JP2006199528A - Processing method of cylindrical fluoride single crystal with (100) crystal face - Google Patents
Processing method of cylindrical fluoride single crystal with (100) crystal face Download PDFInfo
- Publication number
- JP2006199528A JP2006199528A JP2005011758A JP2005011758A JP2006199528A JP 2006199528 A JP2006199528 A JP 2006199528A JP 2005011758 A JP2005011758 A JP 2005011758A JP 2005011758 A JP2005011758 A JP 2005011758A JP 2006199528 A JP2006199528 A JP 2006199528A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- cylindrical
- fluoride
- crystal
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 117
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 title claims abstract description 52
- 238000003672 processing method Methods 0.000 title claims description 11
- 238000000227 grinding Methods 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 30
- 230000003746 surface roughness Effects 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims description 41
- 238000005520 cutting process Methods 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 62
- 229910001634 calcium fluoride Inorganic materials 0.000 description 55
- 230000000052 comparative effect Effects 0.000 description 11
- 235000015220 hamburgers Nutrition 0.000 description 8
- 239000010436 fluorite Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 description 1
- 229910001637 strontium fluoride Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
本発明は、(100)面方位の結晶内部の歪複屈折が大幅に低減された(100)結晶面の円筒状フッ化物単結晶の加工方法に関する。なお、ここでいう(100)結晶面とは、円筒体及び多角体の底面及び頂面であり、図1(a)に円筒体及び図1(b)に六角柱状体の例を示す。 The present invention relates to a method for processing a cylindrical fluoride single crystal having a (100) crystal plane, in which the strain birefringence inside the (100) plane crystal is greatly reduced. The (100) crystal planes referred to here are the bottom and top surfaces of a cylindrical body and a polygon, and FIG. 1 (a) shows an example of a cylindrical body and FIG. 1 (b) shows a hexagonal columnar body.
近年、マイクロプロセッサー、メモリー、イメージセンサー等に用いられる半導体集積回路は、高集積化、高機能化が著しく進行している。そのため、ウエハの形成には微細な加工技術が要請されてきている。 In recent years, semiconductor integrated circuits used in microprocessors, memories, image sensors, and the like have remarkably advanced in integration and functionality. Therefore, a fine processing technique has been required for the formation of a wafer.
フォトリソグラフィーは、上記集積回路の微細パターンをウエハ上に露光、転写するもので、ステッパーと呼ばれる露光装置が用いられている。上記微細な加工技術の要請から、このステッパーにも高い性能が要求されてきている。 Photolithography exposes and transfers a fine pattern of the integrated circuit onto a wafer, and an exposure apparatus called a stepper is used. Due to the demand for the fine processing technology, this stepper is also required to have high performance.
このステッパーの投影レンズには、高い結像性能を得るために、高い解像度と深い焦点深度が必要である。解像度と焦点深度は、露光波長と開口数(NA)によって決まる。高い解像度を得るために、開口数を大きくすればよいが、焦点深度が浅くなる。従って、開口数を大きくすることには限度がある。露光波長は短いほど、同一パターンにおける回折光の角度は小さくなるので、レンズの開口数は少なくすむ。このため、露光波長を短波長化することが要求されている。 This stepper projection lens requires high resolution and deep depth of focus in order to obtain high imaging performance. Resolution and depth of focus are determined by exposure wavelength and numerical aperture (NA). In order to obtain a high resolution, the numerical aperture may be increased, but the depth of focus becomes shallow. Therefore, there is a limit to increasing the numerical aperture. The shorter the exposure wavelength, the smaller the angle of diffracted light in the same pattern, so the numerical aperture of the lens is reduced. For this reason, it is required to shorten the exposure wavelength.
このような要求から露光装置の光源として、KrF(波長248nm)、ArF(波長193nm)、F2(波長157nm)等のエキシマレーザー光を光源とするステッパーも提案されている。しかし、このような短波長化に対して、従来の硝材は殆ど対応することができない。 In view of such a demand, a stepper using an excimer laser beam such as KrF (wavelength 248 nm), ArF (wavelength 193 nm), F 2 (wavelength 157 nm) as a light source has been proposed as a light source of the exposure apparatus. However, conventional glass materials can hardly cope with such a short wavelength.
このような短波長化に対応できる硝材としてフッ化物結晶が挙げられる。フッ化物結晶としては、結晶粒界や結晶方位の影響を回避すべく、単結晶が用いられ、ブリッジマン法等によって育成されている。 An example of a glass material that can cope with such a short wavelength is a fluoride crystal. As the fluoride crystal, a single crystal is used in order to avoid the influence of crystal grain boundaries and crystal orientations, and it is grown by the Bridgman method or the like.
露光装置のレンズ材料等に用いられるフッ化物単結晶に要求される特性は、複屈折性(歪複屈折性)、光透過性、屈折率均質性等である。 Characteristics required for a fluoride single crystal used for a lens material of an exposure apparatus are birefringence (strain birefringence), light transmittance, refractive index homogeneity, and the like.
歪複屈折等を低減するためには、単結晶を育成後にアニール処理を行うことが一般的である。そして、特許文献1(特許第3466948号公報)には、アニール処理を行い、その時の降温速度を制御することによって、フッ化物結晶の複屈折率(歪複屈折率)を短時間で低減できることが記載されている。 In order to reduce strain birefringence and the like, it is common to perform annealing after growing a single crystal. In Patent Document 1 (Japanese Patent No. 3466948), the birefringence (strain birefringence) of the fluoride crystal can be reduced in a short time by performing an annealing process and controlling the cooling rate at that time. Are listed.
また、特許文献2(特許第3466950号公報)には、アニール処理時にフッ化物結晶の内部応力分布を補償するような力を加えた状態でアニールすることによって、にごりや着色が生じ難く、残留応力も低減されたフッ化物結晶が得られることが記載されている。 Further, Patent Document 2 (Japanese Patent No. 3466950) discloses that residual annealing is difficult to cause dust and coloring by annealing in a state in which a force that compensates the internal stress distribution of the fluoride crystal is applied during annealing. It is also described that reduced fluoride crystals can be obtained.
特許文献3(特開2000−34193号公報)には、アニール処理(加熱処理)工程前に表面清浄工程又はアニール処理工程後に変質層除去工程を各々設けることによって、透過率が高く、低歪で内部濁りがなく、表層部に変質層の存在しないフッ化物単結晶が製造できることが記載されている。 In Patent Document 3 (Japanese Patent Laid-Open No. 2000-34193), by providing a surface cleaning step or a deteriorated layer removing step after the annealing treatment (heat treatment) step, the transmittance is high and the distortion is low. It is described that a fluoride single crystal having no internal turbidity and having no altered layer in the surface layer can be produced.
特許文献4(特開2004−99409号公報)には、蛍石単結晶の製造に伴う冷却において、塑性変形を生じない内部応力レベルに保ちつつ、連続的に冷却速度を増加しながら冷却を行うことによって、歪複屈折が増大しやすい大型の蛍石単結晶であっても高品質でかつ生産性が良好である旨記載されている。 In Patent Document 4 (Japanese Patent Laid-Open No. 2004-99409), in cooling associated with the production of a fluorite single crystal, cooling is performed while continuously increasing the cooling rate while maintaining an internal stress level that does not cause plastic deformation. Therefore, it is described that even a large fluorite single crystal whose strain birefringence is likely to increase is of high quality and good productivity.
特許文献5(特開平10−251096号公報)には、最終製品の平面輪郭形状に近似又は相似する形状に加工した蛍石単結晶をアニール処理することにより、屈折率の均質性がよく、波面収差のパワー成分補正後のRMS値及び非回転対称成分のRMS値が小さい蛍石単結晶が得られると記載されている。 In Patent Document 5 (Japanese Patent Laid-Open No. 10-251096), annealing of a fluorite single crystal that has been processed into a shape that approximates or resembles the planar contour shape of the final product results in good homogeneity of the refractive index and the wavefront. It is described that a fluorite single crystal having a small RMS value after correction of the power component of the aberration and a non-rotationally symmetric component RMS value can be obtained.
特許文献1〜5は、フッ化カルシウム(蛍石)単結晶等のフッ化物単結晶の製造に際し、製造条件又は製造工程等を特定することによって、露光装置のレンズ材料等に用いられるフッ化物単結晶に要求される特性、例えば歪複屈折や透過率等を改善するものである。 Patent Documents 1 to 5 disclose that a fluoride single crystal used for a lens material of an exposure apparatus is specified by specifying a manufacturing condition or a manufacturing process when manufacturing a fluoride single crystal such as a calcium fluoride (fluorite) single crystal. It improves properties required for crystals, such as strain birefringence and transmittance.
露光装置の光学系に用いられるフッ化物単結晶には、(111)面方位と(100)面方位の単結晶を組み合わせ真性複屈折を打ち消すようにさせており、(100)面方位の結晶内部の歪複屈折を大幅に低減することは、露光装置のレンズ材料等の用途には極めて重要である。 The fluoride single crystal used in the optical system of the exposure apparatus combines a (111) plane orientation and a (100) plane orientation single crystal to cancel the intrinsic birefringence, and the (100) plane orientation inside the crystal. It is extremely important to significantly reduce the strain birefringence of the lens material of the exposure apparatus.
従って、本発明の目的は、(100)面方位の結晶内部の歪複屈折が大幅に低減された(100)結晶面の円筒状フッ化物単結晶の加工方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for processing a cylindrical fluoride single crystal having a (100) crystal plane in which the strain birefringence inside the crystal having a (100) plane orientation is greatly reduced.
本発明者らは、検討の結果、アニール処理されたフッ化物単結晶の多角体を切断することにより、(100)面方位の低歪単結晶の製造が達成し得ることを知見した。また上記切断後に加工するに際しては、加工として円筒研削加工(丸目加工)を用い、かつその際の単結晶円筒研削加工面の表面粗さ(RMS)を一定範囲とすることによって、さらなる(100)面方位の低歪単結晶の製造が達成し得ることを見出した。 As a result of the study, the present inventors have found that production of a low strain single crystal having a (100) orientation can be achieved by cutting a polyhedron of an annealed fluoride single crystal. Further, when processing after the cutting, a cylindrical grinding process (round processing) is used as the processing, and the surface roughness (RMS) of the single crystal cylindrical grinding surface at that time is set within a certain range, thereby further (100) It has been found that the production of a plane strain low strain single crystal can be achieved.
すなわち、本発明は、育成された単結晶インゴットを切断して多角体を得、該多角体をアニール処理した後、さらに切断することを特徴とする、(100)結晶面のフッ化物単結晶の加工方法を提供するものである。 That is, the present invention is characterized by cutting a grown single crystal ingot to obtain a polyhedron, annealing the polyhedron, and further cutting the polyhedron. A processing method is provided.
また、本発明は、育成された単結晶インゴットを切断して多角体を得、該多角体をアニール処理した後、さらに切断、加工する、(100)結晶面のフッ化物単結晶の加工方法であって、上記加工が円筒研削加工であり、該円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS:2乗平均粗さ)が0.1〜5.0μmであることを特徴とする、(100)結晶面の円筒状フッ化物単結晶の加工方法を提供するものである。 The present invention also relates to a method for processing a fluoride single crystal having a (100) crystal plane, wherein the grown single crystal ingot is cut to obtain a polyhedron, the polyhedron is annealed, and further cut and processed. The above-mentioned processing is cylindrical grinding, and the surface roughness (RMS: root mean square roughness) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding is 0.1 to 5.0 μm. The present invention provides a method for processing a cylindrical fluoride single crystal having a (100) crystal plane.
また、本発明に係る上記加工方法において、上記円筒加工が円筒軸方向への砥石の切り込み速度1mm/min〜300mm/min、砥石に対するフッ化物単結晶の回転速度5rpm〜15rpmで行われることが望ましい。このような条件を用いることによって、(100)面方位の結晶内部の歪複屈折がより低減できる。 In the processing method according to the present invention, it is desirable that the cylindrical processing is performed at a grinding stone cutting speed of 1 mm / min to 300 mm / min in the cylindrical axis direction and a rotational speed of the fluoride single crystal with respect to the grinding stone from 5 rpm to 15 rpm. . By using such conditions, strain birefringence inside the (100) plane crystal can be further reduced.
さらに、本発明に係る上記加工方法において上記円筒研削加工の砥石粒度が#100〜#240であることが望ましい。このような粒度の砥石を用いることによって、(100)面方位の結晶内部の歪複屈折がより低減できる。 Furthermore, in the processing method according to the present invention, it is desirable that the grindstone particle size of the cylindrical grinding is # 100 to # 240. By using a grindstone having such a grain size, the strain birefringence inside the (100) -oriented crystal can be further reduced.
本発明に係る加工方法によって、円筒状フッ化物単結晶の(100)面方位の結晶内部の歪複屈折を大幅に低減することができる。 By the processing method according to the present invention, the strain birefringence inside the (100) -oriented crystal of the cylindrical fluoride single crystal can be greatly reduced.
以下、本発明を実施するための最良の形態について説明する。
(フッ化物単結晶インゴットの育成工程)
本発明に係る加工方法においては、先ずフッ化物単結晶を育成する。フッ化物単結晶としては、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、フッ化マグネシウム等が例示されるが、透過率の高い光学部品として用いられ、蛍石と呼称されるフッ化カルシウムが代表的である。
Hereinafter, the best mode for carrying out the present invention will be described.
(Growth process of fluoride single crystal ingot)
In the processing method according to the present invention, a fluoride single crystal is first grown. Examples of fluoride single crystals include calcium fluoride, barium fluoride, strontium fluoride, magnesium fluoride, etc., but calcium fluoride, which is used as an optical component with high transmittance and is called fluorite, is representative. Is.
フッ化物粉末や溶解粉砕品等のフッ化物原料を育成用ルツボに入れて融解した後、徐冷して結晶成長させて直径250〜350mm程度のフッ化物単結晶インゴットを作製する。結晶育成方法としては、ブリッジマン法(ストックバーガー法、ルツボ降下法)やチョクラルスキー法が採用される。また、使用するルツボは黒鉛ルツボが好ましく用いられる。 Fluoride raw materials such as fluoride powder and dissolved and pulverized products are put in a growth crucible and melted, and then slowly cooled to grow crystals to produce a fluoride single crystal ingot having a diameter of about 250 to 350 mm. As the crystal growth method, the Bridgeman method (stock burger method, crucible descent method) or the Czochralski method is employed. Moreover, a graphite crucible is preferably used as the crucible to be used.
このフッ化物単結晶の育成においては、炉内温度はルツボのフッ化物原料が融解する温度以上にまで上げ、ルツボ引き下げ終了後、5℃/hr〜25℃/hrの温度勾配で育成した単結晶を室温まで下げる。育成中はすべて真空雰囲気(1×10−3Pa〜1×10−5Pa)で行う。この単結晶の育成速度(引き下げ速度)は0.1mm/hr〜5.0mm/hrで行う。 In the growth of the fluoride single crystal, the furnace temperature is raised to a temperature higher than the melting temperature of the crucible fluoride raw material, and after the crucible is lowered, the single crystal is grown with a temperature gradient of 5 ° C./hr to 25 ° C./hr. To room temperature. All the growth is performed in a vacuum atmosphere (1 × 10 −3 Pa to 1 × 10 −5 Pa). The growth rate (pulling rate) of this single crystal is 0.1 mm / hr to 5.0 mm / hr.
(フッ化物単結晶インゴットの簡易アニール処理及び切断工程)
このようにして育成されたフッ化物単結晶インゴットは、残留歪が大きすぎて、そのまま切断、加工を行うと、インゴット中にクラックが生じる。そこで、インゴット中のクラックを防止すべく、低温で簡易アニール、具体的には200〜500℃、7〜21日、不活性雰囲気でアニールを行い、残留歪を低減させることが望ましい。
(Simple annealing treatment and cutting process of fluoride single crystal ingot)
The fluoride single crystal ingot grown in this way has too much residual strain, and if it is cut and processed as it is, cracks are generated in the ingot. Therefore, in order to prevent cracks in the ingot, it is desirable to perform simple annealing at a low temperature, specifically, annealing at 200 to 500 ° C. for 7 to 21 days in an inert atmosphere to reduce residual strain.
残留歪を低減したインゴットは、ダイヤモンドソー等を用いて、例えば1mm/min〜15mm/minの速度で切断され、多角体とされる。多角体としては六角柱状体や八角柱状体等の多角柱状体が一般的である。切断サイズ、側面方位は任意である。 The ingot with reduced residual strain is cut into a polygon by cutting with a diamond saw or the like at a speed of 1 mm / min to 15 mm / min, for example. Polygonal bodies such as hexagonal columnar bodies and octagonal columnar bodies are common as the polygonal bodies. The cutting size and side orientation are arbitrary.
(フッ化物単結晶多角体のアニール処理工程)
次に、フッ化物単結晶多角体をアニール炉中でアニール処理する。アニール処理の条件は、一般的には不活性雰囲気中で最高温度1100℃〜1300℃、アニール炉内の温度勾配0.4℃/cm以下であり、0.4℃/hr以上の降温速度で降温する。アニール処理期間は1〜2ヶ月である。このようにフッ化物単結晶多角体をアニール処理することにより、歪複屈折を低下させることができる。
(Annealing process of fluoride single crystal polyhedron)
Next, the fluoride single crystal polyhedron is annealed in an annealing furnace. The conditions for annealing treatment are generally a maximum temperature of 1100 ° C. to 1300 ° C. in an inert atmosphere, a temperature gradient in the annealing furnace of 0.4 ° C./cm or less, and a temperature decreasing rate of 0.4 ° C./hr or more. Lower the temperature. The annealing treatment period is 1 to 2 months. Thus, by annealing the fluoride single crystal polyhedron, strain birefringence can be reduced.
(フッ化物単結晶多角体の切断、加工工程)
フッ化物単結晶多角体(六角柱状体)の切断、加工工程における底面(頂面)形状の一例をそれぞれ図2(a)〜(c)に示す。図2(a)はフッ化物単結晶多角体のアニール処理前後の底面形状を示し、底面形状は不等辺六角形である。図2(b)はアニール処理後のフッ化物単結晶多角体の切断後の底面形状を示し、底面形状は略正六角形である。なお、略正六角形内部の円は所定の円筒形状結晶を得る予定領域である。図2(c)はフッ化物単結晶多角体を円筒研削加工後の底面形状を示し、底面形状は製品規格に適合させた真円である。
(Cutting and processing of fluoride single crystal polyhedrons)
An example of the shape of the bottom surface (top surface) in cutting and processing of a fluoride single crystal polygon (hexagonal columnar body) is shown in FIGS. FIG. 2A shows the bottom shape before and after annealing of the fluoride single crystal polyhedron, and the bottom shape is an unequal hexagon. FIG. 2B shows a bottom shape after cutting the fluoride single crystal polyhedron after the annealing treatment, and the bottom shape is a substantially regular hexagon. The circle inside the substantially regular hexagon is a region where a predetermined cylindrical crystal is to be obtained. FIG. 2 (c) shows the bottom shape after cylindrical grinding of the fluoride single crystal polyhedron, and the bottom shape is a perfect circle adapted to the product standard.
この工程では、先ずアニール処理が施されたフッ化物単結晶多角体を切断する。切断は上記と同様にダイヤモンドソー等を用いて上記と同様の速度で切断される。切断されるフッ化物の形状、切断サイズは、最終製品の形状、サイズにより任意に決定されるが、本発明では、最終的に円筒状とするのであるから、形状としてはこれに近い多角柱状体、例えば六角柱状体や八角柱状体とするのが好ましい。 In this step, the fluoride single crystal polyhedron that has been annealed is first cut. The cutting is performed at the same speed as described above using a diamond saw or the like as described above. The shape of the fluoride to be cut and the cut size are arbitrarily determined depending on the shape and size of the final product, but in the present invention, the shape is finally cylindrical, so that the shape is a polygonal column that is close to this. For example, a hexagonal columnar body or an octagonal columnar body is preferable.
本発明の加工方法では、このようにアニール処理されたフッ化物単結晶の多角体を切断することにより、(100)面方位の低歪単結晶の製造が達成される。また、本発明の加工方法では、後述するように、切断後に特定条件で加工することにより、さらなる(100)面方位の低歪単結晶の製造が達成される。 In the processing method of the present invention, a low strain single crystal having a (100) plane orientation is achieved by cutting the annealed fluoride single crystal polyhedron. Further, in the processing method of the present invention, as will be described later, a low strain single crystal having a further (100) plane orientation is achieved by processing under specific conditions after cutting.
次に、底面形状が図2(b)に示されるような切断された多角柱状体のフッ化物単結晶を加工する。加工は円筒研削加工、すなわち丸目加工が採用される。本発明では、この円筒研削加工において、円筒軸方向への砥石の切り込み速度を好ましくは1mm/min〜300mm/min、さらに好ましくは5mm/min〜15mm/min、砥石に対する被研削加工物(ワーク)、すなわちフッ化物単結晶の回転速度を好ましくは5rpm〜15rpm、さらに好ましくは5rpm〜10rpmで行われることが望ましい。切り込み速度や回転速度が上記範囲外であると、(100)面方位の結晶内部の歪複屈折が大幅に低減することができない。また、この円筒研削加工に用いられる砥石粒度は#100〜#240、さらには#120〜#180であることが望ましい。このような粒度の砥石を用いることによって、(100)面方位の結晶内部の歪複屈折がより低減される。円筒研削加工によって、図2(c)に示されるような底面が真円の円筒体が得られる。底面の直径は製品規格によって決定される。 Next, the fluoride single crystal of a polygonal columnar body whose bottom surface shape is cut as shown in FIG. 2B is processed. Cylindrical grinding, that is, rounding is adopted as the processing. In the present invention, in this cylindrical grinding process, the cutting speed of the grindstone in the cylindrical axis direction is preferably 1 mm / min to 300 mm / min, more preferably 5 mm / min to 15 mm / min, and the workpiece to be ground (work) for the grindstone. That is, the rotation speed of the fluoride single crystal is preferably 5 rpm to 15 rpm, more preferably 5 rpm to 10 rpm. When the cutting speed and the rotational speed are outside the above ranges, the strain birefringence inside the crystal with the (100) plane orientation cannot be significantly reduced. Moreover, it is desirable that the grindstone particle size used in this cylindrical grinding is # 100 to # 240, and further # 120 to # 180. By using a grindstone with such a grain size, the strain birefringence inside the (100) -oriented crystal is further reduced. By cylindrical grinding, a cylindrical body having a perfect bottom as shown in FIG. 2C is obtained. The diameter of the bottom surface is determined by product standards.
このようにして得られた円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は0.1〜5.0μm、さらには1.0〜2.0μmである。このような表面粗さを有する単結晶は、(100)面方位の結晶内部の歪複屈折を低減できる。 The surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding thus obtained is 0.1 to 5.0 μm, and further 1.0 to 2.0 μm. . A single crystal having such a surface roughness can reduce strain birefringence inside the (100) -oriented crystal.
最後に、単結晶の対向する2面を平行にし、製品厚みとするために平面研削を行う。このときの切り込み速度は通常0.05〜0.2mm/minで行われる。 Finally, surface grinding is performed to make the two opposing faces of the single crystal parallel and to obtain a product thickness. The cutting speed at this time is usually 0.05 to 0.2 mm / min.
このようにして製造された(100) 面方位の結晶内部の歪複屈折が大幅に低減されたフッ化物単結晶は製品とされる。 The thus produced fluoride single crystal in which the strain birefringence inside the (100) -oriented crystal is greatly reduced is regarded as a product.
以下、本発明を実施例等に基づき具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples and the like.
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを250℃、14日、アルゴン雰囲気で簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。このフッ化カルシウム六角柱状体にアニール処理を施した。アニール処理は不活性雰囲気中で最高温度1100℃〜1300℃、アニール炉内の温度勾配0.4℃/cm以下、0.4℃/h以上の降温速度で降温した。アニール処理期間は1ヶ月である。 A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment at 250 ° C. for 14 days in an argon atmosphere, and then cut to obtain a calcium fluoride hexagonal columnar body. The calcium fluoride hexagonal column was annealed. The annealing treatment was performed in an inert atmosphere at a maximum temperature of 1100 ° C. to 1300 ° C., a temperature gradient in the annealing furnace of 0.4 ° C./cm or less, and a temperature decreasing rate of 0.4 ° C./h or more. The annealing treatment period is one month.
アニール処理されたフッ化カルシウム六角柱状体をさらに切断し、一回り小さいフッ化カルシウム六角柱状体を得た。 The annealed calcium fluoride hexagonal column was further cut to obtain a slightly smaller calcium fluoride hexagonal column.
アニール処理前後のフッ化カルシウム六角柱状体及び切断後のフッ化カルシウム六角柱状体における150mm径内の (100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表1に示す。なお、歪複屈折の単位はいずれもnm/cmである。 Automatically strain (100) orientation birefringence (average, deviation, root mean square, maximum, minimum) within 150 mm diameter in hexagonal columnar calcium fluoride before and after annealing and in hexagonal columnar calcium fluoride after cutting It measured using the birefringence measuring device. The results are shown in Table 1. Note that the unit of strain birefringence is nm / cm.
実施例1と同様に、ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得、さらにアニール処理を施した。 In the same manner as in Example 1, a calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, then cut to obtain a calcium fluoride hexagonal columnar body, and further subjected to an annealing treatment.
アニール処理されたフッ化カルシウム六角柱状体をさらに切断し、一回り小さいフッ化カルシウム六角柱状体を得た。 The annealed calcium fluoride hexagonal column was further cut to obtain a slightly smaller calcium fluoride hexagonal column.
アニール処理前後のフッ化カルシウム六角柱状体及び切断後のフッ化カルシウム六角柱状体における110mm径内の (100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表2に示す。 Automatically strain (100) orientation birefringence (average, deviation, root mean square, maximum, minimum) within 110 mm diameter in calcium fluoride hexagonal column before and after annealing and calcium fluoride hexagonal column after cutting It measured using the birefringence measuring device. The results are shown in Table 2.
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶
インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。このフッ化カルシウム六角柱状体にアニール処理を施した。アニール処理は不活性雰囲気中で最高温度1100℃〜1300℃、アニール炉内の温度勾配0.4℃/cm以下、0.4℃/h以上の降温速度で降温した。アニール処理期間は1ヶ月である。
A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body. The calcium fluoride hexagonal column was annealed. The annealing treatment was performed at a maximum temperature of 1100 ° C. to 1300 ° C. in an inert atmosphere, a temperature gradient in the annealing furnace of 0.4 ° C./cm or less, and a temperature drop rate of 0.4 ° C./h or more. The annealing treatment period is one month.
アニール処理されたフッ化カルシウム六角柱状体をさらに切断した後、円筒研削加工を行い、直径100mmのフッ化カルシウム円筒体を作製した。加工条件は円筒軸方向への砥石の切り込み速度5mm/min、砥石に対するワークの回転速度15rpmであり、砥石粒度は#150である。 The annealed calcium fluoride hexagonal columnar body was further cut and then subjected to cylindrical grinding to produce a calcium fluoride cylinder having a diameter of 100 mm. The processing conditions were a grinding wheel cutting speed of 5 mm / min in the cylindrical axis direction, a workpiece rotational speed of 15 rpm with respect to the grinding wheel, and a grinding wheel particle size of # 150.
アニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カルシウム円筒体における50から110mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表3に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.1μmであった。 Strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane orientation within a diameter of 50 to 110 mm in the calcium fluoride hexagonal column after annealing and the calcium fluoride cylinder after cylindrical grinding Was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 3. Further, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.1 μm.
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。 A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body.
このフッ化カルシウム六角柱状体を実施例3に準じてアニール処理、切断及び円筒研削加工を行い、直径150mmのフッ化カルシウム円筒体を作製した。 This calcium fluoride hexagonal columnar body was annealed, cut and cylindrically ground according to Example 3 to produce a calcium fluoride cylinder having a diameter of 150 mm.
アニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カルシウム円筒体における50から150mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表4に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.6μmであった。 Strain birefringence (average, deviation, root mean square, maximum, minimum) in the (100) plane orientation within a diameter of 50 to 150 mm in the calcium fluoride hexagonal column after annealing and the calcium fluoride cylinder after cylindrical grinding Was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 4. Further, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.6 μm.
(比較例1)
実施例3と同様に、ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム(111)面方位六角柱状体を得、このフッ化カルシウム六角柱状体を実施例3に準じてアニール処理、切断及び円筒研削加工を行った。アニール処理後のフッ化カルシウム六角柱状体及び円筒研削加工後のフッ化カルシウム円筒体における87から240mm径内の(111)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表5に示す。
(Comparative Example 1)
In the same manner as in Example 3, the calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride (111) -oriented hexagonal columnar body. The hexagonal columnar body was annealed, cut and cylindrically ground according to Example 3. Strain birefringence (average, deviation, root mean square, maximum, minimum) of (111) plane orientation within a diameter of 87 to 240 mm in the calcium fluoride hexagonal column after annealing and the calcium fluoride cylinder after cylindrical grinding Was measured using an automatic strain birefringence measuring instrument. The results are shown in Table 5.
(比較例2)
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。
(Comparative Example 2)
A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment, and then cut to obtain a calcium fluoride hexagonal columnar body.
このフッ化カルシウム六角柱状体を実施例3と同様の条件で円筒研削加工を行い、フッ化カルシウム円筒体を作製した。次いで、このフッ化カルシウム円筒体に実施例3と同様の条件でアニール処理を施し、最終的に直径130mmのフッ化カルシウム円筒体を作製した。 The calcium fluoride hexagonal columnar body was subjected to cylindrical grinding under the same conditions as in Example 3 to produce a calcium fluoride cylindrical body. Next, this calcium fluoride cylinder was annealed under the same conditions as in Example 3 to finally produce a calcium fluoride cylinder having a diameter of 130 mm.
最終的に得られたフッ化カルシウム円筒体における50から120mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表6に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.7μmであった。 In the finally obtained calcium fluoride cylindrical body, strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane within a diameter of 50 to 120 mm using an automatic strain birefringence measuring instrument. It was measured. The results are shown in Table 6. Moreover, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.7 μm.
(比較例3)
比較例2で作製したフッ化カルシウム円筒体について、再度、実施例3と同様の条件で円筒研削加工を行い、最終的に直径129mmのフッ化カルシウム円筒体を作製した。
(Comparative Example 3)
The calcium fluoride cylinder produced in Comparative Example 2 was again subjected to cylindrical grinding under the same conditions as in Example 3, and finally a calcium fluoride cylinder having a diameter of 129 mm was produced.
最終的に得られたフッ化カルシウム円筒体における50から120mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表7に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.8μmであった。 In the finally obtained calcium fluoride cylindrical body, strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane within a diameter of 50 to 120 mm using an automatic strain birefringence measuring instrument. It was measured. The results are shown in Table 7. Moreover, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.8 μm.
(比較例4)
比較例3で作製した、フッ化カルシウム円筒体について、再度、実施例3と同様の条件で円筒研削加工を行い、最終的に直径120mmのフッ化カルシウム円筒体を作製した。
(Comparative Example 4)
The calcium fluoride cylinder produced in Comparative Example 3 was again subjected to cylindrical grinding under the same conditions as in Example 3 to finally produce a calcium fluoride cylinder having a diameter of 120 mm.
最終的に得られたフッ化カルシウム円筒体における50から120mm径内の(100)面方位の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表8に示す。また、円筒研削加工後の単結晶円筒研削加工面(円筒体側面)の表面粗さ(RMS)は1.8μmであった。 In the finally obtained calcium fluoride cylindrical body, strain birefringence (average, deviation, root mean square, maximum, minimum) of (100) plane within a diameter of 50 to 120 mm using an automatic strain birefringence measuring instrument. It was measured. The results are shown in Table 8. Moreover, the surface roughness (RMS) of the single crystal cylindrical grinding surface (cylindrical side surface) after the cylindrical grinding was 1.8 μm.
(比較例5)
ブリッジマンストックバーガー法によって育成されたフッ化カルシウム単結晶インゴットを簡易アニール処理した後、切断してフッ化カルシウム六角柱状体を得た。
(Comparative Example 5)
A calcium fluoride single crystal ingot grown by the Bridgeman Stock Burger method was subjected to a simple annealing treatment and then cut to obtain a calcium fluoride hexagonal columnar body.
このフッ化カルシウム六角柱状体を実施例3に準じてアニール処理後、エッチング液(H2O+HCl:濃度10%)に浸漬し、表面を0.05mm〜0.1mm溶解した。 This calcium fluoride hexagonal columnar body was annealed according to Example 3, and then immersed in an etching solution (H 2 O + HCl: concentration 10%) to dissolve the surface by 0.05 mm to 0.1 mm.
エッチング処理前後のフッ化カルシウム六角柱状体の(100)面方位における50から120mm径内の歪複屈折(平均、偏差、二乗平均平方根、最大、最小)を自動歪複屈折測定器を用いて測定した。結果を表9に示す。 Strain birefringence (average, deviation, root mean square, maximum, minimum) within 50 to 120 mm diameter in (100) plane orientation of calcium fluoride hexagonal column before and after etching treatment is measured using an automatic strain birefringence measuring instrument. did. The results are shown in Table 9.
表1〜9の結果から次のことが判る。すなわち、実施例1及び2は、フッ化カルシウム六角柱状体を切断したものであるが、(100)面方位の歪複屈折が小さくなることから、歪複屈折を低減することができる(表1及び表2参照)。また、実施例3及び4はフッ化カルシウム六角柱状体を切断後、一定条件で円筒研削加工したものであるが、(100)面方位の歪複屈折がさらに小さくなることから、歪複屈折をさらに低減することができる(表3及び表4参照)。しかし、比較例1のように、フッ化カルシウム六角柱状体を一定条件で円筒研削加工しても、(111)面方位の歪複屈折は円筒加工前後で大きな変化は見られない(表5参照)。 The following can be seen from the results of Tables 1-9. That is, in Examples 1 and 2, the hexagonal columnar body of calcium fluoride was cut, but strain birefringence in the (100) plane orientation was reduced, so that strain birefringence can be reduced (Table 1). And Table 2). In Examples 3 and 4, the calcium fluoride hexagonal columnar body was cut and subjected to cylindrical grinding under certain conditions. However, since the strain birefringence in the (100) plane orientation is further reduced, strain birefringence is reduced. Further reduction can be achieved (see Tables 3 and 4). However, as in Comparative Example 1, even when the calcium fluoride hexagonal columnar body is subjected to cylindrical grinding under certain conditions, the strain birefringence in the (111) plane orientation does not change significantly before and after the cylindrical processing (see Table 5). ).
比較例2〜4は、フッ化カルシウム六角柱状体をアニール処理する前に円筒研削加工し、アニール処理後、0〜2回円筒研削加工したものであるが、 (100)面方位の歪複屈折は小さくならないことから、歪複屈折は低減されない(表6〜表8参照)。比較例5は、フッ化カルシウム六角柱状体をエッチング処理したものであるが、化学的研削では(100)面方位の歪複屈折は小さくならないことから、歪複屈折は低減されない(表9参照)。 In Comparative Examples 2 to 4, the hexagonal columnar body of calcium fluoride was subjected to cylindrical grinding before annealing treatment, and after annealing, cylindrical grinding was performed 0 to 2 times. Therefore, strain birefringence is not reduced (see Tables 6 to 8). In Comparative Example 5, the hexagonal columnar body of calcium fluoride was etched. However, the strain birefringence in the (100) plane orientation is not reduced by chemical grinding, so the strain birefringence is not reduced (see Table 9). .
本発明に係る加工方法により得られた円筒状フッ化物単結晶は、(100)面方位の結晶内部の歪複屈折が大幅に低減されていることから、露光装置のレンズとして好適に用いられるほか、他の光学部品の硝材としても用いることができる。 The cylindrical fluoride single crystal obtained by the processing method according to the present invention has a significantly reduced strain birefringence inside the crystal of (100) orientation, so that it can be suitably used as a lens of an exposure apparatus. It can also be used as a glass material for other optical components.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005011758A JP4756630B2 (en) | 2005-01-19 | 2005-01-19 | (100) Crystal surface cylindrical fluoride single crystal processing method |
PCT/JP2006/300546 WO2006077836A1 (en) | 2005-01-19 | 2006-01-17 | Method of working fluoride single crystal into one with cylindrical (100) crystal face |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005011758A JP4756630B2 (en) | 2005-01-19 | 2005-01-19 | (100) Crystal surface cylindrical fluoride single crystal processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006199528A true JP2006199528A (en) | 2006-08-03 |
JP4756630B2 JP4756630B2 (en) | 2011-08-24 |
Family
ID=36692225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005011758A Active JP4756630B2 (en) | 2005-01-19 | 2005-01-19 | (100) Crystal surface cylindrical fluoride single crystal processing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4756630B2 (en) |
WO (1) | WO2006077836A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156164A (en) * | 2006-12-25 | 2008-07-10 | Mitsui Mining & Smelting Co Ltd | Fluorite |
JP2008156165A (en) * | 2006-12-25 | 2008-07-10 | Mitsui Mining & Smelting Co Ltd | Method for producing fluorite |
JP2015159334A (en) * | 2015-05-25 | 2015-09-03 | 株式会社サイオクス | Nitride semiconductor substrate manufacturing method |
US9777438B2 (en) | 2007-01-31 | 2017-10-03 | Aica Kogyo Co., Ltd. | Melamine decorative laminated sheet |
JP2020179474A (en) * | 2019-04-26 | 2020-11-05 | 株式会社ディスコ | Method for working plate-like object |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10251096A (en) * | 1997-03-10 | 1998-09-22 | Nikon Corp | Method for annealing fluorite single crystal |
WO2003009017A1 (en) * | 2001-07-17 | 2003-01-30 | Nikon Corporation | Method for producing optical member |
-
2005
- 2005-01-19 JP JP2005011758A patent/JP4756630B2/en active Active
-
2006
- 2006-01-17 WO PCT/JP2006/300546 patent/WO2006077836A1/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10251096A (en) * | 1997-03-10 | 1998-09-22 | Nikon Corp | Method for annealing fluorite single crystal |
WO2003009017A1 (en) * | 2001-07-17 | 2003-01-30 | Nikon Corporation | Method for producing optical member |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156164A (en) * | 2006-12-25 | 2008-07-10 | Mitsui Mining & Smelting Co Ltd | Fluorite |
JP2008156165A (en) * | 2006-12-25 | 2008-07-10 | Mitsui Mining & Smelting Co Ltd | Method for producing fluorite |
US9777438B2 (en) | 2007-01-31 | 2017-10-03 | Aica Kogyo Co., Ltd. | Melamine decorative laminated sheet |
JP2015159334A (en) * | 2015-05-25 | 2015-09-03 | 株式会社サイオクス | Nitride semiconductor substrate manufacturing method |
JP2020179474A (en) * | 2019-04-26 | 2020-11-05 | 株式会社ディスコ | Method for working plate-like object |
Also Published As
Publication number | Publication date |
---|---|
WO2006077836A1 (en) | 2006-07-27 |
JP4756630B2 (en) | 2011-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006077836A1 (en) | Method of working fluoride single crystal into one with cylindrical (100) crystal face | |
JP4078161B2 (en) | Fluorite and its manufacturing method | |
WO2002103413A1 (en) | Optical member, process for producing the same, and projection aligner | |
JP2000128696A (en) | Fluoride single crystal-made raw material for making optical element and production of the same raw material | |
JP5260797B2 (en) | Fluorite manufacturing method | |
JP3686204B2 (en) | Annealing method of fluorite single crystal | |
JP2005239543A (en) | METHOD FOR MANUFACTURING LARGE-VOLUME CaF2 SINGLE CRYSTAL FOR OPTICAL ELEMENT WITH OPTICAL AXIS PARALLEL TO (100)-CRYSTAL AXIS OR (110)-CRYSTAL AXIS, AND CaF2 SINGLE CRYSTAL MANUFACTURED BY THE METHOD | |
JP4092515B2 (en) | Fluorite manufacturing method | |
JP6035584B2 (en) | Method for producing fluorite crystals | |
JP4723525B2 (en) | Method for producing BaLiF3 single crystal | |
JP2006219361A (en) | Method for manufacturing crystal | |
JP4892192B2 (en) | Method for producing low stress large volume non- (111) oriented crystals with reduced stress birefringence and more homogeneous refractive index and crystals produced by the same method | |
JP2006219352A (en) | Apparatus and method for manufacturing single crystal | |
JP2001335398A (en) | Large diameter fluorite single crystal for photolithography and its production method | |
JP2013060335A (en) | METHOD FOR PRODUCING MgF2 SINGLE CRYSTAL | |
JP3698848B2 (en) | Heat treatment apparatus and heat treatment method for fluorite single crystal | |
JP4839204B2 (en) | Fluorite | |
US20060201412A1 (en) | Method of making highly uniform low-stress single crystals with reduced scattering | |
JP2002160999A (en) | Method for growing crystal, method for forming fluoride crystal, method for forming optical member, and seed crystal for growing crystal | |
JP2006330407A (en) | Optical workpiece member, optical member, optical system and optical aligner | |
JP2006078565A (en) | Optical member and optical apparatus | |
JP2006001760A (en) | Method for producing fluoride single crystal | |
JP5682894B2 (en) | Fluorite | |
JP2000226297A (en) | Heat-treating apparatus of calcium fluoride single crystal and heat-treating method | |
JP2006315915A (en) | Optical component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110527 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4756630 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |