[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006197758A - Power supply device utilizing induced current of overhead ground wire - Google Patents

Power supply device utilizing induced current of overhead ground wire Download PDF

Info

Publication number
JP2006197758A
JP2006197758A JP2005008194A JP2005008194A JP2006197758A JP 2006197758 A JP2006197758 A JP 2006197758A JP 2005008194 A JP2005008194 A JP 2005008194A JP 2005008194 A JP2005008194 A JP 2005008194A JP 2006197758 A JP2006197758 A JP 2006197758A
Authority
JP
Japan
Prior art keywords
ground wire
core
overhead ground
power supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008194A
Other languages
Japanese (ja)
Inventor
Tsukasa Nakatake
司 中武
Koichi Tone
浩一 刀祢
Takashi Nakamura
貴史 中村
Katsuhisa Takatsuka
勝久 高塚
Koji Takase
浩司 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Nishimu Electronics Industries Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Nishimu Electronics Industries Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2005008194A priority Critical patent/JP2006197758A/en
Publication of JP2006197758A publication Critical patent/JP2006197758A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the output power of a power supply device utilizing a split CT in which a core is split without increasing the size of the core or sophisticatedly processing the cut surface of the core. <P>SOLUTION: Two CTs 20a and 20b as a split CT are installed on an overhead ground wire 10, and capacitors C1 and C2 are connected to the output terminals of the CTs 20a and 20b. An induced current passed through the overhead ground wire 10 is taken out by the individual CTs 20a and 20b. Their output currents are rectified through diode rectifiers 40a and 40b, and then supplied to a load through a power conversion circuit 50. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、送電鉄塔上で利用する装置に電気を供給するための電源装置のうち、送電線と並行して架設された架空地線に、コアを分割した分割型のCTを設置する方式の架空地線の誘導電流利用電源装置に関するものである。   The present invention is a power supply apparatus for supplying electricity to a device used on a power transmission tower, in which a split CT having a core divided is installed on an aerial ground wire installed in parallel with a power transmission line. The present invention relates to a power supply device using an induced current of an overhead ground wire.

従来、送電鉄塔上で利用する装置に電気を供給するための電源装置として、送電線と並行して架設された架空地線にCT(変流器)を設置し、送電線の電流によって架空地線に発生する誘導電流を取り出すようにした電源装置が知られている(例えば特許文献1参照)。   Conventionally, as a power supply device for supplying electricity to the equipment used on the transmission tower, a CT (current transformer) is installed on the overhead ground line installed in parallel with the transmission line, and the overhead ground is generated by the current of the transmission line. There is known a power supply device that takes out an induced current generated in a wire (see, for example, Patent Document 1).

このCTを利用した電源装置のうち、架空地線をCTのコアに貫通させる貫通形CTを利用するものでは、架空地線への設置及び取り外しを容易にする上で、CTのコアを分割した、いわゆる分割型のCT(例えば特許文献2,3参照)を利用することが好ましい。   Among the power supply devices using this CT, those using a penetrating CT that penetrates an overhead ground wire into the CT core split the CT core to facilitate installation and removal from the overhead ground wire. It is preferable to use so-called divided CT (see, for example, Patent Documents 2 and 3).

しかし、分割型のCTとしたとしても、原形は貫通形CTであることから、一次巻線の巻数はコアに貫通した架空地線による1ターンのみとなるので、CTから大きな電力を取り出すことは困難である。大きな電力を取り出すには大型のコアが必要であり、分割型のCTの場合、コアが大型化するほど切断面の加工が困難になる傾向があり、相乗的にコアの製作が難しくなるという問題点がある。   However, even if it is a split type CT, the original form is a penetration type CT, so the number of turns of the primary winding is only one turn due to the overhead ground wire penetrating the core. Have difficulty. A large core is required to extract a large amount of electric power. In the case of split CT, the larger the core, the more difficult it is to process the cut surface, and it is difficult to make the core synergistically. There is a point.

また、コアの切断面に隙間が生じることで出力電力が減少したり、特性のばらつきが生じたりするため、切断面には高度な加工が必要という問題点もある。
特公昭55−27530号公報 特開平10−257654号公報 特開平10−142285号公報
In addition, since a gap is generated in the cut surface of the core, the output power is reduced and variations in characteristics are caused, so that there is a problem that the cut surface needs to be highly processed.
Japanese Patent Publication No.55-27530 JP-A-10-257654 Japanese Patent Laid-Open No. 10-142285

本発明が解決しようとする課題は、コアを分割した分割型のCTを利用した電源装置において、コアを大型化したり、コアの切断面を高度に加工したりすることなく、出力電力を増大させることにある。   The problem to be solved by the present invention is to increase output power without increasing the size of the core or highly processing the cut surface of the core in a power supply device using a split-type CT in which the core is divided. There is.

本発明は、コアを分割した分割型のCTのコアに、送電線と並行して架設された架空地線を貫通して架空地線に発生する誘導電流を取り出す架空地線の誘導電流利用電源装置において、CTの出力端子にコンデンサを接続したことを特徴とする。   The present invention relates to a power source using an induced current of an aerial ground wire that takes out an induced current generated in the overhead ground wire through an overhead ground wire installed in parallel with a power transmission line in a split type CT core obtained by dividing the core. In the apparatus, a capacitor is connected to the output terminal of the CT.

本発明によれば、CTの出力端子に接続したコンデンサの静電容量を適切な値とすることにより、コアを大型化することなく出力電力を増大させることができる。   According to the present invention, by setting the capacitance of the capacitor connected to the CT output terminal to an appropriate value, the output power can be increased without increasing the size of the core.

また、コアの切断面の加工精度がばらついたとしても、同じくCTの出力端子に接続したコンデンサの静電容量を適切な値とすることにより、大きな出力電力を得ることができる。   Even if the processing accuracy of the cut surface of the core varies, a large output power can be obtained by setting the capacitance of the capacitor connected to the output terminal of the CT to an appropriate value.

さらに、複数のCTから並列に出力電流を取り出す場合、各CTの出力端子にコンデンサを接続することにより、各CTの特性のばらつきを吸収し、各CTが最大の出力電流を取り出せる出力電圧を実用上問題ない程度まで一致させることができる。   Furthermore, when output current is taken out from multiple CTs in parallel, a capacitor is connected to the output terminal of each CT to absorb variations in the characteristics of each CT, and an output voltage that allows each CT to take out the maximum output current is practical. It can be matched to the extent that there is no problem.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の電源装置を示す基本構成図であり、図2はその等価回路図である。   FIG. 1 is a basic configuration diagram showing a power supply device of the present invention, and FIG. 2 is an equivalent circuit diagram thereof.

図1において、コア21を上下に2分割した分割型のCT20のコア21に、図示しない送電線と並行して架設された架空地線10を貫通させており、これによって、架空地線10に発生する誘導電流(図2に示す負荷電流i)を取り出すようにしている。   In FIG. 1, an aerial ground wire 10 installed in parallel with a power transmission line (not shown) is passed through a core 21 of a split type CT 20 obtained by dividing the core 21 into two in the vertical direction. The generated induced current (load current i shown in FIG. 2) is taken out.

図2に示すように、負荷電流iが大きくなるほど負荷抵抗Rが消費する電力が大きくなることは明らかである。そして、図2においてCT20の出力端子にコンデンサCを接続しなかった場合(従来例)、その負荷電流iの値は式1で表される。

Figure 2006197758
As shown in FIG. 2, it is clear that the power consumed by the load resistor RL increases as the load current i increases. When the capacitor C is not connected to the output terminal of the CT 20 in FIG. 2 (conventional example), the value of the load current i is expressed by Equation 1.
Figure 2006197758

これに対し、図2に示すようにCT20の出力端子にコンデンサCを接続すると、その負荷電流iは式2で表される。

Figure 2006197758
On the other hand, when a capacitor C is connected to the output terminal of CT20 as shown in FIG.
Figure 2006197758

ここで、式1,2において、ωは架空地線を流れる電流の角周波数、L,Lはインダクタンス、nは巻線数、Iは架空地線を流れる電流、Qはコンデンサの静電容量である。 In Equations 1 and 2, ω is the angular frequency of the current flowing through the overhead ground wire, L P and L S are inductances, n is the number of windings, I is the current flowing through the overhead ground wire, and Q is the electrostatic capacitance of the capacitor. Capacity.

式2からわかるように、CT20の出力端子にコンデンサCを接続した場合、このコンデンサCの静電容量の値Qによって、式2の分母の第1項 R (1−ωQ(L+L))の大きさを調節できる。すなわち、式2の第1項が0となるように、静電容量がQ=1/{ω(L+L)}となるコンデンサCを選べば、従来例である式1で表される負荷電流iの値より大きな値を得ることが可能である。 As can be seen from Equation 2, when a capacitor C is connected to the output terminal of CT20, the first term R L 2 (1-ω 2 Q (L S + Lp )) 2 can be adjusted. That is, if a capacitor C having an electrostatic capacity of Q = 1 / {ω 2 (L S + L p )} is selected so that the first term of Formula 2 is 0, it is expressed by Formula 1 as a conventional example. It is possible to obtain a value larger than the value of the load current i.

一方、図1のコア21における切断面22の加工精度の良否は、図2ではインダクタンスL、Lの大きさに、特にLの大きさに影響する。加工精度がよく切断面22の隙間が小さければL、Lは大きく、逆に隙間が大きければL、Lは小さくなる。本発明では切断面22の加工精度がばらついても、対応するインダクタンスL、Lの値に応じて最適なコンデンサCを接続することで大きな電流を得ることができる。すなわち、対応するインダクタンスL、Lの値に応じて、上述のように静電容量がQ=1/{ω(L+L)}となるコンデンサCを接続することで大きな電流を得ることができる。 On the other hand, whether the machining accuracy of the cut surface 22 in the core 21 of FIG. 1 affects the magnitudes of the inductances L p and L S in FIG. 2, particularly the magnitude of L p . If the processing accuracy is good and the gap between the cut surfaces 22 is small, L p and L S are large. Conversely, if the gap is large, L p and L S are small. In the present invention, even if the machining accuracy of the cut surface 22 varies, a large current can be obtained by connecting an optimum capacitor C according to the values of the corresponding inductances L p and L S. That is, depending on the values of the corresponding inductances L p and L S , a large current can be obtained by connecting the capacitor C whose capacitance is Q = 1 / {ω 2 (L S + L p )} as described above. Obtainable.

図3は本発明の実施例を示す説明図である。同図に示す実施例では、送電鉄塔30を挟んだ両側の架空地線10に第1のCT20aおよび第2のCT20bを設置している。そして、それぞれのCT20a,20bの出力端子にコンデンサC1およびC2を接続し、ダイオード整流器40a,40bで整流した電流を並列に接続している。こうして得られた電流を電力変換回路50を介し負荷に供給する。   FIG. 3 is an explanatory view showing an embodiment of the present invention. In the embodiment shown in the figure, the first CT 20 a and the second CT 20 b are installed on the aerial ground wires 10 on both sides of the power transmission tower 30. Capacitors C1 and C2 are connected to the output terminals of the respective CTs 20a and 20b, and currents rectified by the diode rectifiers 40a and 40b are connected in parallel. The current thus obtained is supplied to the load via the power conversion circuit 50.

送電鉄塔30を挟んだ両側の第1のCT20aおよび第2のCT20bにおいて、それぞれの出力端子に接続されたコンデンサC1およびC2は、先に説明したように、第1のCT20aおよび第2のCT20bから個別に取得できる電力を増大させる調整手段として有効に機能する。   In the first CT 20a and the second CT 20b on both sides of the power transmission tower 30, the capacitors C1 and C2 connected to the output terminals are connected to the first CT 20a and the second CT 20b as described above. It functions effectively as an adjustment means for increasing the power that can be acquired individually.

また、図3ように、複数のCTからの出力を並列にする場合、回路構成上、各CTは同じ出力電圧で動作することとなる。この場合、それぞれのCTが最大の出力電力を取り出せる出力電圧が同じでないと、効率よく電力を取り出せない。このような状況において、各CTの出力端子に接続されたコンデンサは、各CT特性のばらつきを吸収し、CTが最大の出力電力を取り出せる出力電圧を実用上問題ない程度まで調節する手段としても有効に機能する。   Further, as shown in FIG. 3, when outputs from a plurality of CTs are arranged in parallel, each CT operates with the same output voltage because of the circuit configuration. In this case, unless each CT has the same output voltage from which the maximum output power can be extracted, the power cannot be extracted efficiently. In such a situation, the capacitor connected to the output terminal of each CT absorbs the variation in each CT characteristic, and is effective as a means for adjusting the output voltage at which the CT can take out the maximum output power to a level where there is no practical problem. To work.

例えば、図3において、適当な静電容量の値を有するコンデンサC1,C2を選択することにより、第1のCT20aおよび第2のCT20bの最大出力電力を取り出せる出力電圧を一致させるための調整が可能であり、複数のCT全体から取得できる電力を増大する場合の調整手段としてコンデンサC1,C2が有効に機能する。   For example, in FIG. 3, by selecting capacitors C1 and C2 having appropriate capacitance values, adjustment is possible to match the output voltages from which the maximum output power of the first CT 20a and the second CT 20b can be extracted. Thus, the capacitors C1 and C2 function effectively as adjustment means for increasing the power that can be obtained from the plurality of CTs as a whole.

なお、図3において、第1のCT20aおよび第2のCT20bからの電流は、ダイオード整流器40a,40bを通したあとで並列接続されることにより、コンデンサClとコンデンサC2が交流的に並列にならないため、一方のCTとコンデンサの調整が他方に影響を与えず、それぞれ独立でのキャパシタンス(静電容量)の調整が可能となる。   In FIG. 3, the currents from the first CT 20a and the second CT 20b are connected in parallel after passing through the diode rectifiers 40a and 40b, so that the capacitor Cl and the capacitor C2 are not AC-parallel. The adjustment of one CT and the capacitor does not affect the other, and the capacitance (capacitance) can be adjusted independently.

本発明は、送電鉄塔上で利用する情報伝送装置、さらに具体的には送電線保守情報伝送装置等の装置に電気を供給するための電源装置として利用できる。   The present invention can be used as an information transmission device used on a power transmission tower, more specifically, as a power supply device for supplying electricity to a device such as a transmission line maintenance information transmission device.

本発明の電源装置を示す基本構成図である。It is a basic lineblock diagram showing the power supply device of the present invention. 図1に示す電源装置の等価回路図である。FIG. 2 is an equivalent circuit diagram of the power supply device shown in FIG. 1. 本発明の実施例を示す説明図であるIt is explanatory drawing which shows the Example of this invention.

符号の説明Explanation of symbols

10 架空地線
20,20a,20b CT(変流器)
21 コア
22 コアの切断面
30 送電鉄塔
40a,40b ダイオード整流器
50 電力変換回路
C,C1,C2 コンデンサ
10 Overhead ground wire 20, 20a, 20b CT (current transformer)
21 Core 22 Core cut surface 30 Transmission tower 40a, 40b Diode rectifier 50 Power conversion circuit C, C1, C2 Capacitor

Claims (1)

コアを分割した分割型のCTのコアに、送電線と並行して架設された架空地線を貫通して架空地線に発生する誘導電流を取り出す架空地線の誘導電流利用電源装置において、CTの出力端子にコンデンサを接続したことを特徴とする架空地線の誘導電流利用電源装置。   In an aerial ground wire induced power supply apparatus for extracting an induced current generated in an overhead ground wire through an overhead ground wire installed in parallel with a transmission line in a split type CT core obtained by dividing the core, A power supply device using an induced current of an overhead ground wire, characterized in that a capacitor is connected to the output terminal.
JP2005008194A 2005-01-14 2005-01-14 Power supply device utilizing induced current of overhead ground wire Pending JP2006197758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008194A JP2006197758A (en) 2005-01-14 2005-01-14 Power supply device utilizing induced current of overhead ground wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008194A JP2006197758A (en) 2005-01-14 2005-01-14 Power supply device utilizing induced current of overhead ground wire

Publications (1)

Publication Number Publication Date
JP2006197758A true JP2006197758A (en) 2006-07-27

Family

ID=36803367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008194A Pending JP2006197758A (en) 2005-01-14 2005-01-14 Power supply device utilizing induced current of overhead ground wire

Country Status (1)

Country Link
JP (1) JP2006197758A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814775A (en) * 2010-04-14 2010-08-25 武汉大学 Parameter matching method for induction power-taking device for overhead high-voltage transmission line
JP2011122939A (en) * 2009-12-10 2011-06-23 Kagoshima Univ Wireless sensor node and overhead wire monitoring system
CN102447247A (en) * 2011-12-08 2012-05-09 湖州电力局 Optical fiber latching current protection device
CN102447303A (en) * 2011-12-08 2012-05-09 湖州电力局 Novel distribution network device power supply
CN102611105A (en) * 2012-03-16 2012-07-25 刘春元 Large-area illumination electric distribution method and induction electric taking units of large-area illumination electric distribution method
CN102638114A (en) * 2012-04-24 2012-08-15 深圳市深泰明科技有限公司 Power supply device of current transformer
CN102647032A (en) * 2012-04-12 2012-08-22 向渝 Suspension power supply started by micro-current
CN103715777A (en) * 2012-09-29 2014-04-09 成都扬帆电力制造有限公司 Power taking equipment of power equipment field alarm device
WO2014112827A1 (en) * 2013-01-18 2014-07-24 ㈜테라에너지시스템 Electromagnetic induction type power supply device
JP2015076955A (en) * 2013-10-08 2015-04-20 独立行政法人産業技術総合研究所 Radio sensor terminal
JP2015228737A (en) * 2014-05-30 2015-12-17 富士電機株式会社 Power supply device
CN106160024A (en) * 2016-07-19 2016-11-23 武汉大学 A kind of high-voltage power transmission device towards wireless energy transfer system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122939A (en) * 2009-12-10 2011-06-23 Kagoshima Univ Wireless sensor node and overhead wire monitoring system
CN101814775A (en) * 2010-04-14 2010-08-25 武汉大学 Parameter matching method for induction power-taking device for overhead high-voltage transmission line
CN102447247A (en) * 2011-12-08 2012-05-09 湖州电力局 Optical fiber latching current protection device
CN102447303A (en) * 2011-12-08 2012-05-09 湖州电力局 Novel distribution network device power supply
CN102611105A (en) * 2012-03-16 2012-07-25 刘春元 Large-area illumination electric distribution method and induction electric taking units of large-area illumination electric distribution method
CN102647032A (en) * 2012-04-12 2012-08-22 向渝 Suspension power supply started by micro-current
CN102638114A (en) * 2012-04-24 2012-08-15 深圳市深泰明科技有限公司 Power supply device of current transformer
CN103715777A (en) * 2012-09-29 2014-04-09 成都扬帆电力制造有限公司 Power taking equipment of power equipment field alarm device
WO2014112827A1 (en) * 2013-01-18 2014-07-24 ㈜테라에너지시스템 Electromagnetic induction type power supply device
KR101444371B1 (en) * 2013-01-18 2014-09-24 (주)테라에너지시스템 Electromagnetic inductive power supply apparatus
JP2016507206A (en) * 2013-01-18 2016-03-07 テラ エナジー システム ソリューション カンパニー リミテッド Electromagnetic induction type power supply device
US9673694B2 (en) 2013-01-18 2017-06-06 Ferrarispower Co., Ltd Electromagnetic induction type power supply device
JP2015076955A (en) * 2013-10-08 2015-04-20 独立行政法人産業技術総合研究所 Radio sensor terminal
JP2015228737A (en) * 2014-05-30 2015-12-17 富士電機株式会社 Power supply device
CN106160024A (en) * 2016-07-19 2016-11-23 武汉大学 A kind of high-voltage power transmission device towards wireless energy transfer system

Similar Documents

Publication Publication Date Title
US9448257B2 (en) Distribution line clamp force using DC bias on coil
JP2006197758A (en) Power supply device utilizing induced current of overhead ground wire
US10097123B2 (en) Systems and methods concerning exciterless synchronous machines
JP5853368B2 (en) DC-DC converter, power supply device, and information processing device
US7772953B2 (en) Symmetrical auto transformer delta topologies
US9673694B2 (en) Electromagnetic induction type power supply device
CN105099234B (en) Magnetic field energy collecting device
JP6104457B2 (en) Unit current transformer unit and electromagnetic induction type power supply device for linearly adjusting output power using the unit current transformer unit
JP2010136617A (en) Interference current compensation method and interference current compensation device for electrical systems
WO2004001933A3 (en) Motor with de-saturation winding
DE102018215901A1 (en) Charge controller for an alternator
CN103187721A (en) Power supply apparatus including overvoltage protection function
WO1996037947A1 (en) Power supply device with two output voltages
JP6427983B2 (en) Contactless power supply system and contactless power receiving device
JP2008067433A (en) Harmonics reduction device for power supply system
US8750006B2 (en) Synchronous rectifier circuit
US20160261195A1 (en) Electric power conversion device
JP6701827B2 (en) Switching power supply
CN105340168B (en) The device interior energy supply of device
JP5761711B2 (en) Rectifier circuit for power generator for distributed power supply
CN115173577B (en) Energy taking circuit and system
CN114270649A (en) Protection of AC equipment
JPH0710175B2 (en) Multi-stage insulation transformer type high voltage generator
DE102018221496A1 (en) Device and method for charging an electrical energy storage
JP5029050B2 (en) Rectifier circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100305