JP2006195242A - 光学補償シート、光学補償偏光板、及び液晶表示装置 - Google Patents
光学補償シート、光学補償偏光板、及び液晶表示装置 Download PDFInfo
- Publication number
- JP2006195242A JP2006195242A JP2005007662A JP2005007662A JP2006195242A JP 2006195242 A JP2006195242 A JP 2006195242A JP 2005007662 A JP2005007662 A JP 2005007662A JP 2005007662 A JP2005007662 A JP 2005007662A JP 2006195242 A JP2006195242 A JP 2006195242A
- Authority
- JP
- Japan
- Prior art keywords
- optical compensation
- film
- liquid crystal
- compensation sheet
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polarising Elements (AREA)
Abstract
Description
本発明は、液晶セルの視野角を拡大する光学補償シート、該光学補償シートを保護膜として有する偏光板、及び該偏光板を設けた液晶表示装置に関する。
VAモード、OCBモードおよびTNモードの液晶セルにおける視角を倒した場合の複屈折の補償、およびクロスニコル配置した偏光板の透過軸の2等分線方向で視角を倒した場合の光漏れ抑制のためには、面内の最大屈折率方向の屈折率をnx、最大屈折率方向に直交する方向の屈折率をny、厚さ方向の屈折率をnzとしたときにその三方向の屈折率を制御してnx≧ny>nzの特性を付与した位相差板が有用なことが知られている。
従来、前記したnx≧ny>nzの特性を付与した位相差板としては、ポリマーからなる一軸延伸フィルムの一対を面内の遅相軸方向が直交するように積層してなる積層位相差板や、高分子フィルムにテンターによる横延伸又は二軸延伸を施してなる単層の位相差板が知られていた(特許文献1)、特許文献2)。
従来の積層位相差板では、厚さが大きくて偏光板と併用した場合に更に厚さが増し、また1枚毎の接着処理を要して製造効率に乏しい問題点があった。一方、後者の単層位相差板では付与できる位相差の範囲が狭く、厚さ方向のレターデーション(Rth)が、面内のレターデーション(Re)よりも著しく大きくなる場合には単層では対処できず、所望の位相差値を得るために2枚以上を積層した積層位相差板とする必要があり、前者と同様に厚型化する問題点があった。位相差板を薄型化することについてはポリマー系延伸フィルム、又はポリマー層の塗工膜のいずれかまたは両方からなる位相差板により実現されている(特許文献3)。
最近の液晶表示装置においては、視野角特性の改善がより強く要求されるようになっており、偏光子の保護フィルムや光学補償シートの支持体などの光学透明フィルムは、より光学的に等方性であることが求められている。光学的に等方性であるとは、すなわち光学フィルムの複屈折と厚みの積で表されるレターデーション値が小さいことである。とりわけ、斜め方向からの表示良化のためには、正面方向のレターデーション(Re)だけでなく、膜厚方向のレターデーション(Rth)を小さくする必要がある。具体的には光学透明フィルムの光学特性を評価した際に、フィルム正面から測定したReが小さく、角度を変えて測定してもそのReが変化しないことが要求される。このような光学的に等方的なフィルムを光学補償シートの支持体として用いることによって、光学補償層そのものの光学性能を引き出すことができる。
また近年画面の大型化、高輝度化が進み、光学補償シートのムラが視認されやすくなってきており、表示の均一性の要求レベルが上がってきている。その要求レベルに対して、前記のポリマー系延伸フィルム、又はポリマー層の塗工膜の一方または両方からなる位相差板では塗工膜の厚みムラによるRe値およびRth値の面内ばらつきは十分なレベルには至っていない。さらに、耐久性経時試験後に発生するムラ、光洩れについても十分なレベルになっていない。
特開平3−33719号公報
特開平3−24502号公報
特開2004−4474号公
また近年画面の大型化、高輝度化が進み、光学補償シートのムラが視認されやすくなってきており、表示の均一性の要求レベルが上がってきている。その要求レベルに対して、前記のポリマー系延伸フィルム、又はポリマー層の塗工膜の一方または両方からなる位相差板では塗工膜の厚みムラによるRe値およびRth値の面内ばらつきは十分なレベルには至っていない。さらに、耐久性経時試験後に発生するムラ、光洩れについても十分なレベルになっていない。
本発明の目的は、液晶表示装置の視野角を拡大するために必要な光学特性を有し、かつ薄型性に優れ、さらにRe値およびRth値のバラツキを低減した光学補償シート及び光学補償偏光板、並びにこの偏光板を具備する表示ムラ・光漏れの少ない液晶表示装置を提供することにある。
本発明者は、上記目的を達成するために鋭意検討した結果、ポリマーフィルムと塗布により形成されるポリマー層との積層体からなる光学補償シートのRe値およびRth値のばらつきを、
・ 光学異方性層の塗布液にレベリング剤を添加することにより低減できること、及び
・ 光学異方性層の支持体となる透明保護フィルムを溶融製膜する際の移送速度差及びロール温度を制御することにより低減できること、
を見出し、本発明を完成するに至った。
更に、特定の化合物からなるポリマーフィルムを用いることにより、耐久性経時試験後の光洩れを小さく出来ることも見出した。
すなわち、下記構成の光学補償シート、光学補償偏光板並びに液晶表示装置によって本発明の上記目的が達成される。
・ 光学異方性層の塗布液にレベリング剤を添加することにより低減できること、及び
・ 光学異方性層の支持体となる透明保護フィルムを溶融製膜する際の移送速度差及びロール温度を制御することにより低減できること、
を見出し、本発明を完成するに至った。
更に、特定の化合物からなるポリマーフィルムを用いることにより、耐久性経時試験後の光洩れを小さく出来ることも見出した。
すなわち、下記構成の光学補償シート、光学補償偏光板並びに液晶表示装置によって本発明の上記目的が達成される。
1. 透明保護フィルムと光学補償層を積層した光学補償シートにおいて、該透明保護フィルムが、下記式(I)かつ(II)をみたし、下記式(1)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(2)で表される繰り返し単位〔2〕または/および下記式(3)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなることを特徴とする光学補償シート。
(I)|Re(590)|≦10
(II)|Rth(590)|≦25
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。]
(I)|Re(590)|≦10
(II)|Rth(590)|≦25
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。]
(式中、R1 は水素原子、または炭素数1〜20のアルキル基を表し、R2乃至R12はそれぞれ独立に、水素原子、炭素数1〜20のアルキル基、ヒドロキシル基、炭素数1〜20のアルコキシ基、またはハロゲン基である。)
(式中、R13は、水素原子、または炭素数1〜20のアルキル基を表す。)
(式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1〜20のアルキル基を表す。)
2. 前記透明保護フィルムが溶融押出法により得られる熱可塑性樹脂製フィルムから得られる光学用フィルムであって、平均厚みdaveが100μm以下であり、該フィルム全面にわたって、厚みの最大値と最小値の差Δdと前記平均厚みdaveの比Δd/daveが7%以下であることを特徴とする1記載の光学補償シート。
3.下記式(III)、(IV)をみたすことを特徴とする上記1又は2に記載の光学補償シート。
(III)−2≦Rth(590)/Re(590)≦2.0
(IV)100≦Re(590)≦350
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。]
4.下記式(V)、(VI)、(VII)をみたすことを特徴とする上記1又は2に記載の光学補償シート。
(V)0≦Re(590)≦200
(VI)−200≦Rth(590)≦400
(VII)〔ΔRe(590)/Re(590)ave〕×100≦20%
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。また、ΔRe(590)はフィルム面内のRe(590)の最大値と最小値の差、Re(590)aveはフィルム面内のRe(590)の平均値を表す。
2. 前記透明保護フィルムが溶融押出法により得られる熱可塑性樹脂製フィルムから得られる光学用フィルムであって、平均厚みdaveが100μm以下であり、該フィルム全面にわたって、厚みの最大値と最小値の差Δdと前記平均厚みdaveの比Δd/daveが7%以下であることを特徴とする1記載の光学補償シート。
3.下記式(III)、(IV)をみたすことを特徴とする上記1又は2に記載の光学補償シート。
(III)−2≦Rth(590)/Re(590)≦2.0
(IV)100≦Re(590)≦350
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。]
4.下記式(V)、(VI)、(VII)をみたすことを特徴とする上記1又は2に記載の光学補償シート。
(V)0≦Re(590)≦200
(VI)−200≦Rth(590)≦400
(VII)〔ΔRe(590)/Re(590)ave〕×100≦20%
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。また、ΔRe(590)はフィルム面内のRe(590)の最大値と最小値の差、Re(590)aveはフィルム面内のRe(590)の平均値を表す。
5.前記透明保護フィルムが、 押出機から押し出されたシート状溶融熱可塑性樹脂を、第1ロール、第2ロール及び第3ロールの3本のロールに順に外接させて移送する工程により製造される方法において、前記第3ロールの周速度R3の、前記第2ロールの周速度R2に対する比R3/R2が0.999未満、0.990以上であることを特徴とする製造方法により製造されたことを特徴とする上記1〜4のいずれかに記載の光学補償シート。
6.前記R2の、前記第1ロールの周速度R1に対する比R2/R1が1.010未満、0.990以上として製造されたことを特徴とする上記5に記載の光学補償シート。
7.前記第3ロールを離れるときの樹脂温度T3が、該熱可塑性樹脂のガラス転移温度Tgよりも50〜100℃低い温度であることを特徴とする製造方法により製造されたことを特徴とする上記6に記載の光学補償シート。
8.光学補償層が液晶性化合物の配向状態を固定化した層であることを特徴とする上記1〜7のいずれかに記載の光学補償シート。
9.前記光学補償層が、棒状、又は円盤状化合物を含有する光学補償層であることを特徴とする上記8に記載の光学補償シート。
10.光学補償層が非液晶性化合物からなる層であることを特徴とする上記1〜9のいずれかに記載の光学補償シート。
11.光学補償層がポリエーテルケトン、ポリアミド、ポリエステル、ポリイミド、ポリアミドイミド及びポリエステルイミドの少なくとも1種よりなることを特徴とする上記10に記載の光学補償シート。
12.光学補償層がレベリング剤を含む溶液の塗布により形成された層であることを特徴とする上記1〜11のいずれかに記載の光学補償シート。
6.前記R2の、前記第1ロールの周速度R1に対する比R2/R1が1.010未満、0.990以上として製造されたことを特徴とする上記5に記載の光学補償シート。
7.前記第3ロールを離れるときの樹脂温度T3が、該熱可塑性樹脂のガラス転移温度Tgよりも50〜100℃低い温度であることを特徴とする製造方法により製造されたことを特徴とする上記6に記載の光学補償シート。
8.光学補償層が液晶性化合物の配向状態を固定化した層であることを特徴とする上記1〜7のいずれかに記載の光学補償シート。
9.前記光学補償層が、棒状、又は円盤状化合物を含有する光学補償層であることを特徴とする上記8に記載の光学補償シート。
10.光学補償層が非液晶性化合物からなる層であることを特徴とする上記1〜9のいずれかに記載の光学補償シート。
11.光学補償層がポリエーテルケトン、ポリアミド、ポリエステル、ポリイミド、ポリアミドイミド及びポリエステルイミドの少なくとも1種よりなることを特徴とする上記10に記載の光学補償シート。
12.光学補償層がレベリング剤を含む溶液の塗布により形成された層であることを特徴とする上記1〜11のいずれかに記載の光学補償シート。
13.偏光子の少なくとも片面に、上記1〜12のいずれかに記載の光学補償シートを有する光学補償偏光板。
14.上記13に記載の光学補償偏光板を用いたことを特徴とする液晶像表示装置。
15.光学補償偏光板がバックライト側に配置されたことを特徴とする上記14に記載の液晶表示装置。
16.光学補償層が視認側に配置されたことを特徴とする上記14に記載の液晶表示装置。
17.液晶モードがVAモードまたはIPSモードであることを特徴とする上記14〜16のいずれかに記載の液晶表示装置。
14.上記13に記載の光学補償偏光板を用いたことを特徴とする液晶像表示装置。
15.光学補償偏光板がバックライト側に配置されたことを特徴とする上記14に記載の液晶表示装置。
16.光学補償層が視認側に配置されたことを特徴とする上記14に記載の液晶表示装置。
17.液晶モードがVAモードまたはIPSモードであることを特徴とする上記14〜16のいずれかに記載の液晶表示装置。
本発明の偏光板の透明保護フィルムは、光学的異方性(Re、Rth)が小さいフィルムである。本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のリターデーションおよび厚さ方向のリターデーションを表す。Re(λ)は、複屈折率計、例えばKOBRA 21ADH(王子計測機器(株)製)を用いて波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基に複屈折率計、例えばKOBRA 21ADHが算出する。ここで平均屈折率の仮定値はポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx-nz)/(nx-ny)が更に算出される。
本発明において、透明保護フィルムとしては、|Re(590)|≦10かつ|Rth(590)|≦25であることがのぞましい。さらにのぞましくは、|Re(590)|≦5かつ|Rth(590)|≦20であり、|Re(590)|≦3かつ|Rth(590)|≦10であることが特にのぞましい。
また本発明の透明保護フィルムは面内の光学異方性のばらつきが小さいことがのぞましく、特に|Re(MAX)−Re(MIN)|≦3かつ|Rth(MAX)−Rth(MIN)|≦5であることがのぞましい。
[式中、Re(MAX)、Rth(MAX)−は任意に切り出した1m四方のフィルムの590nm光で求めた最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。]
また本発明の透明保護フィルムは面内の光学異方性のばらつきが小さいことがのぞましく、特に|Re(MAX)−Re(MIN)|≦3かつ|Rth(MAX)−Rth(MIN)|≦5であることがのぞましい。
[式中、Re(MAX)、Rth(MAX)−は任意に切り出した1m四方のフィルムの590nm光で求めた最大レターデーション値、Re(MIN)、Rth(MIN)は最小値である。]
また本発明において、波長分散が小さい透明保護フィルムフィルムがのぞましく、|Re(400)−Re(700)|≦10かつ|Rth(400)−Rth(700)|≦35であることがのぞましい。さらにのぞましくは、|Re(400)−Re(700)|≦5かつ|Rth(400)−Rth(700)|≦25であり、|Re(400)−Re(700)|≦3かつ|Rth(400)−Rth(700)|≦15であることが特にのぞましい。各レターデーション値の後に示す括弧内の数値は、レターデーション測定用の測定光の波長である。
このように、偏光子の透明保護フィルムの光学異方性を小さくすることにより、積層する光学補償層の設計が容易になるとともに、補償効果の高い光学補償偏光板を得ることができる。透明保護フィルムの厚さは、ムラ低減の観点から100μm以下が好ましく、ハンドリングの観点から30μm以上が好ましい。
好ましくは30〜100μmである。
好ましくは30〜100μmである。
本発明による光学補償シートは下記数式(III)および数式(IV)を満たすもの、または下記数式(V)、(VI)、(VII)を満たすものである。
数式(III)−2≦Rth(590)/Re(590)≦2.0
数式(IV)100≦Re(590)1≦350
数式(V) :0≦Re(590)≦200nm
数式(VI) :−200≦Rth(590)≦400nm
数式(VII):〔ΔRe(590)/Re(590)ave〕×100≦20%
透明保護フィルムは下記数式(I)、(II)を満たすので、透明保護フィルムと光学補償層を積層した光学補償シートのReおよびRthは、積算された値となる。
数式(I)|Re(590)|≦10
数式(II)|Rth(590)|≦25
数式(III)−2≦Rth(590)/Re(590)≦2.0
数式(IV)100≦Re(590)1≦350
数式(V) :0≦Re(590)≦200nm
数式(VI) :−200≦Rth(590)≦400nm
数式(VII):〔ΔRe(590)/Re(590)ave〕×100≦20%
透明保護フィルムは下記数式(I)、(II)を満たすので、透明保護フィルムと光学補償層を積層した光学補償シートのReおよびRthは、積算された値となる。
数式(I)|Re(590)|≦10
数式(II)|Rth(590)|≦25
数式(I)、(II)および(VI)、(VII)を満たす光学補償シートを有する光学補償偏光板は、IPSモードの液晶表示装置に好適に用いることができ、数式(III)、(IV)、(V)、(VI)、(VII)を満たす光学補償シートを有する光学補償偏光板はVAモードの液晶表示装置に好適に用いることができる。
上記条件を満たす本発明の光学補償シートにより、液晶表示装置の視野角を拡大することができ、薄型であり、かつ表示ムラを非常に小さくすることができる。
すなわち、本発明により液晶表示装置の視野角を拡大するために必要な光学特性を有し、かつ薄型性に優れ、さらにRe値およびRth値のバラツキを低減した光学補償シート及び光学補償シート、それを用いた光学補償偏光板、並びにこの偏光板を具備する表示ムラ・光漏れの少ない液晶表示装置を提供することができる。
すなわち、本発明により液晶表示装置の視野角を拡大するために必要な光学特性を有し、かつ薄型性に優れ、さらにRe値およびRth値のバラツキを低減した光学補償シート及び光学補償シート、それを用いた光学補償偏光板、並びにこの偏光板を具備する表示ムラ・光漏れの少ない液晶表示装置を提供することができる。
また本発明は、画像表示装置がIPSまたはVAモードの液晶表示装置であり、視認側のセル基板または視認側と反対側のセル基板に配置されることにより、視野角を拡大することができる。
以下本発明の光学補償偏光板および画像表示装置について説明する。本発明の光学補償偏光板は、偏光子1aの両面に透明保護フィルム1bを積層してなる偏光子1の片面に、光学補償層2が積層された光学補償シートを有している。偏光子1の吸収軸と光学補償層2の遅相軸は直交または平行となるように積層されている。偏光子1の吸収軸と光学補償層2の遅相軸は、積層時における連続貼り合わせ工程の点から平行して積層するのが好ましい。
以下に本発明に使用するのに好ましい透明保護フィルムについて説明する。
以下に本発明に使用するのに好ましい透明保護フィルムについて説明する。
<透明保護フィルムに用いる熱可塑性樹脂の作成方法>
本発明に用いる透明保護フィルムは、重合体ブロック〔A〕および重合体ブロック〔B〕を有するブロック共重合体を成形して得られるものである。重合体ブロック〔A〕は、下記式(1)で表される繰り返し単位〔1〕を含有する。重合体ブロック〔A〕中の繰り返し単位〔1〕の含有量は、好ましくは50モル%以上、より好ましくは70モル%以上、特に好ましくは90モル%以上である。
本発明に用いる透明保護フィルムは、重合体ブロック〔A〕および重合体ブロック〔B〕を有するブロック共重合体を成形して得られるものである。重合体ブロック〔A〕は、下記式(1)で表される繰り返し単位〔1〕を含有する。重合体ブロック〔A〕中の繰り返し単位〔1〕の含有量は、好ましくは50モル%以上、より好ましくは70モル%以上、特に好ましくは90モル%以上である。
(式中、R1 は水素原子、または炭素数1〜20のアルキル基を表し、R2乃至R12はそれぞれ独立に、水素原子、炭素数1〜20のアルキル基、ヒドロキシル基、炭素数1〜20のアルコキシ基、またはハロゲン基である。尚、前記R2 −R12は、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 、R10、R11およびR12である。以降同様に表記する。)
上記式(1)で表される繰り返し単位〔1〕の好ましい構造は、R1 が水素またはメチル基で、R2 乃至R12がすべて水素のものである。重合体ブロック〔A〕中の繰り返し単位〔1〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。重合体ブロック〔A〕における、前記繰り返し単位〔1〕以外の残部は、鎖状共役ジエンや鎖状ビニル化合物由来の繰り返し単位を水素化したものである。
重合体ブロック〔B〕は、前記繰り返し単位〔1〕ならびに下記式(2)で表される繰り返し単位〔2〕または/および下記式(3)で表される繰り返し単位〔3〕を含有する。重合体ブロック〔B〕中の繰り返し単位〔1〕の含有量は、好ましくは40〜95モル%、より好ましくは50〜90モル%である。繰り返し単位〔1〕の含有量が上記範囲にあると、透明性および機械的強度に優れる。ブロック〔B〕中の繰り返し単位〔2〕のモル分率をm2(モル%)および、繰り返し単位〔3〕のモル分率をm3(モル%)としたときに、2×m2+m3が、好ましくは2モル%以上、より好ましくは5〜60モル%、最も好ましくは10〜50モル%である。
(式中、R13は、水素原子、または炭素数1〜20のアルキル基を表す。)
上記式(2)で表される繰り返し単位〔2〕の好ましい構造は、R13が水素またはメチル基のものである。
上記式(2)で表される繰り返し単位〔2〕の好ましい構造は、R13が水素またはメチル基のものである。
(式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1〜20のアルキル基を表す。)
上記式(3)で表される繰り返し単位〔3〕の好ましい構造は、R14が水素で、R15がメチル基またはエチル基のものである。
重合体ブロック〔B〕は、さらに、下記式(X)で表される繰り返し単位〔X〕を含有していてもよい。繰り返し単位〔X〕の含有量は、本発明のブロック共重合体の特性を損なわない範囲の量であり、好ましくはブロック共重合体全体に対し、30モル%以下、より好ましくは20モル%以下である。
(式中、R25は水素原子、または炭素数1〜20のアルキル基を表し、R26はニトリル基、アルコキシカルボニル基、ホルミル基、ヒドロキシカルボニル基、もしくはハロゲン基を表し、R27は水素原子を表す。または、R26とR27とは相互に結合して、酸無水物基、もしくはイミド基を形成してもよい。)
さらに、本発明に用いるブロック共重合体は、ブロック〔A〕を構成する全繰り返し単位のモル数をma 、ブロック〔B〕を構成する全繰り返し単位のモル数をmb とした場合に、その比(ma :mb )が、好ましくは5:95〜95:5、より好ましくは30:70〜95:5、特に好ましくは40:60〜90:10である。
ブロック共重合体中のブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係は、a>bである。
ブロック共重合体中のブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係は、a>bである。
本発明に用いるブロック共重合体の分子量は、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(以下、GPCと記す。)により測定されるポリスチレン(またはポリイソプレン)換算重量平均分子量(以下、Mwと記す。)で、好ましくは10,000〜300,000、より好ましくは15,000〜250,000、特に好ましくは20,000〜200,000の範囲である。ブロック共重合体のMwが上記範囲にあると、機械的強度、耐熱性、成形性のバランスに優れる。
ブロック共重合体の分子量分布は、使用目的に応じて適宜選択できるが、GPCにより測定されるポリスチレン(またはポリイソプレン)換算のMwと数平均分子量(以下、Mnと記す。)との比(Mw/Mn)で、好ましくは5以下、より好ましくは4以下、特に好ましくは3以下の範囲である。Mw/Mnがこの範囲にあると、機械的強度や耐熱性に優れる。
ブロック共重合体のガラス転移温度(以下、Tgと記す。)は、使用目的に応じて適宜選択されればよいが、示差走査型熱量計(以下、DSCと記す。)による、高温側の測定値で、好ましくは70℃〜200℃、より好ましくは80℃〜180℃、特に好ましくは90℃〜160℃である。
本発明に用いる上記ブロック共重合体は、重合体ブロック〔A〕および重合体ブロック〔B〕を有し、(〔A〕−〔B〕)型のジブロック共重合体であっても、(〔A〕−〔B〕−〔A〕)型や(〔B〕−〔A〕−〔B〕)型のトリブロック共重合体であっても、重合体ブロック〔A〕と重合体ブロック〔B〕とが、交互に合計4個以上つながったブロック共重合体であってもよい。また、これらのブロックがラジアル型に結合したブロック共重合体であってもよい。
本発明に用いるブロック共重合体は、以下の方法により得ることができる。その方法としては、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物を含有するモノマー混合物、および、ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を含有するモノマー混合物を重合して、芳香族ビニル化合物または/および脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック、および、ビニル系モノマー由来の繰り返し単位を含有する重合体ブロックを有するブロック共重合体を得る。そして該ブロック共重合体の芳香環または/および脂肪族環を水素化する方法や、飽和脂環族ビニル化合物を含有するモノマー混合物、および、ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を含有するモノマー混合物を重合して、脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック、および、ビニル系モノマー由来の繰り返し単位を含有する重合体ブロックを有するブロック共重合体を得る方法などが挙げられる。中でも、本発明に用いるブロック共重合体としてより好ましいものは、例えば、以下の方法により得ることができる。
第一の方法としては、まず、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物を50モル%以上含有するモノマー混合物〔a’〕を重合して、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック〔A’〕を得る。ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を2モル%以上含有し、且つ、芳香族ビニル化合物または/および環に不飽和結合を有する脂環族ビニル化合物をモノマー混合物〔a’〕中の割合よりも少ない割合の量で含有するモノマー混合物〔b’〕を重合して、芳香族ビニル化合物または/および前記脂環族ビニル化合物由来の繰り返し単位とビニル系モノマー由来の繰り返し単位を含有する重合体ブロック〔B’〕を得る。これらの工程を少なくとも経て、前記重合体ブロック〔A’〕および重合体ブロック〔B’〕を有するブロック共重合体を得た後、該ブロック共重合体の芳香環または/および脂肪族環を水素化する。
(2)第二の方法としては、まず、飽和脂環族ビニル化合物を50モル%以上含有するモノマー混合物〔a〕を重合して、飽和脂環族ビニル化合物由来の繰り返し単位を含有する重合体ブロック〔A〕を得る。ビニル系モノマー(芳香族ビニル化合物および脂環族ビニル化合物を除く)を2モル%以上含有し、且つ、飽和脂環族ビニル化合物をモノマー混合物〔a〕中の割合よりも少ない割合の量で含有するモノマー混合物〔b〕を重合して、飽和脂環族ビニル化合物由来の繰り返し単位とビニル系モノマー由来の繰り返し単位を含有する重合体ブロック〔B〕を得る。これらの工程を少なくとも経て、前記重合体ブロック〔A〕および重合体ブロック〔B〕を有するブロック共重合体を得る。
上記方法の中で、モノマーの入手容易性、重合収率、重合体ブロック〔B’〕への繰り返し単位〔1〕の導入のし易さ等の観点から、上記(1)の方法がより好ましい。
上記(1)の方法における芳香族ビニル化合物の具体例としては、スチレン、α−メチルスチレン、α−エチルスチレン、α−プロピルスチレン、α−イソプロピルスチレン、α−t−ブチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジイソプロピルスチレン、2,4−ジメチルスチレン、4−t−ブチルスチレン、5−t−ブチル−2−メチルスチレン、モノクロロスチレン、ジクロロスチレン、モノフルオロスチレン、4−フェニルスチレン等や、これらにヒドロキシル基、アルコキシ基などの置換基を有するもの等が挙げられる。中でもスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン等が好ましい。
上記(1)方法における不飽和脂環族ビニル系化合物の具体例としては、シクロヘキセニルエチレン、α−メチルシクロヘキセニルエチレン、およびα−t−ブチルシクロヘキセニルエチレン等や、これらにハロゲン基、アルコキシ基、またはヒドロキシル基等の置換基を有するもの等が挙げられる。
これらの芳香族ビニル化合物および脂環族ビニル系化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることもできるが、本発明においては、モノマー混合物〔a’〕および〔b’〕のいずれにも、芳香族ビニル化合物を用いるのが好ましく、中でも、スチレンまたはα−メチルスチレンを用いるのがより好ましい。
上記方法で使用するビニル系モノマーには、鎖状ビニル化合物および鎖状共役ジエン化合物が含まれる。
鎖状ビニル化合物の具体例としては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン等の鎖状オレフィンモノマー等が挙げられ、中でも、鎖状オレフィンモノマーが好ましく、エチレン、プロピレン、1−ブテンが最も好ましい。
鎖状ビニル化合物の具体例としては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン等の鎖状オレフィンモノマー等が挙げられ、中でも、鎖状オレフィンモノマーが好ましく、エチレン、プロピレン、1−ブテンが最も好ましい。
鎖状共役ジエンは、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、および1,3−ヘキサジエン等が挙げられる。これら鎖状ビニル化合物および鎖状共役ジエンの中でも鎖状共役ジエンが好ましく、ブタジエン、イソプレンが特に好ましい。これらの鎖状ビニル化合物および鎖状共役ジエンは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
上記のモノマーを含有するモノマー混合物を重合する場合、ラジカル重合、アニオン重合、カチオン重合等のいずれの方法で重合反応を行ってもよいが、アニオン重合によるのが好ましく、不活性溶媒の存在下にリビングアニオン重合を行うのが最も好ましい。
アニオン重合は、重合開始剤の存在下、通常0℃〜200℃、好ましくは20℃〜100℃、特に好ましくは20℃〜80℃の温度範囲において行う。開始剤としては、例えば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウムなどのモノ有機リチウム、ジリチオメタン、1,4−ジオブタン、1,4−ジリチオー2−エチルシクロヘキサン等の多官能性有機リチウム化合物などが使用可能である。
使用する不活性溶媒としては、例えば、n−ブタン、n−ペンタン、イソペンタン、n−ヘキサン、n−ヘプタン、イソオクタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン、デカリン等の脂環式炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類等が挙げられ、中でも脂肪族炭化水素類や脂環式炭化水素類を用いると、水素化反応にも不活性な溶媒としてそのまま使用することができる。これらの溶媒は、それぞれ単独で、或いは2種類以上を組み合わせて使用でき、通常、全使用モノマー100重量部に対して200〜10,000重量部となるような割合で用いられる。
それぞれの重合体ブロックを重合する際には、各ブロック内で、或る1成分の連鎖が長くなるのを防止するために、重合促進剤やランダマイザーなどを使用することができる。特に重合反応をアニオン重合により行う場合には、ルイス塩基化合物などをランダマイザーとして使用できる。ルイス塩基化合物の具体例としては、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジフェニルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルフェニルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン等の第3級アミン化合物;カリウム−t−アミルオキシド、カリウム−t−ブチルオキシド等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物が挙げられる。これらのルイス塩基化合物は、それぞれ単独で、或いは2種類以上を組み合わせて使用することができる。
リビングアニオン重合によりブロック共重合体を得る方法は、従来公知の、逐次付加重合反応法およびカップリング法などが挙げられるが、本発明においては、逐次付加重合反応法を用いるのが好ましい。
以上の方法により得られた本発明に係るブロック共重合体には、必要に応じて各種配合剤を配合することができる。ブロック共重合体に配合することができる配合剤は格別限定はないが、酸化防止剤、熱安定剤、耐光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料や顔料などの着色剤;帯電防止剤、難燃剤、フィラーなどが挙げられる。これらの配合剤は、単独で、あるいは2種以上を組み合せて用いることができ、その配合量は本発明の効果を損なわない範囲で適宜選択される。
本発明においては、ブロック共重合体に、上記配合剤の中でも、酸化防止剤、紫外線吸収剤、および耐光安定剤を配合するのが好ましい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、成形時の酸化劣化等による着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明に係るブロック共重合体100重量部に対して好ましくは0.001〜5重量部、より好ましくは0.01〜1重量部である。
<透明保護フィルムの作製方法>
このようにして得られた、本発明に用いる熱可塑性樹脂を、以下の方法により透明保護フィルムとする。
本発明の熱可塑性樹脂の製造方法には、押出機から押し出された、シート状に溶融した上記熱可塑性樹脂を、第1ロール、第2ロール及び第3ロールの3本のロールに順に外接させて移送する方法〔製造方法(1)〕、又は、押出機から押し出された前記シート状溶融熱可塑性樹脂を、第1ロール及び第2ロールの2本のロールの間隙を通過させ、圧延されたシート状溶融熱可塑性樹脂を得、前記圧延されたシート状溶融熱可塑性樹脂を、そのまま第2ロールに、次いで3本目の第3ロールに順に外接させて移送する方法〔製造方法(2)〕、とがある。そして、上記いずれの製造方法を採用する場合においても、前記第3ロールの周速度R3の、前記第2ロールの周速度R2に対する比R3/R2を0.999未満、0.990以上、好ましくは0.998未満、0.995以上に設定する。R3/R2の値が過度に大きいとシート状熱可塑性樹脂に延伸がかかってレターデーション値やそのバラツキが大きくなるおそれがある。一方、R3/R2の値が過度に小さいとシート状熱可塑性樹脂が弛んで垂れ、その重さが張力となってシート状熱可塑性樹脂に延伸がかかる可能性がある。R3/R2の設定値を決定するときの着眼点は、シート状熱可塑性樹脂を第2ロールから第3ロールへと移送するときに、第2ロール温度近辺から第3ロール温度近辺に低下することによる樹脂の収縮率に見合うように、樹脂温度を設定することである。上記の周速比を採ることにより、従来、R3/R2の値が1より小さくなるとシート状熱可塑性樹脂が弛んで均質なシートが成形できないとされていたことに反して、レターデーション値が小さくて均一な熱可塑性樹脂シートが製造できるようになる。
このようにして得られた、本発明に用いる熱可塑性樹脂を、以下の方法により透明保護フィルムとする。
本発明の熱可塑性樹脂の製造方法には、押出機から押し出された、シート状に溶融した上記熱可塑性樹脂を、第1ロール、第2ロール及び第3ロールの3本のロールに順に外接させて移送する方法〔製造方法(1)〕、又は、押出機から押し出された前記シート状溶融熱可塑性樹脂を、第1ロール及び第2ロールの2本のロールの間隙を通過させ、圧延されたシート状溶融熱可塑性樹脂を得、前記圧延されたシート状溶融熱可塑性樹脂を、そのまま第2ロールに、次いで3本目の第3ロールに順に外接させて移送する方法〔製造方法(2)〕、とがある。そして、上記いずれの製造方法を採用する場合においても、前記第3ロールの周速度R3の、前記第2ロールの周速度R2に対する比R3/R2を0.999未満、0.990以上、好ましくは0.998未満、0.995以上に設定する。R3/R2の値が過度に大きいとシート状熱可塑性樹脂に延伸がかかってレターデーション値やそのバラツキが大きくなるおそれがある。一方、R3/R2の値が過度に小さいとシート状熱可塑性樹脂が弛んで垂れ、その重さが張力となってシート状熱可塑性樹脂に延伸がかかる可能性がある。R3/R2の設定値を決定するときの着眼点は、シート状熱可塑性樹脂を第2ロールから第3ロールへと移送するときに、第2ロール温度近辺から第3ロール温度近辺に低下することによる樹脂の収縮率に見合うように、樹脂温度を設定することである。上記の周速比を採ることにより、従来、R3/R2の値が1より小さくなるとシート状熱可塑性樹脂が弛んで均質なシートが成形できないとされていたことに反して、レターデーション値が小さくて均一な熱可塑性樹脂シートが製造できるようになる。
また、上記製造方法(1)を採用する場合には、第2ロールの周速度R2の、第1ロールの周速度R1に対する比R2/R1を1.01未満、0.990以上に設定することが好ましく、1.000未満、0.995以上に設定することがより好ましい。R2/R1の値が過度に大きいと位相差ムラが増大するおそれがある。一方、R2/R1の値が過度に小さいとR2表面上でフィルムにたるみが生じ、シワなどの外観欠陥を発生する可能性がある。上記製造方法(2)を採用する場合には、第1ロールと第2ロールは互いに逆回転になるようにし、その周速度は同じに設定するのが好ましい。
さらに本発明の方法を円滑に実施するために、上記いずれの製造方法を採用する場合においても、シート状熱可塑性樹脂又は圧延されたシート状熱可塑性樹脂が第3ロールを離れるときに、樹脂温度T3を熱可塑性樹脂のガラス転移温度(Tg)よりも50〜100℃低い温度にすることが好ましく、特にTgよりも60〜80℃低い温度にすることがより好ましい。T3が過度に高い温度であると下流の工程でフィルムに張力が掛かった場合に位相差が増大するおそれがあり、逆に過度に低い温度であると、ロール表面での熱収縮が大きくなりシワなどの外観欠陥を発生させる可能性がある。第3ロールを離れるときのシート状熱可塑性樹脂又は圧延されたシート状熱可塑性樹脂の温度T3を上記範囲とするためには、第3ロール及び第2ロールの温度を制御する。
また、第2ロールを離れるときのシート状熱可塑性樹脂又は圧延されたシート状熱可塑性樹脂の温度T2を、そのTgよりも0〜60℃低い温度にすることが好ましく、20〜40℃低い温度にすることがより好ましい。T2が過度に高い温度であると下流の工程でフィルムに張力が掛かった場合に位相差が増大するおそれがあり、逆に過度に低い温度であるとシート状熱可塑性樹脂は急冷により応力がかかってレターデーションが大きくなる可能性がある。第1ロールと第2ロールの温度は、その温度差が、上記製造方法(1)を採用する場合には10℃未満、上記製造方法(2)を採用する場合には20℃未満になるようにすることが好ましい。
以上の方法により、Re値およびRth値のバラツキを低減した透明保護フィルムを作製することができる。
以上の方法により、Re値およびRth値のバラツキを低減した透明保護フィルムを作製することができる。
<光学補償層>
光学補償層としては、前記Nz値および面内位相差すなわち正面レターデーションRe値を満足するものを特に制限なく使用することができる。たとえば、高分子ポリマーフィルムの複屈折性フィルム、液晶ポリマーの配向フィルム、低分子液晶の配向フィルムなどがあげられる。
光学補償層としては、前記Nz値および面内位相差すなわち正面レターデーションRe値を満足するものを特に制限なく使用することができる。たとえば、高分子ポリマーフィルムの複屈折性フィルム、液晶ポリマーの配向フィルム、低分子液晶の配向フィルムなどがあげられる。
高分子ポリマーとしては、たとえばポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリノルボルネン等の脂環式ポリオレフィン、ポリビニルアルコール、ポリビニルブチラール、ポリメチルビニルエーテル、ポリヒドロキシエチルアクリレート、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルファイド、ポリフェニレンオキサイド、ポリアリルスルホン、ポリビニルアルコール、ポリアミド、ポリイミド、ポリ塩化ビニル、セルロース系重合体、またはこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物などがあげられる。なかでもポリスチレン、ポリメチルメタクリレートのように固有複屈折は負のポリマーが特に好ましい。なかでも不飽和二重結合を有するポリマー((A)と称する)に対して、少くともスチレン系モノマーを1種以上のモノマー((B)と称する)を付加重合したグラフト共重合体(本発明のポリマーで(C)と称する)が特にのぞましい。ポリマー(A)は、不飽和二重結合を主鎖及び側鎖のいずれに有していても良い。
グラフト共重合体(C)のいわゆる幹を構成するポリマー(A)について説明する。
ポリマー(A)は具体的には、主鎖または側鎖に不飽和二重結合の繰返し単位を有するポリマーである。この繰返し単位は、好ましくは共役ジエン構造を有する単量体の重合によって誘導されるものである。
ポリマー(A)は具体的には、主鎖または側鎖に不飽和二重結合の繰返し単位を有するポリマーである。この繰返し単位は、好ましくは共役ジエン構造を有する単量体の重合によって誘導されるものである。
上記共役ジエン構造を有する単量体の好ましい例としては、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2−エチル−1,3−ブタジエン、2−n−プロピル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−メチル−1,3−ペンタジエン、1−フェニル−1,3−ブタジエン、1−α−ナフチル−1,3−ブタジエン、1−β−ナフチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン、1−ブロム−1,3−ブタジエン、1−クロルブタジエン、2−フルオロ−1,3−ブタジエン、2,3−ジクロル−1,3−ブタジエン、1,1,2−トリクロル−1,3−ブタジエン及び2−シアノ−1,3−ブタジエンを挙げることができる。これらの中で、1,3−ブタジエン、イソプレン、2−クロル−1,3−ブタジエンが特に好ましい。
また、グラフト共重合体(C)の幹を構成するポリマー(A)は、上記のジエン構造を有する単量体とこの単量体以外の疎水性単量体と共重合したものであってもよい。
このような疎水性単量体の例としては、エチレン、プロピレン、1−ブテン、イソブテン、スチレン、α−メチルスチレン、ビニルケトン、脂肪族酸のモノエチレン性不飽和炭化水素(アルケン)エステル(例えば酢酸ビニル、酢酸アリル)、エチレン性不飽和のモノカルボン酸もしくはジカルボン酸のエステル(例えばメチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、n−ブチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、t−ブチルメタクリレート、ドデシルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート)、エチレン性不飽和のモノカルボン酸もしくはジカルボン酸のアミド(例えばt−ブチルアクリルアミド、t−ブチルメタクリルアミド)及びモノエチレン性不飽和化合物(例えばアクリロニトリル、メタクリロニトリル)等を挙げることができる。これらの中で、エチレン、プロピレン、スチレン、α−メチルスチレン、アクリル酸もしくはメタクリル酸のエステル、アクリロニトリル、メタクリロニトリルが特に好ましい。
このような疎水性単量体の例としては、エチレン、プロピレン、1−ブテン、イソブテン、スチレン、α−メチルスチレン、ビニルケトン、脂肪族酸のモノエチレン性不飽和炭化水素(アルケン)エステル(例えば酢酸ビニル、酢酸アリル)、エチレン性不飽和のモノカルボン酸もしくはジカルボン酸のエステル(例えばメチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、n−ブチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、t−ブチルメタクリレート、ドデシルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート)、エチレン性不飽和のモノカルボン酸もしくはジカルボン酸のアミド(例えばt−ブチルアクリルアミド、t−ブチルメタクリルアミド)及びモノエチレン性不飽和化合物(例えばアクリロニトリル、メタクリロニトリル)等を挙げることができる。これらの中で、エチレン、プロピレン、スチレン、α−メチルスチレン、アクリル酸もしくはメタクリル酸のエステル、アクリロニトリル、メタクリロニトリルが特に好ましい。
上記の共役ジエン構造を有する単量体、その他の疎水性単量体はそれぞれ二種以上用いてもよい。共役ジエン構造を有する単量体の重合により、ポリマー(A)中に導入される不飽和構造は、当該分野でよく知られているようにシス−1,4結合であってもよいし、トランス1,4−結合、あるいはトランス1,2−結合であってもよい。
光学補償層は、高分子ポリマーフィルムを面方向に二軸に延伸する方法、面方向に一軸または二軸に延伸し、厚さ方向にも延伸する方法等により厚さ方向の屈折率を制御することにより得られる。また高分子ポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理及び/又は収縮処理して傾斜配向させる方法等により得られる。
液晶性ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子団(メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなどがあげられる。主鎖型の液晶性ポリマーの具体例としては、屈曲性を付与するスペーサ部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶性ポリマー、ディスコティックポリマーやコレステリックポリマーなどがあげられる。側鎖型の液晶性ポリマーの具体例としては、ポリシロキサン、ポリアクリレート、ポリメタクリレート又はポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスペーサ部を介してネマチック配向付与性のパラ置換環状化合物単位からなるメソゲン部を有するものなどがあげられる。これら液晶性ポリマーの配向フィルムは、たとえば、ガラス板上に形成したポリイミドやポリビニルアルコール等の薄膜の表面をラビング処理したもの、酸化珪素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開して熱処理することにより、液晶ポリマーを配向させたもの、が好ましい。
低分子液晶としては、棒状又は円盤状(ディスコチィック)液晶性化合物があげられる。
(ディスコティック液晶性化合物)
本発明に使用可能なディスコティック液晶性化合物の例には、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載の化合物が含まれる。
(ディスコティック液晶性化合物)
本発明に使用可能なディスコティック液晶性化合物の例には、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page 2655(1994))に記載の化合物が含まれる。
光学補償層において、ディスコティック液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。ディスコティック液晶性分子の重合については、特開平8−27284公報に記載がある。ディスコティック液晶性分子を重合により固定するためには、ディスコティック液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。重合性基を有するディスコティック液晶性分子について、特開2001−4387号公報に開示されている。
(棒状液晶性化合物)
本発明において、使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
本発明において、使用可能な棒状液晶性化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が含まれる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。
光学異方性層において、棒状液晶性分子は配向状態で固定されているのが好ましく、重合反応により固定されているのが最も好ましい。本発明に使用可能な重合性棒状液晶性化合物の例には、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、世界特許(WO)95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1−272551号、同6−16616号、同7−110469号、同11−80081号、および特開2001−328973号などに記載の化合物が含まれる。
特に光学異方性層の膜厚ムラは光学補償シートのRe(λ)およびRth(λ)のムラの原因となるため低減することが好ましい。光学異方性層の膜厚ムラは塗布手段の調整、乾燥手段の調整によって低減が可能であり、また光学異方性層を塗布する支持体の平滑性を向上させることによっても低減が可能である。本発明では、特に光学異方性層の塗布液中にレベリング剤を添加することにより著しく膜厚ムラを低減できることを見出した。レベリング剤としては、光学異方性層の塗布液の表面張力を低下させる界面活性能のある材料を用いる。
このようなレベリング剤としては、ノニルフェノールエチレンオキサイド付加物、ステアリン酸エチレンオキサイド付加物等のポリエチレングリコール型非イオン系界面活性剤;ソルビタンパルチミン酸モノエステル、ソルビタンステアリン酸モノエステル、ソルビタンステアリン酸トリエステル等の多価アルコール型非イオン系界面活性剤;パーフルオロアルキルエチレンオキサイド付加物、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルベタイン等のフッ素系界面活性剤;アルキル変成シリコーンオイル、ポリエーテル変成シリコーンオイル等のシリーコンオイル等があげられる。具体的にはシリコーン系界面活性剤としてはディスパロンLS−009(楠本化成製)、フッ素系界面活性剤としてはディフェンサーMCF−323、メガファックF−171、F−172、F−177、F−142D、F−144D、F−140NK(以上、大日本インキ化学工業製)、フロラードFC−430、FC−170、FC−170C(以上、住友スリーエム製)、アクリル系界面活性剤としてはディスパロンL−1980(楠本化成製)、モダフロー(日本モンサント製)等があげられる。また、特開平9−230143号公報記載のものも使用できる。
上記のレベリング剤は界面活性能があるため光学異方性層の表面に多く分布する。形成された光学異方性層の表面にレベリング剤が多く存在すると、液晶セルに偏光板を貼り付ける際に使用する粘着剤と光学異方性層との接着性が弱くなり、偏光板に不具合があった場合に偏光板を液晶セルから剥がすリワーク作業において粘着剤が液晶セルに残ってしまい、別途粘着剤を有機溶剤でふき取る等作業性が悪くなる。特にフッ素系界面活性剤を使用する場合、粘着剤と接着性が弱くなる場合がある。レベリング剤は光学異方性層の厚みムラを低減するために非常に有効であるが、光学異方性層が形成された後に光学異方性層表面に残存している必要はなく、むしろ光学異方性層表面からはなくなった方が好ましい。光学異方性層を有する光学補償シートを偏光膜に貼り合せる際に行う鹸化処理によって、光学異方性層表面のレベリング剤は除去されることが好ましい。また、有機溶剤でレベリング剤を洗い流してもよい。
光学異方性層塗布後及び鹸化処理後の乾燥には自然乾燥(風乾)方式や加熱乾燥方式、特に40〜200℃の加熱乾燥方式、減圧乾燥方式などの適宜な方式の1種又は2種以上を採ることができる。乾燥時の乾燥ムラによる厚みムラ低減のためには、塗布直後の環境の風を層流とすることが好ましく、また風速を1m/min以下とすることが好ましい。さらに、塗布直後に吹かせる乾燥風の動きによる塗布膜の厚みムラ発生を抑えるために乾燥風を吹かせない凝縮乾燥を行うことが好ましい。
鹸化処理後の洗浄用の有機溶剤としては、例えばクロロホルムやジクロロメタン、四塩化炭素やジクロロエタン、テトラクロロエタンやトリクロロエチレン、テトラクロロエチレンやクロロベンゼン、オルソジクロロベンゼンの如きハロゲン化炭化水素類、フェノールやパラクロロフェノールの如きフェノール類、ベンゼンやトルエン、キシレンやメトキシベンゼン、1,2−ジメトキシベンゼンの如き芳香族炭化水素類、アセトンやメチルエチルケトン、メチルイソブチルケトンやシクロヘキサノン、シクロペンタノンや2−ピロリドン、N−メチル−2−ピロリドンの如きケトン類、酢酸エチルや酢酸ブチルの如きエステル類があげられる。
また、t−ブチルアルコールやグリセリン、エチレングリコールやトリエチレングリコール、エチレングリコールモノメチルエーテルやジエチレングリコールジメチルエーテル、プロピレングリコールやジプロピレングリコール、2−メチル−2,4−ペンタンジオールの如きアルコール類、ジメチルホルムアミドやジメチルアセトアミドの如きアミド類、アセトニトリルやブチロニトリルの如きニトリル類、ジエチルエーテルやジブチルエーテル、テトラヒドロフランの如きエーテル類、その他、塩化メチレンや二硫化炭素、エチルセロソルブやブチルセロソルブなども前記溶媒の例としてあげられる。
溶媒は、単独で、あるいは2種以上を適宜な組合せで混合して用いることができる。溶液は、塗工粘度等の点より、溶媒100質量部に対して固体ポリマーを2〜100質量部、就中5〜50質量部、特に10〜40質量部溶解させたものが好ましい。
液状化した光学異方性層の展開には、例えばスピンコート法やロールコート法、フローコート法やプリント法、ディップコート法や流延成膜法、バーコート法やグラビア印刷法等のキャスティング法、押出法などの適宜なフィルム形成方式を採ることができる。
光学異方性層を透明保護フィルム上に積層させる方法は、塗布または転写などの任意の方法を用いることが出来る。
塗布にて積層させる場合は、あらかじめ接着性を良くするために透明保護フィルムを表面処理してもよい。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10−3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
転写にて積層させる場合は、ポリエステルなどの他の媒体に光学異方性層を塗布などにより形成した後に、透明保護フィルムに転写させて形成させることができる。転写させる際に、密着強度を挙げるために、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル、ウレタン系、等が用を用いても良い。更に、前記接着剤の代わりに、粘着剤層等により行うこともできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いても良い。
偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、5〜80μm程度である。
ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいてもよいヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよいし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。
通常、光学補償シートを偏光膜に貼り合わせる前に、光学補償シートと偏光膜との接着性を良くするために光学補償シートには好ましくは表面処理が施される。表面処理には、例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10−3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されており、本発明において好ましく用いることができる。
前記偏光子と透明保護フィルムとの接着処理には、特に制限されず、密着強度が得られればよい。上記表面処理の後でイソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル、ウレタン系、等が用いられる。
更に、前記接着剤の代わりに、粘着剤層等により行うこともできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。
透明保護フィルム上に光学異方性層を塗布により形成する場合、透明保護フィルム上に光学異方性層との接着性を高める層を設けてもよい。また、光学異方性層の溶液を透明保護フィルム上に塗布する際に、光学異方性層溶液の溶剤が透明保護フィルムを侵さないように耐溶剤層を設けてもよい。対溶剤層としてはポリビニルアルコールのような有機溶剤に溶解しにくい材料を使うことができる。
前記透明保護フィルムの偏光子を接着させない面(前記塗布層を設けない面)には、ハードコート層や反射防止処理、スティッキング防止や、光拡散やアンチグレアを目的とした処理を施したものであってもよい。
ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。
またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5〜50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機
系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2〜50重量部程度であり、5〜25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。
系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2〜50重量部程度であり、5〜25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。
なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、透明保護フィルムそのものに設けることができるほか、透明保護フィルムとは別体の光学層として偏光板や液晶表示装置に設けることもできる。
<液晶表示装置>
すなわち、本発明の光学補償シートを用いた偏光板は、液晶表示装置に有利に用いられる。本発明の光学補償シートは、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。このうち、VAモードまたはIPSモードに好ましく用いることができる。
すなわち、本発明の光学補償シートを用いた偏光板は、液晶表示装置に有利に用いられる。本発明の光学補償シートは、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。このうち、VAモードまたはIPSモードに好ましく用いることができる。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード、CPA モード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード、CPA モード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
VAモードの液晶表示装置としては、図1に示すように、液晶セル(VAモードセル)およびその両側に配置された二枚の偏光板(TAC1、偏光子及びTAC2からなる偏光板)からなるものが挙げられる。
液晶セルは、特に図示しないが二枚の電極基板の間に液晶を担持している。
本発明の透過型液晶表示装置の一つの態様では、本発明の光学補償シートを液晶セルと一方の偏光板との間に、一枚配置するか、あるいは液晶セルと双方の偏光板との間に二枚配置する。
本発明の透過型液晶表示装置の別の態様では、液晶セルと偏光子との間に配置される偏光板の保護膜として、本発明の光学補償シートが用いられる。一方の偏光板の(液晶セルと偏光子との間の)保護膜のみに上記の光学補償シートを用いてもよいし、あるいは双方の偏光板の(液晶セルと偏光子との間の)二枚の保護膜に、上記の光学補償シートを用いてもよい。液晶セルへの貼り合わせは、本発明の光学補償シート(TAC1)をVAセル側にすることが好ましい。一方の偏光板の(液晶セルと偏光子との間の)保護膜のみに上記の光学補償シートを用いた場合、これが、上側偏光板(観察側)、下側偏光板(バックライト側)のどちら側でもよく、機能的には何ら問題がない。ただし、上側偏光板として使用すると機能性膜を観察側(上側)に設ける必要性があり生産得率が下がる可能性があ
るため、下側偏光板として使用する場合が高いと考えられ、より好ましい実施形態であると考えられる。
そして、図1の光源側及び観察者側の両方を本発明の偏光板で形成したものが第2形態の液晶表示装置であり、光源側のみを本発明の偏光板で形成したものが第3形態の液晶表示装置である。
図1の保護膜(TAC2)は通常のセルレートアシレートフィルムでもよい。たとえば、40〜80μmが好ましく、市販のKC4UX2M(コニカオプト(株)製40μm)、KC5UX(コニカオプト(株)製60μm)、TD80UL(富士写真フイルム製80μm)等が挙げられるが、これらに限定されない。
液晶セルは、特に図示しないが二枚の電極基板の間に液晶を担持している。
本発明の透過型液晶表示装置の一つの態様では、本発明の光学補償シートを液晶セルと一方の偏光板との間に、一枚配置するか、あるいは液晶セルと双方の偏光板との間に二枚配置する。
本発明の透過型液晶表示装置の別の態様では、液晶セルと偏光子との間に配置される偏光板の保護膜として、本発明の光学補償シートが用いられる。一方の偏光板の(液晶セルと偏光子との間の)保護膜のみに上記の光学補償シートを用いてもよいし、あるいは双方の偏光板の(液晶セルと偏光子との間の)二枚の保護膜に、上記の光学補償シートを用いてもよい。液晶セルへの貼り合わせは、本発明の光学補償シート(TAC1)をVAセル側にすることが好ましい。一方の偏光板の(液晶セルと偏光子との間の)保護膜のみに上記の光学補償シートを用いた場合、これが、上側偏光板(観察側)、下側偏光板(バックライト側)のどちら側でもよく、機能的には何ら問題がない。ただし、上側偏光板として使用すると機能性膜を観察側(上側)に設ける必要性があり生産得率が下がる可能性があ
るため、下側偏光板として使用する場合が高いと考えられ、より好ましい実施形態であると考えられる。
そして、図1の光源側及び観察者側の両方を本発明の偏光板で形成したものが第2形態の液晶表示装置であり、光源側のみを本発明の偏光板で形成したものが第3形態の液晶表示装置である。
図1の保護膜(TAC2)は通常のセルレートアシレートフィルムでもよい。たとえば、40〜80μmが好ましく、市販のKC4UX2M(コニカオプト(株)製40μm)、KC5UX(コニカオプト(株)製60μm)、TD80UL(富士写真フイルム製80μm)等が挙げられるが、これらに限定されない。
以下、本発明の実施例を挙げる。
Re(590)およびRth(590)の値は、自動複屈折計(KOBRA 21ADH、新王子計測器(株)製)の位相差測定の標準モードで測定した。Rth(590)は平均屈折率を1.48として算出した。膜厚は干渉式膜厚計で測定した。
作製した光学補償シートの両端から25mmを除く部分(幅1290mm)を幅方向で10mm間隔、長手方向に1000mmを10mm間隔でRe(590)、Rth(590)、膜厚dを測定し、平均値daveおよび面内の最大値および最小値の差Δdを算出した。
透湿度は、JIS Z0208のカップ法を用い、温度40℃、湿度90%で測定した。
Re(590)およびRth(590)の値は、自動複屈折計(KOBRA 21ADH、新王子計測器(株)製)の位相差測定の標準モードで測定した。Rth(590)は平均屈折率を1.48として算出した。膜厚は干渉式膜厚計で測定した。
作製した光学補償シートの両端から25mmを除く部分(幅1290mm)を幅方向で10mm間隔、長手方向に1000mmを10mm間隔でRe(590)、Rth(590)、膜厚dを測定し、平均値daveおよび面内の最大値および最小値の差Δdを算出した。
透湿度は、JIS Z0208のカップ法を用い、温度40℃、湿度90%で測定した。
<透明保護フィルムに用いる熱可塑性樹脂Aの作成>
十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製重合器に、脱水シクロヘキサン320部、スチレン60部、およびジブチルエーテル0.38部を仕込み、60℃で攪拌しながらn−ブチルリチウム溶液(15%含有ヘキサン溶液)0.36部を添加して重合反応を開始した。1時間重合反応を行った後、反応溶液中に、スチレン8部とイソプレン12部とからなる混合モノマー20部を添加し、さらに1時間重合反応を行った後、反応溶液にイソプロピルアルコール0.2部を添加して反応を停止させた。得られたブロック共重合体のMwは102,100、Mw/Mnは1.11であった。
十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製重合器に、脱水シクロヘキサン320部、スチレン60部、およびジブチルエーテル0.38部を仕込み、60℃で攪拌しながらn−ブチルリチウム溶液(15%含有ヘキサン溶液)0.36部を添加して重合反応を開始した。1時間重合反応を行った後、反応溶液中に、スチレン8部とイソプレン12部とからなる混合モノマー20部を添加し、さらに1時間重合反応を行った後、反応溶液にイソプロピルアルコール0.2部を添加して反応を停止させた。得られたブロック共重合体のMwは102,100、Mw/Mnは1.11であった。
次いで、上記重合反応溶液400部を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒として、シリカ−アルミナ担持型ニッケル触媒(日揮化学工業社製;E22U、ニッケル担持量60%)10部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度を高く160℃に設定し、圧力4.5MPaにて8時間反応することにより、芳香環まで水素化を行った。水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、シクロヘキサン800部を加えて希釈し、該反応溶液を3500部のイソプロパノール(クラス1000のクリーンルームで、孔径1μmのフィルターにてろ過したもの)中に注いでブロック共重合体を析出させ、ろ過により分離回収し、80℃にて48時間減圧乾燥させた。得られたブロック共重合体は、スチレン由来の繰り返し単位を含有するブロック(以降Stと略記する)、およびスチレンとイソプレン由来の繰り返し単位を含有するブロック(以降St/Ipと略記する)とからなる2元ブロック共重合体であり、それぞれのブロックのモル比は、St:St/Ip=69:31(St:Ip=10:21)であった。該ブロック共重合体のMwは85,100、Mw/Mnは1.17、主鎖および芳香環の水素化率は99.9%、Tgは126.5℃であった。このようにして熱可塑性樹脂Aを得た。
<透明保護フィルムAの作製>
熱可塑性樹脂Aのペレットを、シリンダー内径が50mm、スクリューL/Dが28のコートハンガーダイ付単軸押出成形機(日本製鋼所製)でバレル温度260℃で溶融し、ダイ温度260℃のコートハンガーダイから幅650mmのシート状溶融樹脂を押し出して、図2に示す配置の製造設備を用いて、第1ロール(図2の4)(直径200mm、温度135℃、周速度R1:14.50m/秒)に密着させ、直ちにナイフコーターにより厚み40μmの溶融状態のシートとして第1ロール(図2の4)を、次いで第2ロール(図2の5)(直径350mm、温度125℃、周速度R2:14.47m/秒)、次いで第3ロール(図2の6)(直径350mm、温度80℃、周速度R3:14.43m/秒)に順次密着させて移送し、逐次、冷却ならびにロール面転写による表裏面の平滑化を行い、調整ロール(図2の7)を経て引取りロール(図示しない)に移行させ、透明保護フィルムAを製造した。第3ロール(図2の6)を離れるときのシート状樹脂の温度T3は80℃であった。得られた透明保護フィルムAの厚み及びそのバラツキ、レターデーション値及びそのバラツキを表1に記す。
熱可塑性樹脂Aのペレットを、シリンダー内径が50mm、スクリューL/Dが28のコートハンガーダイ付単軸押出成形機(日本製鋼所製)でバレル温度260℃で溶融し、ダイ温度260℃のコートハンガーダイから幅650mmのシート状溶融樹脂を押し出して、図2に示す配置の製造設備を用いて、第1ロール(図2の4)(直径200mm、温度135℃、周速度R1:14.50m/秒)に密着させ、直ちにナイフコーターにより厚み40μmの溶融状態のシートとして第1ロール(図2の4)を、次いで第2ロール(図2の5)(直径350mm、温度125℃、周速度R2:14.47m/秒)、次いで第3ロール(図2の6)(直径350mm、温度80℃、周速度R3:14.43m/秒)に順次密着させて移送し、逐次、冷却ならびにロール面転写による表裏面の平滑化を行い、調整ロール(図2の7)を経て引取りロール(図示しない)に移行させ、透明保護フィルムAを製造した。第3ロール(図2の6)を離れるときのシート状樹脂の温度T3は80℃であった。得られた透明保護フィルムAの厚み及びそのバラツキ、レターデーション値及びそのバラツキを表1に記す。
<透明保護フィルムBの作製>
透明保護フィルムAにおいて、R1を14.50m/分、R2を14.60m/分、R3を14.60m/分に、した他は実施例1と同様に行って樹脂シートを製造した。得られた樹脂シートの厚み及びそのバラツキ、レターデーション値及びそのバラツキを表1に記す。
透明保護フィルムAにおいて、R1を14.50m/分、R2を14.60m/分、R3を14.60m/分に、した他は実施例1と同様に行って樹脂シートを製造した。得られた樹脂シートの厚み及びそのバラツキ、レターデーション値及びそのバラツキを表1に記す。
本発明に用いられる透明保護フィルムは、Reのばらつきが小さいことがわかる。
<光学異方性層A用の塗布液の調製>
2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパンと、2,2’−ビス(トリフルオロメチル)−4,4’一ジアミノビフェニルから合成された質量平均分子量5.9万のポリイミドの15質量%シクロヘキサノン溶液にシリコーン系界面活性剤(ディスパロンLS−009、楠本化成製)を1.0質量部添加した光学異方性層A用の塗布液を調製した。
2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパンと、2,2’−ビス(トリフルオロメチル)−4,4’一ジアミノビフェニルから合成された質量平均分子量5.9万のポリイミドの15質量%シクロヘキサノン溶液にシリコーン系界面活性剤(ディスパロンLS−009、楠本化成製)を1.0質量部添加した光学異方性層A用の塗布液を調製した。
<光学異方性層B用の塗布液の調製>
光学異方性層A用の塗布液の調製において、シリコーン系界面活性剤を添加しなかった以外は同様にして、光学異方性層B用の塗布液を調製した。
光学異方性層A用の塗布液の調製において、シリコーン系界面活性剤を添加しなかった以外は同様にして、光学異方性層B用の塗布液を調製した。
<光学異方性シートAの作製>
真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した透明保護フィルムAの上に、光学異方性層Aの塗布液を乾燥後の厚みが6μmとなるように連続的に塗布し、150℃で10分間乾燥し、そのまま連続して150℃の雰囲気中でテンター延伸機で幅方向に17%延伸した。その後、テンタークリップで把持した部分を含む両端を切り落として幅1340mmとして、端から2〜12mmの範囲にナーリングを付け、巻き取った。作製した光学補償シートAのRe(590)、Rth(590)、Re(400)、Re(700)、厚みdを測定した。ばらつきを含めた結果を表2に示す。
真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した透明保護フィルムAの上に、光学異方性層Aの塗布液を乾燥後の厚みが6μmとなるように連続的に塗布し、150℃で10分間乾燥し、そのまま連続して150℃の雰囲気中でテンター延伸機で幅方向に17%延伸した。その後、テンタークリップで把持した部分を含む両端を切り落として幅1340mmとして、端から2〜12mmの範囲にナーリングを付け、巻き取った。作製した光学補償シートAのRe(590)、Rth(590)、Re(400)、Re(700)、厚みdを測定した。ばらつきを含めた結果を表2に示す。
<光学異方性シートBの作製>
透明保護フィルムBの上に、光学異方性層A用の塗布液の代わりに光学異方性層B用の塗布駅を用いること以外は、光学異方性シートAと同様にして、光学異方性シートBを作製した。作製した光学補償シートBのRe(590)、Rth(590)、Re(400)、Re(700)、厚みdを測定した。ばらつきを含めた結果を表2に示す。
透明保護フィルムBの上に、光学異方性層A用の塗布液の代わりに光学異方性層B用の塗布駅を用いること以外は、光学異方性シートAと同様にして、光学異方性シートBを作製した。作製した光学補償シートBのRe(590)、Rth(590)、Re(400)、Re(700)、厚みdを測定した。ばらつきを含めた結果を表2に示す。
<光学補償シートCの作製>
真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した透明保護フィルムAの上に、下記のポリイミドのN-メチルピロリドン/ブチルセロソルブ溶液を、#5のバーコーターを用いて連続的に塗布し、140℃で3分間加熱して、厚さ0.5μmの配向膜を形成し、巻き取った。
真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した透明保護フィルムAの上に、下記のポリイミドのN-メチルピロリドン/ブチルセロソルブ溶液を、#5のバーコーターを用いて連続的に塗布し、140℃で3分間加熱して、厚さ0.5μmの配向膜を形成し、巻き取った。
配向膜を設けた透明保護フィルムを搬送しながら、長手方向(搬送方向)に連続的にラビング処理を実施した。下記の棒状液晶化合物(N26)100質量部、光重合開始剤(イルガキュア907、日本チバガイギー(株)製)1質量部、光重合増感剤(カヤキュアーDETX、日本化薬(株)製)0.3質量部をメチレンクロライド900質量部に溶解した塗布液に、フルオロ脂肪族基含有共重合体(メガファックF780 大日本インキ(株)製)を0.1質量部を加え、#7のワイヤーバーを391回転でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されているロール状透明保護フィルムの配向膜面に連続的に塗布した。室温から70℃に連続的に加温する工程で、溶媒を乾燥させ、その後、110℃の乾燥ゾーンで、棒状液晶化合物層にあたる膜面風速がフィルム搬送方向に平行に1.5m/secとなるようにし、約90秒間加熱し、棒状液晶化合物(N26)を配向させた。次に、80℃の乾燥ゾーンに搬送させて、フィルムの表面温度が約100℃の状態で、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、照度600mWの紫外線を4秒間照射し、架橋反応を進行させ、棒状液晶化合物(N26)をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取ってロール状の形態とし光学補償シート5を作製した。棒状液晶化合物はその長軸方向が透明保護フィルム平面に平行であり、かつ幅方向に平行に配向していた。この棒状液晶化合物を塗布した光学補償シートCの光学特性を表2に示す。
<光学補償シートDの作製>
厚み100μmの二軸延伸ポリエチレンテレフタレートフィルム上に下記ポリイミドを、N−メチル−2−ピロリドン、ブトキシエタノールおよびメチルエチルケトンの混合溶媒に溶解して得られた4質量%溶液を、#3のバーコーターを用いて塗布した。得られた塗布層を140℃で2分、さらに62℃で5分間加熱乾燥した。
厚み100μmの二軸延伸ポリエチレンテレフタレートフィルム上に下記ポリイミドを、N−メチル−2−ピロリドン、ブトキシエタノールおよびメチルエチルケトンの混合溶媒に溶解して得られた4質量%溶液を、#3のバーコーターを用いて塗布した。得られた塗布層を140℃で2分、さらに62℃で5分間加熱乾燥した。
配向膜を設けた二軸延伸ポリエチレンテレフタレートフィルムを搬送しながら、光学補償シートCの作製に使用した棒状液晶化合物(N26)100質量部、光重合開始剤(イルガキュア907、日本チバガイギー(株)製)1質量部、光重合増感剤(カヤキュアーDETX、日本化薬(株)製)0.3質量部、をメチレンクロライド900質量部に溶解した塗布液に、下記の界面活性剤を0.1質量部を加え、#5のワイヤーバーを391回転でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されているロール状二軸延伸ポリエチレンテレフタレートフィルムの配向膜面に連続的に塗布した。室温から70℃に連続的に加温する工程で、溶媒を乾燥させ、その後、110℃の乾燥ゾーンで、棒状液晶化合物層にあたる膜面風速がフィルム搬送方向に平行に1.5m/secとなるようにし、約90秒間加熱し、棒状液晶化合物(N26)を配向させた。次に、80℃の乾燥ゾーンに搬送させて、フィルムの表面温度が約100℃の状態で、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、照度600mWの紫外線を4秒間照射し、架橋反応を進行させ、棒状液晶化合物(N26)をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取ってロール状の形態とし二軸延伸ポリエチレンテレフタレートフィルム上に光学補償シートDを形成した。棒状液晶はその長軸方向が二軸延伸ポリエチレンテレフタレートフィルム法線方向に平行に配向していた。この棒状液晶を塗布した層を厚さ15μmのアクリル系粘着剤を介してガラス板上に転写したフィルムの光学特性はRe(590)ave=2nm、Rth(590)ave=102nm、dave=1.1μm、ΔRe(590)=0.3nm、ΔRth(590)=4nm、Δd=0.06μmであった。
光学補償シートC上に厚さ15μmのアクリル系粘着剤を介して、二軸延伸ポリエステルフィルム上に形成した棒状液晶化合物からなる光学補償シートDを転写し、二軸延伸ポリエステルフィルムを剥離し、光学補償シートC上に光学補償シートDを積層した光学補償シートEを作製した。結果を表2に示す。
<光学補償シートFの作製>
光学補償シートCの作製でフルオロ脂肪族基含有共重合体(メガファックF780 大日本インキ(株)製)を添加しない以外は光学補償シートCと同様にし、光学補償シートFを作製した。棒状液晶化合物はその長軸方向が透明保護フィルム平面に平行であり、かつ幅方向に平行に配向していた。この棒状液晶化合物を塗布した光学補償シートFの結果を表2に示す。
光学補償シートCの作製でフルオロ脂肪族基含有共重合体(メガファックF780 大日本インキ(株)製)を添加しない以外は光学補償シートCと同様にし、光学補償シートFを作製した。棒状液晶化合物はその長軸方向が透明保護フィルム平面に平行であり、かつ幅方向に平行に配向していた。この棒状液晶化合物を塗布した光学補償シートFの結果を表2に示す。
<光学補償シートGの作製>
光学補償シートDの作製で使用した界面活性剤を添加しない以外は光学補償シートDと同様にし、光学補償シートGを作製した。棒状液晶化合物はその長軸方向が二軸延伸ポリエチレンテレフタレートフィルム法線方向に平行に配向していた。この棒状液晶化合物を塗布した層を厚さ15μmのアクリル系粘着剤を介してガラス板上に転写したフィルムの光学特性はRe(590)ave=3nm、Rth(590)ave=98nm、dave=1.1μm、ΔRe(590)=1nm、ΔRth(590)=12nm、Δd=0.13μmであった。
光学補償シートDの作製で使用した界面活性剤を添加しない以外は光学補償シートDと同様にし、光学補償シートGを作製した。棒状液晶化合物はその長軸方向が二軸延伸ポリエチレンテレフタレートフィルム法線方向に平行に配向していた。この棒状液晶化合物を塗布した層を厚さ15μmのアクリル系粘着剤を介してガラス板上に転写したフィルムの光学特性はRe(590)ave=3nm、Rth(590)ave=98nm、dave=1.1μm、ΔRe(590)=1nm、ΔRth(590)=12nm、Δd=0.13μmであった。
<光学補償シートHの作製>
光学補償シートF上に厚さ15μmのアクリル系粘着剤を介して、二軸延伸ポリエステルフィルム上に形成した棒状液晶化合物からなる光学補償シートGを転写し、二軸延伸ポリエステルフィルムを剥離し、光学補償シートF上に光学補償シートGを積層した光学補償シートHを作製した。作製した光学補償シートHのRe(590)、Rth(590)、Re(400)、Re(700)、dを測定した。ばらつき含めた結果を表2に示す。
光学補償シートF上に厚さ15μmのアクリル系粘着剤を介して、二軸延伸ポリエステルフィルム上に形成した棒状液晶化合物からなる光学補償シートGを転写し、二軸延伸ポリエステルフィルムを剥離し、光学補償シートF上に光学補償シートGを積層した光学補償シートHを作製した。作製した光学補償シートHのRe(590)、Rth(590)、Re(400)、Re(700)、dを測定した。ばらつき含めた結果を表2に示す。
<光学補償シートIの作製>
本発明の透明保護フィルムAの代わりに、市販の幅1340mmで厚み80μmのセルロースアセテートのロールフィルム(TD80UL、富士写真フイルム(株)製)とした以外は光学補償シートBと同様にして、光学補償シートIを作製した。作製した光学補償シートBのRe(590)、Rth(590)、Re(400)、Re(700)、厚みdを測定した。ばらつきを含めた結果を表2に示す。
本発明の透明保護フィルムAの代わりに、市販の幅1340mmで厚み80μmのセルロースアセテートのロールフィルム(TD80UL、富士写真フイルム(株)製)とした以外は光学補償シートBと同様にして、光学補償シートIを作製した。作製した光学補償シートBのRe(590)、Rth(590)、Re(400)、Re(700)、厚みdを測定した。ばらつきを含めた結果を表2に示す。
<反射防止機能付き保護膜1の作製>
(光散乱層用塗布液の調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(PETA、日本化薬(株)製)50gをトルエン38.5gで希釈した。更に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)を2g添加し、混合攪拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで20分分散した平均粒径3.5μmの架橋ポリスチレン粒子(屈折率1.60、SX−350、綜研化学(株)製)の30%トルエン分散液を1.7gおよび平均粒径3.5μmの架橋アクリル−スチレン粒子(屈折率1.55、綜研化学(株)製)の30%トルエン分散液を13.3g加え、最後に、フッ素系表面改質剤(FP−1)0.75g、シランカップリング剤(KBM−5103、信越化学工業(株)製)を10gを加え、完成液とした。
上記完成液を孔径30μmのポリプロピレン製フィルターでろ過して光散乱層の塗布液を調製した。
(光散乱層用塗布液の調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(PETA、日本化薬(株)製)50gをトルエン38.5gで希釈した。更に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)を2g添加し、混合攪拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで20分分散した平均粒径3.5μmの架橋ポリスチレン粒子(屈折率1.60、SX−350、綜研化学(株)製)の30%トルエン分散液を1.7gおよび平均粒径3.5μmの架橋アクリル−スチレン粒子(屈折率1.55、綜研化学(株)製)の30%トルエン分散液を13.3g加え、最後に、フッ素系表面改質剤(FP−1)0.75g、シランカップリング剤(KBM−5103、信越化学工業(株)製)を10gを加え、完成液とした。
上記完成液を孔径30μmのポリプロピレン製フィルターでろ過して光散乱層の塗布液を調製した。
(低屈折率層用塗布液の調製)
初めに、次のようにしてゾル液aを調製した。攪拌機、還流冷却器を備えた反応器に、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析の結果では、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
次に、屈折率1.42の熱架橋性含フッ素ポリマー(JN−7228、固形分濃度6%、JSR(株)製)13g、シリカゾル(シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)1.3g、ゾル液a0.6gおよびメチルエチルケトン5g、シクロヘキサノン0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液を調製した。
初めに、次のようにしてゾル液aを調製した。攪拌機、還流冷却器を備えた反応器に、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析の結果では、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
次に、屈折率1.42の熱架橋性含フッ素ポリマー(JN−7228、固形分濃度6%、JSR(株)製)13g、シリカゾル(シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)1.3g、ゾル液a0.6gおよびメチルエチルケトン5g、シクロヘキサノン0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液を調製した。
(反射防止層付き透明保護膜の作製)
80μmの厚さのトリアセチルセルロースフィルム(フジタックTDY80UL、富士写真フィルム(株)製)をロール形態で巻き出して、上記の機能層(光散乱層)用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射強度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの機能層を形成し、巻き取った。
該機能層(光散乱層)を塗設したトリアセチルセルロースフィルムを再び巻き出してその光散乱層側に、該調製した低屈折率層用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度15m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射強度400mW/cm2、照射量900mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取り、反射防止機能付き保護膜1を作製した。
80μmの厚さのトリアセチルセルロースフィルム(フジタックTDY80UL、富士写真フィルム(株)製)をロール形態で巻き出して、上記の機能層(光散乱層)用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射強度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの機能層を形成し、巻き取った。
該機能層(光散乱層)を塗設したトリアセチルセルロースフィルムを再び巻き出してその光散乱層側に、該調製した低屈折率層用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度15m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射強度400mW/cm2、照射量900mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取り、反射防止機能付き保護膜1を作製した。
(光学補償偏光板AからEの作製)
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
光学補償シートA、B、E、H、I表面を、真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した。また、反射防止層付透明保護膜1を1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
前記のように表面処理を行った光学補償シートA、B、E、H,I反射防止層付透明保護膜1および市販のセルロースアシレートを表3に示す組合せで前記の偏光膜を挟むようにポリウレタン系接着剤を用いて貼り合せ、光学補償偏光板AからEを得た。
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
光学補償シートA、B、E、H、I表面を、真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した。また、反射防止層付透明保護膜1を1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
前記のように表面処理を行った光学補償シートA、B、E、H,I反射防止層付透明保護膜1および市販のセルロースアシレートを表3に示す組合せで前記の偏光膜を挟むようにポリウレタン系接着剤を用いて貼り合せ、光学補償偏光板AからEを得た。
ここで市販のセルロースアシレートフィルムとしてはフジタックT40UZ、TF80UL(富士写真フイルム(株)製)、およびKC80UVSFD(それぞれコニカオプト(株)製)を用いた。このとき、偏光膜および偏光膜両側の保護膜はロール形態で作製されてるため各ロールフィルムの長手方向が平行となっており連続的に貼り合わされる。また図3に示すように、セル側に配置される保護膜においては偏光子の透過軸と作製した光学補償シートの遅相軸とは平行になっている。
上記で作製した偏光板のセル側の面にはアクリル系の粘着材、さらにその粘着材の上にセパレートフィルムを貼り付けた。セルと反対側の面にはプロテクトフィルムを貼り付けた。
上記で作製した偏光板のセル側の面にはアクリル系の粘着材、さらにその粘着材の上にセパレートフィルムを貼り付けた。セルと反対側の面にはプロテクトフィルムを貼り付けた。
分光光度計(日本分光(株)製)を用いて、380〜780nmの波長領域において、入射角5°における分光反射率を機能性膜側から測定し、450〜650nmの積分球平均反射率を求めたところ、反射防止層付き透明保護膜1を使用した偏光板1および3では2.3%であった。ここで反射防止層付き透明保護膜上のプロテクトフィルムは剥がして反射率測定を行った。
<液晶パネル実装評価>
VAモードの液晶TV(LC30−AD1、シャープ(株)製)のパネルの表裏の偏光板および光学補償シートを剥がし、視認側に作製した偏光板A、B、Eおよび光学補償シートを有していない市販のスーパーハイコントラスト偏光板(HLC2−5618HC、(株)サンリッツ製)を偏光板の透過軸が画面の鉛直方向となるように貼り付けた。バックライト側には市販のスーパーハイコントラスト偏光板(HLC2−5618HC、(株)サンリッツ製)を偏光板の透過軸が画面の水平方向になるように貼り付けた。光学補償シートを有することにより、視野角が拡大することが確認された。更に、本発明の光学補償偏光板Aを貼り付けた液晶TVの画面は黒表示時および全256階調中20階調のグレー表示時のムラが視認されず均一な画像が得られた。光学補償偏光板B、Eを貼り付けた液晶TVでは黒表示時および全256階調中の20階調のグレー表示時にムラが見られた。
さらに、前記パネルを、80℃条件下24時間経時させた後、25℃60%条件下で黒表示させたところ、光学補償板Eを貼り付けた液晶TVでは、四隅に光洩れが発生していた。光学補償板A、Bを貼り付けた液晶TVでは、光洩れの発生はなかった。
VAモードの液晶TV(LC30−AD1、シャープ(株)製)のパネルの表裏の偏光板および光学補償シートを剥がし、視認側に作製した偏光板A、B、Eおよび光学補償シートを有していない市販のスーパーハイコントラスト偏光板(HLC2−5618HC、(株)サンリッツ製)を偏光板の透過軸が画面の鉛直方向となるように貼り付けた。バックライト側には市販のスーパーハイコントラスト偏光板(HLC2−5618HC、(株)サンリッツ製)を偏光板の透過軸が画面の水平方向になるように貼り付けた。光学補償シートを有することにより、視野角が拡大することが確認された。更に、本発明の光学補償偏光板Aを貼り付けた液晶TVの画面は黒表示時および全256階調中20階調のグレー表示時のムラが視認されず均一な画像が得られた。光学補償偏光板B、Eを貼り付けた液晶TVでは黒表示時および全256階調中の20階調のグレー表示時にムラが見られた。
さらに、前記パネルを、80℃条件下24時間経時させた後、25℃60%条件下で黒表示させたところ、光学補償板Eを貼り付けた液晶TVでは、四隅に光洩れが発生していた。光学補償板A、Bを貼り付けた液晶TVでは、光洩れの発生はなかった。
IPSモードの液晶モニター(FLATRON L2010P、LG電子製)のパネルの表裏の偏光板および光学補償シートを剥がし、視認側に作製した光学補償偏光板C、D、および光学補償シートを有していない市販のスーパーハイコントラスト偏光板(HLC2−5618HC、(株)サンリッツ製)を偏光板の透過軸が画面の鉛直方向となるように貼り付けた。バックライト側には市販のスーパーハイコントラスト偏光板(HLC2−5618HC、(株)サンリッツ製)を偏光板の透過軸が画面の水平方向になるように貼り付けた。光学補償シートを有することにより、視野角が拡大することが確認させた。更に、本発明の光学補償偏光板Cを貼り付けた液晶TVの画面は黒表示時および全256階調中20階調のグレー表示時のムラが視認されず均一な画像が得られた。光学補償偏光板Dを貼り付けた液晶TVでは黒表示時および全256階調中の20階調のグレー表示時にムラが見られた。
さらに、前記パネルを、80℃条件下24時間経時させた後、25℃60%条件下で黒表示させたところ、光洩れの発生はなかった。
さらに、前記パネルを、80℃条件下24時間経時させた後、25℃60%条件下で黒表示させたところ、光洩れの発生はなかった。
1 シリンダー
2 コートハンガーダイ
4 第1ロール
5 第2ロール
6 第3ロール
7 調製ロール
2 コートハンガーダイ
4 第1ロール
5 第2ロール
6 第3ロール
7 調製ロール
Claims (17)
- 透明保護フィルムと光学補償層を積層した光学補償シートにおいて、該透明保護フィルムが、下記式(I)かつ(II)をみたし、下記式(1)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(2)で表される繰り返し単位〔2〕または/および下記式(3)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなることを特徴とする光学補償シート。
(I)|Re(590)|≦10
(II)|Rth(590)|≦25
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。]
- 前記透明保護フィルムが溶融押出法により得られる熱可塑性樹脂製フィルムから得られる光学用フィルムであって、平均厚みdaveが100μm以下であり、該フィルム全面にわたって、厚みの最大値と最小値の差Δdと前記平均厚みdaveの比Δd/daveが7%以下であることを特徴とする請求項1に記載の光学補償シート。
- 下記式(III)、(IV)をみたすことを特徴とする請求項1又は2に記載の光学補償シート。
(III)−2≦Rth(590)/Re(590)≦2.0
(IV)−200≦Re(590)≦350
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。] - 下記式(V)、(VI)、(VII)をみたすことを特徴とする請求又は2に記載の光学補償シート。
(V)0≦Re(590)≦200
(VI)−200nm≦Rth(590)≦400
(VII)〔ΔRe(590)/Re(590)ave〕×100≦20%
[式中、Re(590)は波長590nmにおける正面レターデーション値(単位:nm)、Rth(590)は波長590nmにおける膜厚方向のレターデーション値(単位:nm)である。また、ΔRe(590)はフィルム面内のRe(590)の最大値と最小値の差、Re(590)aveはフィルム面内のRe(590)の平均値を表す。 - 前記透明保護フィルムが、 押出機から押し出されたシート状溶融熱可塑性樹脂を、第1ロール、第2ロール及び第3ロールの3本のロールに順に外接させて移送する工程により製造される方法において、前記第3ロールの周速度R3の、前記第2ロールの周速度R2に対する比R3/R2が0.999未満、0.990以上であることを特徴とする製造方法により製造されたことを特徴とする請求項1〜4のいずれかに記載の光学補償シート。
- 前記R2の、前記第1ロールの周速度R1に対する比R2/R1が1.010未満、0.990以上として製造されたことを特徴とする請求項5記載の光学補償シート。
- 前記第3ロールを離れるときの樹脂温度T3が、該熱可塑性樹脂のガラス転移温度Tgよりも50〜100℃低い温度で製造されたことを特徴とする請求項5又は6に記載の光学補償シート。
- 光学補償層が液晶性化合物の配向状態を固定化した層であることを特徴とする請求項1〜7のいずれかに記載の光学補償シート。
- 前記光学補償層が、棒状、又は円盤状化合物を含有する光学補償層であることを特徴とする請求項8に記載の光学補償シート。
- 光学補償層が非液晶性化合物からなる層であることを特徴とする請求項1〜9のいずれかに記載の光学補償シート。
- 光学補償層がポリエーテルケトン、ポリアミド、ポリエステル、ポリイミド、ポリアミドイミド及びポリエステルイミドの少なくとも1種よりなることを特徴とする請求項10記載の光学補償シート。
- 光学補償層がレベリング剤を含む溶液の塗布により形成された層であることを特徴とする請求項1〜11のいずれかに記載の光学補償シート。
- 偏光子の少なくとも片面に、請求項1〜12のいずれかに記載の光学補償シートを有する光学補償偏光板。
- 請求項13記載の光学補償偏光板を用いたことを特徴とする液晶表示装置。
- 光学補償偏光板がバックライト側に配置されたことを特徴とする請求項14に記載の液晶表示装置。
- 光学補償層が視認側に配置されたことを特徴とする請求項14に記載の液晶表示装置。
- 液晶モードがVAモードまたはIPSモードであることを特徴とする請求14〜16のいずれかに記載の液晶表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005007662A JP2006195242A (ja) | 2005-01-14 | 2005-01-14 | 光学補償シート、光学補償偏光板、及び液晶表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005007662A JP2006195242A (ja) | 2005-01-14 | 2005-01-14 | 光学補償シート、光学補償偏光板、及び液晶表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006195242A true JP2006195242A (ja) | 2006-07-27 |
Family
ID=36801363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005007662A Pending JP2006195242A (ja) | 2005-01-14 | 2005-01-14 | 光学補償シート、光学補償偏光板、及び液晶表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006195242A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008129121A (ja) * | 2006-11-17 | 2008-06-05 | Fujifilm Corp | 位相差フィルムの製造方法 |
JPWO2008153032A1 (ja) * | 2007-06-11 | 2010-08-26 | 帝人化成株式会社 | 光学部品用積層フィルム |
EP2137242A4 (en) * | 2007-04-13 | 2011-03-23 | Lg Chemical Ltd | OPTICAL FILMS, DELAY FILMS, AND LIQUID CRYSTAL DISPLAYS COMPRISING THE SAME |
CN104698523A (zh) * | 2013-12-05 | 2015-06-10 | 住友化学株式会社 | 光学各向异性膜 |
JP2015223733A (ja) * | 2014-05-27 | 2015-12-14 | コニカミノルタ株式会社 | 光学フィルムの製造方法 |
WO2017086270A1 (ja) * | 2015-11-18 | 2017-05-26 | 日本ゼオン株式会社 | 光学フィルム及び偏光板 |
WO2018180498A1 (ja) * | 2017-03-31 | 2018-10-04 | 日本ゼオン株式会社 | 光学フィルム、偏光板、及び製造方法 |
WO2019022027A1 (ja) | 2017-07-25 | 2019-01-31 | 日本ゼオン株式会社 | 積層体 |
WO2019022022A1 (ja) | 2017-07-25 | 2019-01-31 | 日本ゼオン株式会社 | 積層体 |
WO2019022013A1 (ja) | 2017-07-25 | 2019-01-31 | 日本ゼオン株式会社 | 偏光板及び表示装置 |
-
2005
- 2005-01-14 JP JP2005007662A patent/JP2006195242A/ja active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008129121A (ja) * | 2006-11-17 | 2008-06-05 | Fujifilm Corp | 位相差フィルムの製造方法 |
EP2137242A4 (en) * | 2007-04-13 | 2011-03-23 | Lg Chemical Ltd | OPTICAL FILMS, DELAY FILMS, AND LIQUID CRYSTAL DISPLAYS COMPRISING THE SAME |
JPWO2008153032A1 (ja) * | 2007-06-11 | 2010-08-26 | 帝人化成株式会社 | 光学部品用積層フィルム |
TWI712635B (zh) * | 2013-12-05 | 2020-12-11 | 日商住友化學股份有限公司 | 光學異向性膜 |
CN104698523A (zh) * | 2013-12-05 | 2015-06-10 | 住友化学株式会社 | 光学各向异性膜 |
KR20150065589A (ko) * | 2013-12-05 | 2015-06-15 | 스미또모 가가꾸 가부시키가이샤 | 광학 이방성 막 |
KR102407519B1 (ko) * | 2013-12-05 | 2022-06-13 | 스미또모 가가꾸 가부시키가이샤 | 광학 이방성 막 |
JP2015223733A (ja) * | 2014-05-27 | 2015-12-14 | コニカミノルタ株式会社 | 光学フィルムの製造方法 |
CN108351457A (zh) * | 2015-11-18 | 2018-07-31 | 日本瑞翁株式会社 | 光学膜和偏振片 |
JPWO2017086270A1 (ja) * | 2015-11-18 | 2018-08-30 | 日本ゼオン株式会社 | 光学フィルム及び偏光板 |
US20180327532A1 (en) * | 2015-11-18 | 2018-11-15 | Zeon Corporation | Optical film and polarizing plate |
KR20180083320A (ko) * | 2015-11-18 | 2018-07-20 | 니폰 제온 가부시키가이샤 | 광학 필름 및 편광판 |
WO2017086270A1 (ja) * | 2015-11-18 | 2017-05-26 | 日本ゼオン株式会社 | 光学フィルム及び偏光板 |
KR102651494B1 (ko) * | 2015-11-18 | 2024-03-25 | 니폰 제온 가부시키가이샤 | 광학 필름 및 편광판 |
WO2018180498A1 (ja) * | 2017-03-31 | 2018-10-04 | 日本ゼオン株式会社 | 光学フィルム、偏光板、及び製造方法 |
WO2019022027A1 (ja) | 2017-07-25 | 2019-01-31 | 日本ゼオン株式会社 | 積層体 |
WO2019022022A1 (ja) | 2017-07-25 | 2019-01-31 | 日本ゼオン株式会社 | 積層体 |
WO2019022013A1 (ja) | 2017-07-25 | 2019-01-31 | 日本ゼオン株式会社 | 偏光板及び表示装置 |
US11409028B2 (en) | 2017-07-25 | 2022-08-09 | Zeon Corporation | Laminate |
US11573359B2 (en) | 2017-07-25 | 2023-02-07 | Zeon Corporation | Method for producing a polarizing plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8223304B2 (en) | Liquid crystal display device | |
JP4802409B2 (ja) | 光学補償フィルム、それを用いた偏光板及び液晶表示装置 | |
JP5169215B2 (ja) | 偏光板用保護フィルム | |
KR100734796B1 (ko) | 위상차 필름 및 이를 제조하는 방법, 및 모두 위상차필름을 이용하는 광학 필름, 액정 패널, 및 액정 표시 장치 | |
JP4328243B2 (ja) | 液晶表示装置 | |
WO2007129516A1 (ja) | 液晶パネル及び液晶表示装置 | |
JP4915114B2 (ja) | 表示画面用保護フィルム及びそれを用いた偏光板並びに表示装置 | |
US10481435B2 (en) | Horizontal alignment-type liquid crystal display device | |
JP5209233B2 (ja) | 位相差フィルム、偏光板、液晶パネルおよび液晶表示装置 | |
CN101210975A (zh) | 层压体、液晶板和液晶显示装置 | |
CN101186714B (zh) | 环状聚烯烃薄膜、偏振片以及采用该偏振片的液晶显示装置 | |
JP2006195242A (ja) | 光学補償シート、光学補償偏光板、及び液晶表示装置 | |
US7639330B2 (en) | Liquid crystal display device | |
JP2008003188A (ja) | 偏光板の製造方法,及び液晶表示装置 | |
US7692747B2 (en) | In-plane switching mode liquid crystal display device having a biaxial optically anisotropic member | |
JP2008102227A (ja) | 液晶パネル及び液晶表示装置 | |
CN100443933C (zh) | 光学补偿起偏振板、图像显示单元和液晶显示单元 | |
JPWO2006054695A1 (ja) | 液晶表示装置 | |
JP2007264595A (ja) | 偏光板及び液晶表示装置 | |
JP2008257231A (ja) | 負のaプレートの製造方法、並びに負のaプレート、偏光板、及びそれを用いた液晶表示装置 | |
JP5036209B2 (ja) | 液晶表示装置 | |
JP2009230050A (ja) | 液晶パネルおよび液晶表示装置 | |
WO2005116700A1 (ja) | 楕円偏光板および画像表示装置 | |
CN100432785C (zh) | 液晶面板和液晶显示装置 | |
JP2007171815A (ja) | 液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061124 |