[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006189105A - Gear box - Google Patents

Gear box Download PDF

Info

Publication number
JP2006189105A
JP2006189105A JP2005001809A JP2005001809A JP2006189105A JP 2006189105 A JP2006189105 A JP 2006189105A JP 2005001809 A JP2005001809 A JP 2005001809A JP 2005001809 A JP2005001809 A JP 2005001809A JP 2006189105 A JP2006189105 A JP 2006189105A
Authority
JP
Japan
Prior art keywords
gear box
shaft hole
shaft
damping body
shaft holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005001809A
Other languages
Japanese (ja)
Other versions
JP4712395B2 (en
Inventor
Yasumasa Yamazaki
泰正 山▲崎▼
Takuya Yoshimura
卓也 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2005001809A priority Critical patent/JP4712395B2/en
Priority to US11/325,531 priority patent/US7810412B2/en
Priority to CNB2006100057823A priority patent/CN100476259C/en
Publication of JP2006189105A publication Critical patent/JP2006189105A/en
Application granted granted Critical
Publication of JP4712395B2 publication Critical patent/JP4712395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/028Gearboxes; Mounting gearing therein characterised by means for reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0006Vibration-damping or noise reducing means specially adapted for gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02069Gearboxes for particular applications for industrial applications
    • F16H2057/02073Reduction gearboxes for industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2186Gear casings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear box which enables an organic fusion of ideas in the shape of the gear box and the measure for strengthening the rigidity to make the achievement of a large noise reduction effect by the minimum increase in weight. <P>SOLUTION: In the gear box 100 provided with a first shaft hole 102A and a second shaft hole 104A, first and second damping bodies 110A, 112A are integrally formed with the gear box 100 along the radial direction X of the shaft holes 102A, 104A from the first shaft hole 102A and the second shaft hole 104A. Formation widths W1, W2 of the first and second damping bodies 110A, 112A are assured at least not less than 1/4 of shaft hole diameters D1, D2 of the shaft holes, and formation heights H1, H2 are assured at least not less than 1/6 of the shaft diameters D1, D2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、減速機等の歯車箱に関する。   The present invention relates to a gear box such as a reduction gear.

例えば工場内の産業設備を駆動するための動力伝達系には、従来、さまざまな減速機が使用されている。減速機は、一般に特定の構造の歯車伝達機構を所定の歯車箱の中に備える。歯車伝達機構は、歯車同士が噛合することにより、歯面同士の衝突及びトルク伝達時の微少変形等に起因して歯数、回転速度等に応じた周期的振動が起こり、いわゆる噛合音が発生する。この噛合音の中心周波数と、減速機の各部材、特に歯車箱の固有振動数とが同等又は整数倍に近い関係となると、いわゆる共振現象が発生し、騒音が一段と増大する。   For example, various reduction gears are conventionally used in a power transmission system for driving industrial equipment in a factory. A reduction gear generally includes a gear transmission mechanism having a specific structure in a predetermined gear box. In the gear transmission mechanism, the gears mesh with each other, causing periodic vibrations according to the number of teeth, rotation speed, etc. due to collisions between tooth surfaces and slight deformation during torque transmission, and so-called meshing noise is generated. To do. When the center frequency of the meshing sound and the natural frequency of each member of the speed reducer, particularly the gear box, are equivalent or close to an integral multiple, a so-called resonance phenomenon occurs, and the noise further increases.

近年、工場等における作業環境の向上指向を反映して、これらの減速機等の発生する騒音の低減が大きな課題となっている。   In recent years, the reduction of noise generated by these speed reducers has become a major issue, reflecting the tendency to improve the working environment in factories and the like.

歯車箱は、減速機中の他の部材に対して大きく、また、その壁面が振動を増幅させ易いため、減速機全体で発生する騒音に対して極めて大きな影響を及ぼしている。   The gear box is larger than the other members in the speed reducer, and its wall surface easily amplifies vibrations, and therefore has a very large influence on noise generated in the entire speed reducer.

このような点に鑑み、例えば特許文献1においては、歯車箱の壁面の肉厚部を中高とする構成を提案している。   In view of such a point, for example, Patent Document 1 proposes a configuration in which the thick portion of the wall surface of the gear box has a middle height.

特開昭50−125159号公報JP 50-125159 A

しかしながら、この種の騒音に対する従来の対策は、歯車箱の「剛性強化」の概念をベースとしており、必ずしも効果的な騒音低減効果が得られているというわけではなかったというのが実情である。   However, the conventional measures against this type of noise are based on the concept of “stiffening” of the gearbox, and the fact is that an effective noise reduction effect has not always been obtained.

歯車箱には、入力軸と出力軸とが同軸に配置されているタイプと、入力軸と出力軸とが非同軸とされているタイプとがある。このうち、特に、入力軸と出力軸とが同軸に配置されていないタイプの歯車箱にあっては、軸孔の数が多くなる上に、この部分にそれぞれ起振源となる軸が配置されるため、各軸の起振力が歯車箱全体に伝わって一層共鳴し易くなる、という問題があった。   There are two types of gear boxes: an input shaft and an output shaft are coaxially arranged, and a type in which an input shaft and an output shaft are non-coaxial. Of these, especially in the case of a gear box in which the input shaft and the output shaft are not arranged coaxially, the number of shaft holes is increased and a shaft serving as a vibration source is arranged in this portion. Therefore, there has been a problem that the vibration force of each shaft is transmitted to the entire gear box and is more easily resonated.

本発明は、このような従来の問題を解消するためになされたものであって、歯車箱の形状の工夫と剛性の強化対策とを有機的に融合させ、最小限の重量増大で大きな騒音の低減効果を得ることのできる歯車箱を提供することをその課題としている。   The present invention has been made to solve such a conventional problem, and organically combines a gear box shape contrivance with a rigidity strengthening measure, thereby reducing a large noise with a minimum weight increase. It is an object of the present invention to provide a gear box that can obtain a reduction effect.

本発明は、軸孔を少なくとも3個以上備えた歯車箱において、前記軸孔のうち、少なくとも1個の軸孔から、該軸孔の半径方向に沿って制振体が形成され、且つ該制振体は、その形成幅が、当該軸孔の軸孔径の少なくとも1/4以上で、且つその形成高さが、最も高い部分で当該軸孔径の少なくとも1/6以上となる大きさが確保されている構成を採用することにより、上記課題を解決した。   According to the present invention, in a gear box having at least three shaft holes, a damping body is formed along a radial direction of the shaft hole from at least one of the shaft holes, and the damping is performed. The vibrator is secured such that the formation width is at least 1/4 or more of the shaft hole diameter of the shaft hole, and the formation height is at least 1/6 or more of the shaft hole diameter at the highest portion. The above-mentioned problems have been solved by adopting the configuration.

歯車箱の剛性は振動・騒音の発生と極めて密接な関係があり、騒音を低減するためには該歯車箱を構成する部材の剛性を向上させる必要がある。しかしながら、単純な(一般的に用いられる)剛性強化は重量の増大を伴うため、場合によっては歯車箱の固有振動数の低下を誘引し、必ずしも騒音低減に寄与するわけではない。この観点に立脚し、本発明では、形状的、質量的な面に配慮することにより、特に歯車箱の固有振動数に着目し、最も騒音低減に寄与し得る対応策を提案する。   The rigidity of the gear box has a very close relationship with the generation of vibration and noise. In order to reduce the noise, it is necessary to improve the rigidity of the members constituting the gear box. However, since the simple (generally used) rigidity enhancement is accompanied by an increase in weight, in some cases, a reduction in the natural frequency of the gearbox is induced, which does not necessarily contribute to noise reduction. Based on this viewpoint, the present invention proposes a countermeasure that can contribute most to noise reduction by paying particular attention to the natural frequency of the gearbox by considering the shape and mass.

本発明では、歯車箱の軸孔から、該軸孔の半径方向に沿って制振体が形成される。制振体を軸孔の半径方向に形成するようにしたのは、種々の実験の結果、この形成の仕方が小質量で大きな制振効果が得られることが確認されたためである。ここで、この制振体の形成幅(半径方向と直角の方向の長さ)は、当該軸孔の軸孔径の少なくとも1/4以上確保される。形成高さは最も厚い部分が軸孔径の少なくとも1/6以上となるように確保する。この形状は、剛性強化としての一般的なリブの形状と大きさの概念を大きく逸脱するものである。   In the present invention, the damping body is formed from the shaft hole of the gear box along the radial direction of the shaft hole. The reason why the damping body is formed in the radial direction of the shaft hole is that, as a result of various experiments, it has been confirmed that the formation method can obtain a large damping effect with a small mass. Here, the formation width (the length in the direction perpendicular to the radial direction) of the damping body is secured at least 1/4 or more of the shaft hole diameter of the shaft hole. The formation height is ensured so that the thickest part is at least 1/6 or more of the shaft hole diameter. This shape greatly deviates from the general concept of the shape and size of the ribs as rigidity enhancement.

この構成が騒音低減に有効な理由はいくつかあると考えられるが、その一つとして推察できるのは、この構成が歯車箱の固有振動数を容易に2kHz以上にまで高めることができるメカニズムを持っているためと考えられる。歯車箱の固有振動数が2kHz以上にまで高められると、様々な観点から騒音低減の効果が極めて顕著に現れるようになる。この点については後に詳述する。   There are several reasons why this configuration is effective in reducing noise. One of the reasons can be guessed that this configuration has a mechanism that can easily increase the natural frequency of the gearbox to 2 kHz or higher. It is thought that it is because. When the natural frequency of the gear box is increased to 2 kHz or more, the effect of noise reduction becomes very remarkable from various viewpoints. This point will be described in detail later.

なお、制振体の形成幅を軸孔径の1/4以上、形成高さを同1/6以上に確保することにより、多くの場合歯車箱の固有振動数を2kHz以上に構成することができるが、逆の見方をした場合には、歯車箱の大きさや形状によっては、歯車箱の固有振動数を2kHz以上とするのに、必ずしも制振体の大きさをこの大きさにまで幅広とする必要がない場合もある。この場合は、歯車箱の固有振動数が2kHz以上に確保される限り、必ずしもこの大きさとする必要はない。   In many cases, the natural frequency of the gearbox can be set to 2 kHz or more by securing the formation width of the damping body to 1/4 or more of the shaft hole diameter and the formation height to 1/6 or more. However, when viewed in reverse, depending on the size and shape of the gear box, the natural frequency of the gear box is set to 2 kHz or more, but the size of the damping body is not necessarily widened to this size. Sometimes it is not necessary. In this case, as long as the natural frequency of the gearbox is ensured to be 2 kHz or more, it is not always necessary to set this magnitude.

さらには、歯車箱の固有振動数は、歯車箱自体の外形形状とも密接な関係を持っており、当該歯車箱の大半(少なくとも半分以上)の外形形状を軸と同心の形状に形成することにより、制振体の大きさをそれほど大きくしなくても、固有振動数を2kHz以上に確保できるようになる。また、制振体の大きさを同一とした場合には、より高い固有振動数とすることができる。   Furthermore, the natural frequency of the gearbox has a close relationship with the outer shape of the gearbox itself, and the outermost shape (at least half or more) of the gearbox is formed concentrically with the shaft. The natural frequency can be secured at 2 kHz or higher without increasing the size of the damping body. Further, when the size of the damping body is the same, a higher natural frequency can be obtained.

請求項各項に記載された構成は、その全てが揃ったときに最も相乗的な効果が得られるが、本発明は、必ずしも常にその全てを揃える必要はなく、それぞれに相応の相乗効果が得られる。   The configurations described in the claims can provide the most synergistic effect when all of them are arranged, but the present invention does not always need to have all of them, and a corresponding synergistic effect can be obtained for each. It is done.

歯車箱の形状の工夫と剛性の強化対策とを有機的に融合させ、最小限の重量増大で大きな騒音の低減効果を得ることのできる歯車箱を提供できる。   The gear box shape can be organically combined with the measures for strengthening the rigidity of the gear box to provide a gear box capable of obtaining a large noise reduction effect with a minimum weight increase.

以下図面に基づいて本発明の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の一例に係る歯車箱100を前面斜め上から見た斜視図、図2は、同じく後面斜め上から見た斜視図である。また、図3は、該歯車箱100の平面図、図4は、図3の矢印IV−IVに沿う断面図、図5〜図10は、それぞれ図4の矢印V−V〜矢印X−Xから見た断面図又は側面図である。   FIG. 1 is a perspective view of a gearbox 100 according to an example of the present embodiment as seen from diagonally above the front surface, and FIG. 2 is a perspective view of the gearbox 100 as seen from diagonally above the rear surface. 3 is a plan view of the gear box 100, FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3, and FIGS. 5 to 10 are arrows VV to XX in FIG. It is sectional drawing or side view seen from.

各図から明らかなように、この歯車箱100は、センタラインCに対して対称である。歯車箱100は、その正面100A及び背面100Bに中間軸(図示略)が挿通されるべき一対の第1軸孔102(102A及び102B)と、出力軸(図示略)が挿通されるべき一対の第2軸孔104(104A及び104B)を備える。第1軸孔102と第2軸孔104は、挿通されるべき中間軸と出力軸が平行となるように(非同軸に)配置されている。   As is apparent from the drawings, the gear box 100 is symmetric with respect to the center line C. The gear box 100 has a pair of first shaft holes 102 (102A and 102B) through which an intermediate shaft (not shown) is to be inserted into the front surface 100A and the back surface 100B, and a pair of output shafts (not shown). A second shaft hole 104 (104A and 104B) is provided. The first shaft hole 102 and the second shaft hole 104 are arranged (non-coaxially) so that the intermediate shaft to be inserted and the output shaft are parallel to each other.

また、歯車箱100は、さらに、第3軸孔106を歯車箱100の側面100Cに備え、図示せぬ入力軸が貫通するように設計されている。入力軸から中間軸への動力伝達は、ベベルギヤ(直交歯車:図示略)を介して行われる。結局、この歯車箱100には、計5個の軸孔102A、102B、104A、104B、106が形成されていることになる。   Further, the gear box 100 is designed such that the third shaft hole 106 is provided on the side surface 100C of the gear box 100 so that an input shaft (not shown) passes therethrough. Power transmission from the input shaft to the intermediate shaft is performed via a bevel gear (orthogonal gear: not shown). Eventually, a total of five shaft holes 102A, 102B, 104A, 104B, 106 are formed in the gear box 100.

一対の第1軸孔102(102A及び102B)からは、それぞれの半径方向X(図の上方)に沿って第1制振体110(110A及び110B)が歯車箱と一体に形成されている。また、一対の第2軸孔104(104A及び104B)からは、それぞれの半径方向X(図の上方)に沿って第2制振体112(112A及び112B)が歯車箱と一体に形成されている。   From the pair of first shaft holes 102 (102A and 102B), first damping bodies 110 (110A and 110B) are integrally formed with the gear box along the respective radial directions X (upward in the drawing). Further, from the pair of second shaft holes 104 (104A and 104B), the second damping body 112 (112A and 112B) is formed integrally with the gear box along the respective radial direction X (upward in the drawing). Yes.

また、第1、第2制振体110、112の形成高さH1、H2(軸方向の高さあるいは厚さ)は、この実施形態では共に60mmである。第1、第2制振体110、112の軸孔側は対応する軸孔102、104の前端120(120A、120B)、122(122A、122B)と面一とされている。即ち、それぞれの軸孔102、104は、高さH1(H2)の軸方向長さを有し、各軸孔102、104の前端120(120A、120B)、122(122A、122B)は、歯車収容部の軸方向端面100Gよりも軸方向外側に張り出している。   The formation heights H1 and H2 (the height or thickness in the axial direction) of the first and second damping bodies 110 and 112 are both 60 mm in this embodiment. The shaft hole sides of the first and second damping bodies 110 and 112 are flush with the front ends 120 (120A and 120B) and 122 (122A and 122B) of the corresponding shaft holes 102 and 104, respectively. That is, each shaft hole 102, 104 has an axial length of height H1 (H2), and the front ends 120 (120A, 120B), 122 (122A, 122B) of each shaft hole 102, 104 are gears. It protrudes outward in the axial direction from the axial end surface 100G of the housing portion.

第1、第2制振体110、112は、半径方向に沿って第1軸孔102及び第2軸孔104から遠ざかるほどその形成高さがH1、H2から直線的に小さくなるように形成されている。即ち、図6及び図8の断面図から明らかなように、第1、第2制振体110、112は軸と平行な鉛直断面形状がほぼ3角形に近い形状とされている。これは高い剛性を維持したまま軽量化を図り、歯車箱100の固有振動数を高めるための配慮である。   The first and second damping bodies 110 and 112 are formed so that the formation height decreases linearly from H1 and H2 as the distance from the first shaft hole 102 and the second shaft hole 104 increases in the radial direction. ing. That is, as is apparent from the cross-sectional views of FIGS. 6 and 8, the first and second damping bodies 110 and 112 have a vertical cross-sectional shape parallel to the axis that is almost a triangle. This is a consideration for reducing the weight while maintaining high rigidity and increasing the natural frequency of the gear box 100.

この実施形態では、第1、第2制振体110、112の形成幅(半径方向Xと直角の方向の幅)W1、W2は、W1は130mm、W2は70mmである。又、第1軸孔102の軸孔径D1は200mm、第2軸孔104A、104Bの軸孔径D2は150mmであるため、この実施形態における(形成幅/軸孔径)W1/D1は0.65、W2/D2は0.47である。共に1/4を大きく上回る値であり、軸周りを剛性的に補強するための「リブ」或いは「補強体」としては、異例と言える広いものである。   In this embodiment, the formation width (width in the direction perpendicular to the radial direction X) W1 and W2 of the first and second damping bodies 110 and 112 is 130 mm and W2 is 70 mm. Further, since the shaft hole diameter D1 of the first shaft hole 102 is 200 mm and the shaft hole diameter D2 of the second shaft holes 104A and 104B is 150 mm, (formation width / shaft hole diameter) W1 / D1 in this embodiment is 0.65. W2 / D2 is 0.47. Both values are significantly higher than ¼, and the “ribs” or “reinforcing bodies” for rigidly reinforcing the periphery of the shaft are exceptionally wide.

また第1、第2制振体110、112の形成高さH1、H2は、60mmであるため、軸孔径D1、D2との比はそれぞれH1/D1=0.3、H2/D2=0.4である。共に、1/8を大きく上回っている。   Further, since the formation heights H1 and H2 of the first and second damping bodies 110 and 112 are 60 mm, the ratios with the shaft hole diameters D1 and D2 are H1 / D1 = 0.3 and H2 / D2 = 0. 4. Both are much higher than 1/8.

なお、この実施形態の場合、歯車箱100の一般面の厚さwは、10mmであり、H1,H2は60mmであるため、ほぼ6倍である。この軸方向高さH1、H2は一般面の厚さwの5倍以上とするのが好ましい。   In the case of this embodiment, the thickness w of the general surface of the gearbox 100 is 10 mm, and H1 and H2 are 60 mm. The axial heights H1 and H2 are preferably 5 times or more the thickness w of the general surface.

歯車箱100は、全体がほぼ直方体とされているが、図4から明らかなように、据付のためのフランジ部130A、130B、130C等を除いて、その外形の大半が、出力軸、中間軸とそれぞれR1、R2隔てた同心の形状に形成されている。   The gear box 100 is generally a rectangular parallelepiped as a whole. As is apparent from FIG. 4, except for the flange portions 130A, 130B, 130C and the like for installation, most of the outer shapes are an output shaft and an intermediate shaft. Are formed in concentric shapes separated by R1 and R2, respectively.

次にこの歯車箱100の作用を説明する。   Next, the operation of the gear box 100 will be described.

歯車箱100における最も大きな騒音発生源は、当該歯車箱100に搭載されている歯車同士の「噛合音」である。例えば、軸の回転速度が1800rpm、該軸に搭載されている歯車の歯数が14だとすれば、噛合時に毎秒、(14×1800)/60=420回の歯面同士の衝突があることになり、420Hzを中心とした周波数の噛合騒音が発生する。この噛合騒音は当該歯車が組み込まれた軸(及び軸受)を介して歯車箱100に伝達される。したがって、歯車箱100の軸周りの剛性を高めるのは、基本的に「騒音低減の観点」で有効である。   The largest noise generation source in the gear box 100 is “meshing noise” between gears mounted on the gear box 100. For example, if the rotation speed of the shaft is 1800 rpm and the number of teeth of the gear mounted on the shaft is 14, there will be (14 × 1800) / 60 = 420 times of collision between the tooth surfaces every second during meshing. Thus, meshing noise having a frequency centered at 420 Hz is generated. This meshing noise is transmitted to the gear box 100 through a shaft (and a bearing) in which the gear is incorporated. Therefore, increasing the rigidity around the axis of the gearbox 100 is basically effective from a “noise reduction viewpoint”.

軸周りの剛性を高めるためには、A)歯車箱100の当該軸の周辺部に高剛性の素材を配置する、B)歯車箱100の当該軸の周辺部にリブを配置する等の構成が考えられる。しかしながら、A)の軸の周辺部に高剛性の素材を配置する構成は、コスト高になること及び製造のステップが増大すること等の欠点が存在する割には、(強度的なメリットは得られても)騒音低減の効果はそれほど期待できない。B)の軸の周辺部にリブを配置する構成の場合、一般的には、当該「リブ」は、材料力学的な合理性から、通常、歯車箱100の一般面での肉厚wと同程度の幅に設定される。しかし、このタイプの幅狭な「リブ」はやはり、騒音低減の効果はそれほど期待できないことが確認されている。   In order to increase the rigidity around the shaft, A) a highly rigid material is disposed around the shaft of the gear box 100, and B) a rib is disposed around the shaft of the gear box 100. Conceivable. However, the configuration in which a high-rigidity material is disposed in the periphery of the shaft in A) has disadvantages such as high cost and increased manufacturing steps (although there are strength advantages). The effect of noise reduction cannot be expected so much. In the case of a configuration in which ribs are arranged around the shaft of B), the “ribs” are generally the same as the wall thickness w on the general surface of the gear box 100 because of material mechanical rationality. Set to a width of about. However, it has been confirmed that this type of narrow “rib” still cannot be expected to reduce noise.

これに対し、この実施形態においては、第1、第2制振体110、112の形成幅w1、w2は、当該軸孔102、104の軸孔径D1、D2の優に1/3以上の大きさが確保されており、又、形成高さH1、H2も軸孔径D1、D2の1/4以上の大きさが確保されている。この形状は、もはや「剛性強化としてのリブ」という概念を逸脱するものであるが、この構成により騒音低減に大きな効果が得られる。   On the other hand, in this embodiment, the formation widths w1 and w2 of the first and second damping bodies 110 and 112 are significantly larger than 1/3 of the shaft hole diameters D1 and D2 of the shaft holes 102 and 104. In addition, the formation heights H1 and H2 are also secured to 1/4 or more of the shaft hole diameters D1 and D2. This shape deviates from the concept of “ribs as rigidity enhancement”, but this configuration provides a great effect in noise reduction.

推察するに、これには歯車箱100の固有振動数の上昇が影響していると考えられる。固有振動数は剛性が高く、且つ軽量である程高くなる傾向がある。前述したように、この構成により歯車箱100の固有振動数を容易に2kHz以上にまで高めることができる。これは、実験によって確認されている。歯車箱100の固有振動数が2kHz以上にまで高められると、歯車箱100はその全体の慣性質量の関係から大きな振幅で振動することが事実上できなくなり、振動(発音)レベル自体が必然的に低下せざるを得ない。   It is presumed that this is due to an increase in the natural frequency of the gearbox 100. The natural frequency tends to increase as the rigidity increases and the weight decreases. As described above, with this configuration, the natural frequency of the gearbox 100 can be easily increased to 2 kHz or more. This has been confirmed by experiments. When the natural frequency of the gear box 100 is increased to 2 kHz or more, the gear box 100 cannot practically vibrate with a large amplitude due to the relation of the inertial mass of the whole, and the vibration (sound generation) level itself is inevitably. It must be reduced.

一方、噛合騒音は、例えば前記例で言えば、420Hzを1次とし、840Hz、1,260Hz、1,680Hz… にそれぞれ2次、3次、4次… の高次成分が現れる。高次成分は3次以上になると極端にそのレベルが低くなる傾向がある。そのため、例えば歯車箱100の固有振動数が例えば2kHz程度にまで高められた場合、(多少1次の周波数がばらついても)噛合騒音の3次、あるいは4次以上の高次成分とで共振が発生することになり、共振レベルは極めて低くなることになる。   On the other hand, as for the meshing noise, for example, in the above example, 420 Hz is the first order, and second order, third order, fourth order, etc. high order components appear at 840 Hz, 1,260 Hz, 1,680 Hz,. Higher-order components tend to be extremely low in the third and higher order. Therefore, for example, when the natural frequency of the gearbox 100 is increased to, for example, about 2 kHz, resonance occurs with the third-order or fourth-order or higher order components of the meshing noise (even if the first-order frequency varies somewhat). Will occur and the resonance level will be very low.

また、人間の耳には周波数的に数百Hzから1kHz程度の高さの音が最も聞こえ易いため、固有振動数が高められることにより、騒音として感じにくくなるという現象も起きることもその一因と解される。   In addition, since the human ear can easily hear sound having a frequency of several hundred Hz to about 1 kHz, a phenomenon that it becomes difficult to perceive as noise by raising the natural frequency is also one of the reasons. It is understood.

更に、この実施形態に係る歯車箱100は、一般的な箱状の形状と異なり、その外形の大半が、出力軸、中間軸とそれぞれR1、R2を隔てた同心の形状に形成されている。そのため、歯車箱100の両側面100C、100D、上下面100E、100Fにおける振動抑制効果が大きく働き、第1、第2制振体110、112の存在と相まってそれほど厚い肉厚(w)としなくても、特に低い周波数での振幅がより困難になって固有振動数が上がる傾向となったと考えられる。   Further, the gear box 100 according to this embodiment is different from a general box shape, and most of the outer shape is formed in a concentric shape with the output shaft and the intermediate shaft separated from R1 and R2, respectively. Therefore, the vibration suppressing effect on both side surfaces 100C and 100D and the upper and lower surfaces 100E and 100F of the gear box 100 works greatly, and the thickness (w) is not so thick in combination with the presence of the first and second damping bodies 110 and 112. However, it is considered that the natural frequency tends to increase because the amplitude at a particularly low frequency becomes more difficult.

また、第1軸孔102及び第2軸孔104の双方に第1、第2制振体110、112がそれぞれ形成され、該第1軸孔102及び第2軸孔104の双方のそれぞれの周辺部の一部同士が、連続的に合体しているため、軸周りの剛性は一層強化されている。   Further, first and second damping bodies 110 and 112 are formed in both the first shaft hole 102 and the second shaft hole 104, respectively, and the periphery of both the first shaft hole 102 and the second shaft hole 104. Since some of the parts are continuously joined together, the rigidity around the axis is further enhanced.

更に、第1、第2制振体110、112は、断面が三角形状とされ、剛性を低下させることなく、軽量化できている。   Furthermore, the first and second damping bodies 110 and 112 have a triangular cross section, and can be reduced in weight without reducing rigidity.

これらの構成が相乗して固有振動数の上昇に寄与したと推察される。   It is inferred that these configurations synergistically contributed to the increase in the natural frequency.

本発明に係る制振体は、(勿論複数形成されていても良いが)1個でも大きな騒音低減効果を有する。また歯車箱と一体であるから部品点数が増大することもなく、製造コストが大きく増大することもない。   The vibration damping body according to the present invention has a great noise reduction effect even if one (although a plurality of vibration damping bodies may be formed). Further, since it is integrated with the gear box, the number of parts does not increase and the manufacturing cost does not increase greatly.

なお、制振体の形成幅を軸孔径の1/4以上、形成高さを同1/6以上の大きさとすることにより、多くの場合歯車箱の固有振動数を2kHz以上に高めることができるが、逆の見方をした場合には、歯車箱の大きさや形状によっては、歯車箱の固有振動数を2kHz以上とするのに、必ずしも制振体の大きさをここまで大きくする必要がない場合もある。この場合は、歯車箱の固有振動数が2kHz以上に確保される限り、必ずしもこの大きさとする必要はなく、且つ、相応の騒音低減効果が得られる。   In many cases, the natural frequency of the gearbox can be increased to 2 kHz or more by setting the formation width of the damping body to 1/4 or more of the shaft hole diameter and the formation height to 1/6 or more. However, in the opposite view, depending on the size and shape of the gear box, it is not always necessary to increase the size of the damping body so far in order to set the natural frequency of the gear box to 2 kHz or more. There is also. In this case, as long as the natural frequency of the gearbox is ensured to be 2 kHz or higher, it is not always necessary to set this magnitude, and a corresponding noise reduction effect can be obtained.

また、この実施形態のように、当該歯車箱の大半(少なくとも半分以上)の外形形状を軸と同心の形状に形成した場合にも、制振体の大きさをそれほど大きくとらなくても、固有振動数を2kHz以上に確保できるようになることがあり、また、制振体の大きさを同一とした場合には、より高い固有振動数とすることができることも確認されている。   Further, even when the outer shape of the majority (at least half or more) of the gear box is formed concentrically with the shaft, as in this embodiment, the vibration damping body does not have to be so large. It has been confirmed that the frequency can be secured at 2 kHz or more, and that the higher natural frequency can be obtained when the size of the damping body is the same.

本発明は、最も小さな軸孔径が70mm以上であるような比較的大型の歯車箱に適用したときに特に顕著な騒音低減効果が得られるが、これより小型の歯車箱にも適用できる。   The present invention provides a particularly remarkable noise reduction effect when applied to a relatively large gear box having the smallest shaft hole diameter of 70 mm or more, but can also be applied to a smaller gear box.

また、本発明は、必ずしも常に上記実施形態のその全て構成を揃える必要はなく、揃えた範囲でそれぞれに相応の相乗効果が得られる。   In addition, the present invention does not always have to have all the configurations of the above-described embodiments, and a corresponding synergistic effect can be obtained in each range.

減速機、増速機、直交歯車等の方向変換機構等の歯車箱に適用できる。特に産業用として広く用いられている、軸孔径が70mm以上あるような比較的大型の歯車箱に適用すると顕著な騒音低減効果が得られる。   The present invention can be applied to a gear box such as a direction change mechanism such as a speed reducer, a speed increaser, and an orthogonal gear. In particular, when applied to a relatively large gear box having a shaft hole diameter of 70 mm or more, which is widely used for industrial use, a remarkable noise reduction effect can be obtained.

本発明の実施形態の一例に係る歯車箱を前面斜め上から見た斜視図The perspective view which looked at the gearbox which concerns on an example of embodiment of this invention from front diagonally upward 同歯車箱を後面斜め上から見た斜視図A perspective view of the same gear box as seen from diagonally above the rear. 同歯車箱の平面図Top view of the gear box 同歯車箱の図3の矢示III−III線に沿う断面図Sectional view along the arrow III-III line of FIG. 3 of the same gear box 図4の矢示V−V線に沿う断面図Sectional drawing which follows the arrow VV line of FIG. 図4の矢示VI−VI線に沿う断面図Sectional drawing which follows the arrow VI-VI line of FIG. 図4の矢示VII−VII線に沿う断面図Sectional drawing which follows the arrow VII-VII line of FIG. 図4の矢示VIII−VIII線に沿う断面図Sectional drawing which follows the arrow VIII-VIII line of FIG. 図4の矢示IX−IX線に沿う断面図Sectional drawing which follows the arrow IX-IX line of FIG. 図4の矢示X−X線に沿う断面図Sectional drawing which follows the arrow XX line of FIG.

符号の説明Explanation of symbols

100…歯車箱
102(102A及び102B)…第1軸孔
104(104A及び104B)…第2軸孔
106…第3軸孔
110(110A及び110B)…第1制振体
112(112A及び112B)…第2制振体
120(120A及び120B)…第1軸孔の前端
122(122A及び122B)…第2軸孔の前端
X…半径方向
W1、W2…形成幅
H1、H2…形成高さ
D1、D2…軸孔径
DESCRIPTION OF SYMBOLS 100 ... Gearbox 102 (102A and 102B) ... 1st shaft hole 104 (104A and 104B) ... 2nd shaft hole 106 ... 3rd shaft hole 110 (110A and 110B) ... 1st damping body 112 (112A and 112B) ... 2nd damping body 120 (120A and 120B) ... Front end 122 (122A and 122B) of the first shaft hole ... Front end of the second shaft hole X ... Radial direction W1, W2 ... Formation width H1, H2 ... Formation height D1 , D2 ... shaft hole diameter

Claims (6)

軸孔を少なくとも3個以上備えた歯車箱において、
前記軸孔のうち、少なくとも1個の軸孔から、該軸孔の半径方向に沿って制振体が形成され、且つ
該制振体は、その形成幅が、当該軸孔の軸孔径の少なくとも1/4以上で、且つ
その形成高さが、最も高い部分で当該軸孔径の少なくとも1/6以上となる大きさが確保されている
ことを特徴とする歯車箱。
In a gear box having at least three shaft holes,
A damping body is formed from at least one of the shaft holes along the radial direction of the shaft hole, and the damping body has a width of at least the diameter of the shaft hole of the shaft hole. A gear box characterized by having a size that is at least 1/4 and that the height of formation is at least 1/6 of the shaft hole diameter at the highest portion.
請求項1において、
前記3個以上の軸孔のうち、最小径の軸孔径が70mm以上である
ことを特徴とする歯車箱。
In claim 1,
Of the three or more shaft holes, the smallest shaft hole diameter is 70 mm or more.
請求項1または2において、
前記制振体の形成されている軸孔の前端が、当該歯車箱の歯車収容部の軸方向端面より軸方向外側に位置している
ことを特徴とする歯車箱。
In claim 1 or 2,
A gear box, wherein a front end of a shaft hole in which the vibration damping body is formed is positioned on an axially outer side from an axial end surface of a gear housing portion of the gear box.
請求項1〜3のいずれかにおいて、
前記制振体が、前記半径方向に沿って当該軸孔から遠ざかるほど、その形成高さが小さくなるように形成されている
ことを特徴とする歯車箱。
In any one of Claims 1-3,
The gear box, wherein the vibration damping body is formed such that the height of the vibration damping body decreases as the distance from the shaft hole increases along the radial direction.
軸孔を少なくとも3個以上備えた歯車箱において、
前記軸孔のうち、少なくとも1個の軸孔から、該軸孔の半径方向に沿って制振体が形成され、且つ
該制振体の形成幅が、当該歯車箱の固有振動数を2kHz以上に維持し得る幅とされている
ことを特徴とする歯車箱。
In a gear box having at least three shaft holes,
A damping body is formed from at least one of the shaft holes along the radial direction of the shaft hole, and the formation width of the damping body is equal to or higher than the natural frequency of the gear box of 2 kHz or more. The gear box is characterized in that it has a width that can be maintained.
軸孔を少なくとも3個以上備えた歯車箱において、
前記軸孔のうち、少なくとも1個の軸孔から、該軸孔の半径方向に沿って制振体が形成され、且つ
当該歯車箱の外形形状が、該歯車箱全体の少なくとも半分以上に亘って、前記3個以上の軸孔のうち少なくとも1個と同心の形状に形成されている
ことを特徴とする歯車箱。
In a gear box having at least three shaft holes,
A damping body is formed from at least one of the shaft holes along the radial direction of the shaft hole, and the outer shape of the gear box covers at least half of the entire gear box. The gear box is formed concentrically with at least one of the three or more shaft holes.
JP2005001809A 2005-01-06 2005-01-06 Gear box Expired - Fee Related JP4712395B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005001809A JP4712395B2 (en) 2005-01-06 2005-01-06 Gear box
US11/325,531 US7810412B2 (en) 2005-01-06 2006-01-05 Gearbox
CNB2006100057823A CN100476259C (en) 2005-01-06 2006-01-06 Gearbox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001809A JP4712395B2 (en) 2005-01-06 2005-01-06 Gear box

Publications (2)

Publication Number Publication Date
JP2006189105A true JP2006189105A (en) 2006-07-20
JP4712395B2 JP4712395B2 (en) 2011-06-29

Family

ID=36682472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001809A Expired - Fee Related JP4712395B2 (en) 2005-01-06 2005-01-06 Gear box

Country Status (3)

Country Link
US (1) US7810412B2 (en)
JP (1) JP4712395B2 (en)
CN (1) CN100476259C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216590A (en) * 2009-03-17 2010-09-30 Jtekt Corp Rocking type gear device
CN102346008A (en) * 2011-10-26 2012-02-08 重庆齿轮箱有限责任公司 Special surface size detection method of large gear box body
KR101506220B1 (en) * 2011-12-28 2015-03-26 스미도모쥬기가이고교 가부시키가이샤 Gear device
JP2016020744A (en) * 2015-10-30 2016-02-04 住友重機械工業株式会社 Gear device
JP2019142270A (en) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 Steering knuckle design method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875534B2 (en) * 2007-04-18 2012-02-15 トヨタ自動車株式会社 Vehicle drive device
WO2010081523A1 (en) * 2009-01-13 2010-07-22 Sew-Eurodrive Gmbh & Co. Kg Transmission housing
BRPI1102093F1 (en) * 2011-05-30 2022-09-27 Renk Zanini S/A Equipamentos Ind IMPROVEMENT INTRODUCED IN CARCASS SPEED REDUCER EQUIPMENT WITH TORQUE DIVIDER
DE102012007626B4 (en) * 2012-04-18 2021-09-23 Sew-Eurodrive Gmbh & Co Kg Gearbox with a cover
US9840141B2 (en) * 2012-12-21 2017-12-12 Nissan Motor Co., Ltd. Hybrid vehicle drive device
DE102013018712B4 (en) * 2013-11-08 2024-09-12 Sew-Eurodrive Gmbh & Co Kg Gearbox with housing
DE102013018711A1 (en) * 2013-11-08 2015-05-13 Sew-Eurodrive Gmbh & Co Kg Gearbox with housing
DE102013018709A1 (en) * 2013-11-08 2015-05-13 Sew-Eurodrive Gmbh & Co Kg Housing for a transmission
DE102013018713A1 (en) * 2013-11-08 2015-05-13 Sew-Eurodrive Gmbh & Co Kg Gearbox with housing
DE102013018708A1 (en) * 2013-11-08 2015-05-13 Sew-Eurodrive Gmbh & Co Kg Housing for a gearbox and gearbox with a housing
DE102013018710A1 (en) 2013-11-08 2015-05-13 Sew-Eurodrive Gmbh & Co Kg Gearbox with housing
CN104806731A (en) * 2014-01-24 2015-07-29 永元电机(苏州)有限公司 Gear box structure
JP6195535B2 (en) * 2014-03-31 2017-09-13 住友重機械工業株式会社 Gear box
FR3019611B1 (en) * 2014-04-07 2016-05-06 Technoboost TRANSVERSAL VEHICLE GEARBOX, AXIS (S) AND / OR PAIR (S) OF TRANSVERSE RIGIDIFICATION PROTUBERANCES
US9759098B1 (en) 2016-09-09 2017-09-12 William Cullen Chapman, Jr. Valvetrain conversion kit for an engine
US10378618B2 (en) 2017-03-30 2019-08-13 Hub City, Inc. Mechanical gearbox for use with a vehicle and methods of assembling the same
EP3827185B1 (en) * 2018-07-24 2022-11-30 Sew-Eurodrive GmbH & Co. KG Geared motor
AU2019312431B2 (en) * 2018-07-24 2022-03-03 Sew-Eurodrive Gmbh & Co. Kg Geared motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630653A (en) * 1979-08-20 1981-03-27 Tektronix Inc Digital oscilloscope
JPS62156663A (en) * 1985-12-27 1987-07-11 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body
JPH02266150A (en) * 1989-04-07 1990-10-30 Nissan Motor Co Ltd Reinforced structure for gearbox
JPH05306745A (en) * 1992-05-06 1993-11-19 Hitachi Ltd Transmission

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2237958A (en) * 1938-02-14 1941-04-08 Hansen Mfg Company Inc Clock lubricating and silencing device
US2822700A (en) * 1953-08-26 1958-02-11 Vickers Electrical Co Ltd Reduction of vibration transmission from machines and apparatus
JPS5650144B2 (en) 1974-03-20 1981-11-27
AU2055276A (en) * 1975-12-18 1978-06-22 Jeep Corp Transfer case
JPS5630653U (en) * 1979-08-17 1981-03-25
JPS6240204Y2 (en) * 1980-06-27 1987-10-14
DE3520501A1 (en) * 1985-06-07 1986-12-18 BHS-Bayerische Berg-, Hütten- und Salzwerke AG, 8000 München NOISE-DAMPED AGGREGATE, IN PARTICULAR GEAR GEARBOX
JPS62156663U (en) * 1986-03-26 1987-10-05
DE3817320A1 (en) 1988-05-20 1989-11-23 Bhs Bayerische Berg Noise-damped unit
GB0016203D0 (en) * 2000-06-30 2000-08-23 Lucas Industries Ltd Support element
JP4660897B2 (en) * 2000-08-11 2011-03-30 アイシン・エィ・ダブリュ株式会社 Automatic transmission case
US7426915B2 (en) * 2005-12-08 2008-09-23 Ford Global Technologies, Llc System and method for reducing vehicle acceleration during engine transitions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630653A (en) * 1979-08-20 1981-03-27 Tektronix Inc Digital oscilloscope
JPS62156663A (en) * 1985-12-27 1987-07-11 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body
JPH02266150A (en) * 1989-04-07 1990-10-30 Nissan Motor Co Ltd Reinforced structure for gearbox
JPH05306745A (en) * 1992-05-06 1993-11-19 Hitachi Ltd Transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216590A (en) * 2009-03-17 2010-09-30 Jtekt Corp Rocking type gear device
CN102346008A (en) * 2011-10-26 2012-02-08 重庆齿轮箱有限责任公司 Special surface size detection method of large gear box body
CN102346008B (en) * 2011-10-26 2013-05-08 重庆齿轮箱有限责任公司 Special surface size detection method of large gear box body
KR101506220B1 (en) * 2011-12-28 2015-03-26 스미도모쥬기가이고교 가부시키가이샤 Gear device
JP2016020744A (en) * 2015-10-30 2016-02-04 住友重機械工業株式会社 Gear device
JP2019142270A (en) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 Steering knuckle design method

Also Published As

Publication number Publication date
US7810412B2 (en) 2010-10-12
CN100476259C (en) 2009-04-08
CN1800679A (en) 2006-07-12
JP4712395B2 (en) 2011-06-29
US20060156861A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4712395B2 (en) Gear box
JP5240405B1 (en) Helical gear and power transmission device
JP2007205397A (en) Wave motion gear and transmission ratio varying device
JP6912650B2 (en) Power transmission device
WO2015151609A1 (en) Gear housing
JP6269615B2 (en) Differential device for vehicle
JP5918530B2 (en) Gear device
JP2010181012A (en) Planetary carrier
EP2733388A1 (en) Power transmission device for vehicle
JP5196415B2 (en) Parallel shaft gear power transmission device
JP6380260B2 (en) Differential case
JP4379525B2 (en) Gear device and power transmission device
KR101302342B1 (en) Case of transmission
KR102413413B1 (en) Reduction device with structure with increased deceleration performance
KR102275048B1 (en) Reduction device with high reduction ratio performance
JP4468522B2 (en) Gear transmission case
JP5897793B2 (en) Intermediate gear reducer
US7419454B2 (en) Annular gear
KR20200086030A (en) Structure of clutch including gear box
JP2013181615A (en) Noise reduction structure for gear
JP4972146B2 (en) Gear transmission case
KR101543097B1 (en) Harmonic drive
JP7238744B2 (en) gear
JP2020085061A (en) Case structure of power transmission device
JP5521988B2 (en) Power transmission device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R150 Certificate of patent or registration of utility model

Ref document number: 4712395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees