a cross-sectional view (B) along the line AA, and a schematic explanatory view showing the entire position (B) ). 間柱30に摺動型ダンパーを適用した例を示す説明図(A)と、その全体の位置を示す概略説明図(B)とである。It is explanatory drawing (A) which shows the example which applied the sliding type damper to the stud 30, and the schematic explanatory drawing (B) which shows the position of the whole. 耐震壁31に摺動型ダンパー構造を適用した例を示す正面図(A)と、側面図(B)と、拡大断面図(C)と、他の例の拡大断面図(D)とである。They are the front view (A) which shows the example which applied the sliding-type damper structure to the earthquake-resistant wall 31, a side view (B), an expanded sectional view (C), and an expanded sectional view (D) of another example. . 本発明に係る回転型ダンパー構造の使用状態説明図(A),(B)と、一部の底面図(C)とである。They are the use condition explanatory drawing (A) of the rotary type damper structure concerning this invention, (B), and a partial bottom view (C). 従来例における皿バネ37の使用状態の断面図(A)と、平面図(B)とである。It is sectional drawing (A) of the use condition of the disc spring 37 in a prior art example, and a top view (B).

符号の説明Explanation of symbols

1 弾性支承体、
2 受圧体、 2a 受圧面、
3 収納体、 3a 端面位置、
3b 底板、
4 接着剤、
5 底板、 5a 取付孔、
6 弾性支承体、
7 弾性支承体、
8 弾性支承体、
9 貫通孔、
10 弾性支承体、
11 薄鋼板、
12 弾性支承体、
13 布、
14 外筒、
15 粘性、
16 内筒、
17 弾性支承体、
18 ベアリング、
19 弾性支承体、
20a,20b 弾性支承体、
21 免震装置、
22 基礎部、
23 ボルト、
24 定着ナット、
25 定着プレート、
26 レール、
27,28 鉄骨材、
27a 長孔、
28a 摩擦材、 28b フェースライン、
29 粘弾性材、
30 間柱、
31 耐震壁、
32 梁、
33,34 鉄骨、
35 摩擦材、
36 板。
1 Elastic bearing body,
2 pressure receiving body, 2a pressure receiving surface,
3 container, 3a end face position,
3b bottom plate,
4 Adhesive,
5 Bottom plate, 5a Mounting hole,
6 Elastic bearing body,
7 Elastic bearing body,
8 Elastic bearing body,
9 Through hole,
10 Elastic bearing body,
11 Thin steel sheet,
12 Elastic bearing body,
13 cloth,
14 outer cylinder,
15 viscosity,
16 inner cylinder,
17 Elastic bearing body,
18 bearings,
19 Elastic bearing body,
20a, 20b elastic bearing body,
21 Seismic isolation device,
22 Foundation,
23 volts,
24 fixing nut,
25 fixing plate,
26 rails,
27, 28 Steel frame,
27a long hole,
28a friction material, 28b face line,
29 Viscoelastic material,
30 studs,
31 Seismic wall,
32 beams,
33, 34 steel frame,
35 friction material,
36 plates.

Claims (5)

内部にゴムまたは樹脂である受圧体を装着した曲面形状の収納体で、前記受圧体の少なくとも受圧面に圧縮力が作用するようにしたこと、
を特徴とする弾性支承体。
A curved storage body with a pressure receiving body made of rubber or resin inside, and a compressive force acting on at least the pressure receiving surface of the pressure receiving body;
Elastic bearing body characterized by
受圧体の受圧面は、収納体の開口部の端面位置よりも低い位置にあること
を特徴とする請求項1に記載の弾性支承体。
The elastic bearing body according to claim 1, wherein the pressure receiving surface of the pressure receiving body is located at a position lower than an end face position of the opening of the storage body.
請求項1または2に記載の弾性支承体にボルト挿通用の貫通孔を設け、前記貫通孔にボルトを挿通して当該弾性支承体を介在させて定着させること、
を特徴とするボルト接合方法。
A through hole for inserting a bolt is provided in the elastic support body according to claim 1, and a bolt is inserted into the through hole so that the elastic support body is interposed and fixed.
A bolt joining method characterized by the above.
請求項3に記載のボルト接合方法で少なくとも二つの部材を接合する際に、少なくとも一方の部材におけるボルト挿通用の取付孔を長孔に形成して当該一方の部材の摺動を可能にすることで滑り摩擦エネルギーを吸収すること、
を特徴とする摺動型ダンパー構造。
When joining at least two members by the bolt joining method according to claim 3, a mounting hole for inserting a bolt in at least one member is formed in a long hole so that the one member can slide. To absorb sliding friction energy with
A sliding damper structure characterized by
請求項3に記載のボルト接合方法で少なくとも二つの部材を接合する際に、一方の部材に対して他方の部材を回転可能にしてその回転時の摩擦エネルギーを吸収すること、
を特徴とする回転型ダンパー構造。
When joining at least two members by the bolt joining method according to claim 3, the other member can be rotated with respect to one member to absorb frictional energy at the time of rotation,
Rotating damper structure characterized by
JP2004293685A 2004-10-06 2004-10-06 Elastic bearing body, bolt joining method and damper structure Pending JP2006105291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293685A JP2006105291A (en) 2004-10-06 2004-10-06 Elastic bearing body, bolt joining method and damper structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293685A JP2006105291A (en) 2004-10-06 2004-10-06 Elastic bearing body, bolt joining method and damper structure

Publications (1)

Publication Number Publication Date
JP2006105291A true JP2006105291A (en) 2006-04-20

Family

ID=36375275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293685A Pending JP2006105291A (en) 2004-10-06 2004-10-06 Elastic bearing body, bolt joining method and damper structure

Country Status (1)

Country Link
JP (1) JP2006105291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058025A (en) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp Braking device
JP2010255751A (en) * 2009-04-24 2010-11-11 Bridgestone Corp Plug for base isolation structures, and base isolation structure
JP2017121983A (en) * 2016-01-06 2017-07-13 ニッタ株式会社 Three-dimensional vibration control device
CN113417500A (en) * 2021-06-29 2021-09-21 震安科技股份有限公司 Bolt-free friction damping device
CN114198456A (en) * 2021-11-16 2022-03-18 北京卫星制造厂有限公司 Vibration damper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058025A (en) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp Braking device
JP2010255751A (en) * 2009-04-24 2010-11-11 Bridgestone Corp Plug for base isolation structures, and base isolation structure
JP2017121983A (en) * 2016-01-06 2017-07-13 ニッタ株式会社 Three-dimensional vibration control device
CN113417500A (en) * 2021-06-29 2021-09-21 震安科技股份有限公司 Bolt-free friction damping device
CN114198456A (en) * 2021-11-16 2022-03-18 北京卫星制造厂有限公司 Vibration damper

Similar Documents

Publication Publication Date Title
US6141919A (en) Energy absorber
CN100355999C (en) Damping brace and structure
EP1206615B1 (en) A device for damping movements of structural elements and a bracing system
JP4034006B2 (en) Vibration energy absorbing device for tension structure and construction method thereof
JP2009256885A (en) Exposed column base structure
TW201623758A (en) Inter-member connecting structure
JP2007247733A (en) Damper set
JPH07508080A (en) Vibration suppression coupling device for seismic protection of structures
US5303524A (en) Earthquaker protection system and method of installing same
JP2002235454A (en) Damping damper device
JP3586416B2 (en) Elastic-plastic hysteretic brace with axial yielding and damping steel structure
JP4060311B2 (en) Bolt fastening structure
JP2006105291A (en) Elastic bearing body, bolt joining method and damper structure
WO1998036130A1 (en) Structure of pile foundation
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
JP5009431B1 (en) Construction method of horizontal restoring spring device for seismic isolation structure
JP2005042537A (en) Damping braces and structures
JP2001182776A (en) Base isolation bearing unit
KR102087999B1 (en) Anchor socket for bridge structure
CN105507443B (en) A kind of civil engineering damping device and shock-dampening method
JP2003343116A (en) Elastic-plastic hysteresis brace with axial yielding and damping steel structure
JP2010106614A (en) Aseismatic structure of viaduct
CN112095448B (en) Assembled damping device of high-speed railway bridge and application method and replacement method thereof
JP2013189750A (en) Fixation component for transmitting shear force, with fixation maintaining function
CN205369576U (en) Civil engineering damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071004

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A977 Report on retrieval

Effective date: 20090910

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105