JP2006194116A - Exhaust emission control device for internal combustion engine - Google Patents
Exhaust emission control device for internal combustion engine Download PDFInfo
- Publication number
- JP2006194116A JP2006194116A JP2005005000A JP2005005000A JP2006194116A JP 2006194116 A JP2006194116 A JP 2006194116A JP 2005005000 A JP2005005000 A JP 2005005000A JP 2005005000 A JP2005005000 A JP 2005005000A JP 2006194116 A JP2006194116 A JP 2006194116A
- Authority
- JP
- Japan
- Prior art keywords
- internal combustion
- combustion engine
- exhaust
- exhaust gas
- emission control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Electrostatic Separation (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、内燃機関の排気ガスに含まれる排気微粒子(PM)をコロナ放電により帯電させて凝集し、捕集する内燃機関用の排気浄化装置において、排気浄化装置の故障の有無を判断できる内燃機関用排気浄化装置に関する。 The present invention relates to an internal combustion engine exhaust gas purification apparatus that collects, collects and collects exhaust particulate (PM) contained in exhaust gas of an internal combustion engine by corona discharge, and can determine whether or not the exhaust gas purification apparatus has failed. The present invention relates to an exhaust emission control device for an engine.
内燃機関の排気に含まれる排気微粒子(PM)の処理が大きな課題となっている。従来技術として、特許文献1があり、車両用ディーゼル機関の排気経路に所定の間隔部を挟んで設けられ、負極がディーゼルパティキュレートを静電捕集する一対の電極部と、上記電極部間に高電圧を供給し上記間隙部にディーゼルパティキュレート捕集用の電界を発生する高電圧電源部とを有してなる車両用ディーゼル機関の排気ガス浄化装置に関する技術が提示されている。
The treatment of exhaust particulates (PM) contained in the exhaust of an internal combustion engine has become a major issue. As a conventional technique, there is
しかしながら、上記排気ガス浄化装置は、電極部間に高電圧を印加してコロナ放電を発生させてディーゼルパティキュレートに負イオンを帯電させるという一般的な構成が提示され、また、電極部間にコロナ放電発生電圧以下の電圧を印加する旨の記載も認められるが、その場合も、正電極に向けて静電加速することが目的であり、排気浄化装置の故障を判断し、その旨を運転者に知らせる技術に関しては何ら提示されていない。
このため、例えば、上記構成では、排気浄化装置が故障している場合でも運転者がそれを運転開始前或いは運転中に即座に知ることができず、故障に気づかないままに放置しておくと、長期間にわたって排気微粒子(PM)への効率の良い帯電が行われないままの状態が続き、結果として効率よく排気微粒子(PM)を凝集し、捕集することが期待できないという問題がある。
However, the exhaust gas purifying apparatus has a general configuration in which a high voltage is applied between the electrode portions to generate corona discharge to charge negative ions to the diesel particulates. Although there is a statement that a voltage equal to or lower than the discharge generation voltage is applied, in that case, the purpose is to accelerate electrostatically toward the positive electrode. There is no suggestion about the technology to inform.
For this reason, for example, in the above configuration, even when the exhaust purification device is out of order, the driver cannot immediately know it before starting operation or during operation, and leave it without noticing the failure. There is a problem that the exhaust particulate (PM) is not charged efficiently for a long period of time, and as a result, the exhaust particulate (PM) cannot be efficiently aggregated and collected.
本発明は、上記の従来技術が有する欠点を改良しようとするものであり、特に、内燃機関の排気ガスに含まれる排気微粒子(PM)をコロナ放電により帯電させて凝集し、捕集する内燃機関用の排気浄化装置において、印加電圧の電流値を測定することにより排気浄化装置の故障の有無を判断する内燃機関用排気浄化装置を実現しようとするものである。 このため、運転者が排気浄化装置の故障を常に早期にチェックし故障の場合には速やかに対処することができ、結果として、常に、継続して安定的に排気微粒子(PM)を帯電させて、コロナ放電を利用した排気微粒子(PM)の効率のよい凝集或いは捕集を可能にし、実用的且つ高性能な内燃機関用の排気浄化装置を実現することができる。 The present invention seeks to improve the above-mentioned drawbacks of the prior art, and in particular, an internal combustion engine in which exhaust particulates (PM) contained in the exhaust gas of the internal combustion engine are charged by a corona discharge to aggregate and collect. Therefore, an exhaust gas purification apparatus for an internal combustion engine that determines the presence or absence of a failure of the exhaust gas purification apparatus by measuring the current value of the applied voltage is intended to be realized. For this reason, the driver can always check the exhaust purification device for failure at an early stage, and can quickly cope with the failure. As a result, the exhaust particulate matter (PM) is always charged stably and continuously. Further, it is possible to efficiently collect or collect exhaust particulates (PM) using corona discharge, and to realize a practical and high performance exhaust purification device for an internal combustion engine.
請求項1の内燃機関用の排気浄化装置は、内燃機関の排気部で、電極間に高電圧を印加することによりコロナ放電を発生させて排気微粒子を帯電し、帯電した排気微粒子を凝集させて捕集する内燃機関用の排気浄化装置において、測定した電流値により同排気浄化装置の故障の有無を判断する判断手段を備えたことを特徴とするものである。
In the exhaust gas purification apparatus for an internal combustion engine according to
上記内燃機関用排気浄化装置においては、このような構成であるから、測定した電流値のみにより排気浄化装置の故障の有無を判断することができるという非常に簡単な装置であることから、コンパクトであり、車に搭載するのにきわめて適している。このため、結果として、運転者が運転開始前或いは運転中に排気浄化装置が故障か否かを常に簡単にチェックすることができ、故障の場合には速やかに対処することができるという効果を有するものである。 Since the internal combustion engine exhaust gas purification device has such a configuration, since it is a very simple device that can determine whether or not the exhaust gas purification device has failed only from the measured current value, it is compact. Yes, it is very suitable for mounting on a car. For this reason, as a result, the driver can always easily check whether or not the exhaust purification device is out of order before starting operation or during operation, and in the event of a failure, it has the effect of being able to quickly cope with it. Is.
請求項2の発明のように、好ましくは、上記判断手段は、上記測定した電流値から計算された絶縁抵抗値により、内燃機関の始動前における上記排気浄化装置の故障の有無を判断する判断手段である。 According to a second aspect of the present invention, preferably, the determination means determines whether or not the exhaust purification device has failed before starting the internal combustion engine based on an insulation resistance value calculated from the measured current value. It is.
経験上、排気浄化装置内部、特に碍子部分が排気微粒子(PM)等で汚れている場合は、絶縁抵抗値が一定の通常値より著しく下がリ、結果として高電圧を印加しても電圧が降下してしまうような異常状態となる。従って、上記測定した電流値により絶縁抵抗値を計算し(抵抗値R=印加電圧V/電流I)、絶縁抵抗値の通常値に対する異同をチェックすることにより、内燃機関の始動前における排気浄化装置の故障の有無を簡単にチェックすることができると言う効果を奏するものである。 Experience shows that if the inside of the exhaust gas purification device, especially the insulator part, is contaminated with exhaust particulates (PM), the insulation resistance value is significantly lower than a certain normal value. As a result, the voltage does not increase even when a high voltage is applied. It becomes an abnormal state where it descends. Therefore, the exhaust gas purification device before starting the internal combustion engine is calculated by calculating the insulation resistance value based on the measured current value (resistance value R = applied voltage V / current I) and checking the difference between the insulation resistance value and the normal value. There is an effect that it is possible to easily check whether or not there is a failure.
請求項3の発明のように、上記測定した電流値は、コロナ放電発生電圧以下の低電圧の印加に対応する電流値である。 As in the invention of claim 3, the measured current value is a current value corresponding to application of a low voltage equal to or lower than the corona discharge generation voltage.
このような構成であるから、消費電力を極力抑えて排気浄化装置の故障の有無をチェックできるという効果を奏する。 Since it is such a structure, there exists an effect that power consumption can be suppressed as much as possible and the presence or absence of a failure of an exhaust gas purification apparatus can be checked.
請求項4の内燃機関用の排気浄化装置は、上記判断手段は、印加電圧、排気ガス温度及び内燃機関運転条件に基づき予め設定された電流判断値と上記測定した電流値とを比較判断することにより、内燃機関の始動後における上記排気浄化装置の故障の有無を判断する判断手段であることを特徴とするものである。 In the exhaust emission control device for an internal combustion engine according to claim 4, the determination means compares and determines a preset current judgment value based on the applied voltage, the exhaust gas temperature, and the internal combustion engine operating condition, and the measured current value. Thus, it is a determination means for determining whether or not the exhaust gas purification device has failed after the internal combustion engine is started.
一般に、排気ガス温度及び排気ガス中に含まれる排気微粒子(PM)の量に基づいて印加電圧値を設定し、設定された電圧を印加することにより排気浄化装置内にコロナ放電を発生させることが行われている。そして、排気微粒子(PM)の量は内燃機関運転条件により計算される。従って、印加電圧、排気ガス温度及び内燃機関運転条件がセットされると、装置の故障でない限りは、電流値は一定の通常値の範囲内になければならない。本発明は、このように構成したことにより、エレクトロニックコントロールユニット(ECU)において、印加電圧、排気ガス温度及び内燃機関運転条件により予め設定された電流判断値と上記測定した電流値とを比較判断することにより、内燃機関の始動後、即ち車の運転中に、常に上記排気浄化装置の故障の有無を判断することができ、運転者が上記排気浄化装置の故障に対して早期に対処できるという効果を奏するものである。 In general, an applied voltage value is set based on the exhaust gas temperature and the amount of exhaust particulates (PM) contained in the exhaust gas, and a corona discharge is generated in the exhaust purification device by applying the set voltage. Has been done. The amount of exhaust particulate (PM) is calculated according to the internal combustion engine operating conditions. Therefore, when the applied voltage, exhaust gas temperature, and internal combustion engine operating conditions are set, the current value must be within a certain normal value range unless there is a malfunction of the apparatus. According to the present invention configured as described above, in the electronic control unit (ECU), the current judgment value set in advance according to the applied voltage, the exhaust gas temperature and the operating condition of the internal combustion engine is compared with the measured current value. Thus, after starting the internal combustion engine, that is, during driving of the vehicle, it is possible to always determine whether or not the exhaust purification device has failed, and the driver can deal with the failure of the exhaust purification device at an early stage. It plays.
請求項5の発明のように、上記内燃機関運転条件は、内燃機関回転数と燃料噴射量であることを特徴とする。 According to a fifth aspect of the invention, the internal combustion engine operating conditions are an internal combustion engine speed and a fuel injection amount.
このように構成することにより、排気微粒子(PM)の発生量の変化を確実に予想することができるので、結果として、上記排気浄化装置の故障の有無を正確に判断できるという効果を奏する。 By configuring in this way, it is possible to reliably predict the change in the amount of exhaust particulate (PM) generation, and as a result, it is possible to accurately determine whether or not the exhaust purification device has failed.
このような構成であるから、本発明に係る内燃機関用排気浄化装置は、測定した電流値のみにより排気浄化装置の故障の有無を判断するという非常に簡単且つコンパクトな装置であり、車に搭載するのにきわめて適している。このため、運転者が運転開始前或いは運転中に排気浄化装置が故障か否かを常に簡単にチェックでき、故障の場合には速やかに対処することができるという効果を有するものである。結果として、常に、継続して安定的に排気微粒子(PM)を帯電させて、コロナ放電を利用した排気微粒子(PM)の効率のよい凝集或いは捕集を可能にし、実用的且つ高性能な内燃機関用の排気浄化装置を実現することができる。 Due to such a configuration, the exhaust gas purification apparatus for an internal combustion engine according to the present invention is a very simple and compact apparatus that determines whether or not there is a failure of the exhaust gas purification apparatus based only on the measured current value, and is mounted on a vehicle. Very suitable for doing. For this reason, the driver can always easily check whether or not the exhaust gas purification device is out of order before or during operation, and can quickly cope with the failure. As a result, the exhaust particulates (PM) are constantly and stably charged to enable efficient aggregation or collection of the exhaust particulates (PM) using corona discharge, which is a practical and high-performance internal combustion engine. An exhaust purification device for an engine can be realized.
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の内燃機関用排気浄化装置の全体構成を示すもので、1は排気浄化装置のハウジングであって、ステンレス(SUS)で作成されており、電気的に設置されている。図示されていないが、ハウジング1の左端部は排気管を経由して内燃機関(エンジン)に接続され、図面左方向から排気ガスが流入する。ハウジング1の中央円筒部分内部下流側(右方)に同じくステンレス(SUS)製の導電性網2が横断面方向に沿って配設され、ハウジング1は中央円筒部分の左右にテーパー状のコーン部を形成している。また、ハウジング1の中央円筒部分中央上部の壁部分には、放電電極3が既存の適切な固定手段により固定されている。放電電極3は、ハウジング1内部において、碍子3aからL状の放電部3bを垂下している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the overall configuration of an exhaust gas purification apparatus for an internal combustion engine according to the present invention.
放電電極3は、高圧電源4(好ましくは、電圧可変型がよい。)に接続されており、放電電極3と高圧電源4間には電圧計6及び電流計7が接続されている。ハウジング1の上流側入り口付近には排気ガス温度を検出する温度センサー5が配備され、排気浄化装置内を流れる排気ガスの温度を常時検出するように構成されている。また、本発明の排気浄化装置には、適当な場所に制御手段であるエレクトロニックコントロールユニット(ECU)8が配備され、詳しくは後述するが、温度センサー5及び電流計7からのデータ、更には内燃機関系統から内燃機関回転数及び燃料噴射量のデータが常に転送され、印加電圧値の設定・制御さらには印加電圧、排気ガス温度、内燃機関回転数及び燃料噴射量により予め設定された電流判断値と電流計7から常時送られてくる電流値との比較判断を行っている。本発明では、放電電極3を負極とし、負の直流高電圧を印加することにより、コロナ放電を発生させる構成となっている。なお、9は排気微粒子(PM)である。
The discharge electrode 3 is connected to a high-voltage power supply 4 (preferably a variable voltage type), and a voltmeter 6 and an ammeter 7 are connected between the discharge electrode 3 and the high-voltage power supply 4. A
図2は、ECU8による排気浄化装置の故障判断についてのフローチャートであり、S1〜S13の各ステージ番号に沿って説明する。
先ず、エンジン始動の前に、排気浄化装置のスタートキーをオンにする(S1)。同時に、絶縁抵抗値を測定するために、コロナ放電を発生しない低電圧を放電電極3に印加し(S2)、電流計7により電流値を測定する(S3)。測定された電流値Iaと印加した電圧Vaから絶縁抵抗値Raを式、Ra=Va/Ia、により計算し(S4)、絶縁が正常か否かを判断することとなる(S5)。
FIG. 2 is a flowchart of the failure determination of the exhaust gas purification apparatus by the ECU 8, and will be described along the respective stage numbers S1 to S13.
First, before starting the engine, the start key of the exhaust emission control device is turned on (S1). At the same time, in order to measure the insulation resistance value, a low voltage that does not generate corona discharge is applied to the discharge electrode 3 (S2), and the current value is measured by the ammeter 7 (S3). The insulation resistance value Ra is calculated from the measured current value Ia and the applied voltage Va by the equation Ra = Va / Ia (S4), and it is determined whether or not the insulation is normal (S5).
判断については、図3の故障判断基準(始動前)を参照しつつ説明する。一般に、絶縁抵抗値は、排気浄化装置毎に固有のものであり、使用期間等によりハウジング1内面や碍子部分に排気微粒子等が溜まり汚染が進行することにより抵抗値は徐々に減少していく。
したがって、予め正常値の範囲或いは異常値となる限界値を把握しECU8に入力しておき、故障検査を実施した際に測定した電流値により計算された絶縁抵抗値との比較を行って判断される。図3では、例えば、装置使用前の正常値が1000MΩであり、汚染による限界値が100MΩであり、それを著しく下回る10MΩレベルでは明らかに装置に異常があることを示している。このようにして、数値異常の場合は、故障ランプが点灯して運転者に対して報知し(S12)、排気浄化装置の使用を停止することとなる(S13)。一方、数値が正常の範囲であれば、内燃機関のスイッチをオンにして車の駆動開始となる(S6)。
The determination will be described with reference to the failure determination standard (before starting) in FIG. In general, the insulation resistance value is unique to each exhaust purification device, and the resistance value gradually decreases as exhaust particulates accumulate on the inner surface of the
Therefore, a normal value range or a limit value that becomes an abnormal value is grasped in advance and input to the ECU 8, and compared with the insulation resistance value calculated from the current value measured when the failure inspection is performed. The In FIG. 3, for example, the normal value before use of the device is 1000 MΩ, the limit value due to contamination is 100 MΩ, and the device is clearly abnormal at a level of 10 MΩ that is significantly lower than that. In this way, when the numerical value is abnormal, the failure lamp is lit to notify the driver (S12), and the use of the exhaust purification device is stopped (S13). On the other hand, if the numerical value is within a normal range, the switch of the internal combustion engine is turned on to start driving the vehicle (S6).
次に、内燃機関(エンジン)が始動して、温度センサー5で排気ガス温度を測定し排気ガス温度データがECU8に転送され(S7)、予め設定された結露温度(例えば70℃)以上の場合に高圧電源4のスイッチがオンになり、ハウジング1内でコロナ放電の開始準備が整うこととなる。
Next, when the internal combustion engine (engine) is started, the exhaust gas temperature is measured by the
内燃機関が始動すると、別途、内燃機関の回転数及び燃料噴射量に関するデータが内燃機関系統で測定され、ECU8には常時転送されている。ECU8では内燃機関回転数及び燃料噴射量に基づき排気ガス中に含まれる排気微粒子(PM)の量を予想する(S7)。このようにして、ECU8においては、常に時々刻々の排気ガス温度と排気ガス中に含まれる排気微粒子(PM)の量に関するデータが掌握されている。 When the internal combustion engine is started, data regarding the rotational speed and fuel injection amount of the internal combustion engine is separately measured by the internal combustion engine system and is always transferred to the ECU 8. The ECU 8 predicts the amount of exhaust particulate (PM) contained in the exhaust gas based on the internal combustion engine speed and the fuel injection amount (S7). In this way, the ECU 8 always holds data regarding the exhaust gas temperature and the amount of exhaust particulates (PM) contained in the exhaust gas.
ECU8は次に印加電圧値の設定作業に入る(S8)。
ECUには、別途、排気ガス温度及び排気ガス中に含まれる排気微粒子(PM)の量と設定電圧値との相関関係を示すマップIが、予め実験を行うことにより作成され、入力されている。実験によれば、排気ガス温度が高いほど低い電圧でアーク放電が発生し、さらに、排気ガス中の排気微粒子(PM)の量が多い場合の方が少ない場合よりも低い電圧でアーク放電が発生することが明らかにされている。ECU8内では、先ほどの時々刻々の排気ガス温度と排気ガス中に含まれる排気微粒子(PM)の量に関するデータと上記マップI上のデータを解析処理することにより、常に印加電圧値がアーク放電発生予想電圧値を下回るように設定されることとなる(S8)。
Next, the ECU 8 enters an applied voltage value setting operation (S8).
Separately, a map I indicating the correlation between the exhaust gas temperature and the amount of exhaust particulates (PM) contained in the exhaust gas and the set voltage value is created and input in advance through experiments. . According to experiments, arc discharge occurs at a lower voltage as the exhaust gas temperature is higher, and further, arc discharge occurs at a lower voltage when the amount of exhaust particulates (PM) in the exhaust gas is larger than when it is small. It has been made clear. In the ECU 8, the applied voltage value is always generated by analyzing the data regarding the exhaust gas temperature and the amount of exhaust particulates (PM) contained in the exhaust gas and the data on the map I. It is set to be lower than the expected voltage value (S8).
次に、設定された電圧を印加することにより排気浄化装置内にコロナ放電を発生させる(S9)。その後は、電流計により電流を測定し(S10)、印加電圧、排気ガス温度及び内燃機関運転条件に基づき予め設定された電流判断値と上記測定した電流値とを比較判断する。予め設定された電流判断値は、実際には、上限電流判断値及び下限電流判断値の間の一定範囲からなり、上記測定した電流値がその一定範囲の電流判断値の中に入っているか否かをチェックし、排気浄化装置に故障が生じているか否かを判断することとなる(S11)。 Next, corona discharge is generated in the exhaust purification device by applying a set voltage (S9). Thereafter, the current is measured by an ammeter (S10), and a current judgment value set in advance based on the applied voltage, the exhaust gas temperature and the operating condition of the internal combustion engine is compared with the measured current value. The preset current judgment value actually consists of a certain range between the upper limit current judgment value and the lower limit current judgment value, and whether or not the measured current value is included in the current judgment value within the certain range. It is determined whether or not a failure has occurred in the exhaust emission control device (S11).
詳細には、図4の故障判断基準例(始動後)を参照しつつ説明する。図4の横軸は変化する排気ガス温度(℃)で、縦軸は電流値(mA)である。排気浄化装置が正常に動作をしている範囲が二本の太い点線で示されており、温度ごとのそれぞれの点線に対応する電流値が正常動作の上限電流判断値或いは下限電流判断値である。この上限電流判断値或いは下限電流判断値は、印加電圧値、内燃機関回転数、燃料噴射量及び排気ガス温度の変化により決定され或いは変動する。但し、印加電圧値は、前述の通り、内燃機関回転数、燃料噴射量及び排気ガス温度により計算されて設定されている。従って、実際上は、内燃機関回転数、燃料噴射量及び排気ガス温度の三種類のファクターにより、予め実験を行うことによりポイント毎に上限電流判断値及び下限電流判断値のデータを取得し、これらのデータがマップIIとしてECU8に入力されている。ECU8が時々刻々取得しているデータ、即ち、ある印加電圧、内燃機関回転数、燃料噴射量及び排気ガス温度の下で運転中に取得した電流値が、上限電流判断値の点線の上側にある場合は、ハウジング1の内側や導電性網2に排気微粒子(PM)等の汚れが溜まって絶縁不良状態になっているか、または、導電性網2(図4中ではメッシュと表示)が長期間の振動等の影響で外れてしまい、放電電極に近接した位置に移動しているものと判断される。
一方、上記の運転中に取得した電流値が、下限電流判断値の点線より下側にある場合は、放電不足であるか、途中で断線しているか、または、導電性網2(図4中ではメッシュと表示)が長期間の振動等の影響で外れてしまい、放電電極より遠ざかった位置に移動しているものと判断される。
In detail, it demonstrates, referring the example of failure criteria (after starting) of FIG. In FIG. 4, the horizontal axis represents the changing exhaust gas temperature (° C.), and the vertical axis represents the current value (mA). The range in which the exhaust emission control device is operating normally is indicated by two thick dotted lines, and the current value corresponding to each dotted line for each temperature is the upper limit current judgment value or the lower limit current judgment value for normal operation. . The upper limit current judgment value or the lower limit current judgment value is determined or fluctuates depending on changes in the applied voltage value, the internal combustion engine speed, the fuel injection amount, and the exhaust gas temperature. However, as described above, the applied voltage value is calculated and set based on the internal combustion engine speed, the fuel injection amount, and the exhaust gas temperature. Therefore, in practice, the upper limit current judgment value data and the lower limit current judgment value data are obtained for each point by conducting an experiment in advance using three kinds of factors, that is, the internal combustion engine speed, the fuel injection amount, and the exhaust gas temperature. Is input to the ECU 8 as Map II. The data acquired by the ECU 8 every moment, that is, the current value acquired during operation under a certain applied voltage, internal combustion engine speed, fuel injection amount and exhaust gas temperature is above the dotted line of the upper limit current judgment value. In such a case, dirt such as exhaust particulate (PM) is accumulated inside the
On the other hand, when the current value acquired during the above operation is below the dotted line of the lower limit current judgment value, the discharge is insufficient, the cable is disconnected halfway, or the conductive net 2 (in FIG. 4). In this case, it is determined that the mesh has been moved away from the discharge electrode due to a long-term vibration or the like.
従って、運転中に取得した電流値が、正常範囲の上限電流判断値を超えている場合、或いは、正常値の下限電流判断値を下回っている場合には、故障ランプが点灯(S12)して故障であることを運転者に報知し、運転者は、これを受けて排気浄化装置を停止することとなる。この場合、故障ランプ(図示されていない)は、電流値が正常値の上限電流判断値を超えていて故障なのか、それとも下限電流判断値より下回っていて故障なのかがわかるように、二種類の点灯ランプを設けることも可能である。 Therefore, when the current value acquired during operation exceeds the upper limit current judgment value of the normal range, or when it is below the lower limit current judgment value of the normal value, the failure lamp is turned on (S12). The driver is notified of the failure, and the driver receives this and stops the exhaust purification device. In this case, there are two types of fault lamps (not shown) so that it is possible to determine whether the current value exceeds the upper limit current judgment value of the normal value and is faulty or is lower than the lower limit current judgment value so that the fault occurs. It is also possible to provide a lighting lamp.
また、電流値が、2本の点線の間、即ち、正常動作の範囲内にある場合は、排気浄化装置のスイッチはオンにされたままで、運転者は引き続き運転を継続する。ECU8においては、引き続き転送されてくる内燃機関回転数、燃料噴射量に基づき排気微粒子(PM)の量を計算し、温度データとともに上記マップIとつき合わせてアーク放電発生予想電圧値を常に下回る範囲で印加電圧値を設定し電圧印加を行っていく(S7〜S9を繰り返す)。また、引き続き、電流計で取得した電流値を、印加電圧値、内燃機関回転数、燃料噴射量及び排気ガス温度と共に上記マップIIとつき合わせて、排気ガス浄化装置が正常動作の範囲内にあるか否かの判断を継続することとなる(S11)。 Further, when the current value is between the two dotted lines, that is, within the range of normal operation, the driver continues to operate while the switch of the exhaust purification device remains on. The ECU 8 calculates the amount of exhaust particulates (PM) based on the internal combustion engine speed and fuel injection amount that are continuously transferred, and always falls below the expected arc discharge occurrence voltage value in association with the map I together with the temperature data. The applied voltage value is set by and voltage application is performed (S7 to S9 are repeated). In addition, the exhaust gas purification device is within the normal operation range by continuously matching the current value obtained by the ammeter with the above map II together with the applied voltage value, the internal combustion engine speed, the fuel injection amount, and the exhaust gas temperature. The determination of whether or not is continued (S11).
このように、以上の構成であるから、本発明に係る内燃機関用排気浄化装置は、測定した電流値により排気浄化装置の故障の有無を判断するという非常に簡単且つコンパクトな装置であるので、車に搭載するのにきわめて適している。このため、運転者が運転開始前或いは運転中に排気浄化装置が故障か否かを常に簡単にチェックすることができ、故障の場合には速やかに対処することができるという効果を有するものである。結果として、常に、継続して安定的に排気微粒子(PM)を帯電させて、コロナ放電を利用した排気微粒子(PM)の効率のよい凝集或いは捕集を可能にし、実用的且つ高性能な内燃機関用の排気浄化装置を実現することができる。 Thus, since it is the above configuration, the exhaust gas purification device for an internal combustion engine according to the present invention is a very simple and compact device that determines the presence or absence of a failure of the exhaust gas purification device based on the measured current value. Very suitable for mounting on a car. For this reason, the driver can always easily check whether or not the exhaust emission control device is out of order before starting operation or during operation, and has the effect of being able to quickly cope with a failure. . As a result, the exhaust particulates (PM) are constantly and stably charged to enable efficient aggregation or collection of the exhaust particulates (PM) using corona discharge, which is a practical and high-performance internal combustion engine. An exhaust purification device for an engine can be realized.
1 ハウジング
2 導電性網
3 放電電極
3a 碍子
3b 放電部
4 高圧電源
5 温度センサー
6 電圧計
7 電流計
8 ECU
9 排気微粒子(PM)
DESCRIPTION OF
9 Exhaust particulate (PM)
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005000A JP4424207B2 (en) | 2005-01-12 | 2005-01-12 | Internal combustion engine exhaust purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005000A JP4424207B2 (en) | 2005-01-12 | 2005-01-12 | Internal combustion engine exhaust purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006194116A true JP2006194116A (en) | 2006-07-27 |
JP4424207B2 JP4424207B2 (en) | 2010-03-03 |
Family
ID=36800402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005005000A Expired - Fee Related JP4424207B2 (en) | 2005-01-12 | 2005-01-12 | Internal combustion engine exhaust purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4424207B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009064581A (en) * | 2007-09-04 | 2009-03-26 | Iwasaki Electric Co Ltd | High-pressure discharge lamp lighting apparatus and its control method |
WO2012124091A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124086A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124090A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124089A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124087A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124088A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
JP2012193700A (en) * | 2011-03-17 | 2012-10-11 | Toyota Motor Corp | Particulate-matter processing device |
JP2012193697A (en) * | 2011-03-17 | 2012-10-11 | Toyota Motor Corp | Particulate-matter processing device |
JP2012193698A (en) * | 2011-03-17 | 2012-10-11 | Toyota Motor Corp | Particulate-matter processing device |
JP2012219770A (en) * | 2011-04-13 | 2012-11-12 | Toyota Motor Corp | Particulate-matter processing device |
WO2013179381A1 (en) * | 2012-05-29 | 2013-12-05 | トヨタ自動車株式会社 | Particulate matter treating device |
US8863496B2 (en) | 2011-04-06 | 2014-10-21 | Toyota Jidosha Kabushiki Kaisha | Particulate matter control system and its failure determination method |
JP2019044648A (en) * | 2017-08-31 | 2019-03-22 | ダイハツ工業株式会社 | Engine system |
JP2020165354A (en) * | 2019-03-29 | 2020-10-08 | ダイハツ工業株式会社 | Engine system |
-
2005
- 2005-01-12 JP JP2005005000A patent/JP4424207B2/en not_active Expired - Fee Related
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009064581A (en) * | 2007-09-04 | 2009-03-26 | Iwasaki Electric Co Ltd | High-pressure discharge lamp lighting apparatus and its control method |
US9128026B2 (en) | 2011-03-16 | 2015-09-08 | Toyota Jidosha Kabushiki Kaisha | Particulate matter processing apparatus |
CN103403310A (en) * | 2011-03-16 | 2013-11-20 | 丰田自动车株式会社 | Particulate-matter processing device |
US20140000244A1 (en) * | 2011-03-16 | 2014-01-02 | Toyota Jidosha Kabushiki Kaisha | Particulate matter processing apparatus |
WO2012124089A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124087A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124088A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
US20140000248A1 (en) * | 2011-03-16 | 2014-01-02 | Toyota Jidosha Kabushiki Kaisha | Particulate matter processing apparatus |
US9309796B2 (en) | 2011-03-16 | 2016-04-12 | Toyota Jidosha Kabushiki Kaisha | Particulate matter processing apparatus |
EP2687687A1 (en) * | 2011-03-16 | 2014-01-22 | Toyota Jidosha Kabushiki Kaisha | Particulate-matter processing device |
US9284869B2 (en) | 2011-03-16 | 2016-03-15 | Toyota Jidosha Kabushiki Kaisha | Particulate matter processing apparatus |
JP5333675B2 (en) * | 2011-03-16 | 2013-11-06 | トヨタ自動車株式会社 | Particulate matter treatment equipment |
US8899028B2 (en) | 2011-03-16 | 2014-12-02 | Toyota Jidosha Kabushiki Kaisha | Particulate matter processing apparatus |
CN103443412B (en) * | 2011-03-16 | 2015-09-30 | 丰田自动车株式会社 | Particulate material treatment device |
CN103443412A (en) * | 2011-03-16 | 2013-12-11 | 丰田自动车株式会社 | Particulate-matter processing device |
WO2012124090A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124091A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
WO2012124086A1 (en) | 2011-03-16 | 2012-09-20 | トヨタ自動車株式会社 | Particulate-matter processing device |
JPWO2012124088A1 (en) * | 2011-03-16 | 2014-07-17 | トヨタ自動車株式会社 | Particulate matter treatment equipment |
JP5590216B2 (en) * | 2011-03-16 | 2014-09-17 | トヨタ自動車株式会社 | Particulate matter treatment equipment |
JP5590217B2 (en) * | 2011-03-16 | 2014-09-17 | トヨタ自動車株式会社 | Particulate matter treatment equipment |
EP2687687A4 (en) * | 2011-03-16 | 2014-12-17 | Toyota Motor Co Ltd | Particulate-matter processing device |
JP2012193698A (en) * | 2011-03-17 | 2012-10-11 | Toyota Motor Corp | Particulate-matter processing device |
JP2012193697A (en) * | 2011-03-17 | 2012-10-11 | Toyota Motor Corp | Particulate-matter processing device |
JP2012193700A (en) * | 2011-03-17 | 2012-10-11 | Toyota Motor Corp | Particulate-matter processing device |
US8863496B2 (en) | 2011-04-06 | 2014-10-21 | Toyota Jidosha Kabushiki Kaisha | Particulate matter control system and its failure determination method |
JP2012219770A (en) * | 2011-04-13 | 2012-11-12 | Toyota Motor Corp | Particulate-matter processing device |
WO2013179381A1 (en) * | 2012-05-29 | 2013-12-05 | トヨタ自動車株式会社 | Particulate matter treating device |
JPWO2013179381A1 (en) * | 2012-05-29 | 2016-01-14 | トヨタ自動車株式会社 | Particulate matter treatment equipment |
JP2019044648A (en) * | 2017-08-31 | 2019-03-22 | ダイハツ工業株式会社 | Engine system |
JP7273584B2 (en) | 2019-03-29 | 2023-05-15 | ダイハツ工業株式会社 | engine system |
JP2020165354A (en) * | 2019-03-29 | 2020-10-08 | ダイハツ工業株式会社 | Engine system |
Also Published As
Publication number | Publication date |
---|---|
JP4424207B2 (en) | 2010-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4424207B2 (en) | Internal combustion engine exhaust purification system | |
RU2716664C2 (en) | Method and system for detection of solid particles in exhaust gases | |
JP4396477B2 (en) | Exhaust purification device | |
RU2692874C2 (en) | Method (embodiments) for detection of solid particles in exhaust gases | |
US20110015824A1 (en) | Method for the on-board functional diagnosis of a soot sensor in a motor vehicle and/or for the detection of further constituents in the soot | |
JP6090293B2 (en) | Filter function diagnostic device | |
JP5786958B2 (en) | Failure detection device for electrically heated catalyst | |
JP2010275917A (en) | Failure determination device for particulate matter detection means | |
JP5333675B2 (en) | Particulate matter treatment equipment | |
US7487660B2 (en) | Method and system for monitoring the functional capability of a particle detector | |
US20140000243A1 (en) | Particulate matter processing apparatus | |
WO2020085133A1 (en) | Exhaust gas sensor | |
JP6014429B2 (en) | Particle sensor | |
JP2013003106A (en) | Fine particle sensor and control device of the same | |
JP4400367B2 (en) | Exhaust particulate detection device for internal combustion engine | |
RU2703134C2 (en) | Method and system for detection of solid particles in exhaust gases | |
CN107916979B (en) | Method and system for exhaust particulate matter sensing | |
WO2012124088A1 (en) | Particulate-matter processing device | |
JP5655652B2 (en) | Particulate matter treatment equipment | |
JP5760547B2 (en) | Particulate matter treatment equipment | |
JP5796314B2 (en) | Particulate matter treatment equipment | |
JP2009041416A (en) | Failure diagnosis device for particulate charger | |
JP7393998B2 (en) | Plasma reactor device for exhaust gas purification | |
JP7393999B2 (en) | Plasma reactor device for exhaust gas purification | |
EP2687692B1 (en) | Particulate-matter processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091130 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4424207 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131218 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |