[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006101019A - Ofdm receiver and ofdm relay apparatus - Google Patents

Ofdm receiver and ofdm relay apparatus Download PDF

Info

Publication number
JP2006101019A
JP2006101019A JP2004282544A JP2004282544A JP2006101019A JP 2006101019 A JP2006101019 A JP 2006101019A JP 2004282544 A JP2004282544 A JP 2004282544A JP 2004282544 A JP2004282544 A JP 2004282544A JP 2006101019 A JP2006101019 A JP 2006101019A
Authority
JP
Japan
Prior art keywords
ofdm
pilot carrier
pilot
transmission path
signal band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004282544A
Other languages
Japanese (ja)
Inventor
Keiji Kawai
慶士 河合
Hidekuni Yomo
英邦 四方
Masanori Kunieda
賢徳 國枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004282544A priority Critical patent/JP2006101019A/en
Publication of JP2006101019A publication Critical patent/JP2006101019A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an OFDM receiver and an OFDM relay apparatus capable of reducing the deterioration in accuracy, in interpolating transmission path characteristics obtained by a pilot signal in the frequency axis direction. <P>SOLUTION: When a time axis interpolation section 40 interpolates the transmission path characteristic H'(i, kp) of an SP/CP carrier obtained from the pilot signal (SP: Scattered Pilot, and CP: Continual Pilot) extracted from a received OFDM signal in the time axis direction and a frequency axis interpolation section 120 interpolates data Hc'(i-3, k), after the time axis interpolation obtained from the result in a frequency direction to obtain the transmission path characteristic Hd'(i, k) of the entire OFDM signal band, a copy section 101 copies the SP carrier and CP carrier transmission path characteristics at the end of the signal band to a position keeping the relation of an equal interval from the SP carrier in the signal band, with respect to a predetermined interval at the outside of the signal band, before interpolation in the frequency axis direction by a frequency axis interpolation filter (FIR filter section )11. Thus, ripples caused at the end of the signal band as a result of the frequency interpolation processing result can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、時間軸方向及び周波数軸方向の所定位置に配置されたパイロット信号に基づいて伝送路特性を推定するOFDM(Orthogonal Frequency Division Multiplexing)受信装置及びOFDM中継装置に関する。   The present invention relates to an OFDM (Orthogonal Frequency Division Multiplexing) receiving apparatus and an OFDM relay apparatus that estimate transmission path characteristics based on pilot signals arranged at predetermined positions in a time axis direction and a frequency axis direction.

従来、ディジタル信号の伝送方式として、OFDMが検討されている。OFDMは、互いに直交する複数の搬送波(キャリア)を、PSK(Phase Shift Keying)、QAM(QuadratureAmplitude Modulation)などによりディジタル変調する方式であり、マルチパスに強いという特徴を有する。   Conventionally, OFDM has been studied as a digital signal transmission method. OFDM is a system in which a plurality of carriers orthogonal to each other are digitally modulated by PSK (Phase Shift Keying), QAM (Quadrature Amplitude Modulation), etc., and has a characteristic of being resistant to multipath.

OFDM伝送方式を採用するシステムとしては、日欧の地上ディジタル放送や無線LANがあげられる。これらのシステムでは、パイロット信号と呼ばれる既知の信号を予め定めたキャリアで送信し、受信側ではパイロット信号を用いて伝送路特性を推定し、この伝送路特性推定値を使って伝送路歪の影響を受けた受信信号を等化する方法が用いられている。   Examples of systems that employ the OFDM transmission method include terrestrial digital broadcasts and wireless LANs in Japan and Europe. In these systems, a known signal called a pilot signal is transmitted using a predetermined carrier, and on the receiving side, the channel characteristic is estimated using the pilot signal, and this channel characteristic estimation value is used to influence the effect of the channel distortion. The received signal is equalized.

伝送路特性推定に用いられるパイロット信号は、例えば、日本の地上ディジタル放送の規格であるISDB−T(Integrated Services Digital Broadcasting for Terrestrial)では、SP(Scatterd Pilot:スキャッタードパイロット)と呼ばれ、図7に示すように、12キャリア置きに4シンボル周期で異なったキャリアに分散して配置される既知の信号である(非特許文献1参照)。なお、CP(Continual Pilot:コンティニュアルパイロット)もパイロット信号の一種で、信号帯域の右端のキャリアに毎シンボル連続的に配置される既知の信号である。パイロット信号が配置されたキャリア(パイロットキャリア)の伝送路特性は、既知の信号であるパイロット信号より求めることができるが、未知のデータ信号を載せたキャリア(データキャリア)は、そのキャリアのデータからは直接伝送路特性を算出することができない。   A pilot signal used for transmission path characteristic estimation is called, for example, SP (Scattered Pilot) in ISDB-T (Integrated Services Digital Broadcasting for Terrestrial), which is a Japanese terrestrial digital broadcasting standard. 7 is a known signal that is distributed and arranged on different carriers at intervals of 4 symbols every 12 carriers (see Non-Patent Document 1). Note that CP (Continual Pilot) is also a kind of pilot signal, and is a known signal continuously arranged for every symbol on the rightmost carrier of the signal band. The transmission path characteristics of a carrier in which a pilot signal is arranged (pilot carrier) can be obtained from a pilot signal that is a known signal, but a carrier carrying an unknown data signal (data carrier) is determined from the data of that carrier. Cannot directly calculate the transmission line characteristics.

したがって、一般に、分散して配置されたSPの伝送路特性を求め、これを時間軸方向および周波数軸方向に補間することで、データキャリアの伝送路特性を求める手法がとられる。   Therefore, generally, a technique is used in which the transmission channel characteristics of the data carrier are obtained by obtaining the transmission path characteristics of the SPs arranged in a distributed manner and interpolating them in the time axis direction and the frequency axis direction.

図8に、パイロット信号を用いて伝送路特性推定を行い、その伝送路推定結果を用いて受信信号を等化する従来のOFDM受信装置の構成を示す。   FIG. 8 shows a configuration of a conventional OFDM receiving apparatus that performs channel characteristic estimation using a pilot signal and equalizes a received signal using the channel estimation result.

OFDM受信装置800は、受信アンテナ1で受信したRF(Radio Frequency:無線周波数)帯域の信号を、受信部2において、基底帯域(以下、これをベースバンドと呼ぶ)の信号に変換する。受信部2は、さらにOFDMシンボルデータを得るための同期処理を行う。   The OFDM receiver 800 converts a signal in an RF (Radio Frequency) band received by the receiving antenna 1 into a signal in a base band (hereinafter referred to as a baseband) in the receiving unit 2. The receiving unit 2 further performs a synchronization process for obtaining OFDM symbol data.

受信部2から出力されたOFDMシンボルは、FFT部3におけるフーリエ変換処理により周波数領域の信号に変換され、遅延部4にて伝送路特性推定部20での処理遅延分遅延させられた後、等化部5へ入力される。等化部5では、伝送路特性推定部20で求められた伝送路特性を用いて、受信したOFDMシンボルを等化し、等化後のデータを判定部6へ渡す。   The OFDM symbol output from the receiving unit 2 is converted into a frequency domain signal by Fourier transform processing in the FFT unit 3, delayed by the processing delay in the transmission path characteristic estimation unit 20 in the delay unit 4, etc. Input to the conversion unit 5. The equalization unit 5 equalizes the received OFDM symbol using the transmission path characteristics obtained by the transmission path characteristic estimation unit 20 and passes the equalized data to the determination unit 6.

次に伝送路特性推定部20での伝送路特性の推定処理について説明する。送信側から送信されたデータをX(i,k)、伝送路特性をH(i,k)、受信側で受信されたデータをY(i,k)、雑音成分をN(i,k)、i:シンボル番号、k:キャリア番号とすると、これらの関係は、次式

Figure 2006101019
で表される。 Next, the transmission line characteristic estimation processing in the transmission line characteristic estimation unit 20 will be described. Data transmitted from the transmission side is X (i, k), transmission path characteristics are H (i, k), data received on the reception side is Y (i, k), and noise components are N (i, k). , I: symbol number, k: carrier number, these relations are given by
Figure 2006101019
It is represented by

従って、伝送路特性推定部20のパイロットキャリア伝送路特性推定部30に設けられたSP/CP除算部8では、FFT部3にて周波数領域の信号に変換された受信OFDMシンボルY(i,k)から、SP又はCPキャリアのデータY(i,kp)を抽出し(kp:SPキャリア番号又はCPキャリア番号)、SP/CP生成部7で生成した正規のSP又はCPデータX(i,kp)で除算することにより、X(i,kp)に作用した伝送路特性H’(i,kp)を推定する。これらの関係は、次式

Figure 2006101019
で表される。 Therefore, in the SP / CP division unit 8 provided in the pilot carrier transmission line characteristic estimation unit 30 of the transmission line characteristic estimation unit 20, the received OFDM symbol Y (i, k) converted into a frequency domain signal by the FFT unit 3 is used. ) To extract SP or CP carrier data Y (i, kp) (kp: SP carrier number or CP carrier number), and SP / CP generation unit 7 generates the normal SP or CP data X (i, kp). ) To estimate the transmission line characteristic H ′ (i, kp) acting on X (i, kp). These relationships are given by
Figure 2006101019
It is represented by

一方、データキャリアの伝送路特性は、SP/CPキャリアの伝送路特性H’(i,kp)を用いて、時間軸補間部40により時間軸方向に補間し(Hc’(i−3,k))、これをさらに周波数軸補間部50により周波数方向に補間することで求める。このようにして得られた信号帯域全体の伝送路特性Hd’(i−3,k)を等化部5に出力する。なお、図8では、時間軸補間部40での処理遅延が3シンボルの例を示している。   On the other hand, the transmission path characteristic of the data carrier is interpolated in the time axis direction by the time axis interpolation unit 40 using the transmission path characteristic H ′ (i, kp) of the SP / CP carrier (Hc ′ (i−3, k )), And this is obtained by further interpolating in the frequency direction by the frequency axis interpolation unit 50. The transmission path characteristic Hd ′ (i−3, k) of the entire signal band obtained in this way is output to the equalization unit 5. FIG. 8 shows an example in which the processing delay in the time axis interpolation unit 40 is 3 symbols.

このように時間軸補間及び周波数軸補間を行った場合、推定できる伝送路特性の精度は、キャリア間隔をΔfとすると4Δfである。また、SP/CP除算後のSP/CPの伝送路特性H’(i,kp)に対し、時間軸補間を行わず、周波数補間処理のみを行う方法も考えられる。この場合の伝送路特性の推定精度は12Δfとなる。   When the time axis interpolation and the frequency axis interpolation are performed in this way, the accuracy of the transmission path characteristics that can be estimated is 4Δf when the carrier interval is Δf. Further, a method of performing only frequency interpolation processing without performing time axis interpolation on the SP / CP transmission path characteristics H ′ (i, kp) after SP / CP division is also conceivable. In this case, the estimation accuracy of the transmission path characteristic is 12Δf.

ここで、時間方向の補間方法であるが、例えば特許文献1にも記載されているが、図9に示すように、過去や未来のシンボルのSPを用いて、時間軸方向に0次ホールドする方法(図9A)、又は、直線補間する方法(図9B)が取られる。   Here, the time direction interpolation method is described in, for example, Patent Document 1, but as shown in FIG. 9, zero-order hold is performed in the time axis direction using SPs of past and future symbols. The method (FIG. 9A) or the method of linear interpolation (FIG. 9B) is taken.

これについて、図8で示した時間軸補間部40の構成を基に説明する。図8は、直線補間を用いる方法を示している。時間軸補間部40は、SP/CP除算部8より得られるSP、CPの伝送路特性H’(i,kp)をSP/CP伝送路特性蓄積部9において、直線補間に必要な7シンボル分蓄積する。そして、補間部10は、SP/CP伝送路特性蓄積部9から、図9Bに示した4つの直線補間パターンに応じて、必要な1シンボル又は2シンボルのSPデータHa’(i,kp)、Hb’(i,kp)を呼び出し、直線補間を行う。なお、CPに関しては毎シンボル右端キャリアに挿入されているので、時間軸補間は行わず、呼び出したCPデータをそのまま用いればよい。   This will be described based on the configuration of the time axis interpolation unit 40 shown in FIG. FIG. 8 shows a method using linear interpolation. The time axis interpolation unit 40 converts the SP and CP transmission path characteristics H ′ (i, kp) obtained from the SP / CP division section 8 into 7 symbols necessary for linear interpolation in the SP / CP transmission path characteristics storage section 9. accumulate. Then, the interpolation unit 10 sends the necessary 1-symbol or 2-symbol SP data Ha ′ (i, kp), from the SP / CP transmission path characteristic storage unit 9 according to the four linear interpolation patterns shown in FIG. 9B. Call Hb ′ (i, kp) and perform linear interpolation. Since the CP is inserted in the right end carrier of each symbol, the called CP data may be used as it is without performing the time axis interpolation.

一方、周波数軸方向の補間方法については、図8で示すように、FIRフィルタ部11のFIRフィルタを周波数軸補間フィルタとして機能するように構成することで、時間軸補間後のデータを周波数方向に補間する方法がとられる。
特開2002−344411号公報(第9頁、表3) 社団法人 電波産業会、「地上ディジタルテレビジョン放送の伝送方式」、ARIB STD−B31 1.5版、平成15年7月29日改定、p.46
On the other hand, regarding the interpolation method in the frequency axis direction, as shown in FIG. 8, by configuring the FIR filter of the FIR filter unit 11 to function as a frequency axis interpolation filter, the data after time axis interpolation is arranged in the frequency direction. The method of interpolation is taken.
JP 2002-344411 A (page 9, table 3) The Japan Radio Industry Association, “Transmission Method for Digital Terrestrial Television Broadcasting”, ARIB STD-B31 1.5 Edition, revised on July 29, 2003, p. 46

ところで、OFDM信号の帯域左右には信号が存在しないため、上述したような従来の伝送路特性方式のように補間フィルタを用いて周波数方向の補間を行う際、信号帯域両端の伝送路特性推定結果にリップルが生じ、推定精度が劣化するという課題があった。   By the way, since there is no signal on the left and right of the OFDM signal band, when performing interpolation in the frequency direction using an interpolation filter as in the conventional transmission line characteristic method as described above, the transmission line characteristic estimation results at both ends of the signal band There was a problem that ripples were generated and the estimation accuracy deteriorated.

本発明はかかる点に鑑みてなされたものであり、パイロット信号により求めた伝送路特性を周波数軸方向に補間する際の精度劣化を軽減し得るOFDM受信装置及びOFDM中継装置を提供することを目的とする。   The present invention has been made in view of such points, and it is an object of the present invention to provide an OFDM receiver and an OFDM relay apparatus that can reduce deterioration in accuracy when the transmission path characteristics obtained from a pilot signal are interpolated in the frequency axis direction. And

かかる課題を解決するため本発明は、受信パイロット信号に基づいて、パイロットキャリアに作用した伝送路特性を推定するパイロットキャリア伝送路特性推定手段と、パイロットキャリア伝送路特性推定手段により得られたパイロットキャリア伝送路特性のうち、OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性を、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるように、OFDM信号帯域外の予め定められた長さのパイロットキャリアコピー区間にコピーすると共に、コピーしたパイロットキャリア間に0を挿入するパイロットキャリアコピー手段と、パイロットキャリアコピー手段により得られたデータを、周波数軸方向に補間する周波数軸補間手段とを具備する構成を採る。   In order to solve such a problem, the present invention provides a pilot carrier channel characteristic estimation unit for estimating a channel characteristic acting on a pilot carrier based on a received pilot signal, and a pilot carrier obtained by the pilot carrier channel characteristic estimation unit. Among the transmission path characteristics, a predetermined length outside the OFDM signal band is set so that the pilot carrier transmission path characteristic closest to the band edge in the OFDM signal band is equal to the pilot carrier interval in the OFDM signal band. And a pilot carrier copy means for inserting 0 between the copied pilot carriers, and a frequency axis interpolation means for interpolating the data obtained by the pilot carrier copy means in the frequency axis direction. The structure to do is taken.

この構成によれば、パイロットキャリアコピー手段によって、OFDM信号の帯域左右に、OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性が、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるようにかつパイロットキャリア間に0が挿入されてコピーされて配置されるので、周波数軸補間手段によって周波数補間を行っても、信号帯域両端の伝送路特性推定結果のリップルが軽減される。この結果、パイロット信号により求めた伝送路特性を周波数軸方向に補間することに起因する伝送路特性推定精度の劣化を軽減することができる。   According to this configuration, the pilot carrier copy means causes the pilot carrier transmission line characteristics closest to the band edge in the OFDM signal band to be equal to the pilot carrier interval in the OFDM signal band on the left and right sides of the OFDM signal band. In addition, since 0 is inserted between the pilot carriers and copied, the ripple of the channel characteristic estimation results at both ends of the signal band is reduced even if frequency interpolation is performed by the frequency axis interpolation means. As a result, it is possible to reduce deterioration in transmission path characteristic estimation accuracy caused by interpolating the transmission path characteristics obtained from the pilot signal in the frequency axis direction.

本発明によれば、パイロット信号により求めた伝送路特性を周波数軸方向に補間することに起因する伝送路特性推定精度の劣化を軽減し得、パイロットキャリアを採用するOFDM受信装置及びOFDM中継装置の伝送路特性推定精度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the degradation of the transmission path characteristic estimation precision resulting from interpolating the transmission path characteristic calculated | required with the pilot signal to a frequency-axis direction can be reduced, and the OFDM receiver and OFDM relay apparatus which employ | adopt a pilot carrier are reduced. The transmission path characteristic estimation accuracy can be improved.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図8との対応部分に同一符号を付して示す図1に、本実施の形態のOFDM受信装置の構成を示す。ここでは、図8と同様の構成要素については、同じ符号を付してその説明を省略する。
(Embodiment 1)
FIG. 1, in which the same reference numerals are assigned to corresponding parts as in FIG. 8, shows the configuration of the OFDM receiver of this embodiment. Here, the same components as those in FIG. 8 are denoted by the same reference numerals, and the description thereof is omitted.

本実施の形態のOFDM受信装置100は、伝送路特性推定部110の周波数軸補間部120の構成が、図8のOFDM受信装置800と異なる。周波数軸補間部120は、時間軸補間後のデータHc’(i−3,k)に対し、OFDM信号帯域の両端に後述するコピー処理を行うコピー部101と、そのコピー部101の出力He’(i−3,k)を周波数軸方向に補間処理するFIRフィルタ部11とで構成されている。   The OFDM receiving apparatus 100 of the present embodiment differs from the OFDM receiving apparatus 800 of FIG. 8 in the configuration of the frequency axis interpolation unit 120 of the transmission path characteristic estimation unit 110. The frequency axis interpolation unit 120 performs a copy process to be described later on both ends of the OFDM signal band with respect to the data Hc ′ (i−3, k) after the time axis interpolation, and the output He ′ of the copy unit 101. The FIR filter unit 11 interpolates (i-3, k) in the frequency axis direction.

以下、コピー部101による信号帯域両端におけるコピー処理について詳しく説明する。   Hereinafter, a copy process at both ends of the signal band by the copy unit 101 will be described in detail.

図2は、コピー部101によるOFDM信号帯域の両端に対するコピー処理結果を示すもので、図2AはOFDM信号帯域全体、図2BはOFDM信号帯域の左端、図2CはOFDM信号帯域の右端のコピー処理結果をそれぞれ示したものである。   FIG. 2 shows the copy processing results for both ends of the OFDM signal band by the copy unit 101. FIG. 2A shows the entire OFDM signal band, FIG. 2B shows the left end of the OFDM signal band, and FIG. 2C shows the copy processing of the right end of the OFDM signal band. Each result is shown.

コピー部101は、図2Aに示すように、時間軸補間後のデータHc’(i−3,k)の両端に、OFDM信号帯域左端のSP又はCPを、FIRフィルタ部11(周波数軸補間フィルタ)の半タップ数分の区間だけコピーする。   As shown in FIG. 2A, the copy unit 101 applies SP or CP at the left end of the OFDM signal band to both ends of the data Hc ′ (i−3, k) after time axis interpolation, and the FIR filter unit 11 (frequency axis interpolation filter). ) Copy only the interval for the number of half taps.

ここで、まずOFDM信号帯域左端側においては、図2Bに示すように、各OFDMシンボルの左端のSPを、OFDM信号帯域中のSP間隔を保つように、左端帯域外に3キャリアおきにコピーし、コピーしたSP間には0を挿入する。   Here, on the left end side of the OFDM signal band, as shown in FIG. 2B, the SP at the left end of each OFDM symbol is copied every three carriers outside the left end band so as to maintain the SP interval in the OFDM signal band. , 0 is inserted between the copied SPs.

一方、OFDM信号帯域右端側においては、帯域右端に常に配置されるCPを、OFDM信号帯域中のSP間隔を保つように、右端帯域外に3キャリア置きにコピーし、コピーしたCP間には0を挿入する。   On the other hand, on the right end side of the OFDM signal band, the CP that is always arranged at the right end of the band is copied every three carriers outside the right end band so as to maintain the SP interval in the OFDM signal band, and 0 between the copied CPs. Insert.

このように、OFDM信号帯域の両端に、周波数補間フィルタの半タップ数分の区間のデータを追加したものを、周波数補間フィルタに入力することで、周波数補間フィルタ(FIRフィルタ部11)の出力Hd’(i−3,k)、すなわち、伝送路特性推定結果の信号帯域両端のリップルが軽減される。   In this way, by adding the data corresponding to the half-tap number of the frequency interpolation filter to both ends of the OFDM signal band, the data is input to the frequency interpolation filter, whereby the output Hd of the frequency interpolation filter (FIR filter unit 11). '(I-3, k), that is, ripples at both ends of the signal band of the transmission path characteristic estimation result are reduced.

かくして本実施の形態によれば、周波数補間フィルタ(この実施の形態の場合、FIRフィルタ11)の前段側に、OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性を、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるように、OFDM信号帯域外の予め定められた長さ(この実施の形態の場合、周波数補間フィルタの半タップ数分)のパイロットキャリアコピー区間にコピーすると共に、コピーしたパイロットキャリア間に0を挿入するコピー部101を設けたことにより、周波数補間フィルタによってパイロットキャリア伝送路特性データを周波数軸補間することに起因する伝送路特性推定精度の劣化を軽減し得るOFDM受信装置100を実現できる。   Thus, according to the present embodiment, the pilot carrier transmission line characteristic closest to the band edge in the OFDM signal band is provided on the upstream side of the frequency interpolation filter (in this embodiment, the FIR filter 11). In addition to copying to a pilot carrier copy section having a predetermined length outside the OFDM signal band (in this embodiment, the number of half taps of the frequency interpolation filter) so as to be equal to the pilot carrier interval of OFDM that can reduce degradation of transmission path characteristic estimation accuracy due to frequency axis interpolation of pilot carrier transmission path characteristic data by a frequency interpolation filter by providing a copy unit 101 that inserts 0 between copied pilot carriers The receiving device 100 can be realized.

なお、本実施の形態では、時間軸補間処理後のSP間隔が3キャリア置きの場合を例に説明したが、本発明はこれに限らず、その以外のSP間隔の場合においても同様の効果を得ることができる。   In this embodiment, the case where the SP interval after the time axis interpolation process is every three carriers has been described as an example. However, the present invention is not limited to this, and the same effect can be obtained in the case of other SP intervals. Obtainable.

また、本実施の形態では、両端帯域外に周波数補間フィルタの半タップ数のコピー区間を設けたが、リップルの影響に応じてコピー区間を調整してもよい。   In the present embodiment, the copy interval of the number of half taps of the frequency interpolation filter is provided outside the both end bands. However, the copy interval may be adjusted according to the influence of ripple.

さらに、本実施の形態では、OFDM受信装置の例について説明したが、OFDM中継装置に適用しても同様の効果を得ることができる。OFDM中継装置は、例えば、判定部6の後段にマッピング部、IFFT部、送信部を順次設けた構成とすればよい。このような構成とすることにより、周波数補間フィルタによってパイロットキャリア伝送路特性データを周波数軸補間した際の精度劣化を軽減し得るOFDM中継装置を実現できる。   Furthermore, although an example of an OFDM receiving apparatus has been described in the present embodiment, the same effect can be obtained even when applied to an OFDM relay apparatus. For example, the OFDM relay apparatus may have a configuration in which a mapping unit, an IFFT unit, and a transmission unit are sequentially provided after the determination unit 6. By adopting such a configuration, it is possible to realize an OFDM relay apparatus that can reduce deterioration in accuracy when frequency axis interpolation is performed on pilot carrier transmission path characteristic data using a frequency interpolation filter.

(実施の形態2)
図8との対応部分に同一符号を付して示す図3に、本実施の形態のOFDM受信装置の構成を示す。ここでは、図8と同様の構成要素については、同じ符号を付してその説明を省略する。
(Embodiment 2)
FIG. 3, in which the same reference numerals are assigned to corresponding parts as in FIG. 8, shows the configuration of the OFDM receiver of this embodiment. Here, the same components as those in FIG. 8 are denoted by the same reference numerals, and the description thereof is omitted.

OFDM受信装置300の伝送路特性推定部310には、0挿入部302が設けられている。そしてパイロットキャリア伝送路特性推定部30により得られたSP/CP伝送路特性H’(i,kp)を0挿入部302に入力する。0挿入部302は、OFDM信号のSP/CPキャリアの位置にはSP/CP除算部8の出力であるSP/CP伝送路特性H’(i,kp)を、データキャリアの位置には0を挿入する処理を行う。なお、このようにして得られる0挿入後のデータHf’(i,k)は、後述するようにシンボル番号によってSPの配置が異なる。   The transmission path characteristic estimation unit 310 of the OFDM receiver 300 is provided with a 0 insertion unit 302. Then, the SP / CP transmission line characteristic H ′ (i, kp) obtained by the pilot carrier transmission line characteristic estimation unit 30 is input to the 0 insertion unit 302. The 0 insertion unit 302 sets the SP / CP transmission path characteristic H ′ (i, kp), which is the output of the SP / CP division unit 8, at the position of the SP / CP carrier of the OFDM signal, and sets 0 at the position of the data carrier. Perform the insertion process. The data Hf ′ (i, k) after 0 insertion obtained in this way has a different SP arrangement depending on the symbol number, as will be described later.

周波数軸補間部320は、OFDM信号帯域の両端に後述するコピー処理を行うコピー部301と、そのコピー部301の出力He’(i,k)を周波数軸方向に補間処理するFIRフィルタ部11とにより構成されている。   The frequency axis interpolation unit 320 includes a copy unit 301 that performs copy processing, which will be described later, at both ends of the OFDM signal band, and an FIR filter unit 11 that performs interpolation processing on the output He ′ (i, k) of the copy unit 301 in the frequency axis direction. It is comprised by.

以下、コピー部301による信号帯域両端におけるコピー処理について詳しく説明する。   Hereinafter, the copy process at both ends of the signal band by the copy unit 301 will be described in detail.

図4は、コピー部301によるOFDM信号帯域の両端に対するコピー処理結果を示すもので、図4AはOFDM信号帯域全体、図4BはOFDM信号帯域の左端、図4CはOFDM信号帯域の右端のコピー処理結果をそれぞれ示したものである。   FIG. 4 shows the copy processing results for both ends of the OFDM signal band by the copy unit 301, FIG. 4A shows the entire OFDM signal band, FIG. 4B shows the left end of the OFDM signal band, and FIG. 4C shows the copy processing of the right end of the OFDM signal band. Each result is shown.

コピー部301は、図4Aに示すように、0挿入部302より得られたデータHf’(i,k)の両端に、OFDM信号帯域左端のSP又はCPを、FIRフィルタ部11(周波数軸補間フィルタ)の半タップ数分の区間だけコピーする。   As shown in FIG. 4A, the copy unit 301 applies the SP or CP at the left end of the OFDM signal band to both ends of the data Hf ′ (i, k) obtained from the 0 insertion unit 302, and the FIR filter unit 11 (frequency axis interpolation). Copy only the interval for the number of half taps of (Filter).

ここで、まずOFDM信号帯域左端側においては、図4Bに示すように、各OFDMシンボルの左端のSPを、OFDM信号帯域中のSP間隔を保つように、左端帯域外に12キャリア置きにコピーし、コピーしたSP間には0を挿入する。OFDM信号帯域中のSPの配置は、シンボル番号によって異なるので、SPのコピー位置もシンボル番号によって異なる。   Here, on the left end side of the OFDM signal band, as shown in FIG. 4B, the left end SP of each OFDM symbol is copied every 12 carriers outside the left end band so as to maintain the SP interval in the OFDM signal band. , 0 is inserted between the copied SPs. Since the arrangement of SPs in the OFDM signal band differs depending on the symbol number, the SP copy position also differs depending on the symbol number.

一方、OFDM信号帯域右端側においては、帯域右端に常に配置されるCPを、OFDM信号帯域中のSP間隔を保つように、右端帯域外に12キャリア置きにコピーし、コピーしたCP間には0を挿入する。なお、シンボル番号によってSPの配置が異なるので、図2Cのようにシンボル番号%4=1,2,3の場合は、信号帯域右端(キャリア番号Nc−1)のCPの位置には、CPの代わりに0を置き換えて配置する。   On the other hand, on the right end side of the OFDM signal band, the CP that is always placed at the right end of the band is copied every 12 carriers outside the right end band so as to maintain the SP interval in the OFDM signal band, and 0 between the copied CPs. Insert. Since the SP arrangement differs depending on the symbol number, when symbol number% 4 = 1, 2, 3 as shown in FIG. 2C, the CP position at the right end of the signal band (carrier number Nc-1) is CP. Instead, 0 is replaced and arranged.

このように、OFDM信号帯域の両端に、周波数補間フィルタの半タップ数分の区間のデータを追加したものを、周波数補間フィルタに入力することで、周波数補間フィルタ(FIRフィルタ部11)の出力Hd’(i,k)、すなわち、伝送路特性推定結果の信号帯域両端のリップルが軽減される。   In this way, by adding the data corresponding to the half-tap number of the frequency interpolation filter to both ends of the OFDM signal band, the data is input to the frequency interpolation filter, whereby the output Hd of the frequency interpolation filter (FIR filter unit 11). '(I, k), that is, ripples at both ends of the signal band of the transmission path characteristic estimation result are reduced.

かくして本実施の形態によれば、周波数補間フィルタ(この実施の形態の場合、FIRフィルタ11)の前段側に、OFDM信号のSP/CPキャリアの位置にはSP/CP伝送路特性H’(i,kp)を、データキャリアの位置には0を挿入する0挿入部302と、OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性を、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるように、OFDM信号帯域外の予め定められた長さ(この実施の形態の場合、周波数補間フィルタの半タップ数分)のパイロットキャリアコピー区間にコピーするコピー部301を設けたことにより、周波数補間フィルタによってパイロットキャリア伝送路特性データを周波数軸補間した際の精度劣化を軽減し得るOFDM受信装置300を実現できる。   Thus, according to the present embodiment, the SP / CP transmission line characteristic H ′ (i) is placed at the position of the SP / CP carrier of the OFDM signal on the upstream side of the frequency interpolation filter (in this embodiment, the FIR filter 11). , Kp), a 0 insertion unit 302 for inserting 0 at the position of the data carrier, and a pilot carrier transmission path characteristic closest to the band edge in the OFDM signal band, with an interval equal to the pilot carrier interval in the OFDM signal band. By providing a copy unit 301 for copying in a pilot carrier copy section of a predetermined length outside the OFDM signal band (in this embodiment, the number of half taps of the frequency interpolation filter), OFDM receiver capable of reducing accuracy degradation when frequency axis interpolation of pilot carrier channel characteristic data is performed by interpolation filter 00 can be realized.

因みに、実施の形態1の構成と比較すると、本実施の形態の構成では、時間軸補間を行っていないので、実際上、実施の形態1の構成により得られる伝送路特性推定結果よりも若干精度が低下する。しかし、本実施の形態では、時間軸補間を行っていないので、SP/CP伝送路特性H’(i,kp)を蓄積する必要がなく、リアルタイムで伝送路特性推定結果を得ることができ、かつ回路規模を小さくできるといった利点がある。   Incidentally, compared with the configuration of the first embodiment, the configuration of the present embodiment does not perform time-axis interpolation, so in practice it is slightly more accurate than the transmission path characteristic estimation result obtained by the configuration of the first embodiment. Decreases. However, in the present embodiment, since time axis interpolation is not performed, there is no need to accumulate SP / CP transmission path characteristics H ′ (i, kp), and transmission path characteristics estimation results can be obtained in real time. In addition, there is an advantage that the circuit scale can be reduced.

なお、本実施の形態では、コピー部301の前段側に0挿入部302を設けた場合について説明したが、コピー部301の後段側に0挿入部302を設けるようにしてもよい。要は、本実施の形態の特徴は、OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性を、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるように、OFDM信号帯域外の予め定められた長さのパイロットキャリアコピー区間にコピーし、コピーしたパイロットキャリア間に0を挿入するコピー手段を、コピー部301と0挿入部302とにより構成したことである。   In the present embodiment, the case where the 0 insertion unit 302 is provided on the upstream side of the copy unit 301 has been described. However, the 0 insertion unit 302 may be provided on the downstream side of the copy unit 301. In short, the feature of this embodiment is that the pilot carrier transmission path characteristic closest to the band edge in the OFDM signal band is set in advance outside the OFDM signal band so as to be equal to the pilot carrier interval in the OFDM signal band. That is, a copy unit that copies to a pilot carrier copy section of a predetermined length and inserts 0 between the copied pilot carriers is configured by the copy unit 301 and the 0 insertion unit 302.

また、本実施の形態では、SP/CP除算後のデータのSP間隔が12キャリア置きの場合を例に説明したが、本発明はこれに限らず、その以外のSP間隔の場合においても同様の効果を得ることができる。   In this embodiment, the case where the SP interval of the data after SP / CP division is every 12 carriers has been described as an example. However, the present invention is not limited to this, and the same applies to other SP intervals. An effect can be obtained.

また、本実施の形態では、両端帯域外に周波数補間フィルタの半タップ数のコピー区間を設けたが、リップルの影響に応じてコピー区間を調整してもよい。   In the present embodiment, the copy interval of the number of half taps of the frequency interpolation filter is provided outside the both end bands. However, the copy interval may be adjusted according to the influence of ripple.

さらに、本実施の形態では、OFDM受信装置の例について説明したが、OFDM中継装置に適用しても同様の効果を得ることができる。OFDM中継装置は、例えば、判定部6の後段にマッピング部、IFFT部、送信部を順次設けた構成とすればよい。このような構成とすることにより、周波数補間フィルタによってパイロットキャリア伝送路特性データを周波数軸補間した際の精度劣化を軽減し得るOFDM中継装置を実現できる。   Furthermore, although an example of an OFDM receiving apparatus has been described in the present embodiment, the same effect can be obtained even when applied to an OFDM relay apparatus. For example, the OFDM relay apparatus may have a configuration in which a mapping unit, an IFFT unit, and a transmission unit are sequentially provided after the determination unit 6. By adopting such a configuration, it is possible to realize an OFDM relay apparatus that can reduce deterioration in accuracy when frequency axis interpolation is performed on pilot carrier transmission path characteristic data using a frequency interpolation filter.

(実施の形態3)
図3、図8との対応部分に同一符号を付して示す図5に、本実施の形態のOFDM受信装置の構成を示す。ここでは、図3、図8と同様の構成要素については、同じ符号を付してその説明を省略する。
(Embodiment 3)
FIG. 5, in which parts corresponding to those in FIGS. 3 and 8 are assigned the same reference numerals, shows the configuration of the OFDM receiver of this embodiment. Here, the same components as those in FIGS. 3 and 8 are denoted by the same reference numerals, and the description thereof is omitted.

OFDM受信装置500の伝送路特性推定部510には、図3の伝送路特性推定部310の構成に加えて、帯域端データ蓄積部501と上書き部502が設けられている。以下、帯域端データ蓄積部501、上書き部502の処理について詳しく説明する。   The channel characteristic estimation unit 510 of the OFDM receiver 500 is provided with a band edge data storage unit 501 and an overwrite unit 502 in addition to the configuration of the channel characteristic estimation unit 310 of FIG. Hereinafter, the processing of the band edge data storage unit 501 and the overwrite unit 502 will be described in detail.

帯域端データ蓄積部501は、周波数軸補間部320より得られた伝送路特性Hd’(i,k)のうち、シンボル番号%4=0で、かつ、OFDM信号帯域両端からあらかじめ定めたキャリア分の伝送路特性Hd’(j,k)を最新の1シンボル分蓄積する(j:シンボル番号%4=0となるシンボル番号)。   The band edge data accumulating unit 501 has a symbol number% 4 = 0 of the transmission path characteristics Hd ′ (i, k) obtained from the frequency axis interpolating unit 320 and a predetermined carrier component from both ends of the OFDM signal band. Are stored for one latest symbol (j: symbol number where symbol number% 4 = 0).

上書き部502は、図6に示すように、周波数軸補間部320より得られた伝送路特性Hd’(i,k)のシンボル番号が、シンボル番号%4=1,2,3である場合、帯域端データ蓄積部501で蓄積したシンボル番号4=0の帯域端の伝送路特性Hd’(j,k)を、周波数軸補間部320より得られた伝送路特性Hd’(i,k)に上書きする。そして、このようにして得られたデータHg’(i,k)を、伝送路特性として等化部5に送出する。   As shown in FIG. 6, when the symbol number of the transmission path characteristic Hd ′ (i, k) obtained from the frequency axis interpolation unit 320 is symbol number% 4 = 1, 2, 3, The transmission line characteristic Hd ′ (j, k) at the band edge of symbol number 4 = 0 accumulated in the band edge data accumulation unit 501 is used as the transmission line characteristic Hd ′ (i, k) obtained from the frequency axis interpolation unit 320. Overwrite. Then, the data Hg ′ (i, k) obtained in this way is sent to the equalization unit 5 as a transmission path characteristic.

このように、シンボル番号%4=1,2,3の場合において、OFDM信号帯域の両端については、シンボル番号%4=0の伝送路特性を用いることで、OFDM信号帯域の両端の伝送路特性推定の精度の劣化が軽減される。   Thus, in the case of symbol number% 4 = 1, 2, 3, the transmission path characteristics at both ends of the OFDM signal band are obtained by using the transmission path characteristics of symbol number% 4 = 0 at both ends of the OFDM signal band. Degradation of estimation accuracy is reduced.

すなわち、上書き部502は、OFDM信号の帯域端にパイロットキャリアが配置されていないOFDMシンボルを基に周波数軸方向補間されたOFDM信号帯域端の予め定められたキャリア分の伝送路特性を、OFDM信号の帯域端にパイロットキャリアが配置されているOFDMシンボルを基に周波数軸補間されたOFDM信号帯域端の予め定められたキャリア分の伝送路特性に置き換える処理を行う。   That is, the overwrite unit 502 sets the transmission path characteristics for the predetermined carrier at the OFDM signal band edge that is interpolated in the frequency axis direction based on the OFDM symbol in which the pilot carrier is not arranged at the band edge of the OFDM signal, to the OFDM signal. The processing is performed to replace the channel characteristic with a predetermined carrier at the OFDM signal band edge subjected to frequency axis interpolation based on the OFDM symbol in which the pilot carrier is arranged at the band edge.

これにより、パイロットキャリア伝送路特性のうち、OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性を、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるように、OFDM信号帯域外の予め定められた長さのパイロットキャリアコピー区間にコピーし、コピーしたパイロットキャリア間に0を挿入するといった処理を、時間軸補間を行わずに行った場合でも、周波数軸補間後のOFDM信号帯域の両端の伝送路特性推定精度の劣化を低減できるようになる。   As a result, the pilot carrier transmission line characteristic closest to the band edge in the OFDM signal band among the pilot carrier transmission line characteristics is preliminarily placed outside the OFDM signal band so as to be equal to the pilot carrier interval in the OFDM signal band. Even when processing such as copying to a pilot carrier copy section of a predetermined length and inserting 0 between the copied pilot carriers without performing time axis interpolation, both ends of the OFDM signal band after frequency axis interpolation are performed. It is possible to reduce the degradation of the transmission path characteristic estimation accuracy.

かくして本実施の形態によれば、実施の形態2の構成に加えて、上書き部502を設け、OFDM信号の帯域端にパイロットキャリアが配置されていないOFDMシンボルを基に周波数軸方向補間されたOFDM信号帯域端の予め定められたキャリア分の伝送路特性を、OFDM信号の帯域端にパイロットキャリアが配置されているOFDMシンボルを基に周波数軸補間されたOFDM信号帯域端の予め定められたキャリア分の伝送路特性に置き換えるようにしたことにより、実施の形態2の効果に加えて、OFDM信号帯域両端の伝送路特性推定精度の劣化を低減できるOFDM受信装置500を実現できる。   Thus, according to the present embodiment, in addition to the configuration of the second embodiment, an overwrite unit 502 is provided, and the OFDM interpolated in the frequency axis direction based on the OFDM symbol in which the pilot carrier is not arranged at the band edge of the OFDM signal. The transmission path characteristics for a predetermined carrier at the signal band edge are determined for the predetermined carrier at the OFDM signal band edge subjected to frequency axis interpolation based on an OFDM symbol in which a pilot carrier is arranged at the band edge of the OFDM signal. In addition to the effects of the second embodiment, an OFDM receiving apparatus 500 that can reduce degradation of transmission path characteristic estimation accuracy at both ends of the OFDM signal band can be realized.

なお、本実施の形態では、SP/CP除算後のデータのSP間隔が12キャリア置きの場合を例に説明したが、本発明はこれに限らず、その以外のSP間隔の場合においても同様の効果を得ることができる。   In this embodiment, the case where the SP interval of the data after SP / CP division is every 12 carriers has been described as an example. However, the present invention is not limited to this, and the same applies to other SP intervals. An effect can be obtained.

また、本実施の形態では、OFDM受信装置の例について説明したが、OFDM中継装置に適用しても同様の効果を得ることができる。OFDM中継装置は、例えば、判定部6の後段にマッピング部、IFFT部、送信部を順次設けた構成とすればよい。このような構成とすることにより、周波数補間フィルタによってパイロットキャリア伝送路特性データを周波数軸補間した際の精度劣化を軽減し得るOFDM中継装置を実現できる。   Further, although an example of an OFDM receiving apparatus has been described in this embodiment, the same effect can be obtained even when applied to an OFDM relay apparatus. For example, the OFDM relay apparatus may have a configuration in which a mapping unit, an IFFT unit, and a transmission unit are sequentially provided after the determination unit 6. By adopting such a configuration, it is possible to realize an OFDM relay apparatus that can reduce deterioration in accuracy when frequency axis interpolation is performed on pilot carrier transmission path characteristic data using a frequency interpolation filter.

本発明は、パイロット信号により求めた伝送路特性を周波数軸方向に補間することに起因する伝送路特性推定精度の劣化を軽減し得、例えば地上ディジタル放送のOFDM受信装置及びOFDM中継装置に適用して有用である。またパイロットキャリアにより伝送路特性を推定するその他の通信装置等にも適用できる。   The present invention can reduce degradation of transmission path characteristic estimation accuracy caused by interpolating transmission path characteristics obtained from pilot signals in the frequency axis direction, and is applied to, for example, an OFDM receiver and an OFDM relay apparatus for terrestrial digital broadcasting. And useful. The present invention can also be applied to other communication apparatuses that estimate transmission path characteristics using a pilot carrier.

本発明の実施の形態1に係るOFDM受信装置の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of an OFDM receiving apparatus according to Embodiment 1 of the present invention. 実施の形態1における伝送路特性データのコピー処理の説明に供する図FIG. 5 is a diagram for explaining transmission path characteristic data copy processing according to the first embodiment. 実施の形態2のOFDM受信装置の構成を示すブロック図FIG. 3 is a block diagram showing a configuration of an OFDM receiving apparatus according to the second embodiment. 実施の形態2における伝送路特性データのコピー処理の説明に供する図FIG. 10 is a diagram for explaining transmission path characteristic data copy processing according to the second embodiment. 実施の形態3のOFDM受信装置の構成を示すブロック図FIG. 9 is a block diagram showing a configuration of an OFDM receiving apparatus according to the third embodiment. 実施の形態3における伝送路特性データの上書き処理を説明に供する図The figure for demonstrating the overwrite process of the transmission line characteristic data in Embodiment 3 ISDB−Tの信号フォーマットを示す図The figure which shows the signal format of ISDB-T 従来のOFDM受信装置の構成を示すブロック図The block diagram which shows the structure of the conventional OFDM receiver 伝送路特性の時間軸補間処理の説明に供する図Diagram for explaining time-axis interpolation processing of transmission line characteristics

符号の説明Explanation of symbols

11 FIRフィルタ部
30 パイロットキャリア伝送路特性推定部
40 時間軸補間部
100、300、500 OFDM受信装置
101、301 コピー部
110、310、510 伝送路特性推定部
120、320 周波数軸補間部
302 0挿入部
501 帯域端データ蓄積部
502 上書き部
11 FIR filter unit 30 Pilot carrier channel characteristic estimation unit 40 Time axis interpolation unit 100, 300, 500 OFDM receiver 101, 301 Copy unit 110, 310, 510 Channel characteristic estimation unit 120, 320 Frequency axis interpolation unit 302 0 insertion 501 Band edge data storage unit 502 Overwrite unit

Claims (6)

周波数軸方向及び時間軸方向に予め定められた間隔で配置されたキャリアを、振幅及び位相が既知のパイロット信号により変調したOFDMシンボルを含むOFDMシンボルを受信するOFDM受信装置であって、
受信パイロット信号に基づいて、パイロットキャリアに作用した伝送路特性を推定するパイロットキャリア伝送路特性推定手段と、
前記パイロットキャリア伝送路特性推定手段により得られたパイロットキャリア伝送路特性のうち、OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性を、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるように、OFDM信号帯域外の予め定められた長さのパイロットキャリアコピー区間にコピーすると共に、コピーしたパイロットキャリア間に0を挿入するパイロットキャリアコピー手段と、
前記パイロットキャリアコピー手段により得られたデータを、周波数軸方向に補間する周波数軸補間手段と
を具備するOFDM受信装置。
An OFDM receiver that receives an OFDM symbol including an OFDM symbol obtained by modulating carriers arranged at predetermined intervals in a frequency axis direction and a time axis direction with a pilot signal having a known amplitude and phase,
Pilot carrier channel characteristic estimating means for estimating channel characteristics acting on the pilot carrier based on the received pilot signal;
Of the pilot carrier transmission line characteristics obtained by the pilot carrier transmission line characteristic estimation means, the pilot carrier transmission line characteristic closest to the band edge in the OFDM signal band is equal to the pilot carrier interval in the OFDM signal band. And a pilot carrier copy means for copying to a pilot carrier copy section of a predetermined length outside the OFDM signal band and inserting 0 between the copied pilot carriers,
An OFDM receiver comprising: frequency axis interpolation means for interpolating data obtained by the pilot carrier copy means in the frequency axis direction.
前記パイロットキャリアコピー手段の前段側に設けられ、前記パイロットキャリア伝送路特性推定手段により得られたパイロットキャリア伝送路特性を、時間軸方向に補間する時間軸補間手段を、さらに具備する
請求項1に記載のOFDM受信装置。
The time-axis interpolation means provided in the front | former stage side of the said pilot carrier copy means and interpolating the pilot carrier transmission line characteristic obtained by the said pilot carrier transmission line characteristic estimation means to a time-axis direction is further provided. The OFDM receiver according to the description.
前記パイロットキャリアコピー手段は、
パイロットキャリアの位置にはパイロットキャリア伝送路特性を、データキャリアの位置には0を挿入する0挿入部と、
OFDM信号帯域内の最も帯域端に近いパイロットキャリア伝送路特性を、OFDM信号帯域内のパイロットキャリア間隔と等しい間隔となるように、OFDM信号帯域外の予め定められた長さのパイロットキャリアコピー区間にコピーするコピー部と
を具備する請求項1に記載のOFDM受信装置。
The pilot carrier copy means includes
A pilot carrier transmission path characteristic at the pilot carrier position, a 0 insertion section for inserting 0 at the data carrier position,
The pilot carrier transmission path characteristic closest to the band edge in the OFDM signal band is set to a pilot carrier copy section of a predetermined length outside the OFDM signal band so that the pilot carrier transmission path characteristic is equal to the pilot carrier interval in the OFDM signal band. The OFDM receiver according to claim 1, further comprising: a copy unit that performs copying.
前記周波数軸補間手段の後段側に設けられ、OFDM信号の帯域端にパイロットキャリアが配置されていないOFDMシンボルを基に周波数軸方向補間されたOFDM信号帯域端の予め定められたキャリア分の伝送路特性を、OFDM信号の帯域端にパイロットキャリアが配置されているOFDMシンボルを基に周波数軸補間されたOFDM信号帯域端の予め定められたキャリア分の伝送路特性に置き換える上書き手段を、さらに具備する
請求項1又は請求項3に記載のOFDM受信装置。
A transmission path for a predetermined carrier at the OFDM signal band edge that is provided on the rear side of the frequency axis interpolation means and is interpolated in the frequency axis direction based on an OFDM symbol in which no pilot carrier is arranged at the band edge of the OFDM signal Overwriting means for replacing the characteristic with a transmission path characteristic for a predetermined carrier at the OFDM signal band edge that is frequency-axis interpolated based on an OFDM symbol in which a pilot carrier is arranged at the band edge of the OFDM signal is further provided. The OFDM receiver according to claim 1 or 3.
前記周波数軸補間手段は、FIRフィルタにより構成され、
前記パイロットキャリアコピー手段による前記パイロットキャリアコピー区間が前記FIRフィルタのタップ数の半分の長さとされている
請求項1に記載のOFDM受信装置。
The frequency axis interpolation means is constituted by an FIR filter,
The OFDM receiver according to claim 1, wherein the pilot carrier copy section by the pilot carrier copy means is half the number of taps of the FIR filter.
請求項1から請求項5のいずれかに記載のOFDM受信装置を備えたOFDM中継装置。   An OFDM relay apparatus comprising the OFDM receiver according to any one of claims 1 to 5.
JP2004282544A 2004-09-28 2004-09-28 Ofdm receiver and ofdm relay apparatus Pending JP2006101019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282544A JP2006101019A (en) 2004-09-28 2004-09-28 Ofdm receiver and ofdm relay apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282544A JP2006101019A (en) 2004-09-28 2004-09-28 Ofdm receiver and ofdm relay apparatus

Publications (1)

Publication Number Publication Date
JP2006101019A true JP2006101019A (en) 2006-04-13

Family

ID=36240440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282544A Pending JP2006101019A (en) 2004-09-28 2004-09-28 Ofdm receiver and ofdm relay apparatus

Country Status (1)

Country Link
JP (1) JP2006101019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124948A (en) * 2006-11-15 2008-05-29 Nec Electronics Corp Wireless communication apparatus and communication processing circuit
JP2008526141A (en) * 2004-12-22 2008-07-17 クゥアルコム・インコーポレイテッド Constrained hopping in wireless communication systems
WO2008089596A1 (en) * 2007-01-19 2008-07-31 Thomson Licensing Interpolating method for an ofdm system and channel estimation method and apparatus
WO2010095887A3 (en) * 2009-02-20 2010-11-18 (주)엘지전자 Method for allocating reference signals of a backhaul link in a relay communication system, and method and apparatus for transmitting/receiving data using same
GB2489283A (en) * 2011-03-24 2012-09-26 Sony Corp OFDM frequency domain channel estimation with virtual scattered pilots created in frequency notches to restore pattern before interpolation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526141A (en) * 2004-12-22 2008-07-17 クゥアルコム・インコーポレイテッド Constrained hopping in wireless communication systems
US8571132B2 (en) 2004-12-22 2013-10-29 Qualcomm Incorporated Constrained hopping in wireless communication systems
JP2008124948A (en) * 2006-11-15 2008-05-29 Nec Electronics Corp Wireless communication apparatus and communication processing circuit
US8107520B2 (en) 2006-11-15 2012-01-31 Renesas Electronics Corporation Wireless communication apparatus having equalizer
WO2008089596A1 (en) * 2007-01-19 2008-07-31 Thomson Licensing Interpolating method for an ofdm system and channel estimation method and apparatus
JP2010517338A (en) * 2007-01-19 2010-05-20 トムソン ライセンシング Interpolation method, channel estimation method and apparatus in OFDM system
CN101611580B (en) * 2007-01-19 2013-03-13 汤姆逊许可公司 Interpolating method for an OFDM system and channel estimation method and apparatus
WO2010095887A3 (en) * 2009-02-20 2010-11-18 (주)엘지전자 Method for allocating reference signals of a backhaul link in a relay communication system, and method and apparatus for transmitting/receiving data using same
US8565184B2 (en) 2009-02-20 2013-10-22 Lg Electronics Inc. Method for allocating reference signals of a backhaul link in a relay communication system, and method and apparatus for transmitting/receiving data using same
US9801160B2 (en) 2009-02-20 2017-10-24 Lg Electronics Inc. Method for allocating reference signals of a backhaul link in a relay communication system, and method and apparatus for transmitting/receiving data using the same
GB2489283A (en) * 2011-03-24 2012-09-26 Sony Corp OFDM frequency domain channel estimation with virtual scattered pilots created in frequency notches to restore pattern before interpolation
US8462895B2 (en) 2011-03-24 2013-06-11 Sony Corporation Receiver and method

Similar Documents

Publication Publication Date Title
JP4961918B2 (en) OFDM receiving apparatus and OFDM receiving method
JP5296776B2 (en) Receiving device, receiving method, integrated circuit, digital television receiver, program
JP2005312027A (en) Receiver
JP2007202081A (en) Ofdm demodulator and ofdm demodulation method
US8488695B2 (en) Receiving apparatus and method, program, and receiving system
US8155223B2 (en) Receiving device, receiving method, and program
JP5204131B2 (en) Apparatus and method for revealing automatic gain control in multi-carrier systems
JP4903026B2 (en) Delay profile analysis circuit and apparatus using the same
US8175204B2 (en) Receiving device, signal processing method, and program
JP4780161B2 (en) Receiving device, receiving method, and program
EP1821407B1 (en) OFDM channel estimation systems
JP2010050834A (en) Ofdm digital signal equalizer, equalization method, and repeater device
WO2007096663A2 (en) Ofdem channel estimation systems
JP2006101019A (en) Ofdm receiver and ofdm relay apparatus
US8457253B2 (en) Apparatus and method for estimating a channel in a broadband wireless communication system
KR100695005B1 (en) Channel Estimation Apparatus and Method of OFDM based Receiver
JP5023006B2 (en) OFDM signal receiving apparatus and relay apparatus
JP4891893B2 (en) Wraparound canceller
JP5925137B2 (en) Digital broadcast receiving apparatus and digital broadcast receiving method
JP2006101020A (en) Ofdm receiver and ofdm relay apparatus
JP2010246024A (en) Demodulation device
JP2007104574A (en) Multicarrier wireless receiver and receiving method
JP4454524B2 (en) Delay profile analysis circuit and apparatus using the same
JP2005033429A (en) Receiver and computer program
JP2004304590A (en) Ofdm demodulator and method therefor