JP2006193566A - Method for producing epoxy resin composition for optical semi-conductor - Google Patents
Method for producing epoxy resin composition for optical semi-conductor Download PDFInfo
- Publication number
- JP2006193566A JP2006193566A JP2005004555A JP2005004555A JP2006193566A JP 2006193566 A JP2006193566 A JP 2006193566A JP 2005004555 A JP2005004555 A JP 2005004555A JP 2005004555 A JP2005004555 A JP 2005004555A JP 2006193566 A JP2006193566 A JP 2006193566A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- components
- producing
- optical semiconductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Led Device Packages (AREA)
Abstract
Description
本発明は、光半導体用エポキシ樹脂組成物の製造方法に関するものである。 The present invention relates to a method for producing an epoxy resin composition for optical semiconductors.
発光素子及び受光素子等の光半導体の封止材料としては、透明性、耐湿性及び耐熱性に優れるエポキシ樹脂組成物を用いた樹脂封止が主流となっており、中でもエポキシ樹脂組成物を用いてトランスファー成形で樹脂封止する方法は、作業性及び量産性の面で優れている。
一般に、トランスファー成形においてエポキシ樹脂組成物を成形する場合、成形物の離型性を向上させるために、エポキシ樹脂組成物に離型剤を添加する方法がとられている。上記の様な光半導体素子をトランスファー成形で樹脂封止する場合においては、エポキシ樹脂組成物の透明性を損なわずに離型性を向上させる離型剤の添加が提案されており、特定構造の化合物を用いて透明性と離型性を両立させる方法(例えば、特許文献1及び特許文献2参照。)、特定構造の化合物を用い、なおかつエポキシ樹脂、硬化剤及び硬化促進剤に対して離型剤を相溶し易くする相溶化剤としてメルカプトシランカップリング剤を配合して透明性と離型性を両立させる方法(例えば、特許文献3参照。)などがある。
さらに、パッゲージ実装方式は、ピン挿入型から面実装型への要求が急速に高まっている。面実装型は、ピン挿入型のようにリード部のみを加熱するのではなく、パッケージ全体を加熱することによりリード部に予め付けられた半田を溶かして実装する方式であり、ピン挿入型に比べてより高い耐熱性が必要となる。これに対応するためには、リードフレーム、光半導体素子等のパッケージ内部の部材とエポキシ樹脂組成物の密着性をより高めることが必要であり、密着性を低下させる要因の1つである離型剤の添加量を抑え、なおかつ良好な離型性を付与する必要がある。しかしながら、前述した従来の方法では密着性、離型性及び透明性を全て満足させることは困難であり、更なる技術の向上が求められている。
In general, when an epoxy resin composition is molded in transfer molding, a method of adding a release agent to the epoxy resin composition is taken in order to improve the mold release property of the molded product. In the case where the above optical semiconductor element is encapsulated by transfer molding, the addition of a release agent that improves the releasability without impairing the transparency of the epoxy resin composition has been proposed. A method of using a compound to achieve both transparency and releasability (see, for example, Patent Document 1 and Patent Document 2), using a compound having a specific structure, and releasing from an epoxy resin, a curing agent, and a curing accelerator As a compatibilizing agent for facilitating the compatibility of the agent, there is a method of blending a mercaptosilane coupling agent to achieve both transparency and releasability (for example, see Patent Document 3).
Furthermore, the demand for the package mounting system from the pin insertion type to the surface mounting type is rapidly increasing. The surface mount type does not heat only the lead part as in the pin insertion type, but rather heats the entire package to melt the solder applied in advance to the lead part and mount it, compared to the pin insertion type. Higher heat resistance is required. In order to cope with this, it is necessary to further improve the adhesion between the lead frame, the optical semiconductor element and other components inside the package and the epoxy resin composition, which is one of the factors that reduce the adhesion. It is necessary to suppress the addition amount of the agent and to impart good releasability. However, it is difficult to satisfy all of adhesion, releasability and transparency by the conventional method described above, and further technical improvements are required.
本発明は、上記のような問題点を解決するためになされたもので、その目的とするところは透明性及び離型性に優れた光半導体用エポキシ樹脂組成物の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide a method for producing an epoxy resin composition for optical semiconductors excellent in transparency and releasability. is there.
本発明は、
[1]エポキシ樹脂(A)、酸無水物硬化剤(B)、1分子内に2個の水酸基を有するアルコール(C)、離型剤(D)、分散剤(E)を主成分とする光半導体用エポキシ樹脂組成物の製造方法であって、(A)〜(E)成分を予め溶融混合する工程と溶融混合された主成分と主成分以外の成分とを混合、混練する工程とを含むことを特徴とする光半導体用エポキシ樹脂組成物の製造方法、
[2]上記離型剤(D)が一般式(1)で示される化合物を含有する第[1]項記載の光半導体用エポキシ樹脂組成物の製造方法、
The present invention
[1] The main components are an epoxy resin (A), an acid anhydride curing agent (B), an alcohol (C) having two hydroxyl groups in one molecule, a release agent (D), and a dispersant (E). A method for producing an epoxy resin composition for an optical semiconductor, comprising the steps of previously melt-mixing the components (A) to (E) and mixing and kneading the melt-mixed main component and components other than the main component. A method for producing an epoxy resin composition for optical semiconductors, comprising:
[2] The method for producing an epoxy resin composition for optical semiconductors according to item [1], wherein the release agent (D) contains a compound represented by the general formula (1),
[3]上記分散剤が一般式(2)で示される化合物を含有する第[1]又は[2]項請求項1又は2記載の光半導体用エポキシ樹脂組成物の製造方法、 [3] The method for producing an epoxy resin composition for an optical semiconductor according to [1] or [2], wherein the dispersant contains a compound represented by the general formula (2),
[4]上記1分子内に2個の水酸基を有するアルコール(C)の含有量が、(A)〜(E)成分の合計量の0.5重量%以上、1.5重量%以下である第[1]〜[3]項記載の光半導体用エポキシ樹脂組成物の製造方法、
[5]上記離型剤(D)の含有量が、(A)〜(E)成分の合計量の1.2重量%以上、2.0重量%以下である第[1]〜[4]項記載の光半導体用エポキシ樹脂組成物の製造方法、
[6]上記分散剤(E)の含有量が、(A)〜(E)成分の合計量の0.1重量%以上、0.8重量%以下である第[1]〜[5]項記載の光半導体用エポキシ樹脂組成物の製造方法、
[7]第[1]〜[6]項のいずれか1項に記載の製造方法により作製された光半導体用エポキシ樹脂組成物を用いて封止された光半導体装置、
である。
[4] The content of the alcohol (C) having two hydroxyl groups in one molecule is 0.5% by weight or more and 1.5% by weight or less of the total amount of the components (A) to (E). A method for producing an epoxy resin composition for optical semiconductors according to items [1] to [3],
[5] First [1] to [4], wherein the content of the release agent (D) is 1.2 wt% or more and 2.0 wt% or less of the total amount of the components (A) to (E). The manufacturing method of the epoxy resin composition for optical semiconductors of claim | items,
[6] Items [1] to [5], wherein the content of the dispersant (E) is 0.1 wt% or more and 0.8 wt% or less of the total amount of the components (A) to (E). The manufacturing method of the epoxy resin composition for optical semiconductors of description,
[7] An optical semiconductor device encapsulated with the epoxy resin composition for optical semiconductors produced by the manufacturing method according to any one of items [1] to [6],
It is.
本発明に従うと、透明性と離型性の両立を図ることが可能となり、なおかつ密着性を付与することが出来るため、急速に要求が高まっている面実装型のパッケージ実装方式への対応に好適である。 According to the present invention, both transparency and releasability can be achieved, and adhesion can be imparted, making it suitable for responding to rapidly mounting surface mount package mounting methods. It is.
本発明は、エポキシ樹脂、酸無水物硬化剤、1分子内に2個の水酸基を有するアルコール、特定構造の離型剤及び分散剤を主成分として主成分を予め溶融混合する工程と溶融混合された主成分と主成分以外の成分とを混合、混練する工程とを含むことにより、透明性と離型性の両立を図れるものであり、更により少ない離型剤の配合量で良好な離型性を発現することから、面実装方式に求められるリードフレーム、光半導体素子等のパッケージ内部の部材との優れた密着性を付与する光半導体用エポキシ樹脂組成物を製造することができる製造方法である。 The present invention includes a step of melt-mixing a main component in advance with an epoxy resin, an acid anhydride curing agent, an alcohol having two hydroxyl groups in a molecule, a release agent having a specific structure, and a dispersant as main components. The process of mixing and kneading the main component and the component other than the main component can achieve both transparency and releasability, and good mold release with a smaller amount of release agent. With a production method that can produce an epoxy resin composition for optical semiconductors that provides excellent adhesion to members inside the package such as lead frames and optical semiconductor elements required for surface mounting methods. is there.
以下、本発明について詳細に説明する。
本発明に用いるエポキシ樹脂(A)は、モノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は1分子内に2個以上のエポキシ基を有していれば、特に限定するものではないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリグリシジルイソシアヌレートなどが挙げられる。またこれらは単独でも混合して用いてもよい。なお透明性の観点から、着色の少ないビスフェノール型エポキシ樹脂、トリグリシジルイソシアヌレートを用いることが好ましい。
Hereinafter, the present invention will be described in detail.
The epoxy resin (A) used in the present invention is a monomer, oligomer or polymer in general, and its molecular weight and molecular structure are not particularly limited as long as it has two or more epoxy groups in one molecule. Bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, hydrogenated bisphenol A type epoxy resin, phenol novolak type epoxy resin, orthocresol novolak type epoxy Examples thereof include resins and triglycidyl isocyanurate. These may be used alone or in combination. From the viewpoint of transparency, it is preferable to use a bisphenol type epoxy resin or triglycidyl isocyanurate with little coloring.
本発明に用いる酸無水物硬化剤(B)としては、モノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、あるいは3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸などが挙げられる。またこれらは単独でも混合して用いてもよい。
本発明に用いる酸無水物硬化剤の酸無水物当量に対して全エポキシ樹脂のエポキシ当量
を0.5〜1.5に設定することが好ましく、特に0.8〜1.2がより好ましい。上記範囲を外れると、耐湿性、硬化性などが低下する恐れがあるので好ましくない。
Examples of the acid anhydride curing agent (B) used in the present invention include monomers, oligomers and polymers in general, and the molecular weight and molecular structure thereof are not particularly limited. For example, phthalic anhydride, maleic anhydride, trimellitic anhydride Acid, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, or 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride Examples thereof include a mixture, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride. These may be used alone or in combination.
It is preferable to set the epoxy equivalent of all epoxy resins to 0.5 to 1.5 with respect to the acid anhydride equivalent of the acid anhydride curing agent used in the present invention, and more preferably 0.8 to 1.2. If it is out of the above range, the moisture resistance, curability and the like may be lowered, which is not preferable.
本発明においては、エポキシ樹脂(A)と酸無水物硬化剤(B)を緩やかに反応させる目的で、1分子内に2個の水酸基を有するアルコール(C)を用い、分子量分布の安定したBステージ状態の樹脂組成物を短時間で取得することが可能となる。例えばエチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールなどが挙げられる。またこれらは単独でも混合して用いてもよい。なお作業性の観点から1,5−ペンタンジオールが好ましい。 In the present invention, an alcohol (C) having two hydroxyl groups in one molecule is used for the purpose of causing a slow reaction between the epoxy resin (A) and the acid anhydride curing agent (B), and B having a stable molecular weight distribution. It becomes possible to obtain the resin composition in a stage state in a short time. For example, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and the like can be mentioned. These may be used alone or in combination. From the viewpoint of workability, 1,5-pentanediol is preferred.
本発明においては、透明性と離型性を付与する目的で、離型剤として一般式(1)で示される化合物、分散剤として一般式(2)で示される化合物を用いる。これらの化合物は直鎖状アルコールをエトキシ化したものであり、アルキル部分の炭素数と化合物全体に占めるエチルエーテルの重量割合のバランスが透明性と離型性にとって非常に重要となる。エチルエーテル部分の重量割合が大きくなると透明性には優れるが、十分な離型性が得られず、逆にアルキル部分の重量割合が大きくなると離型性には優れるが、十分な透明性が得られない。一般式(1)で示される化合物で例えばR1の炭素数が30の場合、この化合物を単独で(一般式(2)で示される分散剤を配合しないことを意味する。)用いようとすると、n1が2以上、10以下であることが必須である。n1が下限値を下回ると透明性を損ない易く、n1が上限値を超えると殆ど離型性を発現しない。しかし一般式(1)で示される化合物単独で十分な離型性を得ようとすると、配合量を多くする必要があり、透明性だけではなくリードフレーム、光半導体素子等のパッケージ内部の部材との密着性を低下させてしまい、面実装型への対応が困難になる。ところが、分散剤としてエチルエーテル部分の重量割合が一般式(1)に比べて大きい一般式(2)で示される化合物を併用すると、より少ない配合量で離型性を発現できるため、透明性及び密着性の低下を抑制することができる。これは、一般式(2)で示される化合物を配合することにより、マトリックス樹脂中に分散している一般式(1)で示される化合物のドメインがより微細化されるためであると推定している。一般式(2)で示される化合物で例えばR2の炭素数が12の場合、n2が8以上、12以下であることが必須である。n2が下限値を下回る、もしくは上限値を超えると、分散剤としての効果が小さく、一般式(1)で示される化合物を単独で用いた場合に比べて離型性、透明性及び密着性に及ぼす影響が殆ど変わらない。 In the present invention, for the purpose of imparting transparency and releasability, a compound represented by the general formula (1) is used as a release agent, and a compound represented by the general formula (2) is used as a dispersant. These compounds are ethoxylated linear alcohols, and the balance between the number of carbon atoms in the alkyl moiety and the weight ratio of ethyl ether in the entire compound is very important for transparency and releasability. Transparency is excellent when the weight ratio of the ethyl ether portion is large, but sufficient releasability cannot be obtained. Conversely, when the weight ratio of the alkyl portion is large, the releasability is excellent, but sufficient transparency is obtained. I can't. For example, when R1 has 30 carbon atoms in the compound represented by the general formula (1), this compound is used alone (meaning that the dispersant represented by the general formula (2) is not blended). It is essential that n1 is 2 or more and 10 or less. When n1 is less than the lower limit, transparency is easily impaired, and when n1 exceeds the upper limit, release properties are hardly exhibited. However, in order to obtain sufficient releasability with the compound represented by the general formula (1) alone, it is necessary to increase the amount of blending, and not only the transparency but also the members inside the package such as lead frames and optical semiconductor elements The adhesiveness of the surface is lowered, and it becomes difficult to cope with the surface mounting type. However, when a compound represented by the general formula (2) in which the weight ratio of the ethyl ether portion is larger than that of the general formula (1) is used as a dispersant, the release property can be expressed with a smaller blending amount. A decrease in adhesion can be suppressed. This is presumed that the compound of the compound represented by the general formula (1) dispersed in the matrix resin is further refined by blending the compound represented by the general formula (2). Yes. For example, when R2 has 12 carbon atoms in the compound represented by the general formula (2), it is essential that n2 is 8 or more and 12 or less. When n2 is less than the lower limit value or exceeds the upper limit value, the effect as a dispersant is small, and in terms of releasability, transparency and adhesion compared to the case where the compound represented by the general formula (1) is used alone. The effect is almost unchanged.
本発明の樹脂組成物は、成分(A)〜(E)が予め溶融混合されていれば良く、溶融混合の方法としては、反応釜、加熱ニーダ等が挙げられる。本発明の樹脂組成物は、成分(A)〜(E)を反応釜等で溶融混合し、Bステージ状態の樹脂組成物を得た後にその他の成分を加えて、ミキサー等を用いて混合後、加熱ニーダ、加熱ロール、押し出し機等を用いて混練し、続いて冷却、粉砕することで得ることができる。成分(A)〜(E)を予め溶融混合しない場合は光デバイス機能を満足しうる透明性を得ることができず、また、連続成形性が悪くなり光半導体装置の生産が低くなり好ましくない。 In the resin composition of the present invention, the components (A) to (E) may be previously melt-mixed, and examples of the melt-mixing method include a reaction kettle and a heating kneader. In the resin composition of the present invention, components (A) to (E) are melted and mixed in a reaction kettle, etc., and after obtaining a B-stage resin composition, other components are added and mixed using a mixer or the like. , Kneading using a heating kneader, heating roll, extruder, etc., followed by cooling and pulverization. If the components (A) to (E) are not melted and mixed in advance, the transparency that satisfies the optical device function cannot be obtained, and the continuous moldability is deteriorated and the production of the optical semiconductor device is lowered.
本発明の製造方法で用いられる成分としては、上記(A)〜(E)成分以外に必要に応じてフェノール系化合物、アミン系化合物、ホスファイト系化合物、有機硫黄系化合物等の酸化防止剤、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ベンゾエート系化合物、シアノアクリレート系化合物等の紫外線吸収剤、ガラス粉末、シリカ粉末、アルミナ粉末等の無機充填材等が適宜配合可能である。
本発明の半導体装置は、光半導体素子が本発明により製造されたものを含有するエポキシ樹脂組成物により封止されてなるものであり、このエポキシ樹脂組成物が室温で固形の場合は、タブレット状にしたものをトランスファー成形することにより、また液状の場合には、キャスティング方式等を採用して注型、硬化することができる。
As a component used in the production method of the present invention, an antioxidant such as a phenol compound, an amine compound, a phosphite compound, an organic sulfur compound, etc., if necessary, in addition to the components (A) to (E), Ultraviolet absorbers such as benzophenone compounds, benzotriazole compounds, benzoate compounds, and cyanoacrylate compounds, and inorganic fillers such as glass powder, silica powder, and alumina powder can be appropriately blended.
The semiconductor device of the present invention is formed by sealing an optical semiconductor element with an epoxy resin composition containing the one manufactured according to the present invention. When this epoxy resin composition is solid at room temperature, it is in the form of a tablet. The molded product can be cast and cured by transfer molding, or in the case of a liquid, using a casting method or the like.
以下に、実施例を挙げて本発明を説明するが、これらの実施例に限定されるものではない。配合割合は重量部とする。
実験例1
ビスフェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、離型剤1及び分散剤1を容量30Lの反応釜に投入し、全て溶融するまで加温した。その後反応釜内壁の温度を95℃に安定させ、4−メチルヘキサヒドロ無水フタル酸及び1,5−ペンタンジオールを投入し、適切な分子量分布が得られるまで緩やかに反応させた。適切な分子量分布が得られたら速やかに樹脂を反応釜から取り出し、冷却して固化させた後に粉砕した。ここで粉砕したものに2−メチルイミダゾール、2,6−ジターシャルブチル−4−メチルフェノール、4−ドデシロキシ−2−ヒドロキシベンゾフェノン及びガラス粉末を添加し、ミキサーを用いて常温混合してから表面温度が80℃と15℃の2本ロールを用いて混練して、冷却後粉砕してエポキシ樹脂組成物を得た。
ビスフェノール型エポキシ樹脂(三井化学(株)製、R364PD、軟化点98℃、エポキシ当量980) 39.42重量部
トリグリシジルイソシアヌレート(日産化学(株)製、TEPIC−S、融点100℃、エポキシ当量101) 16.90重量部
4−メチルヘキサヒドロ無水フタル酸(新日本理化(株)製、MH−700、酸無水物当量164) 34.03重量部
1,5−ペンタンジオール 0.85重量部
離型剤1 1.40重量部
(一般式(1)において、R1は炭素数30の直鎖アルキル基。n1は2.5。)
分散剤1 0.50重量部
(一般式(2)において、R2は炭素数12の直鎖アルキル基。n2は10。)
2−メチルイミダゾール 1.10重量部
2,6−ジターシャルブチル−4−メチルフェノール 0.40重量部
4−ドデシロキシ−2−ヒドロキシベンゾフェノン 0.40重量部
ガラス粉末(メジアン径25μm、屈折率1.570) 5.00重量部
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The blending ratio is parts by weight.
Experimental example 1
Bisphenol type epoxy resin, triglycidyl isocyanurate, mold release agent 1 and dispersant 1 were charged into a 30 L reactor and heated until all were melted. Thereafter, the temperature of the inner wall of the reaction kettle was stabilized at 95 ° C., 4-methylhexahydrophthalic anhydride and 1,5-pentanediol were added, and the reaction was gently continued until an appropriate molecular weight distribution was obtained. When an appropriate molecular weight distribution was obtained, the resin was immediately removed from the reaction kettle, cooled and solidified, and then pulverized. 2-Methylimidazole, 2,6-ditertiarybutyl-4-methylphenol, 4-dodecyloxy-2-hydroxybenzophenone and glass powder are added to the pulverized product and mixed at room temperature using a mixer, and then the surface temperature is increased. Were kneaded using two rolls at 80 ° C. and 15 ° C., cooled and pulverized to obtain an epoxy resin composition.
Bisphenol-type epoxy resin (Mitsui Chemicals, R364PD, softening point 98 ° C., epoxy equivalent 980) 39.42 parts by weight triglycidyl isocyanurate (Nissan Chemical Co., Ltd., TEPIC-S, melting point 100 ° C., epoxy equivalent) 101) 16.90 parts by weight 4-methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., MH-700, acid anhydride equivalent 164) 34.03 parts by weight 1,5-pentanediol 0.85 parts by weight Release agent 1 1.40 parts by weight (In general formula (1), R1 is a linear alkyl group having 30 carbon atoms. N1 is 2.5.)
Dispersant 1 0.50 part by weight (In the general formula (2), R2 is a linear alkyl group having 12 carbon atoms. N2 is 10.)
2-methylimidazole 1.10 parts by weight 2,6-ditertiarybutyl-4-methylphenol 0.40 parts by weight 4-dodecyloxy-2-hydroxybenzophenone 0.40 parts by weight Glass powder (median diameter 25 μm, refractive index 1. 570) 5.00 parts by weight
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。単位はcm。
透明性:トランスファー成形機を用い、金型温度160℃、注入圧9.8MPa、硬化時間2分で15×35mm、厚み1mmの試験片を成形し、160℃、2時間で後硬化した。得られた試験片を日立製の分光光度計U−330形(60φ、開口比率7.8%の積分球を搭載)を用いて波長500nmの光透過率を測定した。単位は%。
連続成形性:トランスファー成形機を用い、金型クリーニング樹脂(住友ベークライト(株)製、EMEC−3)を10ショット、金型離型回復樹脂(住友ベークライト(株)製、EMEC−100)を3ショット成形した後、金型温度160℃、注入圧9.8MPa、硬化時間2分の成形条件でSOT(3ピン、2.9×2mm、厚み1.1mm、銅製リードフレーム、半導体素子は未搭載)を連続で成形し、樹脂硬化物が金型から離型するかどうかを評価した。パッケージ、ランナー、カルが金型に貼り付くまでのショット数を数え、400ショット以上の場合を◎、200ショット以上、400ショット未満の場合を○、100ショット以上、200ショット未満の場合を△、100ショット未満の場合を×とした。
密着性:トランスファー成形機を用い、金型温度160℃、注入圧9.8MPa、硬化時間2分で9×9mm、厚み0.3mmの銀メッキした銅製フレーム及びメッキ無しの銅製フレーム上に2×2mm、高さ3mmの樹脂硬化物を成形し、160℃、2時間で後硬化した。得られた、銀メッキした銅製フレームの試験片8個及びメッキ無しの銅製フレームの試験片8個を室温に冷却後、DAGE社製の2400Aを用いてツール移動速度2mm/秒でせん断密着強度を測定した。単位はN。
実験例2〜17
表1、表2の配合に従い、実験例2〜16は実験例1と同様にしてエポキシ樹脂組成物を得、また実験例16は離型剤及び分散剤を予め溶融混合せずにエポキシ樹脂組成物を得た。実験例17は、(A)〜(E)成分とその他の成分を溶融混合のみで作製し、その後の混合、混練は行わずにエポキシ樹脂組成物を得た。いずれの水準も実験例1と同様に評価した。これらの評価結果を表1、表2に示す。
実験例1以外で用いた離型剤、分散剤を以下に示す。
離型剤2(一般式(1)において、R1は炭素数30の直鎖アルキル基。n1は10。)
離型剤3(一般式(1)において、R1は炭素数30の直鎖アルキル基。n1は40。)
離型剤4(一般式(1)において、R1は炭素数40の直鎖アルキル基。n1は13。)
分散剤2(一般式(2)において、R2は炭素数12の直鎖アルキル基。n2は16。)
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. The unit is cm.
Transparency: Using a transfer molding machine, a test piece having a mold temperature of 160 ° C., an injection pressure of 9.8 MPa, a curing time of 2 minutes, 15 × 35 mm and a thickness of 1 mm was molded, and post-cured at 160 ° C. for 2 hours. The light transmittance at a wavelength of 500 nm was measured for the obtained test piece using a spectrophotometer U-330 type (60φ, equipped with an integrating sphere with an aperture ratio of 7.8%) manufactured by Hitachi. Units%.
Continuous moldability: Using a transfer molding machine, 10 shots of mold cleaning resin (Sumitomo Bakelite Co., Ltd., EMEC-3), 3 mold release recovery resins (Sumitomo Bakelite Co., Ltd., EMEC-100) After shot molding, SOT (3-pin, 2.9 x 2 mm, thickness 1.1 mm, copper lead frame, semiconductor element is not mounted under molding conditions of mold temperature 160 ° C, injection pressure 9.8 MPa, curing time 2 minutes ) Was continuously molded to evaluate whether the cured resin was released from the mold. Count the number of shots until the package, runner, and cal stick to the mold, ◎ if 400 shots or more, ◎ 200 shots or more, less than 400 shots ◯, 100 shots or more, less than 200 shots △, The case of less than 100 shots was rated as x.
Adhesion: Using a transfer molding machine, a mold temperature of 160 ° C., an injection pressure of 9.8 MPa, a curing time of 2 minutes is 9 × 9 mm, and a thickness of 0.3 mm is 2 × on a silver-plated copper frame and an unplated copper frame. A cured resin having a thickness of 2 mm and a height of 3 mm was molded and post-cured at 160 ° C. for 2 hours. The obtained 8 silver-plated copper frame test pieces and 8 non-plated copper frame test pieces were cooled to room temperature, and the shear adhesion strength was measured at a tool moving speed of 2 mm / sec using 2400A made by DAGE. It was measured. The unit is N.
Experimental Examples 2 to 17
In accordance with the formulations shown in Tables 1 and 2, Experimental Examples 2 to 16 obtained an epoxy resin composition in the same manner as Experimental Example 1, and Experimental Example 16 was an epoxy resin composition without melt-mixing a release agent and a dispersant in advance. I got a thing. In Experimental Example 17, the components (A) to (E) and other components were prepared only by melt mixing, and an epoxy resin composition was obtained without performing subsequent mixing and kneading. Each level was evaluated in the same manner as in Experimental Example 1. These evaluation results are shown in Tables 1 and 2.
The release agents and dispersants used in other than Experimental Example 1 are shown below.
Release agent 2 (In general formula (1), R1 is a linear alkyl group having 30 carbon atoms. N1 is 10.)
Release agent 3 (In general formula (1), R1 is a linear alkyl group having 30 carbon atoms. N1 is 40.)
Release agent 4 (In general formula (1), R1 is a linear alkyl group having 40 carbon atoms. N1 is 13.)
Dispersant 2 (In General Formula (2), R2 is a linear alkyl group having 12 carbon atoms. N2 is 16.)
本発明の製造方法は、従来の技術では得られなかった透明性と離型性の両立を図れるものであり、更により少ない離型剤の配合量で良好な離型性を発現することから、リードフレーム、光半導体素子等のパッケージ内部の部材との優れた密着性を付与することが出来るので、面実装型の樹脂封止型半導体装置として好適に用いることができる。
The production method of the present invention can achieve both transparency and releasability, which could not be obtained by conventional techniques, and expresses good releasability with a smaller amount of release agent. Since excellent adhesion to members inside the package such as a lead frame and an optical semiconductor element can be imparted, it can be suitably used as a surface-mount type resin-encapsulated semiconductor device.
Claims (7)
The optical semiconductor device sealed using the epoxy resin composition for optical semiconductors produced with the manufacturing method of any one of Claims 1-6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005004555A JP2006193566A (en) | 2005-01-11 | 2005-01-11 | Method for producing epoxy resin composition for optical semi-conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005004555A JP2006193566A (en) | 2005-01-11 | 2005-01-11 | Method for producing epoxy resin composition for optical semi-conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006193566A true JP2006193566A (en) | 2006-07-27 |
Family
ID=36799899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005004555A Pending JP2006193566A (en) | 2005-01-11 | 2005-01-11 | Method for producing epoxy resin composition for optical semi-conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006193566A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100200882A1 (en) * | 2007-09-25 | 2010-08-12 | Hayato Kotani | Thermosetting light-reflecting resin composition, optical semiconductor element mounting board produced therewith, method for manufacture thereof, and optical semiconductor device |
US20130037840A1 (en) * | 2011-08-10 | 2013-02-14 | Nitto Denko Corporation | Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same |
US9340700B2 (en) | 2011-09-12 | 2016-05-17 | Nitto Denko Corporation | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same |
-
2005
- 2005-01-11 JP JP2005004555A patent/JP2006193566A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100200882A1 (en) * | 2007-09-25 | 2010-08-12 | Hayato Kotani | Thermosetting light-reflecting resin composition, optical semiconductor element mounting board produced therewith, method for manufacture thereof, and optical semiconductor device |
US8785525B2 (en) * | 2007-09-25 | 2014-07-22 | Hitachi Chemical Company, Ltd. | Thermosetting light-reflecting resin composition, optical semiconductor element mounting board produced therewith, method for manufacture thereof, and optical semiconductor device |
US20130037840A1 (en) * | 2011-08-10 | 2013-02-14 | Nitto Denko Corporation | Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same |
CN102952370A (en) * | 2011-08-10 | 2013-03-06 | 日东电工株式会社 | Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same |
US8963180B2 (en) * | 2011-08-10 | 2015-02-24 | Nitto Denko Corporation | Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same |
US9287473B2 (en) | 2011-08-10 | 2016-03-15 | Nitto Denko Corporation | Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same |
CN105733188A (en) * | 2011-08-10 | 2016-07-06 | 日东电工株式会社 | Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same |
CN102952370B (en) * | 2011-08-10 | 2016-09-07 | 日东电工株式会社 | Optical semiconductor device composition epoxy resin and use its optical semiconductor device |
US9340700B2 (en) | 2011-09-12 | 2016-05-17 | Nitto Denko Corporation | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5154340B2 (en) | Resin composition for optical semiconductor encapsulation | |
JP3891554B2 (en) | Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device | |
CN110499025B (en) | Thermosetting maleimide resin composition for semiconductor encapsulation and semiconductor device | |
WO2011052161A1 (en) | Curable resin composition for optical semiconductor encapsulation, and cured product of same | |
JP2001261933A (en) | Epoxy resin for sealing optical semiconductor element and optical semiconductor device | |
JP2001234032A (en) | Epoxy resin composition for optical semiconductor sealing use | |
JP2008285591A (en) | Epoxy resin composition for sealing optical semiconductor element, cured product thereof and optical semiconductor device using the same | |
JP6233228B2 (en) | Thermosetting epoxy resin composition for optical semiconductor element sealing and semiconductor device using the same | |
TWI461480B (en) | Epoxy resin composition for optical semiconductor light-receiving element encapsulation and process for producing the same, and optical semiconductor device | |
JP5242530B2 (en) | Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device | |
JP4805500B2 (en) | Transparent casting resin material for use in LEDs with SMT capability having high temperature and high brightness or emission intensity | |
JP3562565B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP2006193566A (en) | Method for producing epoxy resin composition for optical semi-conductor | |
JP2013014709A (en) | Epoxy resin composition for sealing electronic component, and electronic component device using the same | |
CN102241807B (en) | Epoxy resin composition for optical-semiconductor element encapsulation and optical-semiconductor device using the same | |
JP2006328360A (en) | Epoxy resin composition and semiconductor device | |
JP6307352B2 (en) | Resin composition for optical semiconductor encapsulation and optical semiconductor device | |
JP2006274221A (en) | Epoxy resin composition for optical semiconductor and semiconductor device | |
JP2014095039A (en) | Thermosetting epoxy resin composition and optical semiconductor device | |
JP3432445B2 (en) | Epoxy resin composition for optical semiconductor and semiconductor device | |
JP2002234990A (en) | Sealing epoxy resin composition for optical semiconductor and optical semiconductor | |
CN107955335B (en) | Preparation method of epoxy resin composition prepared by using stirrer | |
CN101107290A (en) | Curable encapsulant composition and its preparing method | |
JP4762841B2 (en) | Glass material composition for protecting optical semiconductor element and optical semiconductor device using the same | |
JP5040404B2 (en) | Epoxy resin composition for sealing material, cured product thereof and semiconductor device |