JP2006186292A - Capacitor and manufacturing method thereof - Google Patents
Capacitor and manufacturing method thereof Download PDFInfo
- Publication number
- JP2006186292A JP2006186292A JP2005072757A JP2005072757A JP2006186292A JP 2006186292 A JP2006186292 A JP 2006186292A JP 2005072757 A JP2005072757 A JP 2005072757A JP 2005072757 A JP2005072757 A JP 2005072757A JP 2006186292 A JP2006186292 A JP 2006186292A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- group
- capacitor
- poly
- conductive polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/028—Organic semiconducting electrolytes, e.g. TCNQ
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、アルミ電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサなどコンデンサ及びその製造方法に関する。 The present invention relates to a capacitor such as an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, a niobium electrolytic capacitor, and a method for manufacturing the same.
近年、電子機器のデジタル化に伴い、電子機器に用いられるコンデンサは高周波領域におけるインピーダンスを低下させることが要求されている。従来から、この要求に対応すべく、アルミニウム、タンタル、ニオブなどの弁金属の酸化皮膜を誘電体とし、この表面にπ共役系導電性高分子を形成して陰極とした、所謂、機能性コンデンサが使用されている。 In recent years, with the digitization of electronic devices, capacitors used in electronic devices are required to reduce impedance in a high frequency region. Conventionally, in order to meet this requirement, so-called functional capacitors, in which an oxide film of valve metal such as aluminum, tantalum, or niobium is used as a dielectric, and a π-conjugated conductive polymer is formed on this surface as a cathode. Is used.
この機能性コンデンサの構造は、特許文献1に示されるように、弁金属多孔質体からなる陽極と、陽極の表面を酸化して形成した誘電体層と、誘電体層に固体電解質層、カーボン層、銀層を積層した陰極とを有するものが一般的である。コンデンサの固体電解質層は、ピロール、チオフェンなどのπ共役系導電性高分子から構成された層であり、多孔質体の内部にまで侵入し、より大面積の誘電体層と接触して高容量を引き出すと共に、誘電体層の欠損部を修復して漏れ電流の発生を防止する役割を果たしている。
π共役系導電性高分子の形成法としては、電解重合法(特許文献2参照)と化学酸化重合法(特許文献3参照)とが広く知られている。
しかし、電解重合法では、弁金属多孔質体表面にマンガン酸化物からなる導電層をあらかじめ形成しておく必要があり、非常に煩雑である上に、マンガン酸化物は導電性が低く、高導電性のπ共役系導電性高分子を使用する効果が薄れるという問題があった。
また、化学酸化重合法では、重合時間が長く、また、厚みを確保するために繰り返し重合しなければならず、コンデンサの生産効率が低かった上に、導電性も低かった。
As shown in Patent Document 1, the structure of this functional capacitor includes an anode made of a valve metal porous body, a dielectric layer formed by oxidizing the surface of the anode, a solid electrolyte layer, carbon It is common to have a cathode having a laminated layer and a silver layer. The capacitor's solid electrolyte layer is a layer composed of π-conjugated conductive polymers such as pyrrole and thiophene, penetrates into the porous body, and comes into contact with a larger area of the dielectric layer to increase its capacitance. In addition, it plays a role of preventing the occurrence of leakage current by repairing the defective portion of the dielectric layer.
As a method for forming a π-conjugated conductive polymer, an electrolytic polymerization method (see Patent Document 2) and a chemical oxidation polymerization method (see Patent Document 3) are widely known.
However, in the electropolymerization method, it is necessary to previously form a conductive layer made of manganese oxide on the surface of the valve metal porous body, which is very complicated, and manganese oxide has low conductivity and high conductivity. There is a problem that the effect of using a conductive π-conjugated conductive polymer is reduced.
In addition, in the chemical oxidation polymerization method, the polymerization time is long, and it is necessary to repeat the polymerization in order to ensure the thickness, so that the production efficiency of the capacitor is low and the conductivity is also low.
そこで、電解重合法や化学酸化重合法で誘電体層上にπ共役系導電性高分子を形成しない方法が提案されている(特許文献4参照)。特許文献4には、スルホ基、カルボキシ基等を持つ高分子酸を共存させながらアニリンを重合して水溶性のポリアニリンを調製し、そのポリアニリン水溶液を誘電体層上に塗布、乾燥する方法が記載されている。しかし、この製造方法は簡便であるものの、多孔質体内部への浸透性が劣ると共に、π共役系導電性高分子以外に高分子酸を含むために導電性が低く、しかも、高分子酸の影響で導電性に湿度依存性が見られることもあった。 Therefore, a method has been proposed in which a π-conjugated conductive polymer is not formed on the dielectric layer by an electrolytic polymerization method or a chemical oxidative polymerization method (see Patent Document 4). Patent Document 4 describes a method of preparing water-soluble polyaniline by polymerizing aniline in the presence of a polymer acid having a sulfo group, a carboxy group, etc., and applying and drying the polyaniline aqueous solution on the dielectric layer. Has been. However, although this production method is simple, the permeability to the inside of the porous body is inferior, and since the polymer acid is included in addition to the π-conjugated conductive polymer, the conductivity is low. As a result, the electrical conductivity was sometimes dependent on humidity.
ところで、コンデンサとしては等価直列抵抗(ESR)が小さいものが求められており、ESRを小さくするためには、固体電解質層の導電性を高くすることが必要である。固体電解質層の導電性を高める方法としては、例えば、化学酸化重合法の条件を高度にコントロールすることが提案されている(特許文献5参照)。しかし、その製造方法では、煩雑な化学酸化重合法をより複雑にすることが多く、工程の簡略化、低コスト化を実現できなかった。
本発明は、陰極の固体電解質層の導電性に優れ、ESRが低いコンデンサを提供することを目的とする。さらには、そのようなコンデンサを簡便に製造する方法を提供することを目的とする。 An object of this invention is to provide the capacitor | condenser which is excellent in the electroconductivity of the solid electrolyte layer of a cathode, and has low ESR. Furthermore, it aims at providing the method of manufacturing such a capacitor | condenser simply.
本発明のコンデンサは、弁金属の多孔質体からなる陽極と、該陽極の表面が酸化されて形成された誘電体層と、該誘電体層上に形成された陰極とを有するコンデンサにおいて、
陰極が、π共役系導電性高分子と、ポリアニオンと、ヒドロキシ基含有芳香族性化合物とを含む固体電解質層を具備することを特徴とする。
本発明のコンデンサにおいては、前記ヒドロキシ基含有芳香族性化合物が、下記式(1)で表される化合物であることが好ましい。
The capacitor of the present invention is a capacitor having an anode made of a porous body of valve metal, a dielectric layer formed by oxidizing the surface of the anode, and a cathode formed on the dielectric layer.
The cathode includes a solid electrolyte layer containing a π-conjugated conductive polymer, a polyanion, and a hydroxy group-containing aromatic compound.
In the capacitor of the present invention, the hydroxy group-containing aromatic compound is preferably a compound represented by the following formula (1).
(式(1)中、Rは炭素数1〜15の直鎖または分岐のアルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アリール基、アラルキル基のいずれかを示す。)
本発明のコンデンサにおいては、前記陰極が、さらに、電解液を含むことが好ましい。
本発明のコンデンサの製造方法は、弁金属の多孔質体からなる陽極と該陽極の表面が酸化されて形成された誘電体層とを有するコンデンサ中間体における誘電体層側表面に、π共役系導電性高分子とポリアニオンとヒドロキシ基含有芳香族性化合物と溶媒とを含む導電性高分子溶液を塗布し、乾燥する工程を有することを特徴とする。
(In the formula (1), R represents a linear or branched alkyl group having 1 to 15 carbon atoms, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, or an aralkyl group.)
In the capacitor of the present invention, it is preferable that the cathode further contains an electrolytic solution.
The method for producing a capacitor of the present invention includes a π-conjugated system on a dielectric layer side surface in a capacitor intermediate body having an anode made of a porous body of valve metal and a dielectric layer formed by oxidizing the surface of the anode. It has the process of apply | coating and drying the conductive polymer solution containing a conductive polymer, a polyanion, a hydroxyl-containing aromatic compound, and a solvent.
本発明のコンデンサは、陰極の導電性が高いので、等価直列抵抗が小さい。
本発明のコンデンサにおいて、陰極に電解液が含まれていれば、静電容量の引き出し率が高くなる。
本発明のコンデンサの製造方法によれば、陰極の導電性が高く、等価直列抵抗が小さいコンデンサを簡便に製造できる。
Since the capacitor of the present invention has high cathode conductivity, the equivalent series resistance is small.
In the capacitor of the present invention, when the electrolyte is contained in the cathode, the capacitance drawing rate is increased.
According to the method for manufacturing a capacitor of the present invention, a capacitor having a high cathode conductivity and a small equivalent series resistance can be easily manufactured.
以下、本発明のコンデンサ及びその製造方法の一実施形態例について説明する。
図1は、本実施形態例のコンデンサの構成を示す図である。このコンデンサ10は、弁金属の多孔質体からなる陽極11と、陽極11の表面が酸化されて形成された誘電体層12と、誘電体層12上に形成された陰極13とを有して概略構成されている。
Hereinafter, an embodiment of a capacitor and a manufacturing method thereof according to the present invention will be described.
FIG. 1 is a diagram illustrating a configuration of a capacitor according to the present embodiment. The
<陽極>
陽極11をなす弁金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが挙げられる。これらのうち、アルミニウム、タンタル、ニオブが好適である。これら弁金属は、電解酸化処理により、緻密で耐久性を有する誘電体酸化被膜(誘電体層)を形成できるため、コンデンサ容量を安定的に高くすることができる。
陽極11の具体例としては、アルミニウム箔をエッチングして表面積を増加させた後、その表面を酸化処理したものや、タンタル粒子やニオブ粒子の焼結体表面を酸化処理してペレットにしたものが挙げられる。このように処理されたものは表面に凹凸が形成されている。
<Anode>
Examples of the valve metal forming the
Specific examples of the
<誘電体層>
誘電体層12は、例えば、アジピン酸アンモニウム水溶液などの電解液中にて、金属体11の表面を陽極酸化することで形成されたものである。よって、図1に示すように、陽極11と同様に誘電体層12の表面にも凹凸が形成されている。
<Dielectric layer>
The dielectric layer 12 is formed, for example, by anodizing the surface of the
<陰極>
陰極13は、固体電解質層13aと、固体電解質層13a上に形成されたカーボン、銀、アルミニウム等で構成されている導電層13bとを具備し、固体電解質層13aが、π共役系導電性高分子と、ポリアニオンと、ヒドロキシ基含有芳香族性化合物とを含むものである。
導電層13bがカーボン、銀等で構成される場合には、カーボン、銀等の導電体を含む導電性ペーストから形成されたものである。また、導電層13bがアルミニウムで構成される場合には、アルミニウム箔からなる。
また、固体電解質層13aと導電層13bとの間には、必要に応じて、セパレータを設けることができる。
<Cathode>
The
When the
Moreover, a separator can be provided between the
(π共役系導電性高分子)
π共役系導電性高分子は、主鎖がπ共役系で構成されている有機高分子であれば使用できる。例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。重合の容易さ、空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
π共役系導電性高分子は無置換のままでも、充分な導電性を得ることができるが、導電性をより高めるためには、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基をπ共役系導電性高分子に導入することが好ましい。
(Π-conjugated conductive polymer)
The π-conjugated conductive polymer can be used as long as the main chain is an organic polymer having a π-conjugated system. Examples thereof include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of easy polymerization and stability in air, polypyrroles, polythiophenes and polyanilines are preferred.
Even if the π-conjugated conductive polymer remains unsubstituted, sufficient conductivity can be obtained. However, in order to further improve the conductivity, an alkyl group, a carboxy group, a sulfo group, an alkoxy group, a hydroxy group, a cyano group, It is preferable to introduce a functional group such as a group into the π-conjugated conductive polymer.
このようなπ共役系導電性高分子の具体例としては、ポリピロール、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。 Specific examples of such π-conjugated conductive polymers include polypyrrole, poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), and poly (3-butylpyrrole). ), Poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3- Carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole), Poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole) , Poly (3-methyl-4-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (thiophene), poly (3-methylthiophene), poly (3-ethylthiophene), poly ( 3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3- Dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene) ), Poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), poly (3 -Hydroxythiophene), poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3 -Octyloxythiophene), poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxy) Thiophene), poly (3,4-diethoxythiophene), poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxythiophene), poly (3 , 4-diheptyloxythiophene), poly (3,4-dioctyloxythio) Phen), poly (3,4-didecyloxythiophene), poly (3,4-didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene) , Poly (3,4-butenedioxythiophene), poly (3-methyl-4-methoxythiophene), poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene), poly (3-methyl -4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), poly (3-methyl-4-carboxybutylthiophene), polyaniline, poly (2-methylaniline), poly (3-isobutylaniline) , Poly (2-anilinesulfonic acid), poly (3-anilinesulfonic acid) and the like.
中でも、ポリピロール、ポリチオフェン、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)から選ばれる1種又は2種からなる(共)重合体が抵抗値、反応性の点から好適に用いられる。さらには、ポリピロール、ポリ(3,4−エチレンジオキシチオフェン)は、導電性がより高い上に、耐熱性が向上する点から、より好ましい。 Among them, from one or two kinds selected from polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene), and poly (3,4-ethylenedioxythiophene). The (co) polymer is preferably used from the viewpoints of resistance and reactivity. Furthermore, polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable because they have higher conductivity and improved heat resistance.
上記π共役系導電性高分子は、溶媒中、π共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリアニオンの存在下で化学酸化重合することによって容易に製造できる。
[前駆体モノマー]
前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
前駆体モノマーの具体例としては、ピロール、3−メチルピロール、3−エチルピロール、3−n−プロピルピロール、3−ブチルピロール、3−オクチルピロール、3−デシルピロール、3−ドデシルピロール、3,4−ジメチルピロール、3,4−ジブチルピロール、3−カルボキシルピロール、3−メチル−4−カルボキシルピロール、3−メチル−4−カルボキシエチルピロール、3−メチル−4−カルボキシブチルピロール、3−ヒドロキシピロール、3−メトキシピロール、3−エトキシピロール、3−ブトキシピロール、3−ヘキシルオキシピロール、3−メチル−4−ヘキシルオキシピロール、チオフェン、3−メチルチオフェン、3−エチルチオフェン、3−プロピルチオフェン、3−ブチルチオフェン、3−ヘキシルチオフェン、3−ヘプチルチオフェン、3−オクチルチオフェン、3−デシルチオフェン、3−ドデシルチオフェン、3−オクタデシルチオフェン、3−ブロモチオフェン、3−クロロチオフェン、3−ヨードチオフェン、3−シアノチオフェン、3−フェニルチオフェン、3,4−ジメチルチオフェン、3,4−ジブチルチオフェン、3−ヒドロキシチオフェン、3−メトキシチオフェン、3−エトキシチオフェン、3−ブトキシチオフェン、3−ヘキシルオキシチオフェン、3−ヘプチルオキシチオフェン、3−オクチルオキシチオフェン、3−デシルオキシチオフェン、3−ドデシルオキシチオフェン、3−オクタデシルオキシチオフェン、3,4−ジヒドロキシチオフェン、3,4−ジメトキシチオフェン、3,4−ジエトキシチオフェン、3,4−ジプロポキシチオフェン、3,4−ジブトキシチオフェン、3,4−ジヘキシルオキシチオフェン、3,4−ジヘプチルオキシチオフェン、3,4−ジオクチルオキシチオフェン、3,4−ジデシルオキシチオフェン、3,4−ジドデシルオキシチオフェン、3,4−エチレンジオキシチオフェン、3,4−プロピレンジオキシチオフェン、3,4−ブテンジオキシチオフェン、3−メチル−4−メトキシチオフェン、3−メチル−4−エトキシチオフェン、3−カルボキシチオフェン、3−メチル−4−カルボキシチオフェン、3−メチル−4−カルボキシエチルチオフェン、3−メチル−4−カルボキシブチルチオフェン、アニリン、2−メチルアニリン、3−イソブチルアニリン、2−アニリンスルホン酸、3−アニリンスルホン酸等が挙げられる。
The π-conjugated conductive polymer is easily obtained by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated conductive polymer in a solvent in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described below. Can be manufactured.
[Precursor monomer]
The precursor monomer has a π-conjugated system in the molecule, and a π-conjugated system is formed in the main chain even when polymerized by the action of an appropriate oxidizing agent. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
Specific examples of the precursor monomer include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexylchi Phen, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenyl Thiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3- Octyloxythiophene, 3-decyloxythiophene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythiol 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyloxy Thiophene, 3,4-didodecyloxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, 3,4-butenedioxythiophene, 3-methyl-4-methoxythiophene, 3-methyl -4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4-carboxythiophene, 3-methyl-4-carboxyethylthiophene, 3-methyl-4-carboxybutylthiophene, aniline, 2-methylaniline, 3-isobutyl Aniline, 2-aniline sulfonic acid, 3-aniline A sulfonic acid etc. are mentioned.
[溶媒]
π共役系導電性高分子の製造で使用する溶媒としては特に制限されず、前記前駆体モノマーを溶解又は分散しうる溶媒であり、酸化剤及び酸化触媒の酸化力を維持させることができるものであればよい。例えば、水、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、アセトニトリル、ベンゾニトリル等の極性溶媒、クレゾール、フェノール、キシレノール等のフェノール類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ヘキサン、ベンゼン、トルエン等の炭化水素類、ギ酸、酢酸等のカルボン酸、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、3−メチル−2−オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上の混合物としてもよいし、他の有機溶媒との混合物としてもよい。
[solvent]
The solvent used in the production of the π-conjugated conductive polymer is not particularly limited, and is a solvent that can dissolve or disperse the precursor monomer, and can maintain the oxidizing power of the oxidizing agent and the oxidation catalyst. I just need it. For example, polar solvents such as water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylene phosphortriamide, acetonitrile, benzonitrile, cresol, phenol, xylenol, etc. Phenols, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone and methyl ethyl ketone, hydrocarbons such as hexane, benzene and toluene, carboxylic acids such as formic acid and acetic acid, ethylene carbonate, propylene carbonate, etc. Carbonate compounds, ether compounds such as dioxane, diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether Chain ethers such as polypropylene glycol dialkyl ether, 3-methyl-2-oxazolidinone heterocyclic compounds such as, acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile and the like. These solvents may be used alone, as a mixture of two or more kinds, or as a mixture with other organic solvents.
[酸化剤及び酸化触媒]
酸化剤、酸化触媒としては、前記前駆体モノマーを酸化させてπ共役系導電性高分子を得ることができるものであればよく、例えば、ぺルオキソ二硫酸アンモニウム、ぺルオキソ二硫酸ナトリウム、ぺルオキソ二硫酸カリウム等のぺルオキソ二硫酸塩、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第二銅等の遷移金属化合物、三フッ化ホウ素、塩化アルミニウムなどの金属ハロゲン化合物、酸化銀、酸化セシウム等の金属酸化物、過酸化水素、オゾン等の過酸化物、過酸化ベンゾイル等の有機過酸化物、酸素等が挙げられる。
[Oxidizing agent and oxidation catalyst]
Any oxidizing agent or oxidation catalyst may be used as long as it can oxidize the precursor monomer to obtain a π-conjugated conductive polymer. For example, ammonium peroxodisulfate, sodium peroxodisulfate, peroxodisulfide Peroxodisulfates such as potassium sulfate, transition metal compounds such as ferric chloride, ferric sulfate, ferric nitrate and cupric chloride, metal halides such as boron trifluoride and aluminum chloride, silver oxide Metal oxides such as cesium oxide, peroxides such as hydrogen peroxide and ozone, organic peroxides such as benzoyl peroxide, oxygen, and the like.
(ポリアニオン)
ポリアニオンは、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。
このポリアニオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。
(Polyanion)
The polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof. It consists of a structural unit having a group and a structural unit having no anionic group.
This polyanion is a solubilized polymer that solubilizes the π-conjugated conductive polymer in a solvent. The anion group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
ポリアルキレンとは、主鎖がメチレンの繰り返しで構成されているポリマーである。ポリアルキレンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリビニルアルコール、ポリビニルフェノール、ポリ(3,3,3−トリフルオロプロピレン)、ポリアクリロニトリル、ポリアクリレート、ポリスチレン等が挙げられる。 A polyalkylene is a polymer whose main chain is composed of repeating methylenes. Examples of the polyalkylene include polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyvinyl alcohol, polyvinylphenol, poly (3,3,3-trifluoropropylene), polyacrylonitrile, polyacrylate, polystyrene, and the like.
ポリアルケニレンとは、主鎖に不飽和結合(ビニル基)が1個以上含まれる構成単位からなるポリマーである。ポリアルケニレンの具体例としては、プロペニレン、1−メチルプロペニレン、1−ブチルプロペニレン、1−デシルプロペニレン、1−シアノプロペニレン、1−フェニルプロペニレン、1−ヒドロキシプロペニレン、1−ブテニレン、1−メチル−1−ブテニレン、1−エチル−1−ブテニレン、1−オクチル−1−ブテニレン、1−ペンタデシル−1−ブテニレン、2−メチル−1−ブテニレン、2−エチル−1−ブテニレン、2−ブチル−1−ブテニレン、2−ヘキシル−1−ブテニレン、2−オクチル−1−ブテニレン、2−デシル−1−ブテニレン、2−ドデシル−1−ブテニレン、2−フェニル−1−ブテニレン、2−ブテニレン、1−メチル−2−ブテニレン、1−エチル−2−ブテニレン、1−オクチル−2−ブテニレン、1−ペンタデシル−2−ブテニレン、2−メチル−2−ブテニレン、2−エチル−2−ブテニレン、2−ブチル−2−ブテニレン、2−ヘキシル−2−ブテニレン、2−オクチル−2−ブテニレン、2−デシル−2−ブテニレン、2−ドデシル−2−ブテニレン、2−フェニル−2−ブテニレン、2−プロピレンフェニル−2−ブテニレン、3−メチル−2−ブテニレン、3−エチル−2−ブテニレン、3−ブチル−2−ブテニレン、3−ヘキシル−2−ブテニレン、3−オクチル−2−ブテニレン、3−デシル−2−ブテニレン、3−ドデシル−2−ブテニレン、3−フェニル−2−ブテニレン、3−プロピレンフェニル−2−ブテニレン、2−ペンテニレン、4−プロピル−2−ペンテニレン、4−ブチル−2−ペンテニレン、4−ヘキシル−2−ペンテニレン、4−シアノ−2−ペンテニレン、3−メチル−2−ペンテニレン、4−エチル−2−ペンテニレン、3−フェニル−2−ペンテニレン、4−ヒドロキシ−2−ペンテニレン、ヘキセニレン等から選ばれる一種以上の構成単位を含む重合体が挙げられる。
これらの中でも、不飽和結合とπ共役系導電性高分子との相互作用があること、置換若しくは未置換のブタジエンを出発物質として合成しやすいことから、置換若しくは未置換のブテニレンが好ましい。
Polyalkenylene is a polymer composed of structural units containing one or more unsaturated bonds (vinyl groups) in the main chain. Specific examples of polyalkenylene include propenylene, 1-methylpropenylene, 1-butylpropenylene, 1-decylpropenylene, 1-cyanopropenylene, 1-phenylpropenylene, 1-hydroxypropenylene, 1-butenylene, 1-methyl-1-butenylene, 1-ethyl-1-butenylene, 1-octyl-1-butenylene, 1-pentadecyl-1-butenylene, 2-methyl-1-butenylene, 2-ethyl-1-butenylene, 2- Butyl-1-butenylene, 2-hexyl-1-butenylene, 2-octyl-1-butenylene, 2-decyl-1-butenylene, 2-dodecyl-1-butenylene, 2-phenyl-1-butenylene, 2-butenylene, 1-methyl-2-butenylene, 1-ethyl-2-butenylene, 1-octyl-2-butenylene 1-pentadecyl-2-butenylene, 2-methyl-2-butenylene, 2-ethyl-2-butenylene, 2-butyl-2-butenylene, 2-hexyl-2-butenylene, 2-octyl-2-butenylene, 2- Decyl-2-butenylene, 2-dodecyl-2-butenylene, 2-phenyl-2-butenylene, 2-propylenephenyl-2-butenylene, 3-methyl-2-butenylene, 3-ethyl-2-butenylene, 3-butyl 2-butenylene, 3-hexyl-2-butenylene, 3-octyl-2-butenylene, 3-decyl-2-butenylene, 3-dodecyl-2-butenylene, 3-phenyl-2-butenylene, 3-propylenephenyl- 2-butenylene, 2-pentenylene, 4-propyl-2-pentenylene, 4-butyl-2-pentenylene, 4-he Selected from sil-2-pentenylene, 4-cyano-2-pentenylene, 3-methyl-2-pentenylene, 4-ethyl-2-pentenylene, 3-phenyl-2-pentenylene, 4-hydroxy-2-pentenylene, hexenylene, etc. And polymers containing one or more structural units.
Among these, substituted or unsubstituted butenylene is preferable because of the interaction between the unsaturated bond and the π-conjugated conductive polymer and the ease of synthesis using substituted or unsubstituted butadiene as a starting material.
ポリイミドとしては、ピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,2,3,3−テトラカルボキシジフェニルエーテル二無水物、2,2−[4,4’−ジ(ジカルボキシフェニルオキシ)フェニル]プロパン二無水物等の無水物とオキシジアニン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミン等のジアミンとからのポリイミドが挙げられる。
ポリアミドとしては、ポリアミド6、ポリアミド6,6、ポリアミド6,10等が挙げられる。
ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
Examples of polyimide include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, 2,2,3,3-tetracarboxydiphenyl ether dianhydride, 2,2- [4,4 Examples include polyimides from anhydrides such as' -di (dicarboxyphenyloxy) phenyl] propane dianhydride and diamines such as oxydianine, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine.
Examples of the polyamide include polyamide 6, polyamide 6,6,
Examples of the polyester include polyethylene terephthalate and polybutylene terephthalate.
ポリアニオンが置換基を有する場合、その置換基としては、アルキル基、ヒドロキシ基、アミノ基、カルボキシ基、シアノ基、フェニル基、フェノール基、エステル基、アルコキシ基等が挙げられる。溶媒への溶解性、耐熱性及び樹脂への相溶性等を考慮すると、アルキル基、ヒドロキシ基、フェノール基、エステル基が好ましい。
アルキル基は、極性溶媒又は非極性溶媒への溶解性及び分散性、樹脂への相溶性及び分散性等を高くすることができ、ヒドロキシ基は、他の水素原子等との水素結合を形成しやすくでき、有機溶媒への溶解性、樹脂への相溶性、分散性、接着性を高くすることができる。また、シアノ基及びヒドロキシフェニル基は、極性樹脂への相溶性、溶解性を高くすることができ、しかも、耐熱性も高くすることができる。
上記置換基の中では、アルキル基、ヒドロキシ基、エステル基、シアノ基が好ましい。
When the polyanion has a substituent, examples of the substituent include an alkyl group, a hydroxy group, an amino group, a carboxy group, a cyano group, a phenyl group, a phenol group, an ester group, and an alkoxy group. In view of solubility in a solvent, heat resistance, compatibility with a resin, and the like, an alkyl group, a hydroxy group, a phenol group, and an ester group are preferable.
Alkyl groups can increase solubility and dispersibility in polar or nonpolar solvents, compatibility and dispersibility in resins, and hydroxy groups form hydrogen bonds with other hydrogen atoms. This makes it easy to increase solubility in organic solvents, compatibility with resins, dispersibility, and adhesion. In addition, the cyano group and the hydroxyphenyl group can increase the compatibility and solubility in the polar resin, and can also increase the heat resistance.
Among the above substituents, an alkyl group, a hydroxy group, an ester group, and a cyano group are preferable.
前記アルキル基としては、メチル、エチル、プロピル、ブチル、イソブチル、t−ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシル等の鎖状アルキル基、シクロプロピル、シクロペンチル、シクロヘキシル等のシクロアルキル基が挙げられる。有機溶剤への溶解性、樹脂への分散性、立体障害等を考慮すると、炭素数1〜12のアルキル基がより好ましい。
前記ヒドロキシ基としては、ポリアニオンの主鎖に直接結合したヒドロキシ基又は他の官能基を介在して結合したヒドロキシ基が挙げられる。他の官能基としては、炭素数1〜7のアルキル基、炭素数2〜7のアルケニル基、アミド基、イミド基等が挙げられる。ヒドロキシ基はこれらの官能基の末端又は中に置換されている。これらの中では樹脂への相溶及び有機溶剤への溶解性から、主鎖に結合した炭素数1〜6のアルキル基の末端に結合したヒドロキシ基がより好ましい。
前記アミノ基としては、ポリアニオンの主鎖に直接結合したアミノ基又は他の官能基を介在して結合したアミノ基が挙げられる。他の官能基としては、炭素数1〜7のアルキル基、炭素数2〜7のアルケニル基、アミド基、イミド基等が挙げられる。アミノ基はこれらの官能基の末端又は中に置換されている。
前記フェノール基としては、ポリアニオンの主鎖に直接結合したフェノール基又は他の官能基を介在して結合したフェノール基が挙げられる。他の官能基としては、炭素数1〜7のアルキル基、炭素数2〜7のアルケニル基、アミド基、イミド基等が挙げられる。フェノール基はこれらの官能基の末端又は中に置換されている。
前記エステル基としては、ポリアニオンの主鎖に直接結合したアルキル系エステル基、芳香族系エステル基、他の官能基を介在してなるアルキル系エステル基又は芳香族系エステル基が挙げられる。
シアノ基としては、ポリアニオンの主鎖に直接結合したシアノ基、ポリアニオンの主鎖に結合した炭素数1〜7のアルキル基の末端に結合したシアノ基、ポリアニオンの主鎖に結合した炭素数2〜7のアルケニル基の末端に結合したシアノ基等を挙げることができる。
Examples of the alkyl group include chain alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl, decyl, and dodecyl, and cycloalkyl groups such as cyclopropyl, cyclopentyl, and cyclohexyl. . In consideration of solubility in an organic solvent, dispersibility in a resin, steric hindrance, and the like, an alkyl group having 1 to 12 carbon atoms is more preferable.
Examples of the hydroxy group include a hydroxy group directly bonded to the main chain of the polyanion or a hydroxy group bonded via another functional group. Examples of other functional groups include an alkyl group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an amide group, and an imide group. The hydroxy group is substituted at the end or in these functional groups. Among these, a hydroxy group bonded to the terminal of an alkyl group having 1 to 6 carbon atoms bonded to the main chain is more preferable from the viewpoint of compatibility with a resin and solubility in an organic solvent.
Examples of the amino group include an amino group directly bonded to the main chain of the polyanion or an amino group bonded via another functional group. Examples of other functional groups include an alkyl group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an amide group, and an imide group. The amino group is substituted at the end or in these functional groups.
Examples of the phenol group include a phenol group directly bonded to the main chain of the polyanion or a phenol group bonded via another functional group. Examples of other functional groups include an alkyl group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an amide group, and an imide group. The phenol group is substituted at the end or in these functional groups.
Examples of the ester group include an alkyl ester group directly bonded to the main chain of the polyanion, an aromatic ester group, and an alkyl ester group or an aromatic ester group having another functional group interposed therebetween.
The cyano group includes a cyano group directly bonded to the main chain of the polyanion, a cyano group bonded to the terminal of the alkyl group having 1 to 7 carbon atoms bonded to the main chain of the polyanion, and 2 to 2 carbon atoms bonded to the main chain of the polyanion. And a cyano group bonded to the terminal of 7 alkenyl group.
ポリアニオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。 The anion group of the polyanion may be a functional group capable of undergoing chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a monosubstituted sulfate group, A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2−アクリルアミド−2−メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
これらのうち、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、得られる帯電防止塗料の導電性をより高くでき、また、π共役系導電性高分子の熱分解を緩和することができる。
Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyisoprene. Sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly (2-acrylamido-2-methylpropane carboxylic acid), polyisoprene carboxylic acid, polyacrylic acid, etc. Can be mentioned. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
Among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polyacrylic acid butyl sulfonic acid are preferable. These polyanions can increase the conductivity of the resulting antistatic coating material and can alleviate thermal decomposition of the π-conjugated conductive polymer.
ポリアニオンの重合度は、モノマー単位が10〜100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50〜10000個の範囲がより好ましい。 The degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
ポリアニオンの製造方法としては、例えば、酸を用いてアニオン基を有さないポリマーにアニオン基を直接導入する方法、アニオン基を有さないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法が挙げられる。
アニオン基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。
アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。
得られたポリマーがポリアニオン塩である場合には、ポリアニオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。
Examples of methods for producing polyanions include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and anionic group-containing polymerization. And a method of production by polymerization of a functional monomer.
Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
The oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the π-conjugated conductive polymer.
When the obtained polymer is a polyanionic salt, it is preferably transformed into a polyanionic acid. Examples of the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like. Among these, the ultrafiltration method is preferable from the viewpoint of easy work.
アニオン基含有重合性モノマーは、モノマーの一部が一置換硫酸エステル基、カルボキシ基、スルホ基等で置換されたものであり、例えば、置換若しくは未置換のエチレンスルホン酸化合物、置換若しくは未置換のスチレンスルホン酸化合物、置換若しくは未置換のアクリレートスルホン酸化合物、置換若しくは未置換のメタクリレートスルホン酸化合物、置換若しくは未置換のアクリルアミドスルホン酸化合物、置換若しくは未置換のシクロビニレンスルホン酸化合物、置換若しくは未置換のブタジエンスルホン酸化合物、置換若しくは未置換のビニル芳香族スルホン酸化合物が挙げられる。
具体的には、ビニルスルホン酸及びその塩類、アリルスルホン酸及びその塩類、メタリルスルホン酸及びその塩類、スチレンスルホン酸、メタリルオキシベンゼンスルホン酸及びその塩類、アリルオキシベンゼンスルホン酸及びその塩類、α−メチルスチレンスルホン酸及びその塩類、アクリルアミド−t−ブチルスルホン酸及びその塩類、2−アクリルアミド−2−メチルプロパンスルホン酸及びその塩類、シクロブテン−3−スルホン酸及びその塩類、イソプレンスルホン酸及びその塩類、1,3−ブタジエン−1−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−2−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−4−スルホン酸及びその塩類、アクリル酸エチルスルホン酸(CH2CH-COO-(CH2)2-SO3H)及びその塩類、アクリル酸プロピルスルホン酸(CH2CH-COO-(CH2)3-SO3H)及びその塩類、アクリル酸−t−ブチルスルホン酸(CH2CH-COO-C(CH3)2CH2-SO3H)及びその塩類、アクリル酸−n−ブチルスルホン酸(CH2CH-COO-(CH2)4-SO3H)及びその塩類、アリル酸エチルスルホン酸(CH2CHCH2-COO-(CH2)2-SO3H)及びその塩類、アリル酸−t−ブチルスルホン酸(CH2CHCH2-COO-C(CH3)2CH2-SO3H)及びその塩類、4−ペンテン酸エチルスルホン酸(CH2CH(CH2)2-COO-(CH2)2-SO3H)及びその塩類、4−ペンテン酸プロピルスルホン酸(CH2CH(CH2)2-COO-(CH2)3-SO3H)及びその塩類、4−ペンテン酸−n−ブチルスルホン酸(CH2CH(CH2)2-COO-(CH2)4-SO3H)及びその塩類、4−ペンテン酸−t−ブチルスルホン酸(CH2CH(CH2)2-COO-C(CH3)2CH2-SO3H)及びその塩類、4−ペンテン酸フェニレンスルホン酸(CH2CH(CH2)2-COO-C6H4-SO3H)及びその塩類、4−ペンテン酸ナフタレンスルホン酸(CH2CH(CH2)2-COO-C10H8-SO3H)及びその塩類、メタクリル酸エチルスルホン酸(CH2C(CH3)-COO-(CH2)2-SO3H)及びその塩類、メタクリル酸プロピルスルホン酸(CH2C(CH3)-COO-(CH2)3-SO3H)及びその塩類、メタクリル酸−t−ブチルスルホン酸(CH2C(CH3)-COO-C(CH3)2CH2-SO3H)及びその塩類、メタクリル酸−n−ブチルスルホン酸(CH2C(CH3)-COO-(CH2)4-SO3H)及びその塩類、メタクリル酸フェニレンスルホン酸(CH2C(CH3)-COO-C6H4-SO3H)及びその塩類、メタクリル酸ナフタレンスルホン酸(CH2C(CH3)-COO-C10H8-SO3H)及びその塩類、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2−アクリルアミド−2−メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。また、これらを2種以上含む共重合体であってもよい。
The anionic group-containing polymerizable monomer is one in which a part of the monomer is substituted with a mono-substituted sulfate group, a carboxy group, a sulfo group, etc., for example, a substituted or unsubstituted ethylene sulfonic acid compound, a substituted or unsubstituted Styrene sulfonic acid compound, substituted or unsubstituted acrylate sulfonic acid compound, substituted or unsubstituted methacrylate sulfonic acid compound, substituted or unsubstituted acrylamide sulfonic acid compound, substituted or unsubstituted cyclovinylene sulfonic acid compound, substituted or unsubstituted And a substituted or unsubstituted vinyl aromatic sulfonic acid compound.
Specifically, vinyl sulfonic acid and salts thereof, allyl sulfonic acid and salts thereof, methallyl sulfonic acid and salts thereof, styrene sulfonic acid, methallyloxybenzene sulfonic acid and salts thereof, allyloxybenzene sulfonic acid and salts thereof, α-methylstyrenesulfonic acid and its salts, acrylamide-t-butylsulfonic acid and its salts, 2-acrylamido-2-methylpropanesulfonic acid and its salts, cyclobutene-3-sulfonic acid and its salts, isoprenesulfonic acid and its Salts, 1,3-butadiene-1-sulfonic acid and its salts, 1-methyl-1,3-butadiene-2-sulfonic acid and its salts, 1-methyl-1,3-butadiene-4-sulfonic acid and its salts, ethyl acrylate sulfonic acid (CH 2 CH-COO- (CH 2 2 -SO 3 H) and its salts, acrylic acid propyl sulfonic acid (CH 2 CH-COO- (CH 2) 3 -SO 3 H) and its salts, acrylic acid -t- butyl sulfonic acid (CH 2 CH-COO -C (CH 3) 2 CH 2 -SO 3 H) and its salts, acrylic acid -n- butyl sulfonic acid (CH 2 CH-COO- (CH 2) 4 -SO 3 H) and salts thereof, ethyl allyl acid sulfonic acid (CH 2 CHCH 2 -COO- (CH 2) 2 -SO 3 H) and its salts, allyl acid -t- butyl sulfonic acid (CH 2 CHCH 2 -COO-C (CH 3) 2 CH 2 -SO 3 H) and salts thereof, 4-pentenoic acid ethylsulfonic acid (CH 2 CH (CH 2 ) 2 —COO— (CH 2 ) 2 —SO 3 H) and salts thereof, 4-pentenoic acid propyl sulfonic acid (CH 2 CH (CH 2 ) 2 —COO— (CH 2 ) 3 -SO 3 H) and salts thereof, 4-pentenoic acid-n-butylsulfonic acid (CH 2 CH (CH 2 ) 2 —COO— (CH 2 ) 4 —SO 3 H) and salts thereof, 4-pentene Acid-t-butyl sulfonic acid (CH 2 CH (CH 2 ) 2 —COO—C (CH 3 ) 2 CH 2 —SO 3 H) and its salts, 4-pentenoic acid phenylene sulfonic acid (CH 2 CH (CH 2 2 ) -COO—C 6 H 4 —SO 3 H) and salts thereof, 4-pentenoic acid naphthalenesulfonic acid (CH 2 CH (CH 2 ) 2 —COO—C 10 H 8 —SO 3 H) and salts thereof, Ethyl methacrylate sulfonic acid (CH 2 C (CH 3 ) —COO— (CH 2 ) 2 —SO 3 H) and salts thereof, propyl methacrylate methacrylate (CH 2 C (CH 3 ) —COO— (CH 2 ) 3 -SO 3 H) and its salts, methacrylic acid-t-butylsulfate Acid (CH 2 C (CH 3) -COO-C (CH 3) 2 CH 2 -SO 3 H) and its salts, methacrylic acid -n- butyl sulfonic acid (CH 2 C (CH 3) -COO- ( CH 2 ) 4 —SO 3 H) and salts thereof, phenylene sulfonic acid methacrylate (CH 2 C (CH 3 ) —COO—C 6 H 4 —SO 3 H) and salts thereof, naphthalene sulfonic acid methacrylate (CH 2) C (CH 3) -COO-C 10 H 8 -SO 3 H) and salts thereof, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacrylic acid, polymethacrylic acid, poly (2-acrylamido - 2-methylpropanecarboxylic acid), polyisoprenecarboxylic acid, polyacrylic acid and the like. Moreover, the copolymer containing 2 or more types of these may be sufficient.
アニオン基を有さない重合性モノマーとしては、エチレン、プロぺン、1−ブテン、2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、スチレン、p−メチルスチレン、p−エチルスチレン、p−ブチルスチレン、2,4,6−トリメチルスチレン、p−メトキシスチレン、α−メチルスチレン、2−ビニルナフタレン、6−メチル−2−ビニルナフタレン、1−ビニルイミダゾール、ビニルピリジン、ビニルアセテート、アクリルアルデヒド、アクリルニトリル、N−ビニル−2−ピロリドン、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニルイミダゾ−ル、アクリルアミド、N,N−ジメチルアクリルアミド、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸−n−ブチル、アクリル酸イソブチル、アクリル酸−t−ブチル、アクリル酸イソオクチル、アクリル酸イソノニルブチル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸ステアリル、アクリル酸イソボニル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸エチルカルビトール、アクリル酸フェノキシエチル、アクリル酸ヒドロキシエチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸メトキシブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸−n−ブチル、メタクリル酸イソブチル、メタクリル酸−t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、アクリロイルモルホリン、ビニルアミン、N,N−ジメチルビニルアミン、N,N−ジエチルビニルアミン、N,N−ジブチルビニルアミン、N,N−ジ−t−ブチルビニルアミン、N,N−ジフェニルビニルアミン、N−ビニルカルバゾール、ビニルアルコール、塩化ビニル、フッ化ビニル、メチルビニルエーテル、エチルビニルエーテル、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、2−メチルシクロヘキセン、ビニルフェノール、1,3−ブタジエン、1−メチル−1,3−ブタジエン、2−メチル−1,3−ブタジエン、1,4−ジメチル−1,3−ブタジエン、1,2−ジメチル−1,3−ブタジエン、1,3−ジメチル−1,3−ブタジエン、1−オクチル−1,3−ブタジエン、2−オクチル−1,3−ブタジエン、1−フェニル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1−ヒドロキシ−1,3−ブタジエン、2−ヒドロキシ−1,3−ブタジエン等が挙げられる。
これらアニオン基を有さない重合性モノマーを共重合することで溶媒溶解性をコントロールすることができる。
Examples of the polymerizable monomer having no anionic group include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, styrene, p-methylstyrene, p. -Ethylstyrene, p-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, α-methylstyrene, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, 1-vinylimidazole, vinylpyridine, Vinyl acetate, acrylaldehyde, acrylonitrile, N-vinyl-2-pyrrolidone, N-vinylacetamide, N-vinylformamide, N-vinylimidazole, acrylamide, N, N-dimethylacrylamide, acrylic acid, methyl acrylate, Ethyl acrylate, propyl acrylate, acrylic acid n-butyl, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, isononyl butyl acrylate, lauryl acrylate, allyl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, benzyl acrylate, acrylic Ethyl carbitol, phenoxyethyl acrylate, hydroxyethyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, methoxybutyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, methacrylic acid-n-butyl, methacrylic acid Isobutyl, tert-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, cyclohexyl methacrylate, meta Benzyl crylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, acryloylmorpholine, vinylamine, N, N-dimethylvinylamine, N, N-diethylvinylamine, N, N-dibutylvinylamine, N, N -Di-t-butylvinylamine, N, N-diphenylvinylamine, N-vinylcarbazole, vinyl alcohol, vinyl chloride, vinyl fluoride, methyl vinyl ether, ethyl vinyl ether, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclo Octene, 2-methylcyclohexene, vinylphenol, 1,3-butadiene, 1-methyl-1,3-butadiene, 2-methyl-1,3-butadiene, 1,4-dimethyl-1,3-butadiene, 1, 2-di Chill-1,3-butadiene, 1,3-dimethyl-1,3-butadiene, 1-octyl-1,3-butadiene, 2-octyl-1,3-butadiene, 1-phenyl-1,3-butadiene, Examples include 2-phenyl-1,3-butadiene, 1-hydroxy-1,3-butadiene, 2-hydroxy-1,3-butadiene and the like.
Solvent solubility can be controlled by copolymerizing these polymerizable monomers having no anionic group.
ポリアニオンの重合度は、モノマー単位が10〜100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50〜10000個の範囲がより好ましい。 The degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
固体電解質層13a中のポリアニオンの含有量は、π共役系導電性高分子1モルに対して0.1〜10モルの範囲であることが好ましく、1〜7モルの範囲であることがより好ましい。ポリアニオンの含有量が0.1モルより少なくなると、π共役系導電性高分子へのドーピング効果が弱くなる傾向にあり、導電性が不足することがある。その上、溶媒への分散性及び溶解性が低くなり、均一な分散液を得ることが困難になる。また、ポリアニオンの含有量が10モルより多くなると、固体電解質層13a中のπ共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくい。
The content of the polyanion in the
(ヒドロキシ基含有芳香族性化合物)
ヒドロキシ基含有芳香族性化合物は、芳香族環に、ヒドロキシ基が2個以上結合しているものである。このヒドロキシ基含有芳香族性化合物は、ヒドロキシ基と芳香族環との相互作用が強く、該化合物中の水素を放出しやすいという性質を有する。
(Hydroxy group-containing aromatic compound)
A hydroxy group-containing aromatic compound is one in which two or more hydroxy groups are bonded to an aromatic ring. This hydroxy group-containing aromatic compound has a property that the interaction between the hydroxy group and the aromatic ring is strong and hydrogen in the compound is easily released.
ヒドロキシ基含有芳香族性化合物としては、例えば、1,4−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン、2,3−ジヒドロキシ−1−ペンタデシルベンゼン、2,4−ジヒドロキシアセトフェノン、2,5−ジヒドロキシアセトフェノン、2,4−ジヒドロキシベンゾフェノン、2,6−ジヒドロキシベンゾフェノン、3,4−ジヒドロキシベンゾフェノン、3,5−ジヒドロキシベンゾフェノン、2,4’−ジヒドロキシジフェニルスルフォン、2,2’,5,5’−テトラヒドロキシジフェニルスルフォン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフォン、ヒドロキシキノンカルボン酸及びその塩類、2,3−ジヒドロキシ安息香酸、2,4−ジヒドロキシ安息香酸、2,5−ジヒドロキシ安息香酸、2,6−ジヒドロキシ安息香酸、3,5−ジヒドロキシ安息香酸、1,4−ヒドロキノンスルホン酸及びその塩類、4,5−ヒドロキシベンゼン−1,3−ジスルホン酸及びその塩類、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン−2,6−ジカルボン酸、1,6−ジヒドロキシナフタレン−2,5−ジカルボン酸、1,5−ジヒドロキシナフトエ酸、1,4−ジヒドロキシ−2−ナフトエ酸フェニルエステル、4,5−ジヒドロキシナフタレン−2,7−ジスルホン酸及びその塩類、1,8−ジヒドロキシ−3,6−ナフタレンジスルホン酸及びその塩類、6,7−ジヒドロキシ−2−ナフタレンスルホン酸及びその塩類、1,2,3−トリヒドロキシベンゼン(ピロガロール)、1,2,4−トリヒドロキシベンゼン、5−メチル−1,2,3−トリヒドロキシベンゼン、5−エチル−1,2,3−トリヒドロキシベンゼン、5−プロピル−1,2,3−トリヒドロキシベンゼン、トリヒドロキシ安息香酸、トリヒドロキシアセトフェノン、トリヒドロキシベンゾフェノン、トリヒドロキシベンゾアルデヒド、トリヒドロキシアントラキノン、2,4,6−トリヒドロキシベンゼン、テトラヒドロキシ−p−ベンゾキノン、テトラヒドロキシアントラキノン等が挙げられる。
ヒドロキシ基含有芳香族性化合物の中でも、導電性の点からは、π共役系導電性高分子にドーピングしうる、アニオン基であるスルホ基及び/又はカルボキシ基を有する化合物がより好ましい。
Examples of the hydroxy group-containing aromatic compound include 1,4-dihydroxybenzene, 1,3-dihydroxybenzene, 2,3-dihydroxy-1-pentadecylbenzene, 2,4-dihydroxyacetophenone, and 2,5-dihydroxy. Acetophenone, 2,4-dihydroxybenzophenone, 2,6-dihydroxybenzophenone, 3,4-dihydroxybenzophenone, 3,5-dihydroxybenzophenone, 2,4'-dihydroxydiphenylsulfone, 2,2 ', 5,5'-tetra Hydroxydiphenylsulfone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylsulfone, hydroxyquinonecarboxylic acid and its salts, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxy cheap Perfume acid, 2,6-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 1,4-hydroquinonesulfonic acid and its salts, 4,5-hydroxybenzene-1,3-disulfonic acid and its salts, 1,5 -Dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,5-dihydroxynaphthalene-2,6-dicarboxylic acid, 1,6- Dihydroxynaphthalene-2,5-dicarboxylic acid, 1,5-dihydroxynaphthoic acid, 1,4-dihydroxy-2-naphthoic acid phenyl ester, 4,5-dihydroxynaphthalene-2,7-disulfonic acid and salts thereof, 1, 8-dihydroxy-3,6-naphthalenedisulfonic acid and its salts, 6,7 Dihydroxy-2-naphthalenesulfonic acid and its salts, 1,2,3-trihydroxybenzene (pyrogallol), 1,2,4-trihydroxybenzene, 5-methyl-1,2,3-trihydroxybenzene, 5- Ethyl-1,2,3-trihydroxybenzene, 5-propyl-1,2,3-trihydroxybenzene, trihydroxybenzoic acid, trihydroxyacetophenone, trihydroxybenzophenone, trihydroxybenzaldehyde, trihydroxyanthraquinone, 2, Examples include 4,6-trihydroxybenzene, tetrahydroxy-p-benzoquinone, and tetrahydroxyanthraquinone.
Among the hydroxy group-containing aromatic compounds, from the viewpoint of conductivity, compounds having a sulfo group and / or a carboxy group, which are anionic groups, can be doped into the π-conjugated conductive polymer.
また、ヒドロキシ基含有芳香族性化合物の中でも、導電性及び安定性がより優れることから、上記式(1)で表される化合物が好ましい。
式(1)中のRの具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−へキシル基、イソへキシル基、t−へキシル基、sec−へキシル基などのアルキル基、ビニル基、プロペニル基、ブテニル基などのアルケニル基、シクロヘキシル基、シクロペンチル基などのシクロアルキル基、シクロヘキセニル基などのシクロアルケニル基、フェニル基、ナフチル基などのアリール基、ベンジル基、フェネチル基などのアラルキル基などが挙げられる。
In addition, among the hydroxy group-containing aromatic compounds, the compound represented by the above formula (1) is preferable because of higher conductivity and stability.
Specific examples of R in the formula (1) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, isohexyl group, t- Hexyl group, alkyl group such as sec-hexyl group, alkenyl group such as vinyl group, propenyl group and butenyl group, cycloalkyl group such as cyclohexyl group and cyclopentyl group, cycloalkenyl group such as cyclohexenyl group, phenyl group, Examples thereof include aryl groups such as naphthyl group, aralkyl groups such as benzyl group and phenethyl group.
ヒドロキシ基置換芳香族性化合物の含有量は、ポリアニオン1モルに対して0.05〜10モルの範囲であることが好ましく、0.3〜5モルの範囲であることがより好ましい。ポリアニオンの含有量が0.05モルより少なくなると、導電性及び耐熱性が不足することがある。また、ポリアニオンの含有量が10モルより多くなると、固体電解質層13a中のπ共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくく、固体電解質層13aの物性が変化することがある。
The content of the hydroxy group-substituted aromatic compound is preferably in the range of 0.05 to 10 mol and more preferably in the range of 0.3 to 5 mol with respect to 1 mol of the polyanion. If the polyanion content is less than 0.05 mol, conductivity and heat resistance may be insufficient. Further, if the polyanion content is more than 10 mol, the content of the π-conjugated conductive polymer in the
(ドーパント)
固体電解質層13aにおいては、電気伝導度(導電性)を向上させるために、ポリアニオン以外に他のドーパントを添加してもよい。他のドーパントとしては、π共役系導電性高分子を酸化還元させることができればドナー性のものであってもよく、アクセプタ性のものであってもよい。
(Dopant)
In the
[ドナー性ドーパント]
ドナー性ドーパントとしては、例えば、ナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等の4級アミン化合物等が挙げられる。
[Donor dopant]
Examples of the donor dopant include alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, methyltriethylammonium, dimethyldiethylammonium, and the like. A quaternary amine compound etc. are mentioned.
[アクセプタ性ドーパント]
アクセプタ性ドーパントとしては、例えば、ハロゲン化合物、ルイス酸、プロトン酸、有機シアノ化合物、有機金属化合物、フラーレン、水素化フラーレン、水酸化フラーレン、カルボン酸化フラーレン、スルホン酸化フラーレン等を使用できる。
さらに、ハロゲン化合物としては、例えば、塩素(Cl2)、臭素(Br2)、ヨウ素(I2)、塩化ヨウ素(ICl)、臭化ヨウ素(IBr)、フッ化ヨウ素(IF)等が挙げられる。
ルイス酸としては、例えば、PF5、AsF5、SbF5、BF5、BCl5、BBr5、SO3等が挙げられる。
有機シアノ化合物としては、共役結合に二つ以上のシアノ基を含む化合物が使用できる。例えば、テトラシアノエチレン、テトラシアノエチレンオキサイド、テトラシアノベンゼン、ジクロロジシアノベンゾキノン(DDQ)、テトラシアノキノジメタン、テトラシアノアザナフタレン等が挙げられる。
[Acceptor dopant]
As the acceptor dopant, for example, a halogen compound, Lewis acid, proton acid, organic cyano compound, organometallic compound, fullerene, hydrogenated fullerene, hydroxylated fullerene, carboxylated fullerene, sulfonated fullerene, or the like can be used.
Furthermore, examples of the halogen compound include chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), iodine chloride (ICl), iodine bromide (IBr), and iodine fluoride (IF). .
Examples of the Lewis acid include PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 5 , BBr 5 , SO 3 and the like.
As the organic cyano compound, a compound containing two or more cyano groups in a conjugated bond can be used. Examples include tetracyanoethylene, tetracyanoethylene oxide, tetracyanobenzene, dichlorodicyanobenzoquinone (DDQ), tetracyanoquinodimethane, and tetracyanoazanaphthalene.
プロトン酸としては、無機酸、有機酸が挙げられる。さらに、無機酸としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウフッ化水素酸、フッ化水素酸、過塩素酸等が挙げられる。また、有機酸としては、有機カルボン酸、フェノール類、有機スルホン酸等が挙げられる。 Examples of the protonic acid include inorganic acids and organic acids. Furthermore, examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, borohydrofluoric acid, hydrofluoric acid, and perchloric acid. Examples of the organic acid include organic carboxylic acids, phenols, and organic sulfonic acids.
有機カルボン酸としては、脂肪族、芳香族、環状脂肪族等にカルボキシ基を一つ又は二つ以上を含むものを使用できる。例えば、ギ酸、酢酸、シュウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸等が挙げられる。 As the organic carboxylic acid, aliphatic, aromatic, cycloaliphatic and the like containing one or more carboxy groups can be used. For example, formic acid, acetic acid, oxalic acid, benzoic acid, phthalic acid, maleic acid, fumaric acid, malonic acid, tartaric acid, citric acid, lactic acid, succinic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, nitroacetic acid, And triphenylacetic acid.
有機スルホン酸としては、脂肪族、芳香族、環状脂肪族等にスルホ基を一つ又は二つ以上含むもの、又は、スルホ基を含む高分子を使用できる。
スルホ基を一つ含むものとして、例えば、メタンスルホン酸、エタンスルホン酸、1−プロパンスルホン酸、1−ブタンスルホン酸、1−ヘキサンスルホン酸、1−ヘプタンスルホン酸、1−オクタンスルホン酸、1−ノナンスルホン酸、1−デカンスルホン酸、1−ドデカンスルホン酸、1−テトラデカンスルホン酸、1−ペンタデカンスルホン酸、2−ブロモエタンスルホン酸、3−クロロ−2−ヒドロキシプロパンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロエタンスルホン酸、コリスチンメタンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、アミノメタンスルホン酸、1−アミノ−2−ナフトール−4−スルホン酸、2−アミノ−5−ナフトール−7−スルホン酸、3−アミノプロパンスルホン酸、N−シクロヘキシル−3−アミノプロパンスルホン酸、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、p−トルエンスルホン酸、キシレンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ペンチルベンゼンスルホン酸、ヘキチルベンゼンスルホン酸、ヘプチルベンゼンスルホン酸、オクチルベンゼンスルホン酸、ノニルベンゼンスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、ヘキサデシルベンゼンスルホン酸、2,4−ジメチルベンゼンスルホン酸、ジプロピルベンゼンスルホン酸、4−アミノベンゼンスルホン酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、4−アミノ−2−クロロトルエン−5−スルホン酸、4−アミノ−3−メチルベンゼン−1−スルホン酸、4−アミノ−5−メトキシ−2−メチルベンゼンスルホン酸、2−アミノ−5−メチルベンゼン−1−スルホン酸、4−アミノ−2−メチルベンゼン−1−スルホン酸、5−アミノ−2−メチルベンゼン−1−スルホン酸、4−アミノ−3−メチルベンゼン−1−スルホン酸、4−アセトアミド−3−クロロベンゼンスルホン酸、4−クロロ−3−ニトロベンゼンスルホン酸、p−クロロベンゼンスルホン酸、ナフタレンスルホン酸、メチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ペンチルナフタレンスルホン酸、4−アミノ−1−ナフタレンスルホン酸、8−クロロナフタレン−1−スルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、アントラキノンスルホン酸、ピレンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。
As the organic sulfonic acid, aliphatic, aromatic, cycloaliphatic or the like containing one or more sulfo groups, or a polymer containing sulfo groups can be used.
As one containing one sulfo group, for example, methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 1-butanesulfonic acid, 1-hexanesulfonic acid, 1-heptanesulfonic acid, 1-octanesulfonic acid, 1 -Nonanesulfonic acid, 1-decanesulfonic acid, 1-dodecanesulfonic acid, 1-tetradecanesulfonic acid, 1-pentadecanesulfonic acid, 2-bromoethanesulfonic acid, 3-chloro-2-hydroxypropanesulfonic acid, trifluoromethanesulfone Acid, trifluoroethanesulfonic acid, colistin methanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, aminomethanesulfonic acid, 1-amino-2-naphthol-4-sulfonic acid, 2-amino-5-naphthol- 7-sulfonic acid, 3-aminopropanesulfone N-cyclohexyl-3-aminopropanesulfonic acid, benzenesulfonic acid, alkylbenzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, ethylbenzenesulfonic acid, propylbenzenesulfonic acid, butylbenzenesulfonic acid, pentylbenzenesulfonic acid, hex Tylbenzenesulfonic acid, heptylbenzenesulfonic acid, octylbenzenesulfonic acid, nonylbenzenesulfonic acid, decylbenzenesulfonic acid, undecylbenzenesulfonic acid, dodecylbenzenesulfonic acid, pentadecylbenzenesulfonic acid, hexadecylbenzenesulfonic acid, 2, 4-dimethylbenzenesulfonic acid, dipropylbenzenesulfonic acid, 4-aminobenzenesulfonic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid 4-amino-2-chlorotoluene-5-sulfonic acid, 4-amino-3-methylbenzene-1-sulfonic acid, 4-amino-5-methoxy-2-methylbenzenesulfonic acid, 2-amino-5-methyl Benzene-1-sulfonic acid, 4-amino-2-methylbenzene-1-sulfonic acid, 5-amino-2-methylbenzene-1-sulfonic acid, 4-amino-3-methylbenzene-1-sulfonic acid, 4 -Acetamide-3-chlorobenzenesulfonic acid, 4-chloro-3-nitrobenzenesulfonic acid, p-chlorobenzenesulfonic acid, naphthalenesulfonic acid, methylnaphthalenesulfonic acid, propylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, pentylnaphthalenesulfonic acid, 4 -Amino-1-naphthalenesulfonic acid, 8-chloronaphthalene-1- Examples include sulfonic acid, naphthalene sulfonic acid formalin polycondensate, melamine sulfonic acid formalin polycondensate, anthraquinone sulfonic acid, and pyrene sulfonic acid. These metal salts can also be used.
スルホ基を二つ以上含むものとしては、例えば、エタンジスルホン酸、ブタンジスルホン酸、ペンタンジスルホン酸、デカンジスルホン酸、o−ベンゼンジスルホン酸、m−ベンゼンジスルホン酸、p−ベンゼンジスルホン酸、トルエンジスルホン酸、キシレンジスルホン酸、クロロベンゼンジスルホン酸、フルオロベンゼンジスルホン酸、ジメチルベンゼンジスルホン酸、ジエチルベンゼンジスルホン酸、アニリン−2,4−ジスルホン酸、アニリン−2,5−ジスルホン酸、3,4−ジヒドロキシ−1,3−ベンゼンジスルホン酸、ナフタレンジスルホン酸、メチルナフタレンジスルホン酸、エチルナフタレンジスルホン酸、ペンタデシルナフタレンジスルホン酸、3−アミノ−5−ヒドロキシ−2,7−ナフタレンジスルホン酸、1−アセトアミド−8−ヒドロキシ−3,6−ナフタレンジスルホン酸、2−アミノ−1,4−ベンゼンジスルホン酸、1−アミノ−3,8−ナフタレンジスルホン酸、3−アミノ−1,5−ナフタレンジスルホン酸、8−アミノ−1−ナフトール−3,6−ジスルホン酸、4−アミノ−5−ナフトール−2,7−ジスルホン酸、4−アセトアミド−4’−イソチオ−シアノトスチルベン−2,2’−ジスルホン酸、4−アセトアミド−4’−イソチオシアナトスチルベン−2,2’−ジスルホン酸、4−アセトアミド−4’−マレイミジルスチルベン−2,2’−ジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。 Examples of those containing two or more sulfo groups include ethanedisulfonic acid, butanedisulfonic acid, pentanedisulfonic acid, decanedisulfonic acid, o-benzenedisulfonic acid, m-benzenedisulfonic acid, p-benzenedisulfonic acid, and toluenedisulfonic acid. Xylene disulfonic acid, chlorobenzene disulfonic acid, fluorobenzene disulfonic acid, dimethylbenzene disulfonic acid, diethylbenzene disulfonic acid, aniline-2,4-disulfonic acid, aniline-2,5-disulfonic acid, 3,4-dihydroxy-1,3 -Benzenedisulfonic acid, naphthalene disulfonic acid, methyl naphthalene disulfonic acid, ethyl naphthalene disulfonic acid, pentadecyl naphthalene disulfonic acid, 3-amino-5-hydroxy-2,7-naphthalene disulfonic acid, 1- Cetamide-8-hydroxy-3,6-naphthalenedisulfonic acid, 2-amino-1,4-benzenedisulfonic acid, 1-amino-3,8-naphthalenedisulfonic acid, 3-amino-1,5-naphthalenedisulfonic acid, 8-amino-1-naphthol-3,6-disulfonic acid, 4-amino-5-naphthol-2,7-disulfonic acid, 4-acetamido-4'-isothio-cyanotostilbene-2,2'-disulfonic acid 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid, 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid, naphthalenetrisulfonic acid, dinaphthylmethanedisulfone An acid, anthraquinone disulfonic acid, anthracene sulfonic acid, etc. are mentioned. These metal salts can also be used.
以上説明したコンデンサ10は、陰極13が、π共役系導電性高分子とポリアニオンとヒドロキシ基含有芳香族性化合物とを含む固体電解質層13aを具備するものである。固体電解質層13aに含まれるヒドロキシ基含有芳香族性化合物は、水素を放出するので、π共役系導電性高分子の酸化劣化の際に生じるラジカルを失活させることができる。これにより、ラジカルの連鎖反応を遮断することができ、劣化の進行を抑制できるため、耐熱性及び安定性が高くなると考えられる。
また、ヒドロキシ基含有芳香族性化合物は、ポリアニオン中のアニオン基と相互作用が起きやすく、この相互作用によって、ポリアニオン同士を接近させることができると考えられる。そのため、ドーピングによってポリアニオン上に吸着されているπ共役系導電性高分子同士も接近させることができる。その結果、π共役系導電性高分子同士間の電気伝導現象であるホッピングに必要なエネルギーが小さくなり、全体の電気抵抗が小さくなる(導電性が高くなる)と考えられる。
In the
The hydroxy group-containing aromatic compound is likely to interact with the anion group in the polyanion, and it is considered that the polyanion can be brought close to each other by this interaction. Therefore, π-conjugated conductive polymers adsorbed on the polyanion by doping can also be brought close to each other. As a result, it is considered that the energy required for hopping, which is an electrical conduction phenomenon between π-conjugated conductive polymers, is reduced, and the overall electrical resistance is reduced (conductivity is increased).
(コンデンサの製造方法)
コンデンサの製造方法は、弁金属の多孔質体からなる陽極11と陽極11の表面が酸化されて形成された酸化被膜の誘電体層12とを有するコンデンサ中間体の誘電体層12側表面に、導電性高分子溶液を塗布、固体電解質層13aを形成する方法である。
(Capacitor manufacturing method)
The method for manufacturing a capacitor includes: an
この製造方法における導電性高分子溶液は、π共役系導電性高分子とポリアニオンとヒドロキシ基含有芳香族性化合物と溶媒とを含むものである。
導電性高分子溶液を調製するには、まず、ポリアニオンを、これを溶解可能な溶媒に溶解し、これにより得られた溶液に、π共役系導電性高分子を形成するアニリンやピロール、チオフェンなどの前駆体モノマーを添加する。次いで、酸化剤を添加して前駆体モノマーを重合させ、その後、余剰の酸化剤や前駆体モノマーを分離、精製する。そして、ヒドロキシ基含有芳香族性化合物を添加して導電性高分子溶液を得る。
The conductive polymer solution in this production method contains a π-conjugated conductive polymer, a polyanion, a hydroxy group-containing aromatic compound, and a solvent.
In order to prepare a conductive polymer solution, first, polyanion is dissolved in a solvent capable of dissolving the polyanion, and aniline, pyrrole, thiophene, or the like that forms a π-conjugated conductive polymer is obtained in the resulting solution. The precursor monomer is added. Subsequently, an oxidizing agent is added to polymerize the precursor monomer, and then the excess oxidizing agent and the precursor monomer are separated and purified. Then, a hydroxy group-containing aromatic compound is added to obtain a conductive polymer solution.
導電性高分子溶液に含まれる溶媒としては特に限定されず、例えば、メタノール、エタノール、イソプロパノール(IPA)などのアルコール系溶媒、N−メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)などのアミド系溶媒、メチルエチルケトン(MEK)、アセトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチル、酢酸ブチルのようなエステル系溶媒、トルエン、キシレン、水などが挙げられる。これらは単独で使用してもよいし、混合して使用してもよい。中でも、近年の環境保護の観点から、環境負荷の小さい水やアルコール系溶媒が好ましい。 The solvent contained in the conductive polymer solution is not particularly limited. For example, alcohol solvents such as methanol, ethanol, isopropanol (IPA), N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) Amide solvents such as methyl ethyl ketone (MEK), acetone and cyclohexanone, ester solvents such as ethyl acetate and butyl acetate, toluene, xylene and water. These may be used alone or in combination. Among these, from the viewpoint of environmental protection in recent years, water and alcohol solvents having a low environmental load are preferable.
導電性高分子溶液の塗布方法としては、例えば、コーティング、浸漬、スプレーなどの公知の手法が挙げられる。乾燥方法としては、熱風乾燥など公知の手法が挙げられる。 Examples of the method for applying the conductive polymer solution include known methods such as coating, dipping, and spraying. Examples of the drying method include known methods such as hot air drying.
固体電解質層13aを形成した後には、カーボンペースト、銀ペーストによって導電層13bを形成したり、セパレータを介して陰極電極を対向したりする公知の手法により導電層13bを形成することができる。
After the
固体電解質層13aにおいては、π共役系導電性高分子が粒子径1〜500nmの粒子として形成することが多い。そのため、コンデンサ中間体の誘電体層表面における微細な空隙の最深部にまでπ共役系導電性高分子が行き届かず、容量を引き出すことが難しくなることがある。このことから、固体電解質層13aを形成した後に、必要に応じて電解液を浸透させることで、容量を補充することが好ましい。
In the
[電解液]
電解液としては導電性が高ければ特に限定されず、周知の溶媒中に周知の電解質を溶解させたものである。
電解液における溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブタンジオール、グリセリン等のアルコール系溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のラクトン系溶媒、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N−メチルピロリジノン等のアミド系溶媒、アセトニトリル、3−メトキシプロピオニトリル等のニトリル系溶媒、水等が挙げられる。
電解質としては、アジピン酸、グルタル酸、コハク酸、安息香酸、イソフタル酸、フタル酸、テレフタル酸、マレイン酸、トルイル酸、エナント酸、マロン酸、蟻酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸等のデカンジカルボン酸、1,7−オクタンジカルボン酸等のオクタンジカルボン酸、アゼライン酸、セバシン酸等の有機酸、あるいは、硼酸、硼酸と多価アルコールより得られる硼酸の多価アルコール錯化合物、りん酸、炭酸、けい酸等の無機酸などをアニオン成分とし、一級アミン(メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等)、二級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、メチルエチルアミン、ジフェニルアミン等)、三級アミン(トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリフェニルアミン、1,8−ジアザビシクロ(5,4,0)−ウンデセン−7等)、テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等)などをカチオン成分とした電解質が挙げられる。
[Electrolyte]
The electrolytic solution is not particularly limited as long as it has high conductivity, and a known electrolyte is dissolved in a known solvent.
Examples of the solvent in the electrolytic solution include alcohol solvents such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, and glycerol, lactone solvents such as γ-butyrolactone, γ-valerolactone, and δ-valerolactone, Examples thereof include amide solvents such as N-methylformamide, N, N-dimethylformamide, N-methylacetamide and N-methylpyrrolidinone, nitrile solvents such as acetonitrile and 3-methoxypropionitrile, water and the like.
Examples of the electrolyte include adipic acid, glutaric acid, succinic acid, benzoic acid, isophthalic acid, phthalic acid, terephthalic acid, maleic acid, toluic acid, enanthic acid, malonic acid, formic acid, 1,6-decanedicarboxylic acid, 5,6 -Decane dicarboxylic acid such as decanedicarboxylic acid, octane dicarboxylic acid such as 1,7-octane dicarboxylic acid, organic acid such as azelaic acid and sebacic acid, or boric acid, polyhydric alcohol of boric acid obtained from boric acid and polyhydric alcohol Complex compounds, inorganic acids such as phosphoric acid, carbonic acid, and silicic acid are used as anionic components, and primary amines (methylamine, ethylamine, propylamine, butylamine, ethylenediamine, etc.), secondary amines (dimethylamine, diethylamine, dipropylamine, Methylethylamine, diphenylamine, etc.), tertiary amine (trimethyl) Amine, triethylamine, tripropylamine, triphenylamine, 1,8-diazabicyclo (5,4,0) -undecene-7, etc.), tetraalkylammonium (tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, Examples thereof include electrolytes containing methyltriethylammonium, dimethyldiethylammonium, etc.) as cationic components.
以上説明したコンデンサの製造方法は、導電性高分子溶液を塗布、乾燥することにより固体電解質層を形成するから、工程が簡便であり、大量生産に向いており、低コストである。また、導電性高分子溶液は、π共役系導電性高分子とポリアニオンとヒドロキシ基含有芳香族性化合物とを含んでいるため、固体電解質層中のπ共役系導電性高分子の劣化を防ぐことができ、さらに、ホッピングエネルギーを小さくすることができる。したがって、固体電解質層の導電性を高くできるので、コンデンサの性能を高くできる。 The capacitor manufacturing method described above forms a solid electrolyte layer by applying and drying a conductive polymer solution, so that the process is simple, suitable for mass production, and low cost. In addition, since the conductive polymer solution contains a π-conjugated conductive polymer, a polyanion, and a hydroxy group-containing aromatic compound, it prevents deterioration of the π-conjugated conductive polymer in the solid electrolyte layer. In addition, hopping energy can be reduced. Therefore, since the conductivity of the solid electrolyte layer can be increased, the performance of the capacitor can be increased.
以下に、実施例により本発明をさらに詳しく説明する。
(製造例1)
14.2gの3,4−エチレンジオキシチオフェンと、36.7gのポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合させた。
これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。
得られた反応液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。
そして、得られた溶液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水とを加え、限外ろ過法を用いて約2000mlの溶液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。
さらに、得られた溶液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの溶液を除去した。この操作を5回繰り返し、約1.5質量%の青色のポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)(PSS−PEDOT)を含むポリマー溶液を得た。
得られたポリマー溶液100gに2.0gのヒドロキノンスルホン酸カリウムを添加し、均一に分散させて導電性高分子溶液Aを得た。
その導電性高分子溶液をガラス上に塗布し、120℃のオーブン中で乾燥させて導電性組成物の塗布膜を得た。得られた塗布膜の電気伝導度をローレスタ(三菱化学社製)により測定した。その結果を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Production Example 1)
14.2 g of 3,4-ethylenedioxythiophene and a solution of 36.7 g of polystyrene sulfonic acid dissolved in 2000 ml of ion-exchanged water were mixed at 20 ° C.
While maintaining the mixed solution thus obtained at 20 ° C. and stirring, 29.64 g of ammonium persulfate dissolved in 200 ml of ion exchange water and 8.0 g of ferric sulfate oxidation catalyst solution were slowly added, The reaction was stirred for 3 hours.
2000 ml of ion-exchanged water was added to the resulting reaction solution, and about 2000 ml of solution was removed using an ultrafiltration method. This operation was repeated three times.
Then, 200 ml of sulfuric acid diluted to 10% by mass and 2000 ml of ion-exchanged water are added to the resulting solution, and about 2000 ml of solution is removed using an ultrafiltration method, and 2000 ml of ion-exchanged water is added thereto. About 2000 ml of solution was removed using ultrafiltration. This operation was repeated three times.
Furthermore, 2000 ml of ion-exchanged water was added to the obtained solution, and about 2000 ml of the solution was removed using an ultrafiltration method. This operation was repeated 5 times to obtain a polymer solution containing about 1.5% by mass of blue polystyrenesulfonic acid-doped poly (3,4-ethylenedioxythiophene) (PSS-PEDOT).
To 100 g of the obtained polymer solution, 2.0 g of potassium hydroquinonesulfonate was added and dispersed uniformly to obtain a conductive polymer solution A.
The conductive polymer solution was applied onto glass and dried in an oven at 120 ° C. to obtain a coating film of the conductive composition. The electric conductivity of the obtained coating film was measured with a Loresta (manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1.
(製造例2)
製造例1において得られた100gのポリマー溶液に、ヒドロキノンスルホン酸カリウムの代わりに、1.5gの1,2,3−トリヒドロキシベンゼンを添加したこと以外は製造例1と同様にして導電性高分子溶液Bを得た。そして、製造例1と同様にして評価した。評価結果を表1に示す。
(Production Example 2)
In the same manner as in Production Example 1 except that 1.5 g of 1,2,3-trihydroxybenzene was added to 100 g of the polymer solution obtained in Production Example 1 instead of potassium hydroquinonesulfonate, the high conductivity was obtained. A molecular solution B was obtained. And it evaluated similarly to manufacture example 1. The evaluation results are shown in Table 1.
(製造例3)
製造例1において得られた100mlのポリマー溶液に、ヒドロキノンスルホン酸カリウムの代わりに、0.7gの3,4,5−トリヒドロキ安息香酸メチルを添加したこと以外は製造例1と同様にして導電性高分子溶液Cを得た。そして、製造例1と同様にして評価した。評価結果を表1に示す。
(Production Example 3)
Conductivity was obtained in the same manner as in Production Example 1 except that 0.7 g of methyl 3,4,5-trihydroxybenzoate was added to 100 ml of the polymer solution obtained in Production Example 1 instead of potassium hydroquinonesulfonate. Polymer solution C was obtained. And it evaluated similarly to manufacture example 1. The evaluation results are shown in Table 1.
・コンデンサの製造
(実施例1)
エッチドアルミ箔(陽極泊)に陽極リード端子を接続した後、アジピン酸アンモニウム10質量%水溶液中で化成(酸化処理)して、アルミ箔表面に誘電体層を形成してコンデンサ中間体を得た。
次に、コンデンサ中間体と、陰極リード端子を溶接させた対向アルミ陰極箔とを積層し、これを巻き取ってコンデンサ素子とした。その際、コンデンサ中間体の陽極箔と陰極箔との間にセパレータを挟んだ。
製造例1で調製した導電性高分子溶液Aにコンデンサ素子を浸漬した後、120℃の熱風乾燥機で乾燥してコンデンサ中間体の誘電体層側表面に固体電解質層を形成させた。
次いで、アルミニウム製のケースに、固体電解質層が形成されたコンデンサ素子と、電解液であるアジピン酸水素アンモニウム20質量%−エチレングリコール80質量%溶液とを充填し、封口ゴムで封止して、コンデンサを作製した。
作製したコンデンサについて、LCZメータ2345(エヌエフ回路設計ブロック社製)を用いて、120Hzでの静電容量、100kHzでの等価直列抵抗(ESR)の初期値、125℃、500時間後のESRを測定した。測定結果を表1に示す。
・ Manufacture of capacitors (Example 1)
After connecting the anode lead terminal to the etched aluminum foil (anode stay), chemical conversion (oxidation treatment) in a 10% by weight ammonium adipate aqueous solution is performed to form a dielectric layer on the aluminum foil surface to obtain a capacitor intermediate. It was.
Next, a capacitor intermediate and a counter aluminum cathode foil welded with a cathode lead terminal were laminated and wound up to obtain a capacitor element. At that time, a separator was sandwiched between the anode foil and the cathode foil of the capacitor intermediate.
After immersing the capacitor element in the conductive polymer solution A prepared in Production Example 1, it was dried with a hot air dryer at 120 ° C. to form a solid electrolyte layer on the dielectric layer side surface of the capacitor intermediate.
Next, an aluminum case is filled with a capacitor element in which a solid electrolyte layer is formed and an ammonium hydrogen adipate 20% by mass-ethylene glycol 80% by mass solution that is an electrolytic solution, and sealed with a sealing rubber, A capacitor was produced.
Using the LCZ meter 2345 (manufactured by NF Circuit Design Block Co., Ltd.), measured the capacitance at 120 Hz, the initial value of the equivalent series resistance (ESR) at 100 kHz, and the ESR after 500 hours at 125 ° C. did. The measurement results are shown in Table 1.
(実施例2)
導電性高分子溶液Aの代わりに導電性高分子溶液Bを用いたこと以外は実施例1と同様にしてコンデンサを作製し、実施例1と同様にして評価した。その結果を表1に示す。
(Example 2)
A capacitor was prepared in the same manner as in Example 1 except that the conductive polymer solution B was used instead of the conductive polymer solution A, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
導電性高分子溶液Aの代わりに導電性高分子溶液Cを用いたこと以外は実施例1と同様にしてコンデンサを作製し、実施例1と同様にして評価した。その結果を表1に示す。
(Example 3)
A capacitor was produced in the same manner as in Example 1 except that the conductive polymer solution C was used instead of the conductive polymer solution A, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
エッチドアルミ箔(陽極泊)に陽極リード端子を接続した後、アジピン酸アンモニウム10質量%水溶液中で化成(酸化処理)して、アルミ箔表面に誘電体層を形成してコンデンサ中間体を得た。
次に、製造例1で調製した導電性高分子溶液Aにコンデンサ中間体を浸漬した後、120℃の熱風乾燥機で乾燥してコンデンサ中間体の誘電体層側表面に固体電解質層を形成させた。
次いで、形成された固体電解質層の上に、カーボンペーストを塗布し、120℃の熱風乾燥機で乾燥した後、さらに、銀ペーストを塗布して導電層を形成し、120℃の熱風乾燥機で乾燥して陰極を形成した。
その陰極にリード端子を取り付け、これを巻き取ってコンデンサ素子とした。その際、コンデンサ中間体の陽極箔と陰極箔との間にセパレータを挟んだ。
アルミニウム製のケースに、固体電解質層が形成されたコンデンサ素子を装填し、封口ゴムで封止して、コンデンサを作製した。
作製したコンデンサについて、LCZメータ2345(エヌエフ回路設計ブロック社製)を用いて、120Hzでの静電容量、100kHzでの等価直列抵抗(ESR)の初期値、125℃、500時間後のESRを測定した。測定結果を表1に示す。
Example 4
After connecting the anode lead terminal to the etched aluminum foil (anode stay), chemical conversion (oxidation treatment) in a 10% by weight ammonium adipate aqueous solution is performed to form a dielectric layer on the aluminum foil surface to obtain a capacitor intermediate. It was.
Next, after immersing the capacitor intermediate in the conductive polymer solution A prepared in Production Example 1, the capacitor intermediate is dried with a hot air dryer at 120 ° C. to form a solid electrolyte layer on the dielectric layer side surface of the capacitor intermediate. It was.
Next, a carbon paste is applied on the formed solid electrolyte layer and dried with a hot air dryer at 120 ° C., and further, a silver paste is applied to form a conductive layer, and then a hot air dryer at 120 ° C. Dried to form a cathode.
A lead terminal was attached to the cathode, and this was wound up to obtain a capacitor element. At that time, a separator was sandwiched between the anode foil and the cathode foil of the capacitor intermediate.
A capacitor element in which a solid electrolyte layer was formed was loaded into an aluminum case and sealed with a sealing rubber to produce a capacitor.
Using the LCZ meter 2345 (manufactured by NF Circuit Design Block Co., Ltd.), measured the capacitance at 120 Hz, the initial value of the equivalent series resistance (ESR) at 100 kHz, and the ESR after 500 hours at 125 ° C. did. The measurement results are shown in Table 1.
(実施例5)
導電性高分子溶液Aの代わりに導電性高分子溶液Bを用いたこと以外は実施例3と同様にしてコンデンサを作製し、実施例4と同様にして評価した。その結果を表1に示す。
(Example 5)
A capacitor was prepared in the same manner as in Example 3 except that the conductive polymer solution B was used instead of the conductive polymer solution A, and evaluation was performed in the same manner as in Example 4. The results are shown in Table 1.
(比較例1)
製造例1のポリマー溶液を導電性高分子溶液として用いたこと以外は実施例1と同様にしてコンデンサを作製し、実施例1と同様にして評価した。
(Comparative Example 1)
A capacitor was produced in the same manner as in Example 1 except that the polymer solution of Production Example 1 was used as the conductive polymer solution, and evaluated in the same manner as in Example 1.
陰極の固体電解質層がπ共役系導電性高分子とポリアニオンとヒドロキシ基含有芳香族性化合物とを含む実施例1〜5のコンデンサは、陰極の導電性に優れており、等価直列抵抗が低かった。特に、ヒドロキシ基含有芳香族化合物として式(1)で表される化合物を用いた実施例5のコンデンサは、陰極の導電性が高く、等価直列抵抗が低かった。
これに対し、陰極の固体電解質層がヒドロキシ基含有芳香族性化合物を含まない比較例1のコンデンサは、陰極の導電性が低く、等価直列抵抗が高かった。
The capacitors of Examples 1 to 5 in which the solid electrolyte layer of the cathode includes a π-conjugated conductive polymer, a polyanion, and a hydroxy group-containing aromatic compound had excellent cathode conductivity and low equivalent series resistance. . In particular, the capacitor of Example 5 using the compound represented by the formula (1) as the hydroxy group-containing aromatic compound had high cathode conductivity and low equivalent series resistance.
In contrast, the capacitor of Comparative Example 1 in which the cathode solid electrolyte layer did not contain a hydroxy group-containing aromatic compound had low cathode conductivity and high equivalent series resistance.
10 コンデンサ
11 陽極
12 誘電体層
13 陰極
13a 固体電解質層
10
Claims (4)
陰極が、π共役系導電性高分子と、ポリアニオンと、ヒドロキシ基含有芳香族性化合物とを含む固体電解質層を具備することを特徴とするコンデンサ。 In a capacitor having an anode made of a porous body of a valve metal, a dielectric layer formed by oxidizing the surface of the anode, and a cathode formed on the dielectric layer,
A capacitor, wherein the cathode includes a solid electrolyte layer containing a π-conjugated conductive polymer, a polyanion, and a hydroxy group-containing aromatic compound.
A π-conjugated conductive polymer, a polyanion, and a hydroxy group are formed on a dielectric layer side surface of a capacitor intermediate having an anode made of a porous body of a valve metal and a dielectric layer formed by oxidizing the surface of the anode. A method for producing a capacitor, comprising a step of applying and drying a conductive polymer solution containing a contained aromatic compound and a solvent.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005072757A JP4602128B2 (en) | 2004-12-01 | 2005-03-15 | Capacitor and manufacturing method thereof |
TW094134923A TWI325007B (en) | 2004-10-08 | 2005-10-06 | Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof |
US11/244,604 US7842196B2 (en) | 2004-10-08 | 2005-10-06 | Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof |
PCT/JP2005/018637 WO2006041032A1 (en) | 2004-10-08 | 2005-10-07 | Conductive composition and process for producing the same, antistatic paint, antistatic coating and antistatic film, optical filter, optical information recording medium, and capacitor and process for producing the same |
EP05790651A EP1798259B1 (en) | 2004-10-08 | 2005-10-07 | Conductive composition and process for producing the same, antistatic paint, antistatic coating and antistatic film, optical filter, optical information recording medium, and capacitor and process for producing the same |
CN2005800340572A CN101035860B (en) | 2004-10-08 | 2005-10-07 | Conductive composition and process for producing the same, antistatic paint, antistatic coating and antistatic film, optical filter, optical information recording medium, and capacitor and process for production |
US12/909,435 US8021579B2 (en) | 2004-10-08 | 2010-10-21 | Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof |
US12/909,449 US8035952B2 (en) | 2004-10-08 | 2010-10-21 | Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004348686 | 2004-12-01 | ||
JP2005072757A JP4602128B2 (en) | 2004-12-01 | 2005-03-15 | Capacitor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006186292A true JP2006186292A (en) | 2006-07-13 |
JP4602128B2 JP4602128B2 (en) | 2010-12-22 |
Family
ID=36739146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005072757A Expired - Lifetime JP4602128B2 (en) | 2004-10-08 | 2005-03-15 | Capacitor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4602128B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008010422A1 (en) * | 2006-07-19 | 2008-01-24 | Panasonic Corporation | Solid electrolytic capacitor |
JP2008135514A (en) * | 2006-11-28 | 2008-06-12 | Shin Etsu Polymer Co Ltd | Capacitor and method for manufacturing the same |
JP2010508430A (en) * | 2006-11-06 | 2010-03-18 | アグファ−ゲバルト | Layered structure with improved stability against sunlight exposure |
JP2015177131A (en) * | 2014-03-17 | 2015-10-05 | 信越ポリマー株式会社 | Capacitor and manufacturing method thereof |
JP2019054147A (en) * | 2017-09-15 | 2019-04-04 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
WO2019187822A1 (en) * | 2018-03-27 | 2019-10-03 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
JP2019179855A (en) * | 2018-03-30 | 2019-10-17 | 昭和電工株式会社 | Manufacturing method of solid electrolytic capacitor and the solid electrolytic capacitor |
JP7574133B2 (en) | 2021-04-19 | 2024-10-28 | ニチコン株式会社 | Solid electrolytic capacitor and method for manufacturing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0521281A (en) * | 1991-07-10 | 1993-01-29 | Matsushita Electric Ind Co Ltd | Capacitor and manufacturing method thereof |
JPH1032145A (en) * | 1996-07-16 | 1998-02-03 | Nec Corp | Solid-state electrolytic capacitor and its manufacturing method |
JPH1092699A (en) * | 1996-09-17 | 1998-04-10 | Matsushita Electric Ind Co Ltd | Capacitor and manufacturing method thereof |
JPH10241998A (en) * | 1997-02-27 | 1998-09-11 | Nec Toyama Ltd | Manufacture of solid electrolytic capacitor |
JP2000340462A (en) * | 1999-05-28 | 2000-12-08 | Matsushita Electric Ind Co Ltd | Solid electrolytic capacitors |
JP2003022938A (en) * | 2001-04-13 | 2003-01-24 | Sanyo Chem Ind Ltd | Electrolytic capacitor |
JP2003264127A (en) * | 2002-03-08 | 2003-09-19 | Fuji Photo Film Co Ltd | Solid-state electrolytic capacitor |
-
2005
- 2005-03-15 JP JP2005072757A patent/JP4602128B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0521281A (en) * | 1991-07-10 | 1993-01-29 | Matsushita Electric Ind Co Ltd | Capacitor and manufacturing method thereof |
JPH1032145A (en) * | 1996-07-16 | 1998-02-03 | Nec Corp | Solid-state electrolytic capacitor and its manufacturing method |
JPH1092699A (en) * | 1996-09-17 | 1998-04-10 | Matsushita Electric Ind Co Ltd | Capacitor and manufacturing method thereof |
JPH10241998A (en) * | 1997-02-27 | 1998-09-11 | Nec Toyama Ltd | Manufacture of solid electrolytic capacitor |
JP2000340462A (en) * | 1999-05-28 | 2000-12-08 | Matsushita Electric Ind Co Ltd | Solid electrolytic capacitors |
JP2003022938A (en) * | 2001-04-13 | 2003-01-24 | Sanyo Chem Ind Ltd | Electrolytic capacitor |
JP2003264127A (en) * | 2002-03-08 | 2003-09-19 | Fuji Photo Film Co Ltd | Solid-state electrolytic capacitor |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008010422A1 (en) * | 2006-07-19 | 2008-01-24 | Panasonic Corporation | Solid electrolytic capacitor |
JP2008027998A (en) * | 2006-07-19 | 2008-02-07 | Matsushita Electric Ind Co Ltd | Solid electrolytic capacitor |
US7940515B2 (en) | 2006-07-19 | 2011-05-10 | Panasonic Corporation | Solid electrolytic capacitor |
TWI410993B (en) * | 2006-07-19 | 2013-10-01 | Panasonic Corp | Solid electrolytic capacitors |
JP2010508430A (en) * | 2006-11-06 | 2010-03-18 | アグファ−ゲバルト | Layered structure with improved stability against sunlight exposure |
JP2008135514A (en) * | 2006-11-28 | 2008-06-12 | Shin Etsu Polymer Co Ltd | Capacitor and method for manufacturing the same |
JP2015177131A (en) * | 2014-03-17 | 2015-10-05 | 信越ポリマー株式会社 | Capacitor and manufacturing method thereof |
JP2019054147A (en) * | 2017-09-15 | 2019-04-04 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
JP7054859B2 (en) | 2017-09-15 | 2022-04-15 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
WO2019187822A1 (en) * | 2018-03-27 | 2019-10-03 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
JP2019179855A (en) * | 2018-03-30 | 2019-10-17 | 昭和電工株式会社 | Manufacturing method of solid electrolytic capacitor and the solid electrolytic capacitor |
JP7131941B2 (en) | 2018-03-30 | 2022-09-06 | 昭和電工株式会社 | Method for producing dispersion containing conjugated conductive polymer, method for producing solid electrolytic capacitor, and solid electrolytic capacitor |
JP7574133B2 (en) | 2021-04-19 | 2024-10-28 | ニチコン株式会社 | Solid electrolytic capacitor and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4602128B2 (en) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4647297B2 (en) | Capacitor and manufacturing method thereof | |
EP1918326B1 (en) | Conductive composition | |
JP5444057B2 (en) | Solid electrolytic capacitor, manufacturing method thereof, and solution for solid electrolytic capacitor | |
JP5308982B2 (en) | Solid electrolytic capacitor, manufacturing method thereof, and solution for solid electrolytic capacitor | |
JP5283818B2 (en) | Conductive composition and method for producing the same | |
JP4813158B2 (en) | Capacitor and manufacturing method thereof | |
JP5492595B2 (en) | Capacitor and manufacturing method thereof | |
JP2011082313A (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP2006185973A (en) | Conductive polymer solution and its manufacturing method, conductor, capacitor, and its manufacturing method | |
JP5055027B2 (en) | Conductive polymer solution and conductive coating film | |
JP4975403B2 (en) | Conductive polymer solution and conductive coating film | |
JP4776950B2 (en) | Method for producing conductive polymer solution | |
JP4602128B2 (en) | Capacitor and manufacturing method thereof | |
JP4823570B2 (en) | Conductive polymer solution and conductive coating film | |
JP4987267B2 (en) | Method for producing antistatic adhesive and method for producing protective material | |
JP2014007422A (en) | Solid electrolytic capacitor and method for manufacturing the same | |
JP4925985B2 (en) | Conductive polymer solution and conductive coating film | |
JP2011171674A (en) | Capacitor and method of manufacturing the same | |
JP3980540B2 (en) | Conductive composition and method for producing the same | |
JP5143446B2 (en) | Conductive polymer solution and conductive coating film | |
JP2007204704A (en) | Electroconductive polymer solution and electroconductive coating film | |
JP4916804B2 (en) | Conductive polymer solution and conductive coating film | |
JP5143462B2 (en) | Conductive polymer solution and conductive coating film | |
JP2007103558A (en) | Solid electrolyte, electrolytic capacitor, and manufacturing method thereof | |
JP4732101B2 (en) | Conductive porous separator, method for producing the same, and electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100929 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4602128 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |