[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006103099A - Method for producing molded article, and molded article - Google Patents

Method for producing molded article, and molded article Download PDF

Info

Publication number
JP2006103099A
JP2006103099A JP2004291405A JP2004291405A JP2006103099A JP 2006103099 A JP2006103099 A JP 2006103099A JP 2004291405 A JP2004291405 A JP 2004291405A JP 2004291405 A JP2004291405 A JP 2004291405A JP 2006103099 A JP2006103099 A JP 2006103099A
Authority
JP
Japan
Prior art keywords
mold
molding
molded
molded product
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004291405A
Other languages
Japanese (ja)
Inventor
Takashi Nogami
隆 野上
Hiroshi Hasebe
浩 長谷部
Masaru Yoneyama
勝 米山
Hiroshi Obara
広 小原
Toshihide Sakuta
俊秀 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2004291405A priority Critical patent/JP2006103099A/en
Publication of JP2006103099A publication Critical patent/JP2006103099A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a molded article which can produce the molded article without spoiling its quality even when a large amount of a filler is contained in a molding material, and to provide the molded article. <P>SOLUTION: The molding material 1 in which the filler 3 is mixed with a powdered thermoplastic resin 2 to occupy at least 60 vol% of the total volume of the mixture is melted/pressurized by a mold 10 heated at the melting point of the resin 2 or above while being decompressed and cooled together with the mold 10, and the mold 10 is pressurized during the cooling to produce the molding comprising a radiation plate etc. Since the molding material 1 comprising the powdered thermoplastic resin 2 and the filler 3 is press-molded by approximately uniform force, the molding can easily be molded from the molding material 1 containing a large amount of the filler 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多量のフィラーを含有する燃料電池用セパレータ、放熱板、電磁波シールドの筐体等からなる成形品の製造方法及び成形品に関するものである。   The present invention relates to a method for producing a molded article and a molded article comprising a separator for a fuel cell containing a large amount of filler, a heat radiating plate, an electromagnetic shielding casing, and the like.

樹脂に多量のフィラーを添加分散させた成形材料、具体的には、樹脂にフィラーを全体に対する体積比で60Vol%以上添加した成形材料は、様々な成形品の成形に使用されると考えられるが、この成形品の一つとして、近年注目されている燃料電池の燃料電池用セパレータがあげられる。   A molding material in which a large amount of filler is added and dispersed in a resin, specifically, a molding material in which a filler is added to a resin in a volume ratio of 60 vol% or more in terms of the volume ratio is considered to be used for molding various molded products. As one of the molded products, there is a fuel cell separator that has been attracting attention in recent years.

この成形品である燃料電池用セパレータは、図示しないが、所定の樹脂と多量の黒鉛とからなる成形材料を使用して表裏両面に流路を備えた薄板に成形され、ガス不透過、導電性、耐食性を満たすよう設計される(特許文献1参照)。この燃料電池用セパレータの製造方法としては、例えば冷えた金型に成形材料を射出する射出成形法が考えられる(特許文献2参照)
特開2002‐373671号公報 特開2003‐242994号公報
This fuel cell separator, which is a molded product, is not shown in the figure, but is molded into a thin plate with channels on both front and back surfaces using a molding material consisting of a predetermined resin and a large amount of graphite. Designed to satisfy corrosion resistance (see Patent Document 1). As a method for manufacturing this fuel cell separator, for example, an injection molding method in which a molding material is injected into a cold mold can be considered (see Patent Document 2).
JP 2002-373671 A Japanese Patent Laid-Open No. 2003-242994

しかしながら、係る燃料電池用セパレータのような成形品を射出成形法により成形するのは、樹脂に黒鉛からなる多量のフィラーを混練することが成形材料の流動性の観点から容易ではないので、理論的にはともかく、実際にはきわめて困難であり、しかも、良好な導電性等の特性を得ることができないという大きな問題がある。また、金型に成形材料が射出される際、冷却固化のタイミングが部位によりずれたり、圧力分布が不均一になる等の理由により、燃料電池用セパレータに反りや曲がり等が発生して品質の向上を図ることができないおそれが少なくない。   However, it is theoretically difficult to form a molded article such as a fuel cell separator by injection molding because it is not easy to knead a large amount of filler made of graphite into a resin from the viewpoint of fluidity of the molding material. In any case, there is a serious problem that it is extremely difficult in practice, and good characteristics such as conductivity cannot be obtained. In addition, when the molding material is injected into the mold, the cooling and solidification timing is shifted depending on the part, or the pressure distribution is non-uniform. There is often a risk that improvement cannot be achieved.

本発明は上記に鑑みなされたもので、成形材料に多量のフィラーを含有しても品質を損なうことなく成形品を成形することのできる成形品の製造方法及び成形品を提供することを目的としている。   The present invention has been made in view of the above, and an object of the present invention is to provide a method for producing a molded product and a molded product that can mold a molded product without impairing the quality even if the molding material contains a large amount of filler. Yes.

本発明においては上記課題を解決するため、粉末状の熱可塑性樹脂にフィラーを全体に対する体積比で60Vol%以上添加した成形材料を用いて圧縮成形し、成形品を得る成形品の製造方法であって、
成形材料を熱可塑性樹脂の融点以上の温度を有する金型により溶融加圧し、成形材料を金型ごと冷却することを特徴としている。
In order to solve the above-mentioned problems, the present invention is a method for producing a molded product, in which a molded product is obtained by compression molding using a molding material obtained by adding a filler to a powdered thermoplastic resin in a volume ratio of 60 Vol% or more. And
The molding material is melt-pressed with a mold having a temperature equal to or higher than the melting point of the thermoplastic resin, and the molding material is cooled together with the mold.

なお、金型を減圧しながら溶融加圧することができる。また、金型をバンピングしながら溶融加圧することができる。また、金型をその冷却時に加圧することができる。   The mold can be melted and pressurized while reducing the pressure. Further, it is possible to melt and press the mold while bumping it. Also, the mold can be pressurized during cooling.

また、本発明においては上記課題を解決するため、請求項1ないし4いずれかに記載の成形品の製造方法により成形品を製造したことを特徴としている。   Moreover, in order to solve the said subject, in this invention, the molded article was manufactured with the manufacturing method of the molded article in any one of Claim 1 thru | or 4.

また、本発明においては上記課題を解決するため、粉末状の熱可塑性樹脂にフィラーを全体に対する体積比で60Vol%以上添加した成形材料を用いて圧縮成形し、成形品を得る成形品の製造方法であって、
成形材料を熱可塑性樹脂の融点以上の温度を有する金型により溶融加圧してタブレットを一次成形し、このタブレットを熱可塑性樹脂の融点以上の温度を有する金型により二次成形し、この二次成形したタブレットを金型ごと冷却することを特徴としている。
Further, in the present invention, in order to solve the above-mentioned problems, a method for producing a molded product is obtained by compression molding using a molding material obtained by adding a filler to a powdered thermoplastic resin in a volume ratio of 60 Vol% or more with respect to the whole. Because
The molding material is melt-pressed with a mold having a temperature equal to or higher than the melting point of the thermoplastic resin to primarily form a tablet, and the tablet is secondarily molded with a mold having a temperature equal to or higher than the melting point of the thermoplastic resin. It is characterized by cooling the molded tablet together with the mold.

なお、金型を減圧しながらタブレットを一次成形することができる。また、一次成形及び又は二次成形の際、金型をバンピングすることもできる。また、金型をその冷却時に加圧することもできる。   Note that the tablet can be primary molded while the mold is decompressed. In addition, the mold can be bumped during the primary molding and / or the secondary molding. It is also possible to pressurize the mold during cooling.

さらに、本発明においては上記課題を解決するため、請求項6ないし9いずれかに記載の成形品の製造方法により成形品を製造したことを特徴としている。   Furthermore, in order to solve the above-mentioned problems, the present invention is characterized in that a molded product is manufactured by the method for manufacturing a molded product according to any one of claims 6 to 9.

ここで、特許請求の範囲におけるフィラーには、少なくとも導電フィラー、酸化アルミ、水酸化アルミ、ボロンナイトライト、金属繊維、炭素繊維、カーボンナノチューブ等が含まれる。成形品には、少なくとも燃料電池用セパレータ、放熱板、電磁波シールドの筐体等が含まれる。   Here, the filler in the claims includes at least a conductive filler, aluminum oxide, aluminum hydroxide, boron nitrite, metal fiber, carbon fiber, carbon nanotube, and the like. The molded product includes at least a separator for a fuel cell, a heat radiating plate, an electromagnetic shielding housing, and the like.

本発明によれば、成形材料に多量のフィラーを含有しても、品質を損なうことなく成形品を製造することができるという効果がある。   According to the present invention, even if a large amount of filler is contained in the molding material, there is an effect that a molded product can be manufactured without impairing the quality.

以下、図面を参照して本発明の第一の発明の好ましい実施の形態を説明すると、本実施形態における成形品の製造方法は、図1ないし図3に示すように、熱可塑性樹脂2に多量のフィラー3を混合した成形材料1を熱可塑性樹脂2の融点以上の温度に加熱された金型10により減圧しながら溶融加圧し、成形材料1を金型10ごと冷却するとともに、この金型10をその冷却時に加圧し、放熱板等からなる成形品20を製造するようにしている。   Hereinafter, a preferred embodiment of the first invention of the present invention will be described with reference to the drawings. A method for manufacturing a molded article in this embodiment is described in FIG. 1 to FIG. The molding material 1 mixed with the filler 3 is melt-pressed while being decompressed by a mold 10 heated to a temperature equal to or higher than the melting point of the thermoplastic resin 2 to cool the molding material 1 together with the mold 10. Is pressed during cooling to produce a molded product 20 made of a heat sink or the like.

成形材料1は、粉末化された所定の熱可塑性樹脂2と、粉末化されて熱可塑性樹脂2に混練(kneading)されることなく混合されるフィラー3とからなる。この成形材料1は、熱可塑性樹脂2にフィラー3が全体に対する体積比で60Vol%以上混合されることにより調製される。   The molding material 1 includes a predetermined thermoplastic resin 2 that has been pulverized, and a filler 3 that is pulverized and mixed without being kneaded with the thermoplastic resin 2. This molding material 1 is prepared by mixing 60 vol% or more of the filler 3 with the thermoplastic resin 2 in a volume ratio with respect to the whole.

熱可塑性樹脂2としては、加熱により軟化して塑性を示す粉末の熱可塑性樹脂2であれば、特に限定されるものではないが、例えばポリプロピレン(PP)やポリスチレン(PS)等があげられる。この熱可塑性樹脂2は、加工の容易性や二次凝集防止の観点から50〜200メッシュパス、好ましくは100メッシュパス(MAX150μm)程度の大きさに微粉砕加工され、所要量が秤取される。   The thermoplastic resin 2 is not particularly limited as long as it is a powdered thermoplastic resin 2 that is softened by heating and exhibits plasticity, and examples thereof include polypropylene (PP) and polystyrene (PS). The thermoplastic resin 2 is finely pulverized into a size of about 50 to 200 mesh pass, preferably about 100 mesh pass (MAX 150 μm) from the viewpoint of ease of processing and prevention of secondary aggregation, and a required amount is weighed. .

フィラー3は、例えば粉末の酸化アルミやボロンナイトライト等からなり、10〜150μm、好ましくは10〜100μmの平均粒径に形成され、所要量が秤取される。このフィラー3の平均粒径が10〜150μmの範囲なのは、10μm未満の場合には、熱可塑性樹脂2との混合時に舞い上がり、作業環境が悪化したり、電気的特性が低下するからである。逆に、150μmを超える場合には、成形品20の機械的特性が低下するからである。   The filler 3 is made of, for example, powdered aluminum oxide or boron nitrite, and is formed to have an average particle diameter of 10 to 150 μm, preferably 10 to 100 μm, and a required amount is weighed. The reason why the average particle size of the filler 3 is in the range of 10 to 150 μm is that when it is less than 10 μm, the filler 3 rises upon mixing with the thermoplastic resin 2 and the working environment is deteriorated or the electrical characteristics are deteriorated. Conversely, if it exceeds 150 μm, the mechanical properties of the molded product 20 are degraded.

上記において、成形品20を製造する場合には、先ず、加熱した金型10に成形材料1を投入し(図1参照)、この金型10を型締めして真空下で加熱圧縮成形することにより成形材料1を溶融加圧する(図2参照)。金型10は、減圧用の真空装置に接続され、加熱圧縮成形前に熱気浴、赤外線、高周波予熱等の方法により、予め成形材料1の熱可塑性樹脂2の融点以上の温度に加熱される。金型10は、成形材料1を投入した後に加熱することもできる。   In the above, when the molded product 20 is manufactured, first, the molding material 1 is put into a heated mold 10 (see FIG. 1), and the mold 10 is clamped and heat compression molded in a vacuum. Thus, the molding material 1 is melt-pressed (see FIG. 2). The mold 10 is connected to a vacuum device for pressure reduction, and is heated in advance to a temperature equal to or higher than the melting point of the thermoplastic resin 2 of the molding material 1 by a method such as hot air bath, infrared rays, and high frequency preheating before heat compression molding. The mold 10 can be heated after the molding material 1 is charged.

この加熱圧縮成形の際、成形品20の強度を向上させたり、平面度の悪化を防止したり、あるいはガス抜きしたい場合には、型締めした金型10を所定の回数(例えば1〜6回)開閉してバンピングする(図2参照)。   At the time of this heat compression molding, in order to improve the strength of the molded product 20, to prevent deterioration of flatness, or to degas, the mold 10 that has been clamped is fixed a predetermined number of times (for example, 1 to 6 times). ) Open and close and bump (see Fig. 2).

成形材料1を溶融加圧して所定の形状に加熱圧縮成形したら、金型10を成形機から取り外し、この金型10を加圧機構を有する冷却機に移載して成形材料1を金型10ごと冷却し、その後、金型10を型開きして脱型すれば、成形品20を製造することができる(図3参照)。金型10の冷却方法としては、例えば放置して室温まで下げる方法や冷却水を使用する方法等があげられる。   When the molding material 1 is melt-pressed and heat-compressed into a predetermined shape, the mold 10 is removed from the molding machine, and the mold 10 is transferred to a cooler having a pressurizing mechanism to transfer the molding material 1 to the mold 10. Then, the molded product 20 can be manufactured by opening the mold 10 and removing the mold 10 (see FIG. 3). Examples of the method for cooling the mold 10 include a method in which the mold 10 is left to cool to room temperature and a method in which cooling water is used.

上記方法によれば、粒子状の熱可塑性樹脂2とフィラー3からなる成形材料1を略均一の力でプレス成形するので、多量のフィラー3を含有する成形材料1で成形品20を容易に成形することができる。また、成形の是非が成形材料1の流動性に大きく左右される射出成形法ではなく、圧縮成形法を採用するので、成形品20に反りや曲がり等が発生するのを抑制防止し、品質の向上を図ることができる。また、この方法によれば、加圧状態で冷却するので、フィラー3同士の接触の弛み、いわゆるスプリングバックによる特性の低下を招かずに成形品20を得ることができる。   According to the above method, since the molding material 1 composed of the particulate thermoplastic resin 2 and the filler 3 is press-molded with a substantially uniform force, the molded product 20 is easily molded with the molding material 1 containing a large amount of the filler 3. can do. In addition, the compression molding method is used instead of the injection molding method in which the pros and cons of molding is greatly influenced by the fluidity of the molding material 1, so that the molded product 20 can be prevented from warping, bending, etc. Improvements can be made. Moreover, according to this method, since it cools in a pressurization state, the molded article 20 can be obtained, without causing the fall of the characteristic by loose contact of the fillers 3 and what is called a spring back.

また、熱硬化性樹脂を使用する場合には、樹脂が流動してフィラー3間を埋めた後、硬化が終了するまで型開きすることができず、その結果、成形サイクルの低下を招くことが少なくない。この点に鑑み、成形サイクルを上げるため、硬化時間を早める処方を採用すると、樹脂がフィラー3を埋める前に硬化が始まり、結果として空隙の発生による強度の低下、複雑な形状における未充填等の欠点が生じることがあった。   Further, when using a thermosetting resin, after the resin flows and fills the space between the fillers 3, the mold cannot be opened until the curing is completed. As a result, the molding cycle may be lowered. Not a few. In view of this point, when adopting a formulation that accelerates the curing time in order to increase the molding cycle, curing starts before the resin fills the filler 3, resulting in a decrease in strength due to the occurrence of voids, unfilled in a complicated shape, etc. There may be drawbacks.

これに対し、本実施形態によれば、熱可塑性樹脂2を使用することにより、硬化するための時間が不要となるので、成形サイクルの短縮が可能であるとともに、成形材料1が融点以上の温度にある間は流動性を保つため、空隙や未充填の発生を抑制することが可能になる。さらに、真空下の成形により、係る効果を増大させることが可能になる。   On the other hand, according to the present embodiment, since the time for curing is not required by using the thermoplastic resin 2, the molding cycle can be shortened, and the molding material 1 has a temperature equal to or higher than the melting point. During this period, fluidity is maintained, so that generation of voids and unfilling can be suppressed. Furthermore, such an effect can be increased by molding under vacuum.

次に、図面を参照して本発明の第二の発明の好ましい実施の形態を説明すると、本実施形態における成形品の製造方法は、図4ないし図8に示すように、粉末化された熱可塑性樹脂2に導電性を有する多量のフィラー3Aを混合した成形材料1を熱可塑性樹脂2の融点以上の温度を有する一次成形金型11により減圧しながら溶融加圧してタブレット4を一次成形し、このタブレット4を熱可塑性樹脂2の融点以上の温度を有する二次成形金型12により二次成形し、この二次成形したタブレット4を二次成形金型12ごと冷却するとともに、この二次成形金型12を冷却時に加圧し、成形品20である燃料電池用セパレータ21を製造するようにしている。   Next, a preferred embodiment of the second invention of the present invention will be described with reference to the drawings. A method for manufacturing a molded article in this embodiment is shown in FIG. 4 to FIG. The molding material 1 in which a large amount of electrically conductive filler 3A is mixed with the plastic resin 2 is melt-pressed while being decompressed by a primary molding die 11 having a temperature equal to or higher than the melting point of the thermoplastic resin 2 to primary-mold the tablet 4; The tablet 4 is subjected to secondary molding by a secondary molding die 12 having a temperature equal to or higher than the melting point of the thermoplastic resin 2, and the secondary molded tablet 4 is cooled together with the secondary molding die 12, and the secondary molding is performed. The mold 12 is pressurized during cooling to manufacture a fuel cell separator 21 which is a molded product 20.

成形材料1は、粉末化された所定の熱可塑性樹脂2と、粉末化されて熱可塑性樹脂2に混練されることなく混合される導電性のフィラー3Aとからなる。熱可塑性樹脂2とフィラー3Aとは、燃料電池用セパレータ21の導電性を確保するため、フィラー3Aが全体に対する体積比で60Vol%以上、好ましくは60〜85Vol%程度、より好ましくは75Vol%程度となるよう混合される。   The molding material 1 includes a predetermined powdered thermoplastic resin 2 and a conductive filler 3A that is powdered and mixed without being kneaded into the thermoplastic resin 2. In order to ensure the conductivity of the fuel cell separator 21, the thermoplastic resin 2 and the filler 3 </ b> A have a volume ratio of the filler 3 </ b> A of 60 vol% or more, preferably about 60 to 85 vol%, more preferably about 75 vol%. To be mixed.

熱可塑性樹脂2としては、加熱により軟化して塑性を示す粉末の熱可塑性樹脂2であれば特に限定されるものではないが、例えばLCP、ポリアセタ−ル、ポリオキシメチレン、ポリホルムアルデヒド(POM)、ポリプロピレン、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリスチレン、ポリフッ化ビニリデン(PVDF)、塩化ビニル(VC)等が使用される。熱可塑性樹脂2は、導電性の確保、加工の容易性、二次凝集防止の観点から50〜200メッシュパス、好ましくは100メッシュパス程度の大きさに微粉砕加工され、所要量が秤取される。   The thermoplastic resin 2 is not particularly limited as long as it is a powdered thermoplastic resin 2 that is softened by heating and exhibits plasticity. For example, LCP, polyacetal, polyoxymethylene, polyformaldehyde (POM), Polypropylene, polyphenylene ether (PPE), polyphenylene sulfide (PPS), polystyrene, polyvinylidene fluoride (PVDF), vinyl chloride (VC) and the like are used. The thermoplastic resin 2 is finely pulverized into a size of about 50 to 200 mesh pass, preferably about 100 mesh pass, from the viewpoint of ensuring conductivity, ease of processing, and preventing secondary aggregation, and the required amount is weighed. The

フィラー3Aは、導電性を有する粒子材料であれば特に限定されるものではないが、例えば天然黒鉛、人造黒鉛、炭素繊維、金属繊維、カーボンファイバー、カーボンナノチューブ等が使用される。これらの中でも、抵抗値を低下させたり、機械的強度の低下を防止する観点から天然黒鉛や人造黒鉛が最適である。   The filler 3A is not particularly limited as long as it is a conductive particle material. For example, natural graphite, artificial graphite, carbon fiber, metal fiber, carbon fiber, carbon nanotube, or the like is used. Among these, natural graphite and artificial graphite are optimal from the viewpoint of reducing the resistance value and preventing the mechanical strength from being lowered.

フィラー3Aは、平均粒径10〜150μm、好ましくは10〜100μmの大きさに調整され、所要量が秤取される。このフィラー3Aの平均粒径が10〜150μmの範囲なのは、平均粒径10μm未満の場合には、熱可塑性樹脂2との混合時に舞い上がり、作業環境が悪化したり、電気的特性が低下するからである。逆に、平均粒径150μmを超える場合には、燃料電池用セパレータ21の機械的特性が悪化するからである。   The filler 3A is adjusted to an average particle size of 10 to 150 μm, preferably 10 to 100 μm, and a required amount is weighed. The average particle size of the filler 3A is in the range of 10 to 150 μm because, when the average particle size is less than 10 μm, it soars when mixed with the thermoplastic resin 2 and the working environment is deteriorated and the electrical characteristics are deteriorated. is there. Conversely, when the average particle diameter exceeds 150 μm, the mechanical characteristics of the fuel cell separator 21 deteriorate.

上記において、燃料電池用セパレータ21を製造する場合には、先ず、成形材料1を所定の温度を有する一次成形金型11に投入(図4参照)し、この一次成形金型11により真空下で燃料電池用セパレータ21のタブレット4を溶融加圧して所定の形状に成形するとともに、一次成形金型11ごと融点以下の温度まで冷却して一次成形金型11から取り出し、一次成形する(図5参照)。   In the above, when manufacturing the fuel cell separator 21, first, the molding material 1 is put into the primary molding die 11 having a predetermined temperature (see FIG. 4), and the primary molding die 11 is used under vacuum. The tablet 4 of the fuel cell separator 21 is melt-pressed and molded into a predetermined shape, and the primary molding die 11 is cooled to a temperature not higher than the melting point and taken out from the primary molding die 11 for primary molding (see FIG. 5). ).

一次成形金型11は、減圧用の真空装置に接続され、加熱圧縮成形前に予め熱可塑性樹脂2の融点以上の温度に予備加熱される。この一次成形金型11を予備加熱する方法としては、熱気浴、赤外線、高周波予熱等の方法があげられる。一次成形金型11は、成形材料1を投入した後に加熱することもできる。このような一次成形を行うことにより、燃料電池用セパレータ21の成形材料のような大量のフィラーを配合した流動性の低い材料を成形する場合、空隙や未充填の発生を防ぐことが可能になる。   The primary molding die 11 is connected to a vacuum device for pressure reduction, and is preheated to a temperature equal to or higher than the melting point of the thermoplastic resin 2 in advance before heat compression molding. Examples of a method for preheating the primary molding die 11 include a hot air bath, infrared rays, and high frequency preheating. The primary molding die 11 can be heated after the molding material 1 is introduced. By performing such primary molding, it is possible to prevent voids and unfilled materials from being formed when molding a low-fluidity material containing a large amount of filler, such as the molding material of the fuel cell separator 21. .

次いで、一次成形金型11から所定の温度を有する二次成形金型12にタブレット4を移し、この二次成形金型12により加熱圧縮して二次成形する(図6参照)。二次成形金型12は、加熱圧縮成形前に予め熱可塑性樹脂2の融点以上の温度に予備加熱される。この二次成形金型12を予備加熱する方法としては、上記した熱気浴、赤外線、高周波予熱等の方法があげられる。   Next, the tablet 4 is transferred from the primary molding die 11 to a secondary molding die 12 having a predetermined temperature, and is heated and compressed by the secondary molding die 12 to perform secondary molding (see FIG. 6). The secondary molding die 12 is preheated to a temperature equal to or higher than the melting point of the thermoplastic resin 2 before heat compression molding. Examples of a method for preheating the secondary molding die 12 include the hot air bath, infrared rays, high frequency preheating and the like.

二次成形の際、燃料電池用セパレータ21の強度をさらに向上させたり、抵抗値を低下させたい場合には、圧縮成形中、加減圧を数回繰り返し(バンピング)、フィラー3Aを密に充填することが好ましい。   In the case of secondary molding, in order to further improve the strength of the fuel cell separator 21 or to reduce the resistance value, the compression / decompression is repeated several times (bumping) during compression molding, and the filler 3A is densely filled. It is preferable.

タブレット4を二次成形したら、このタブレット4を成形装置から別の専用装置である冷却プレス装置に二次成形金型12ごと移し、スプリングバック防止の観点から圧縮加圧状態のままで二次成形金型12ごと冷却し、その後、二次成形金型12から脱型すれば、成形品20である燃料電池用セパレータ21を製造することができる(図7参照)。タブレット4を二次成形金型12ごと冷却する方法としては、例えば放置して室温まで下げる方法や冷却水を使用する方法等があげられる。   When the tablet 4 is secondary molded, the tablet 4 is transferred from the molding device to a cooling press device, which is another dedicated device, together with the secondary molding die 12 and subjected to secondary molding in a compression-pressed state from the viewpoint of preventing spring back. If the mold 12 is cooled and then removed from the secondary molding mold 12, a fuel cell separator 21 as the molded article 20 can be manufactured (see FIG. 7). Examples of the method for cooling the tablet 4 together with the secondary molding die 12 include a method in which the tablet 4 is left to cool to room temperature and a method in which cooling water is used.

燃料電池用セパレータ21は、図8に示すように、表裏面にサーペインタイプの流路22等をそれぞれ備えた平面矩形の薄板に成形され、ガス不透過性、導電性、及び耐食性を満足する。   As shown in FIG. 8, the fuel cell separator 21 is formed into a flat rectangular thin plate provided with a surpane-type flow path 22 on the front and back surfaces, and satisfies gas impermeability, conductivity, and corrosion resistance. .

上記によれば、粒子状の成形材料1を略均一な力でプレス成形するので、多量の黒鉛からなるフィラー3Aを使用して燃料電池用セパレータ21を容易に成形することができ、しかも、きわめて良好な導電性を得ることができる。また、電気的性質と機械的性質を両立させながら燃料電池用セパレータ21に反りや曲がり等が発生するのを抑制防止し、品質の向上を図ることができる。   According to the above, since the particulate molding material 1 is press-molded with a substantially uniform force, the fuel cell separator 21 can be easily molded using the filler 3A made of a large amount of graphite. Good conductivity can be obtained. In addition, the fuel cell separator 21 can be prevented from warping or bending while achieving both electrical properties and mechanical properties, and quality can be improved.

また、熱硬化性樹脂を使用する場合には、樹脂が流動してフィラー3A間を埋めた後、硬化が終了するまで型開きすることができず、その結果、成形サイクルの低下を招くことが少なくない。そこで、成形サイクルを上げるため、硬化時間を早める処方を採用すると、樹脂がフィラー3Aを埋める前に硬化が始まり、結果的に空隙の発生による強度の低下、複雑な形状における未充填等の欠点が生じることがあった。   In addition, when using a thermosetting resin, after the resin flows and fills the space between the fillers 3A, the mold cannot be opened until the curing is completed. As a result, the molding cycle may be lowered. Not a few. Therefore, if a prescription that accelerates the curing time is adopted in order to increase the molding cycle, curing starts before the resin fills the filler 3A. As a result, there are defects such as a decrease in strength due to the generation of voids and unfilling in a complicated shape. It sometimes occurred.

これに対し、本実施形態によれば、熱可塑性樹脂2を使用することにより、硬化するための時間が不要となるので、成形サイクルの短縮が可能であるとともに、成形材料1が融点以上の温度にある間は流動性を保つため、空隙や未充填の発生を抑制することが可能になる。さらに、真空下の成形により、係る効果の増大が期待できる。   On the other hand, according to the present embodiment, since the time for curing is not required by using the thermoplastic resin 2, the molding cycle can be shortened, and the molding material 1 has a temperature equal to or higher than the melting point. During this period, fluidity is maintained, so that generation of voids and unfilling can be suppressed. Furthermore, an increase in the effect can be expected by molding under vacuum.

また、成形を一次成形と二次成形の二度に亘って行うので、熱可塑性樹脂2とフィラー3A間の空隙を埋めて機械的強度をさらに向上させることができる。また、二次成形の前に一次成形するので、バリが少なく、取扱いが実に簡便になる。さらに、真空下で一次成形するので、熱可塑性樹脂2とフィラー3A間の気泡を有効に除去したり、強度を向上させたり、あるいは導電性等の求める特性の値が悪化するのを防ぐことが可能になる。   Further, since the molding is performed twice, that is, the primary molding and the secondary molding, the gap between the thermoplastic resin 2 and the filler 3A can be filled to further improve the mechanical strength. In addition, since the primary molding is performed before the secondary molding, there are few burrs and the handling is really simple. Furthermore, since the primary molding is performed under vacuum, it is possible to effectively remove bubbles between the thermoplastic resin 2 and the filler 3A, improve the strength, or prevent deterioration of the value of the required characteristics such as conductivity. It becomes possible.

なお、上記実施形態では単に二次成形したが、二次成形時に減圧しても良い。また、燃料電池用セパレータ21の抵抗値を下げたい場合には、カーボンファイバーやカーボンナノチューブを積極的に使用すれば良い。また、燃料電池用セパレータ21の形状や大きさは、適宜変更することができる。さらに、上記製造方法により、燃料電池用セパレータ21以外の他の成形品20を製造することもできる。   In the above embodiment, the secondary molding is simply performed, but the pressure may be reduced during the secondary molding. Further, when it is desired to lower the resistance value of the fuel cell separator 21, carbon fibers or carbon nanotubes may be positively used. Further, the shape and size of the fuel cell separator 21 can be appropriately changed. Furthermore, the molded product 20 other than the fuel cell separator 21 can be manufactured by the above manufacturing method.

以下、本発明に係る第一の発明の成形品の製造方法及び成形品の実施例を比較例と共に説明する。
実施例
Hereinafter, the manufacturing method of the molded product of the first invention according to the present invention and examples of the molded product will be described together with comparative examples.
Example

先ず、熱可塑性樹脂である粉末のPPにフィラーとして黒鉛を全体に対する体積比で70Vol%の割合で混合して成形材料を調製し、この成形材料をPPの融点以上の温度に加熱した金型に投入し、この金型を型締めして真空下で加熱圧縮成形することにより成形材料を溶融加圧した。黒鉛として、8020S〔東海カーボン株式会社製:商品名〕を使用した。圧縮成形は、成形圧力200kgf/cm(200kgf/cm=19.6MPa)240℃、5分間の条件で実施した。 First, a molding material is prepared by mixing graphite as a filler with a powdery PP, which is a thermoplastic resin, at a volume ratio of 70 vol% with respect to the whole, and the molding material is heated to a temperature equal to or higher than the melting point of PP. The molding material was melt-pressed by closing the mold and heat compression molding under vacuum. As graphite, 8020S [manufactured by Tokai Carbon Co., Ltd .: trade name] was used. The compression molding was performed under conditions of a molding pressure of 200 kgf / cm 2 (200 kgf / cm 2 = 19.6 MPa) 240 ° C. for 5 minutes.

成形材料を溶融加圧して所定の形状に加熱圧縮成形したら、金型を成形機から取り外し、この金型を加圧したままの状態で成形材料を金型ごと冷却し、その後、金型を型開きして脱型し、放熱板からなる成形品を製造した。冷却は、金型が50℃になるまで放置することとした。
放熱板からなる成形品を製造したら、この成形品の熱伝導率を円板熱流計法に基づいて測定し、表1にまとめた。
Once the molding material is melt-pressed and heat-compressed into a predetermined shape, the mold is removed from the molding machine, the molding material is cooled together with the mold while the mold is still pressed, and then the mold is molded. It was opened and demolded to produce a molded product made of a heat sink. The cooling was allowed to stand until the mold reached 50 ° C.
When a molded product composed of a heat radiating plate was manufactured, the thermal conductivity of the molded product was measured based on the disc heat flow meter method and summarized in Table 1.

比較例
熱可塑性樹脂であるPPにフィラーとして黒鉛を全体に対する体積比で70Vol%の割合となるよう成形材料を調製し、射出成形しようとしたが、黒鉛を充填することができなかった。そこで、黒鉛を充填できるよう、PPに黒鉛を全体に対する体積比で30Vol%の割合で混合して成形材料を調製した。その他は実施例と同様とし、熱伝導率を測定して表1にまとめた。
Comparative Example A molding material was prepared so that the volume ratio of 70% by volume of graphite as a filler to PP as a thermoplastic resin was used as a filler, and injection molding was attempted. However, graphite could not be filled. Therefore, a molding material was prepared by mixing graphite with PP at a volume ratio of 30 Vol% so that graphite could be filled. Others were the same as in the Examples, and the thermal conductivity was measured and summarized in Table 1.

Figure 2006103099
Figure 2006103099

結 果
本実施例によれば、比較例とは異なり、放熱板からなる成形品に関し、良好な熱伝導率を確認した。
Results According to the present example, unlike the comparative example, good thermal conductivity was confirmed for the molded product made of the heat sink.

次に、本発明に係る第二の発明の成形品の製造方法及び成形品の実施例を比較例と共に説明する。
実施例1
Next, a method for manufacturing a molded product according to the second invention of the present invention and an example of the molded product will be described together with a comparative example.
Example 1

粉末化された熱可塑性樹脂であるPPSにフィラーとして黒鉛を全体に対する体積比で75Vol%の割合で混合して成形材料を調製し、この混合した成形材料をPPSの融点以上の温度を有する一次成形金型により減圧しながら溶融加圧して燃料電池用セパレータのタブレットを一次成形した。PPSとして、平均粒径70μmのトレリナE2180〔東レ株式会社製:商品名〕を使用し、黒鉛として、8020S〔東海カーボン株式会社製:商品名〕を使用した。一次成形は、成形圧力100kgf/cm(100kgf/cm=9.8MPa)、370℃、5分間の条件で実施した。 Powdered thermoplastic resin, PPS, is mixed with graphite as a filler at a volume ratio of 75% by volume with respect to the whole to prepare a molding material, and the mixed molding material is subjected to primary molding having a temperature equal to or higher than the melting point of PPS. While being decompressed by a mold, it was melt-pressed to primarily form a fuel cell separator tablet. Torelina E2180 (manufactured by Toray Industries, Inc .: trade name) having an average particle diameter of 70 μm was used as PPS, and 8020S (manufactured by Tokai Carbon Co., Ltd .: trade name) was used as graphite. Primary molding was performed under conditions of a molding pressure of 100 kgf / cm 2 (100 kgf / cm 2 = 9.8 MPa), 370 ° C., and 5 minutes.

次いで、タブレットをPPSの融点以上の温度を有する二次成形金型により5回バンピングしながら二次成形し、この二次成形したタブレットを二次成形金型ごと冷却するとともに、この二次成形金型を冷却時に加圧し、縦160mm×横120mm×厚さ2mmの燃料電池用セパレータを製造した。   Next, the tablet is subjected to secondary molding while being bumped five times by a secondary molding die having a temperature equal to or higher than the melting point of PPS. The secondary molded tablet is cooled together with the secondary molding die, and the secondary molding die is cooled. The mold was pressurized during cooling to produce a fuel cell separator measuring 160 mm long × 120 mm wide × 2 mm thick.

バンピングは、加圧圧力が0〜200kgf/cmの範囲で実施した。二次成形は、成形圧力200kgf/cm、370℃、5分間の条件で実施した。また、冷却は、別の冷却プレス装置に二次成形金型を移し、この二次成形金型を100kgf/cmの加圧状態のままで100℃になるまで放置することとした。
燃料電池用セパレータを製造したら、この燃料電池用セパレータの電気抵抗値、曲げ強度、曲げ歪み、厚さバラツキ、反りを測定して表2にまとめた。
The bumping was performed in a range of a pressurizing pressure of 0 to 200 kgf / cm 2 . Secondary molding was performed under conditions of a molding pressure of 200 kgf / cm 2 and 370 ° C. for 5 minutes. Further, for cooling, the secondary molding die was transferred to another cooling press apparatus, and the secondary molding die was left to be 100 ° C. in a pressurized state of 100 kgf / cm 2 .
When a fuel cell separator was manufactured, the electrical resistance value, bending strength, bending strain, thickness variation, and warpage of the fuel cell separator were measured and summarized in Table 2.

電気抵抗値の測定に際しては、先ず、4枚の燃料電池用セパレータをそれぞれ5cm×5cmの大きさに切り出し、この切り出した4枚の被測定片を上下方向に積み上げてその抵抗値Rを抵抗器により測定し、4枚の被測定片中、2枚の被測定片を上下方向に積み上げてその抵抗値Rを抵抗器により測定した後、R−R/2により算出した。 In measuring the electrical resistance value, first, four fuel cell separators are cut into a size of 5 cm × 5 cm, and the four pieces to be measured are stacked in the vertical direction, and the resistance value R 1 is set as the resistance. as measured by instrumental, in four of the measured piece, its after the resistance value R 2 was measured by the resistor was calculated by R 1 -R 2/2 stacked two of the measured pieces vertically.

実施例2
基本的には、実施例1と同様であるが、タブレットをPPSの融点以上の温度を有する二次成形金型によりバンピングせずに二次成形した。
Example 2
Basically, it was the same as in Example 1, but the tablet was secondarily molded without bumping with a second molding die having a temperature equal to or higher than the melting point of PPS.

比較例1
粉末化された熱硬化性樹脂であるPF(フェノール樹脂)に黒鉛を全体に対する体積比で75Vol%の割合で混合して成形材料を調製し、この成形材料をPFの融点以上の温度の金型により成形した後、成形されたタブレットを金型ごと冷却して脱型し、燃料電池用セパレータを得た。PFとして、ベルパールS99W〔カネボウ株式会社製:商品名〕を使用した。その他の部分は、実施例1と同様とした。
Comparative Example 1
Powdered thermosetting resin, PF (phenol resin), is mixed with graphite at a volume ratio of 75% by volume with respect to the whole to prepare a molding material. This molding material is a mold having a temperature equal to or higher than the melting point of PF. After the molding, the molded tablet was cooled together with the mold and demolded to obtain a fuel cell separator. Bell pearl S99W [manufactured by Kanebo Co., Ltd .: trade name] was used as the PF. The other parts were the same as in Example 1.

比較例2
PPSに黒鉛を全体に対する体積比で75Vol%の割合になるよう成形材料を調製し、この成形材料を使用して射出成形しようとしたが、流動性に欠け、充填することができなかった。そこで、黒鉛を充填できるよう、PPSに黒鉛を全体に対する体積比で55Vol%の割合で成形材料を調製し、この成形材料を金型に射出成形して燃料電池用セパレータを得た。その他の部分は、実施例1と同様とした。
Comparative Example 2
A molding material was prepared in such a manner that the volume ratio of graphite to PPS was 75% by volume, and injection molding was attempted using this molding material. However, the molding material was insufficient in fluidity and could not be filled. Therefore, a molding material was prepared in a volume ratio of 55 Vol% with respect to the whole graphite in PPS so that the graphite could be filled, and this molding material was injection molded into a mold to obtain a fuel cell separator. The other parts were the same as in Example 1.

Figure 2006103099
Figure 2006103099

結 果
実施例1、2の場合には、電気的性質と機械的性質が共に良好な燃料電池用セパレータを得ることができた。
これに対し、比較例1、2の場合、電気的性質と機械的性質とを良好な状態に両立させることができない場合が生じた。また、比較例2の場合、最も重要な電気抵抗値が100mΩ・cm未満になるよう、PPSと黒鉛とを混練できなかった。
Results In the case of Examples 1 and 2, it was possible to obtain fuel cell separators having good electrical and mechanical properties.
On the other hand, in the case of Comparative Examples 1 and 2, there were cases where electrical properties and mechanical properties could not be made compatible in a good state. In Comparative Example 2, PPS and graphite could not be kneaded so that the most important electrical resistance value was less than 100 mΩ · cm.

本発明に係る第一の発明の成形品の製造方法の実施形態における金型に成形材料を投入する状態を模式的に示す断面説明図である。It is a section explanatory view showing typically the state where a molding material is thrown into a metallic mold in an embodiment of a manufacturing method of a molded product of the 1st invention concerning the present invention. 図1の金型を型締めして真空下で加熱圧縮成形する状態を模式的に示す断面説明図である。FIG. 2 is an explanatory cross-sectional view schematically showing a state in which the mold of FIG. 1 is clamped and heated and compressed under vacuum. 図2の金型を型開きして成形品を脱型する状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which opens the metal mold | die of FIG. 2 and demolds a molded article. 本発明に係る第二の発明の成形品の製造方法の実施形態における成形材料を一次成形金型に投入する状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which throws into the primary molding die the molding material in embodiment of the manufacturing method of the molded article of 2nd invention which concerns on this invention. 図4の一次成形金型により真空下で燃料電池用セパレータのタブレットを予備成形する状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which preforms the tablet of the separator for fuel cells under vacuum with the primary shaping die of FIG. 図5の一次成形金型から二次成形金型にタブレットを移して本成形する状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which moves a tablet from the primary shaping | molding die of FIG. 5 to a secondary shaping | molding die, and performs this shaping | molding. タブレットを図6の二次成形金型ごと冷却して脱型する状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which cools a tablet with the secondary shaping | molding die of FIG. 6, and demolds. 本発明に係る第二の発明の成形品の製造方法及び成形品の実施形態における燃料電池用セパレータを模式的に示す斜視説明図である。It is a perspective explanatory view showing typically the separator for fuel cells in the manufacturing method of the 2nd invention concerning the present invention, and the embodiment of a molded product.

符号の説明Explanation of symbols

1 成形材料
2 熱可塑性樹脂
3 フィラー
3A フィラー
4 タブレット
10 金型
11 一次成形金型
12 二次成形金型
20 成形品
21 燃料電池用セパレータ(成形品)
DESCRIPTION OF SYMBOLS 1 Molding material 2 Thermoplastic resin 3 Filler 3A Filler 4 Tablet 10 Mold 11 Primary molding die 12 Secondary molding die 20 Molded product 21 Fuel cell separator (molded product)

Claims (10)

粉末状の熱可塑性樹脂にフィラーを全体に対する体積比で60Vol%以上添加した成形材料を用いて圧縮成形し、成形品を得る成形品の製造方法であって、
成形材料を熱可塑性樹脂の融点以上の温度を有する金型により溶融加圧し、成形材料を金型ごと冷却することを特徴とする成形品の製造方法。
A method for producing a molded product, which is compression-molded using a molding material in which a filler is added to a powdered thermoplastic resin in a volume ratio of 60 vol% or more with respect to the whole, to obtain a molded product,
A method for producing a molded product, characterized in that a molding material is melt-pressed with a mold having a temperature equal to or higher than a melting point of a thermoplastic resin, and the molding material is cooled together with the mold.
金型を減圧しながら溶融加圧する請求項1記載の成形品の製造方法。   The method for producing a molded article according to claim 1, wherein the mold is melt-pressed while the pressure is reduced. 金型をバンピングしながら溶融加圧する請求項1又は2記載の成形品の製造方法。   The method for producing a molded article according to claim 1 or 2, wherein the mold is melt-pressed while bumping. 金型をその冷却時に加圧する請求項1、2、又は3記載の成形品の製造方法。   The method for producing a molded article according to claim 1, 2 or 3, wherein the mold is pressurized during cooling. 請求項1ないし4いずれかに記載の成形品の製造方法により製造されたことを特徴とする成形品。   A molded product produced by the method for producing a molded product according to claim 1. 粉末状の熱可塑性樹脂にフィラーを全体に対する体積比で60Vol%以上添加した成形材料を用いて圧縮成形し、成形品を得る成形品の製造方法であって、
成形材料を熱可塑性樹脂の融点以上の温度を有する金型により溶融加圧してタブレットを一次成形し、このタブレットを熱可塑性樹脂の融点以上の温度を有する金型により二次成形し、この二次成形したタブレットを金型ごと冷却することを特徴とする成形品の製造方法。
A method for producing a molded product, which is compression-molded using a molding material in which a filler is added to a powdered thermoplastic resin in a volume ratio of 60 vol% or more with respect to the whole, to obtain a molded product,
The molding material is melt-pressed with a mold having a temperature equal to or higher than the melting point of the thermoplastic resin to primarily form a tablet, and the tablet is secondarily molded with a mold having a temperature equal to or higher than the melting point of the thermoplastic resin. A method for producing a molded product comprising cooling a molded tablet together with a mold.
金型を減圧しながらタブレットを一次成形する請求項6記載の成形品の製造方法。   The method for producing a molded product according to claim 6, wherein the tablet is primary molded while the mold is decompressed. 一次成形及び又は二次成形の際、金型をバンピングする請求項6又は7記載の成形品の製造方法。   The method for producing a molded product according to claim 6 or 7, wherein the mold is bumped during primary molding and / or secondary molding. 金型をその冷却時に加圧する請求項6、7、又は8記載の成形品の製造方法。   The method for producing a molded product according to claim 6, 7 or 8, wherein the mold is pressurized during cooling. 請求項6ないし9いずれかに記載の成形品の製造方法により製造されたことを特徴とする成形品。   A molded product manufactured by the method for manufacturing a molded product according to any one of claims 6 to 9.
JP2004291405A 2004-10-04 2004-10-04 Method for producing molded article, and molded article Pending JP2006103099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291405A JP2006103099A (en) 2004-10-04 2004-10-04 Method for producing molded article, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291405A JP2006103099A (en) 2004-10-04 2004-10-04 Method for producing molded article, and molded article

Publications (1)

Publication Number Publication Date
JP2006103099A true JP2006103099A (en) 2006-04-20

Family

ID=36373347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291405A Pending JP2006103099A (en) 2004-10-04 2004-10-04 Method for producing molded article, and molded article

Country Status (1)

Country Link
JP (1) JP2006103099A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034725A (en) * 2006-07-31 2008-02-14 Shin Etsu Polymer Co Ltd Manufacturing method of wiring board excellent in heat radiation performance
JP2010027277A (en) * 2008-07-16 2010-02-04 Shin Etsu Polymer Co Ltd Method of manufacturing separator for fuel cell
JP2011088383A (en) * 2009-10-23 2011-05-06 Asahi Kasei E-Materials Corp Method for producing compression molding of resin composition including highly charged inorganic filler
JP2013028673A (en) * 2011-07-27 2013-02-07 Canon Inc Method of producing composite resin material, and method of producing composite resin molded product
JP2013538141A (en) * 2010-08-13 2013-10-10 グリーン, ツイード オブ デラウェア, インコーポレイテッド Thermoplastic fiber composite with high volume fiber loading and method and apparatus for making the same
JP2014108568A (en) * 2012-12-03 2014-06-12 Meiki Co Ltd Method for press molding fiber composite molding, press molding apparatus for fiber composite molding, and mold for fiber composite molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036245A (en) * 2000-05-12 2002-02-05 Sumitomo Rubber Ind Ltd Gas vulcanization method for elastomer article and tire by this method
JP2002231263A (en) * 2001-02-05 2002-08-16 Yodogawa Hu-Tech Kk Separator of fuel cell and its manufacturing method
JP2003036861A (en) * 2001-07-24 2003-02-07 Matsushita Electric Ind Co Ltd Separator for fuel cell and its manufacturing method
JP2003059501A (en) * 2001-08-10 2003-02-28 Mitsubishi Chemicals Corp Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036245A (en) * 2000-05-12 2002-02-05 Sumitomo Rubber Ind Ltd Gas vulcanization method for elastomer article and tire by this method
JP2002231263A (en) * 2001-02-05 2002-08-16 Yodogawa Hu-Tech Kk Separator of fuel cell and its manufacturing method
JP2003036861A (en) * 2001-07-24 2003-02-07 Matsushita Electric Ind Co Ltd Separator for fuel cell and its manufacturing method
JP2003059501A (en) * 2001-08-10 2003-02-28 Mitsubishi Chemicals Corp Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034725A (en) * 2006-07-31 2008-02-14 Shin Etsu Polymer Co Ltd Manufacturing method of wiring board excellent in heat radiation performance
JP2010027277A (en) * 2008-07-16 2010-02-04 Shin Etsu Polymer Co Ltd Method of manufacturing separator for fuel cell
JP2011088383A (en) * 2009-10-23 2011-05-06 Asahi Kasei E-Materials Corp Method for producing compression molding of resin composition including highly charged inorganic filler
JP2013538141A (en) * 2010-08-13 2013-10-10 グリーン, ツイード オブ デラウェア, インコーポレイテッド Thermoplastic fiber composite with high volume fiber loading and method and apparatus for making the same
US10160146B2 (en) 2010-08-13 2018-12-25 Greene, Tweed Technologies, Inc. Thermoplastic fiber composites having high volume fiber loading and methods and apparatus for making same
JP2013028673A (en) * 2011-07-27 2013-02-07 Canon Inc Method of producing composite resin material, and method of producing composite resin molded product
JP2014108568A (en) * 2012-12-03 2014-06-12 Meiki Co Ltd Method for press molding fiber composite molding, press molding apparatus for fiber composite molding, and mold for fiber composite molding

Similar Documents

Publication Publication Date Title
KR101633190B1 (en) Dust core using soft magnetic powder and method of manufacturing the dust core
JP3978429B2 (en) Conductive resin molding
EP1280217A3 (en) Fuel-cell separator, production of the same, and fuel cell
WO2000005732A1 (en) Composition for bonded rare-earth permanent magnet, bonded rare-earth permanent magnet and method for manufacturing bonded rare-earth permanent magnet
JP2006103099A (en) Method for producing molded article, and molded article
JP5349267B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
JPH10259403A (en) Compacting apparatus and compacting method
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
KR101742974B1 (en) Polymer composite with electromagnetic shielding and absorbing ability and manufacturing method of the same
JP2822273B2 (en) Resin tablet for semiconductor encapsulation and method for producing the same
JP5424637B2 (en) Manufacturing method of fuel cell separator
JP2004235137A (en) Method of manufacturing fuel cell separator and molding
JP2003170459A (en) Compression mold and fuel cell separator molded by using the same
JP2006019227A (en) Polyphenylene sulfide (pps) resin composition, fuel cell separator, fuel cell, and manufacturing method for fuel cell separator
WO2022039240A1 (en) Boron nitride particle, boron nitride powder, resin composition, and resin composition production method
JP6370494B2 (en) Manufacturing method of bipolar plate for redox flow battery
JP2015108126A (en) Method for recycling fluororesin
JP2004216756A (en) Mold for molding preform and method for producing fuel cell separator using the preform
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP2008060066A (en) Method of manufacturing separator for fuel cell
WO2020196075A1 (en) Method for producing press-molded body
JP2010123706A (en) Manufacturing method for rare-earth bonded magnet
JPH1012472A (en) Manufacture of rare-earth bond magnet
JPH1145816A (en) Manufacture of ring-shaped fe-b-r resin magnet
JPH08264360A (en) Resin-bonded magnet and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207