[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006190735A - Cooling device and electronic unit provided therewith - Google Patents

Cooling device and electronic unit provided therewith Download PDF

Info

Publication number
JP2006190735A
JP2006190735A JP2005000387A JP2005000387A JP2006190735A JP 2006190735 A JP2006190735 A JP 2006190735A JP 2005000387 A JP2005000387 A JP 2005000387A JP 2005000387 A JP2005000387 A JP 2005000387A JP 2006190735 A JP2006190735 A JP 2006190735A
Authority
JP
Japan
Prior art keywords
heat
cooling device
radiator
heat receiving
integrated pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005000387A
Other languages
Japanese (ja)
Inventor
Takeshi Kusakabe
毅 日下部
Masamitsu Aizono
譲光 相園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005000387A priority Critical patent/JP2006190735A/en
Publication of JP2006190735A publication Critical patent/JP2006190735A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small cooling device where an exothermic electronic component on a substrate can highly efficiently be cooled and the passage resistance of piping is small, and to provide an electronic unit provided with the cooling device. <P>SOLUTION: In the cooling device, a liquid refrigerant is circulated, heat is taken from the exothermic electronic component mounted on the substrate by heat exchange with the liquid refrigerant, and taken heat is radiated by a radiator 3. The device is provided with a heat reception integrated pump 2 in which a heat reception part for thermally exchanging the exothermic electronic component and the liquid refrigerant flowing inside is arranged, and which sends the liquid refrigerant after thermal exchange to the radiator 3 by a liquid channel 5. The heat reception integrated pump 2 and the radiator 3 are oppositely arranged. A fan 4 which compulsorily cools the radiator 3 is arranged between them so that it faces them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器筐体内部の基板に配設された中央演算処理装置(以下、CPU)などの発熱電子部品を冷却する冷却装置及びそれを備えた電子機器に関するものである。   The present invention relates to a cooling device that cools heat-generating electronic components such as a central processing unit (hereinafter referred to as CPU) disposed on a substrate inside an electronic device casing, and an electronic device including the same.

近年、コンピュータの処理速度は急速に高速化し、CPUのクロック周波数は以前と比較して飛躍的に大きな値になってきている。この結果、CPUの発熱量が増大し、従来のコンピュータのようにヒートシンクや放熱フィンを発熱体に接触させて放熱するような消極的な放熱方法では能力不足となり、ヒートシンクや放熱フィンを使いファンで強制冷却したり、あるいは、ヒートパイプ内蔵のヒートシンクモジュールを介在させて放熱体をファンで強制冷却したり、さらには、液体ポンプを使って液体冷媒を強制循環し受熱体と放熱体との間で熱交換をさせて強制冷却したりする、などの強制冷却方法が行われている。そして今後も処理速度の高速化が見込まれることから、冷却能力の更なる向上と小型化に期待が寄せられている。   In recent years, the processing speed of computers has been rapidly increased, and the clock frequency of CPUs has become dramatically larger than before. As a result, the amount of heat generated by the CPU increases, and the negative heat dissipation method of dissipating heat by bringing a heat sink or heat sink into contact with the heat generator like conventional computers becomes insufficient. Forcibly cool, or forcibly cool the radiator with a fan by interposing a heat sink module with a built-in heat pipe, and forcibly circulate the liquid refrigerant using a liquid pump between the heat receiver and the radiator There is a forced cooling method such as forced cooling by heat exchange. Since the processing speed is expected to increase further in the future, further improvement in cooling capacity and downsizing are expected.

このような発熱電子部品が実装された基板に取り付ける冷却装置として、例えば、(特許文献1)に開示されているような、発熱部材と金属筐体壁をフレキシブル構造の液流路を有する熱輸送デバイスにより熱接続した冷却装置が知られている。図8は従来の電子機器の冷却装置の固定装置を示す図である。   As a cooling device attached to a substrate on which such heat generating electronic components are mounted, for example, as disclosed in (Patent Document 1), heat transport including a heat flow member and a metal housing wall having a flexible liquid flow path. Cooling devices that are thermally connected by devices are known. FIG. 8 is a view showing a conventional fixing device for a cooling device of an electronic device.

図8において、電子機器は、複数の半導体素子を搭載した配線基板20、キーボード21、ディスク装置22、表示装置23などからなり、金属製の筐体24の中に収容されている。配線基板20に搭載された半導体素子のうち、発熱量がとくに大きい半導体素子25は、受熱ヘッダ26、放熱ヘッダ27、フレキシブルチューブ28等で構成される熱輸送デバイスによって冷却される。図8に示すように、半導体素子25と受熱ヘッダ26とはサーマルコンパウンド、あるいは、高熱伝導シリコンゴムなどを挟んで接触させ、半導体素子25で発生する熱を効率よく受熱ヘッダ26に伝える。   In FIG. 8, the electronic device includes a wiring board 20 on which a plurality of semiconductor elements are mounted, a keyboard 21, a disk device 22, a display device 23, and the like, and is housed in a metal housing 24. Of the semiconductor elements mounted on the wiring board 20, the semiconductor element 25 that generates a particularly large amount of heat is cooled by a heat transport device including a heat receiving header 26, a heat radiating header 27, a flexible tube 28, and the like. As shown in FIG. 8, the semiconductor element 25 and the heat receiving header 26 are brought into contact with each other with a thermal compound or high thermal conductive silicon rubber interposed therebetween, and the heat generated in the semiconductor element 25 is efficiently transmitted to the heat receiving header 26.

さらに、半導体素子25に接続された受熱ヘッダ26はフレキシブルチューブ28によって、表示装置23の背面部の筐体壁に設置された放熱ヘッダ27に接続されている。放熱ヘッダ27は、サーマルコンパウンド、あるいは、高熱伝導シリコンゴムを介して、もしくは、直接的にねじ29止めなどの手段によって金属製筐体壁と熱的かつ物理的に取り付けられる。   Furthermore, the heat receiving header 26 connected to the semiconductor element 25 is connected by a flexible tube 28 to a heat radiating header 27 installed on the housing wall on the back surface of the display device 23. The heat-dissipating header 27 is thermally and physically attached to the metal housing wall via a thermal compound, high thermal conductive silicon rubber, or directly by means such as screws 29.

受熱ヘッダ26、放熱ヘッダ27の内部には流路が形成され、液体が封入されている。さらに、放熱ヘッダ27の内部には液駆動装置が組み込まれており、受熱ヘッダ26と放熱ヘッダ27との間で液が往復動あるいは循環することによって熱サイクルとして駆動される。受熱ヘッダ26と放熱ヘッダ27間はフレキシブルチューブ28によって接続されるので、非常に狭い筐体内に多数の部品が実装された状態においても、実装構造に左右されることなく、高発熱半導体素子と放熱部である筐体壁とが容易に接続できるとともに、熱輸送が液の駆動によって行われるので、高発熱半導体素子で発生する熱は、効果的に放熱ヘッダに輸送される。放熱部においては、放熱ヘッダと金属製筐体壁とが熱的に接続されているので、金属製筐体の高い熱伝導率のために熱が広く筐体壁に拡散され高い放熱性能が得られる。したがって、効率的に半導体素子を冷却することができる。
特開平7−142886号公報(第6頁、図1)
A flow path is formed inside the heat receiving header 26 and the heat radiating header 27, and a liquid is sealed therein. Further, a liquid driving device is incorporated in the heat radiating header 27 and is driven as a heat cycle by reciprocating or circulating the liquid between the heat receiving header 26 and the heat radiating header 27. Since the heat receiving header 26 and the heat radiating header 27 are connected by the flexible tube 28, even when a large number of components are mounted in a very narrow housing, the heat generating semiconductor element and the heat radiating are not affected by the mounting structure. Since the heat transfer is performed by driving the liquid, the heat generated in the high heat generation semiconductor element is effectively transported to the heat dissipation header. In the heat dissipating part, the heat dissipating header and the metal housing wall are thermally connected, so heat is widely diffused to the housing wall due to the high thermal conductivity of the metal housing, and high heat dissipating performance is obtained. It is done. Therefore, the semiconductor element can be efficiently cooled.
JP-A-7-142886 (page 6, FIG. 1)

しかしながら、(特許文献1)に記載された従来の冷却装置では、CPUなどの発熱電子部品である半導体素子25の表面に受熱ヘッダ26を設置し、液冷却装置を構成する他の要素、例えば放熱ヘッダ27、フレキシブルチューブ28を電子機器筐体内に別々に配置しているため、電子機器筐体の薄型化には対応できるものの、冷却装置の電子機器筐体への取り付け作業が煩雑で、冷却装置自体が占める容積も非常に大きいものとなっていた。   However, in the conventional cooling device described in (Patent Document 1), the heat receiving header 26 is installed on the surface of the semiconductor element 25 that is a heat generating electronic component such as a CPU, and other elements constituting the liquid cooling device, for example, heat dissipation. Since the header 27 and the flexible tube 28 are separately arranged in the electronic device casing, the electronic device casing can be made thin, but the mounting work of the cooling device to the electronic device casing is complicated, and the cooling device The volume that it occupies was very large.

また、それぞれの部品を相互に接続する配管長が必然的に長くなるため、長期使用による冷媒の蒸発量も多くなり、これを補充するための比較的大型のリザーブタンクを液流路の一部に設けざるをえず、結果として冷却装置全体の大型化や配管長が長くなってしまうものであった。これにより従来の冷却装置では、ポンプに対する配管の流路抵抗が増して流量が減り、冷却性能の低下につながっていた。   In addition, since the length of the pipe connecting the parts to each other is inevitably increased, the amount of refrigerant evaporated due to long-term use also increases, and a relatively large reserve tank for replenishing this is used as a part of the liquid flow path. Therefore, as a result, the entire cooling device is increased in size and the piping length is increased. Thereby, in the conventional cooling device, the flow path resistance of the piping with respect to the pump is increased, the flow rate is decreased, and the cooling performance is lowered.

さらに、放熱性を強化するため、放熱ヘッダ27やその近傍に金属製のフィンを設けそれらをファンで強制冷却する場合にも、ファンの送風路が障害されないように送風路を電子機器筐体内に確保するためのスペースが必要であったり、電子機器筐体内に冷却装置を設置したりする上で、構成要素のさらなる複雑化とそれに伴う冷却性能の低下が課題であった。   Furthermore, in order to enhance heat dissipation, even when metal fins are provided near the heat dissipation header 27 or in the vicinity thereof and they are forcibly cooled by a fan, the airflow path is placed in the electronic device casing so that the fan airflow path is not obstructed. In order to secure a space for securing, or to install a cooling device in an electronic device casing, further complication of components and a decrease in cooling performance associated therewith have been problems.

そこで本発明は、基板上の発熱電子部品を高効率に冷却でき、小型で、配管の流路抵抗が小さい冷却装置及びそれを備えた電子機器を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling device that can cool a heat-generating electronic component on a substrate with high efficiency, is small, and has a small flow path resistance of a pipe, and an electronic device including the same.

上記課題を解決するため本発明は、液体冷媒を循環し、該液体冷媒との熱交換で基板に実装した発熱電子部品から熱を奪い、奪った熱をラジエータで放熱する冷却装置であって、発熱電子部品と内部を流れる液体冷媒を熱交換させるための受熱部が設けられ、熱交換後の液体冷媒を循環路でラジエータに送る受熱一体ポンプを備え、該受熱一体ポンプと前記ラジエータが対向して配置され、その間にラジエータを強制冷却するファンがそれぞれと対向するように配置されたことを主要な特徴としている。   In order to solve the above problems, the present invention is a cooling device that circulates a liquid refrigerant, takes heat from a heat generating electronic component mounted on a substrate by heat exchange with the liquid refrigerant, and dissipates the taken heat with a radiator, A heat receiving part for exchanging heat between the heat generating electronic component and the liquid refrigerant flowing inside is provided, and includes a heat receiving integrated pump that sends the liquid refrigerant after heat exchange to the radiator through a circulation path, and the heat receiving integrated pump and the radiator face each other. The main feature is that the fans forcibly cooling the radiator are arranged so as to face each other.

本発明の冷却装置によれば、受熱一体ポンプ、ラジエータ、ファン、及びリザーブタンクなどの構成要素を簡素な構造で一体的に構成できるので、電子機器筐体内の発熱電子部品への実装の作業が容易となるばかりでなく、配管長も短くでき冷媒の水分蒸発量が抑制でき、その分リザーブタンクを小型化することができ、冷却装置全体を小型化するとともに、配管長が短くなることで、ポンプに対する配管の流路抵抗が減少し、これによって流量が増大し、冷却性能を向上させることができる。   According to the cooling device of the present invention, components such as the heat receiving integrated pump, the radiator, the fan, and the reserve tank can be integrally configured with a simple structure, so that the mounting work to the heat generating electronic components in the electronic device casing can be performed. Not only is it easy, but the pipe length can be shortened, the amount of water evaporation of the refrigerant can be suppressed, the reserve tank can be downsized accordingly, the entire cooling device can be downsized, and the pipe length can be shortened. The flow path resistance of the piping with respect to the pump decreases, thereby increasing the flow rate and improving the cooling performance.

上記課題を解決するためになされた本発明の第1の発明は、液体冷媒を循環し、該液体冷媒との熱交換で基板に実装した発熱電子部品から熱を奪い、奪った熱をラジエータで放熱する冷却装置であって、発熱電子部品と内部を流れる液体冷媒を熱交換させるための受熱部が設けられ、熱交換後の液体冷媒を循環路でラジエータに送る受熱一体ポンプを備え、該受熱一体ポンプと前記ラジエータが対向して配置され、その間にラジエータを強制冷却するファンがそれぞれと対向するように配置された冷却装置であり、簡素な構造で一体的に構成されているので、電子機器筐体内の発熱電子部品への実装の作業が容易となるばかりでなく、本発明の冷却装置を電子機器筐体内で他の周辺装置や筐体壁に近接して設置したとしても、ラジエータの放熱に必要なファンの送風路は妨げられることがなく、配管長が短く、ポンプに対する配管の流路抵抗が減少し、流量が増大することによって冷却性能も向上することができる。   The first invention of the present invention, which has been made to solve the above problems, circulates a liquid refrigerant, removes heat from a heat-generating electronic component mounted on a substrate by heat exchange with the liquid refrigerant, and uses a radiator to remove the deprived heat. A cooling device that dissipates heat, and includes a heat receiving unit for exchanging heat between the heat generating electronic component and the liquid refrigerant flowing inside, and includes a heat receiving integrated pump that sends the liquid refrigerant after heat exchange to a radiator through a circulation path. A cooling device in which an integrated pump and the radiator are arranged to face each other, and a fan for forcibly cooling the radiator between them is arranged to face each other, and is configured integrally with a simple structure. In addition to facilitating the mounting work on the heat generating electronic components in the housing, the radiator can be released even if the cooling device of the present invention is installed in the electronic device housing close to other peripheral devices or the housing wall. Without the fans blowing path required impeded, the pipe length is short, flow resistance of the pipe with respect to the pump is reduced, the cooling performance by the flow rate increases can be improved.

本発明の第2の発明は、第1の発明に従属する発明であって、ファンと受熱一体ポンプとの間に風路が設けられた冷却装置であり、第1の発明の効果に加え、本発明の冷却装置を電子機器筐体内で他の周辺装置や筐体壁に近接して設置したとしても、ラジエータの放熱に必要なファンの送風路を十分確保できラジエータに十分な風量の空気を送風できるのでラジエータの放熱性能を向上できる。   A second invention of the present invention is an invention subordinate to the first invention, and is a cooling device in which an air passage is provided between the fan and the heat receiving integrated pump. In addition to the effects of the first invention, Even if the cooling device of the present invention is installed close to other peripheral devices or the housing wall in the electronic device casing, it can secure a sufficient fan air passage for heat dissipation of the radiator, and can supply a sufficient amount of air to the radiator. Since the air can be blown, the heat dissipation performance of the radiator can be improved.

本発明の第3の発明は、第1の発明または第2の発明に従属する発明であって、受熱一体ポンプとラジエータとファンをそれぞれ結合して一体にする冷却装置結合部材が設けられた冷却装置であり、第1または第2の発明の効果に加え、冷却装置結合部材により冷却装置の各構成要素を所定の位置に配置、固定する作業が容易に可能となる。   A third invention of the present invention is an invention dependent on the first invention or the second invention, wherein a cooling device coupling member for coupling and integrating the heat receiving integrated pump, the radiator and the fan is provided. In addition to the effects of the first or second invention, the cooling device coupling member can easily arrange and fix each component of the cooling device at a predetermined position.

本発明の第4の発明は、第3の発明に従属する発明であって、冷却装置結合部材が受熱一体ポンプとファンの間に配置され、該冷却装置結合部材と受熱一体ポンプとの間に弾性部材が設けられた冷却装置であり、第3の発明の効果に加え、本発明の冷却装置を基板上で着脱する際に、冷却結合部材と冷却装置を基板側に押し付けることで、冷却装置結合部材を基板に係止したり、開放したりする動作に利用でき、これによって冷却装置の着脱作業が容易となり、発熱電子部品の交換作業がより簡単になる。さらに、受熱一体ポンプを発熱電子部品へ均一的に押圧することができ、安定した熱接続状態を維持できるので、放熱性能も向上できる。また、運搬時等における振動も吸収できる。   A fourth invention of the present invention is an invention dependent on the third invention, wherein the cooling device coupling member is disposed between the heat receiving integrated pump and the fan, and between the cooling device coupling member and the heat receiving integrated pump. A cooling device provided with an elastic member, and in addition to the effect of the third invention, when the cooling device of the present invention is attached to and detached from the substrate, the cooling coupling member and the cooling device are pressed against the substrate side, thereby the cooling device It can be used for the operation of locking or releasing the coupling member to the substrate, which makes it easy to attach and detach the cooling device, and makes it easier to replace the heat generating electronic components. Furthermore, since the heat receiving integrated pump can be uniformly pressed against the heat generating electronic components and a stable heat connection state can be maintained, the heat dissipation performance can also be improved. It can also absorb vibration during transportation.

本発明の第5の発明は、第3または第4の発明に従属する発明であって、冷却装置結合部材が受熱一体ポンプとファンの間に配置され、該冷却装置結合部材には基板に係止するためのフックが設けられた冷却装置であり、例えば基板側に設けられたクランプ部に冷却装置結合部材を係止したり、開放したりする動作に利用でき、これによって冷却装置の着脱作業が容易となり、発熱電子部品の交換作業がより簡単になる。   A fifth invention of the present invention is an invention dependent on the third or fourth invention, wherein the cooling device coupling member is disposed between the heat receiving integrated pump and the fan, and the cooling device coupling member is related to the substrate. It is a cooling device provided with a hook for stopping, and can be used for, for example, an operation of locking or releasing the cooling device coupling member to a clamp portion provided on the substrate side, thereby detaching the cooling device. This makes it easier to replace the heat generating electronic components.

本発明の第6の発明は、第1〜第5のいずれかの発明に従属する発明であって、受熱一体ポンプ、ラジエータ、またはファンのいずれかの側面に隣接してリザーブタンクが配置された冷却装置であり、第1〜第5のいずれかの発明の効果に加え、長期間使用する際に蒸発する冷媒の補給を必要とすることなく、また側面に隣接することで液流路を短くすることができるため液流路からの冷媒の蒸発量が少なくなり冷却装置の連続使用が可能となる冷却装置を提供できる。   A sixth invention of the present invention is an invention dependent on any one of the first to fifth inventions, wherein a reserve tank is disposed adjacent to any side surface of the heat receiving integrated pump, the radiator, or the fan. In addition to the effects of any one of the first to fifth inventions, the cooling device does not require replenishment of the refrigerant that evaporates when used for a long period of time, and the liquid flow path is shortened by being adjacent to the side surface. Therefore, it is possible to provide a cooling device in which the amount of refrigerant evaporated from the liquid flow path is reduced and the cooling device can be used continuously.

本発明の第7の発明は、第1〜第6のいずれかの発明の冷却装置を備え、冷却装置の受熱一体ポンプが発熱電子部品と熱接続された電子機器であり、小型であり冷媒の水分蒸発量を抑制でき、発熱電子部品の交換などのメンテナンス作業が容易な電子機器を提供できる。   A seventh invention of the present invention is an electronic apparatus comprising the cooling device according to any one of the first to sixth inventions, wherein the heat receiving integrated pump of the cooling device is thermally connected to the heat generating electronic component, and is small in size and includes a refrigerant. It is possible to provide an electronic device that can suppress the amount of moisture evaporation and can easily perform maintenance work such as replacement of heat-generating electronic components.

以下、本発明の実施の形態1について図面を用いて説明する。   Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.

(実施の形態1)
本発明の実施の形態1は、電子機器としてコンピュータ装置に搭載する液体の冷媒を用いた液冷却方式の冷却装置に関するものである。図1は本発明の実施の形態1における冷却装置の固定装置の装着状態を示す全体側面図、図2は本発明の実施の形態1における冷却装置結合部材へ取り付けられた冷却装置の上方斜視図、図3は本発明の実施の形態1における冷却装置結合部材へ取り付けられた冷却装置の下方斜視図、図4は本発明の実施の形態1における冷却装置の固定装置との冷却装置装着前の位置関係を示す側面図、図5本発明の実施の形態1における冷却装置を基板方向に押圧する直前のクランプ部の説明図、図6は本発明の実施の形態1における冷却装置を基板方向に押圧した直後のクランプ部の説明図、図7は本発明の実施の形態1における冷却装置を取り外す際のクランプ部の可動部材の説明図である。
(Embodiment 1)
Embodiment 1 of the present invention relates to a liquid cooling type cooling apparatus using a liquid refrigerant mounted on a computer device as an electronic apparatus. 1 is an overall side view showing a mounting state of a cooling device fixing device according to Embodiment 1 of the present invention, and FIG. 2 is an upper perspective view of the cooling device attached to the cooling device coupling member according to Embodiment 1 of the present invention. FIG. 3 is a lower perspective view of the cooling device attached to the cooling device coupling member according to the first embodiment of the present invention, and FIG. FIG. 5 is a side view showing the positional relationship, FIG. 5 is an explanatory diagram of a clamp part immediately before pressing the cooling device in the first embodiment of the present invention in the substrate direction, and FIG. 6 is a diagram showing the cooling device in the first embodiment of the present invention in the substrate direction. FIG. 7 is an explanatory view of the clamp part immediately after pressing, and FIG. 7 is an explanatory view of the movable member of the clamp part when the cooling device according to Embodiment 1 of the present invention is removed.

図1〜図3は冷却装置1を実施の形態1の固定装置に装着した状態を示している。冷却装置1は、受熱一体ポンプ2、ラジエータ3、リザーブタンク6を循環路に配し、液体冷媒(以下、冷却液)を使い、受熱一体ポンプ2で受熱した熱をラジエータ3まで運び、ファン4によってラジエータ3を冷却し、放熱後の冷却液を再び受熱一体ポンプ2に戻して循環させる冷却システムを1ブロック化した構造である。なお、液体冷媒は水や不凍液等が好適である。   1 to 3 show a state in which the cooling device 1 is mounted on the fixing device of the first embodiment. The cooling device 1 includes a heat receiving integrated pump 2, a radiator 3, and a reserve tank 6 in a circulation path, uses a liquid refrigerant (hereinafter referred to as cooling liquid), carries heat received by the heat receiving integrated pump 2 to the radiator 3, and a fan 4. This is a structure in which the cooling system for cooling the radiator 3 and returning the radiated coolant back to the heat receiving integrated pump 2 for circulation is made into one block. The liquid refrigerant is preferably water or antifreeze.

発熱電子部品であるCPUから発生した熱は受熱一体ポンプ2の底面に形成された受熱面2a(本発明の受熱部)を介して内部に循環している冷却液に伝えられ、冷却液の温度が上昇する。熱交換で温度が上昇した冷却液は受熱一体ポンプ2によってラジエータ3へ送られる。ラジエータ3は冷却液が流れる金属性のパイプ3aとこれと接触している複数の放熱フィン3bとで構成され、温度上昇した冷却液の熱が放熱フィン3bに効率よく伝わる構造となっている。   The heat generated from the CPU, which is a heat generating electronic component, is transmitted to the coolant circulating inside through the heat receiving surface 2a (heat receiving portion of the present invention) formed on the bottom surface of the heat receiving integrated pump 2, and the temperature of the coolant Rises. The coolant whose temperature has been increased by heat exchange is sent to the radiator 3 by the heat receiving integrated pump 2. The radiator 3 includes a metallic pipe 3a through which a coolant flows and a plurality of heat radiation fins 3b in contact therewith, and has a structure in which heat of the coolant whose temperature has risen is efficiently transmitted to the heat radiation fins 3b.

ラジエータ3は、図2に示すような蛇行する金属性のパイプ3aと、これと交差、接触している複数の放熱フィン3bとから構成され、パイプ3aの中を冷却液が流れてその熱が放熱フィン3bに伝熱される。さらに、この伝熱された熱を放熱するためファン4が放熱フィン3bに風を当て、温度上昇した空気を放出する。熱を奪われ温度が低下した冷却液はリザーブタンク6を通って再び受熱一体ポンプ2へ送られる。   The radiator 3 is composed of a meandering metallic pipe 3a as shown in FIG. 2 and a plurality of radiating fins 3b intersecting and contacting the pipe 3a. The coolant flows through the pipe 3a and the heat is generated. Heat is transferred to the radiation fin 3b. Further, in order to dissipate the heat transferred, the fan 4 applies air to the heat dissipating fins 3b and releases the air whose temperature has increased. The coolant whose temperature has been removed due to heat removal passes through the reserve tank 6 and is sent to the heat receiving integrated pump 2 again.

そして、受熱一体ポンプ2とラジエータ3は対向した位置関係に配置され、その間にラジエータ3を強制冷却するファン4が両者と対向するように配置される。このときファン4の吸い込み側が受熱一体ポンプ2と対向して配置されることになり、両者の間はファン4に供給する空気の風路7となる。このようにファン4と受熱一体ポンプ2、ラジエータ3を対向配置させることで、最小のスペースで冷却装置1を構成するとともに、ファン4と受熱一体ポンプ2間の風路7によりラジエータ3に送風する十分な風量の空気を確保することができる。   And the heat receiving integrated pump 2 and the radiator 3 are arrange | positioned in the opposing positional relationship, and the fan 4 which forcibly cools the radiator 3 is arrange | positioned so as to oppose both. At this time, the suction side of the fan 4 is disposed to face the heat receiving integrated pump 2, and an air passage 7 for air supplied to the fan 4 is formed between the two. Thus, by disposing the fan 4, the heat receiving integrated pump 2, and the radiator 3 so as to face each other, the cooling device 1 is configured with a minimum space, and air is sent to the radiator 3 by the air passage 7 between the fan 4 and the heat receiving integrated pump 2. Sufficient air volume can be secured.

なお、リザーブタンク6には、冷却液内に混入した空気を分離するための気液分離機構が設けられており、冷却装置1がいかなる姿勢になっても分離した空気が再度受熱一体ポンプ2へ混入することのないように構成されている。そして、長期にわたって使用され冷却液の水分が気化しても冷却性能を維持するために、十分な量の冷却液を内部に貯えている。なお、実施の形態1では受熱一体ポンプ2→ラジエータ3→リザーブタンク6→受熱一体ポンプ2の順序で冷却液が循環するが、冷却液が循環する順は適宜変更できる。   The reserve tank 6 is provided with a gas-liquid separation mechanism for separating the air mixed in the cooling liquid, and the separated air is supplied again to the heat receiving integrated pump 2 regardless of the posture of the cooling device 1. It is configured not to be mixed. In addition, a sufficient amount of coolant is stored in the interior in order to maintain cooling performance even if the coolant is used over a long period of time and vaporizes. In the first embodiment, the coolant circulates in the order of the heat receiving integrated pump 2 → the radiator 3 → the reserve tank 6 → the heat receiving integrated pump 2, but the order in which the coolant circulates can be changed as appropriate.

この冷却装置1は、ファン4が図2,図3に示すように冷却装置結合部材8に固定ピン8aで固定され、その上側にラジエータ3が搭載され、ラジエータ3の側面にリザーブタンク6が固定される。一方、受熱一体ポンプ2は、弾性部材であるコイルバネ8c(図1では圧縮された状態となっている)を介して冷却装置結合部材8の下面に固定ネジ8bで固定される。コイルバネ8cで固定されるので受熱一体ポンプ2は上下方向に可動であり、振動と押圧力の吸収が可能になる。発熱電子部品であるCPUから発生した熱は受熱一体ポンプ2の底面に位置する受熱面2aを介して受熱面内部に循環している冷却液に伝えられ冷却液の温度が上昇する。   In the cooling device 1, the fan 4 is fixed to the cooling device coupling member 8 with a fixing pin 8 a as shown in FIGS. 2 and 3, the radiator 3 is mounted on the upper side, and the reserve tank 6 is fixed to the side surface of the radiator 3. Is done. On the other hand, the heat receiving integrated pump 2 is fixed to the lower surface of the cooling device coupling member 8 by a fixing screw 8b via a coil spring 8c (compressed in FIG. 1) which is an elastic member. Since it is fixed by the coil spring 8c, the heat receiving integrated pump 2 is movable in the vertical direction and can absorb vibration and pressing force. The heat generated from the CPU, which is a heat generating electronic component, is transmitted to the coolant circulating inside the heat receiving surface via the heat receiving surface 2a located on the bottom surface of the heat receiving integrated pump 2, and the temperature of the coolant rises.

受熱面2aを通しての熱交換で温度上昇した冷却液は受熱一体ポンプ2によってラジエータ3へ送られる。ラジエータ3では、パイプ3aの中を冷却液が流れてその熱が放熱フィン3bに伝熱される。さらに、この伝熱された熱はファン4からの風によって放出される。温度低下した冷却液はリザーブタンク6を通って再び受熱一体ポンプ2へ送られる。   The coolant whose temperature has been increased by heat exchange through the heat receiving surface 2 a is sent to the radiator 3 by the heat receiving integrated pump 2. In the radiator 3, the coolant flows through the pipe 3a, and the heat is transferred to the radiation fins 3b. Further, the heat transferred is released by the wind from the fan 4. The coolant whose temperature has decreased is sent again to the heat receiving integrated pump 2 through the reserve tank 6.

ところで、冷却装置結合部材8には受熱一体ポンプ2の両側に図3のようなフック8dが設けられており、後述するクランプ部12と係合する。これにより、コイルバネ8cを介して所定の荷重で受熱一体ポンプ2を付勢し、CPUの上面に押し付けることが可能になり、図3に示す受熱一体ポンプ2下方の円形の受熱面2aはCPUの中央に密着する。なお、冷却装置結合部材8は金属板等の金属製が望ましいが、この押さえ荷重に耐え得る材料であれば、金属製である必要はなく樹脂でよい。   By the way, the cooling device coupling member 8 is provided with hooks 8d as shown in FIG. 3 on both sides of the heat receiving integrated pump 2, and engages with a clamp portion 12 described later. Thus, the heat receiving integrated pump 2 can be urged with a predetermined load via the coil spring 8c and pressed against the upper surface of the CPU. The circular heat receiving surface 2a below the heat receiving integrated pump 2 shown in FIG. Close contact with the center. The cooling device coupling member 8 is preferably made of metal such as a metal plate, but may be made of metal as long as the material can withstand this pressing load.

続いて、図4〜図7に基づいて冷却装置1の装着方法を説明する。図4に示すように、冷却装置結合部材8に取り付けられてブロック化された冷却装置1が、基板9の実装面上のCPU10の周囲に設けられたガイド11とクランプ部12に対して矢印の方向に挿入される。次に、図5に示すように、冷却装置1の受熱一体ポンプ2をガイド11内に収めるように基板9の方向に押し込むと、ガイド11により受熱一体ポンプ2がCPU10の中央部分に導かれる。このまま冷却装置1を基板9の方向に押し込むと、図5に示すように液冷却装置結合部材8のフック8dがクランプ可動ピン12aに接触し、可動部材であるクランプ可動側板12bとクランプ可動ピン12aを破線で示したように外側に押し開く。   Then, the mounting method of the cooling device 1 is demonstrated based on FIGS. As shown in FIG. 4, the cooling device 1 that is attached to the cooling device coupling member 8 and formed into a block has an arrow with respect to the guide 11 and the clamp portion 12 that are provided around the CPU 10 on the mounting surface of the substrate 9. Inserted in the direction. Next, as shown in FIG. 5, when the heat receiving integrated pump 2 of the cooling device 1 is pushed in the direction of the substrate 9 so as to be housed in the guide 11, the guide 11 guides the heat receiving integrated pump 2 to the central portion of the CPU 10. When the cooling device 1 is pushed in the direction of the substrate 9 as it is, as shown in FIG. 5, the hook 8d of the liquid cooling device coupling member 8 comes into contact with the clamp movable pin 12a, and the clamp movable side plate 12b and the clamp movable pin 12a which are movable members. Is pushed outward as indicated by the broken line.

ここでさらに冷却装置1を押し込むと、図6に示すように、略円柱状のクランプ可動ピン12aが冷却装置結合部材8のフック8dの屈曲頂部を乗り越え、屈曲頂部に隣接して形成された凹部内に回り込んで安定し、クランプ可動側板12bもトーションバネ(図示しない)のため破線で示した傾斜した位置より元の姿勢(基板9に垂直)に自己復帰し、この状態でクランプ可動ピン12aが冷却装置結合部材8のフック8dに係止された状態となる。この状態で冷却装置1を押し込む作業をやめると、冷却装置結合部材8がクランプ可動ピン12aとフック8dでロックされ、弾性部材であるコイルバネ8cを介して受熱一体ポンプ2が所定の荷重でCPU10の上面に押し付けられた状態となる。   When the cooling device 1 is further pushed in here, as shown in FIG. 6, the substantially cylindrical clamp movable pin 12a gets over the bent top of the hook 8d of the cooling device coupling member 8, and is a recess formed adjacent to the bent top. The clamp movable side plate 12b is self-returned to the original posture (perpendicular to the substrate 9) from the inclined position indicated by the broken line because of the torsion spring (not shown), and in this state, the clamp movable pin 12a Is engaged with the hook 8d of the cooling device coupling member 8. When the operation of pushing in the cooling device 1 is stopped in this state, the cooling device coupling member 8 is locked by the clamp movable pin 12a and the hook 8d, and the heat receiving integrated pump 2 is loaded with a predetermined load via the coil spring 8c which is an elastic member. It will be in the state pressed against the upper surface.

従って、受熱一体ポンプ2をCPU10の上面に押し付ける荷重はコイルバネ8cのバネ定数を変化させることで、任意に設定、調整することが可能であり、また、冷却装置1の側面がガイド11のガイド規制面に内接することで、基板9と平行な方向に位置規制された状態で保持固定されているので、位置変動もなく均一な押圧力が得られ、冷却装置1の受熱面2aとCPU10に上面の平行度が保たれ、両者の接触状態が安定し、熱接続状態が良好で、冷却性能も向上する。運搬時等における振動も吸収できる。   Therefore, the load for pressing the heat receiving integrated pump 2 against the upper surface of the CPU 10 can be arbitrarily set and adjusted by changing the spring constant of the coil spring 8 c, and the side surface of the cooling device 1 is guided by the guide 11. Since it is held and fixed in a state in which the position is regulated in a direction parallel to the substrate 9 by being inscribed in the surface, a uniform pressing force can be obtained without positional fluctuation, and the upper surface of the heat receiving surface 2a of the cooling device 1 and the CPU 10 can be obtained. The parallelism is maintained, the contact state between the two is stable, the thermal connection state is good, and the cooling performance is improved. It can also absorb vibrations during transportation.

次に、以上説明したように冷却装置1を装着した後にそれを取り外す方法について図7を用いて説明する。取り外しは基本的に以上説明した装着の手順と逆の作業をすればよい。まず、クランプ可動ピン12aがフック8dの係止状態を開放できる位置まで冷却装置1を基板9に押し付け、両側のクランプ可動ピン12aとクランプ可動側板12bを図6の破線のように外側に開きながら冷却装置1の押し付けを止めると、図5の状態に戻る。この状態から図7に示すようにさらに片方のクランプ可動側板12bを押し開くと、クランプ可動側板凸部12cが受熱一体ポンプ側面凸部2bをクランプ固定ピン12dまわりの梃の原理で押し上げる。このため仮にCPU10表面に塗られていたサーマルインターフェースによって冷却装置1がCPU10に強固に固着していたとしても簡単に取り外すことができる。なお、受熱一体ポンプ2の底面をクランプ可動側板凸部12cで直接押し上げる場合には、受熱一体ポンプ側面凸部2bは不要であり、受熱一体ポンプ側面凸部2bの設置は適宜行うことができる。   Next, a method of removing the cooling device 1 after mounting it as described above will be described with reference to FIG. The removal may basically be performed in the reverse order of the mounting procedure described above. First, the cooling device 1 is pressed against the substrate 9 to a position where the clamp movable pin 12a can release the hooked state of the hook 8d, and the clamp movable pins 12a and the clamp movable side plates 12b on both sides are opened outward as indicated by broken lines in FIG. When the pressing of the cooling device 1 is stopped, the state returns to the state of FIG. When one clamp movable side plate 12b is further pushed open from this state as shown in FIG. 7, the clamp movable side plate convex portion 12c pushes up the heat receiving integrated pump side surface convex portion 2b by the principle of scissors around the clamp fixing pin 12d. For this reason, even if the cooling device 1 is firmly fixed to the CPU 10 by the thermal interface applied to the surface of the CPU 10, it can be easily removed. When the bottom surface of the heat receiving integrated pump 2 is directly pushed up by the clamp movable side plate convex portion 12c, the heat receiving integrated pump side surface convex portion 2b is not necessary, and the heat receiving integrated pump side surface convex portion 2b can be appropriately installed.

なお、本発明は、受熱体と放熱体が別体に構成され、放熱体をファン冷却したり、液体冷媒を循環させながら発熱体からの熱をラジエータ側に放熱したりする冷却装置の装置全体またはその一部の構成要素のみを固定する固定装置として適用できる。   In the present invention, the heat receiving body and the heat radiating body are configured separately, and the entire cooling device that cools the heat radiating body with a fan or radiates the heat from the heat generating body to the radiator side while circulating the liquid refrigerant. Or it can apply as a fixing device which fixes only the one part component.

さらに、本発明に係わる冷却装置を保持、固定する側の機構については、本実施の形態1の構成に制限されるものではなく、冷却装置の装着のための作業性やそれ自体の固定保持強度が適正であれば、別の形態でもよい。   Further, the mechanism for holding and fixing the cooling device according to the present invention is not limited to the configuration of the first embodiment, and the workability for mounting the cooling device and the fixing and holding strength of the cooling device itself are not limited. If is suitable, another form may be used.

本発明は、液体の冷媒を循環させながら基板上に配設された発熱電子部品を冷却する冷却装置及びそれを備えた電子機器に適用できる。   The present invention can be applied to a cooling device for cooling a heat generating electronic component disposed on a substrate while circulating a liquid refrigerant, and an electronic apparatus including the same.

本発明の実施の形態1における冷却装置の固定装置の装着状態を示す全体側面図Whole side view which shows the mounting state of the fixing device of the cooling device in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置結合部材へ取り付けられた冷却装置の上方斜視図The upper perspective view of the cooling device attached to the cooling device coupling member in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置結合部材へ取り付けられた冷却装置の下方斜視図The lower perspective view of the cooling device attached to the cooling device coupling member in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置の固定装置との冷却装置装着前の位置関係を示す側面図The side view which shows the positional relationship before cooling device mounting | wearing with the fixing device of the cooling device in Embodiment 1 of this invention. 本発明の実施の形態1における冷却装置を基板方向に押圧する直前のクランプ部の説明図Explanatory drawing of the clamp part just before pressing the cooling device in Embodiment 1 of this invention to a board | substrate direction. 本発明の実施の形態1における冷却装置を基板方向に押圧した直後のクランプ部の説明図Explanatory drawing of the clamp part immediately after pressing the cooling device in Embodiment 1 of this invention to a board | substrate direction. 本発明の実施の形態1における冷却装置を取り外す際のクランプ部の可動部材の説明図Explanatory drawing of the movable member of the clamp part at the time of removing the cooling device in Embodiment 1 of this invention 従来の電子機器の冷却装置の固定装置を示す図The figure which shows the fixing device of the cooling device of the conventional electronic device

符号の説明Explanation of symbols

1 冷却装置
2 受熱一体ポンプ
2a 受熱面
2b 受熱一体ポンプ側面凸部
3 ラジエータ
3a パイプ
3b 放熱フィン
4 ファン
5 液流路
6 リザーブタンク
7 風路
8 冷却装置結合部材
8a 固定ピン
8b 固定ネジ
8c コイルバネ
8d フック
9 基板
10 CPU
11 ガイド
12 クランプ部
12a クランプ可動ピン
12b クランプ可動側板
12c クランプ可動側板凸部
12d クランプ固定ピン
20 配線基板
21 キーボード
22 ディスク装置
23 表示装置
24 金属製の筐体
25 半導体素子
26 受熱ヘッダ
27 放熱ヘッダ
28 フレキシブルチューブ
29 ねじ
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Heat receiving integrated pump 2a Heat receiving surface 2b Heat receiving integrated pump side convex part 3 Radiator 3a Pipe 3b Radiation fin 4 Fan 5 Liquid flow path 6 Reserve tank 7 Air flow path 8 Cooling device coupling member 8a Fixing pin 8b Fixing screw 8c Coil spring 8d Hook 9 Substrate 10 CPU
DESCRIPTION OF SYMBOLS 11 Guide 12 Clamp part 12a Clamp movable pin 12b Clamp movable side board 12c Clamp movable side board convex part 12d Clamp fixing pin 20 Wiring board 21 Keyboard 22 Disk apparatus 23 Display apparatus 24 Metal housing 25 Semiconductor element 26 Heat receiving header 27 Heat radiation header 28 Flexible tube 29 screw

Claims (7)

液体冷媒を循環し、該液体冷媒との熱交換で基板に実装した発熱電子部品から熱を奪い、奪った熱をラジエータで放熱する冷却装置であって、前記発熱電子部品と内部を流れる液体冷媒を熱交換させるための受熱部が設けられ、熱交換後の液体冷媒を循環路で前記ラジエータに送る受熱一体ポンプを備え、該受熱一体ポンプと前記ラジエータが対向して配置され、その間に前記ラジエータを強制冷却するファンがそれぞれと対向するように配置されたことを特徴とする冷却装置。 A cooling device that circulates a liquid refrigerant, removes heat from a heat generating electronic component mounted on a substrate by heat exchange with the liquid refrigerant, and dissipates the deprived heat with a radiator, the liquid refrigerant flowing inside the heat generating electronic component A heat receiving unit for exchanging heat between the heat receiving unit and a heat receiving integrated pump that sends the liquid refrigerant after heat exchanging to the radiator through a circulation path, the heat receiving integrated pump and the radiator being arranged to face each other, and the radiator A cooling device, wherein fans for forcibly cooling the fan are arranged to face each other. 前記ファンと前記受熱一体ポンプとの間に風路が設けられたことを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein an air passage is provided between the fan and the heat receiving integrated pump. 前記受熱一体ポンプと前記ラジエータと前記ファンをそれぞれ結合して一体にする冷却装置結合部材が設けられたことを特徴とする請求項1または2記載の冷却装置。 The cooling device according to claim 1 or 2, further comprising a cooling device coupling member that couples the heat receiving integrated pump, the radiator, and the fan together. 前記冷却装置結合部材が前記受熱一体ポンプと前記ファンの間に配置され、該冷却装置結合部材と前記受熱一体ポンプとの間に弾性部材が設けられたことを特徴とする請求項3に記載の冷却装置。 The said cooling device coupling member is arrange | positioned between the said heat receiving integrated pump and the said fan, and the elastic member was provided between this cooling device coupling member and the said heat receiving integrated pump. Cooling system. 前記冷却装置結合部材が前記受熱一体ポンプと前記ファンの間に配置され、該冷却装置結合部材には前記基板に係止するためのフックが設けられたことを特徴とする請求項3または4記載の冷却装置。 5. The cooling device coupling member is disposed between the heat receiving integrated pump and the fan, and the cooling device coupling member is provided with a hook for locking to the substrate. Cooling system. 前記受熱一体ポンプ、前記ラジエータ、または前記ファンのいずれかの側面に隣接してリザーブタンクが配置されたことを特徴とする請求項1〜5のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 5, wherein a reserve tank is disposed adjacent to any side surface of the heat receiving integrated pump, the radiator, or the fan. 請求項1〜6のいずれか1項に記載の冷却装置を備え、前記冷却装置の受熱一体ポンプが発熱電子部品と熱接続されたことを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to claim 1, wherein the heat receiving integrated pump of the cooling device is thermally connected to a heat generating electronic component.
JP2005000387A 2005-01-05 2005-01-05 Cooling device and electronic unit provided therewith Pending JP2006190735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000387A JP2006190735A (en) 2005-01-05 2005-01-05 Cooling device and electronic unit provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000387A JP2006190735A (en) 2005-01-05 2005-01-05 Cooling device and electronic unit provided therewith

Publications (1)

Publication Number Publication Date
JP2006190735A true JP2006190735A (en) 2006-07-20

Family

ID=36797680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000387A Pending JP2006190735A (en) 2005-01-05 2005-01-05 Cooling device and electronic unit provided therewith

Country Status (1)

Country Link
JP (1) JP2006190735A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035579A1 (en) * 2006-09-19 2008-03-27 Nec Corporation Cooling apparatus
CN100533341C (en) * 2006-07-28 2009-08-26 富准精密工业(深圳)有限公司 Pump
CN100533342C (en) * 2006-09-15 2009-08-26 富准精密工业(深圳)有限公司 Pump
US7694721B2 (en) 2006-08-31 2010-04-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Miniature liquid cooling device having an integral pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100533341C (en) * 2006-07-28 2009-08-26 富准精密工业(深圳)有限公司 Pump
US7694721B2 (en) 2006-08-31 2010-04-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Miniature liquid cooling device having an integral pump
CN100533342C (en) * 2006-09-15 2009-08-26 富准精密工业(深圳)有限公司 Pump
WO2008035579A1 (en) * 2006-09-19 2008-03-27 Nec Corporation Cooling apparatus
US8432695B2 (en) 2006-09-19 2013-04-30 Nec Corporation Cooling device

Similar Documents

Publication Publication Date Title
JP4859823B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US7240722B2 (en) Heat dissipation device
US20070235167A1 (en) Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers
TWI377900B (en) Liquid cooling unit and heat receiver therefor
US8091614B2 (en) Air/fluid cooling system
US20070029069A1 (en) Water-cooling heat dissipation device
US20120293952A1 (en) Heat transfer apparatus
JP2011047616A (en) Cooling system and electronic device using the same
EP2065935B1 (en) Cooling apparatus
JP2008181530A (en) One or more heat exchanger component in major part operably locatable outside computer chassis
US20060291168A1 (en) Heat dissipating module and heat sink assembly using the same
TW200813697A (en) Electronic apparatus including liquid cooling unit
US8724323B2 (en) Electronic device with heat dissipation apparatus
JP2006207881A (en) Cooling device and electronic apparatus comprising the same
TW200808164A (en) Electronic apparatus
JP2007095902A (en) Cooling device and electronic equipment having the same
JP2010040886A (en) Electronic device
TW201334679A (en) Heat dissipating module
US6608751B2 (en) Electronic device
US8230901B2 (en) Electronic device cooling apparatus
JP2010067660A (en) Electronic device and component for the same
JP2007281279A (en) Cooling device, and electronic equipment having same
JP7346736B2 (en) heat sink for liquid cooling
JP2006190735A (en) Cooling device and electronic unit provided therewith
US20130020057A1 (en) Cooling unit